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ABSTRACT

Neuromorphic computing, which exploits Spiking Neural Networks (SNNs) on
neuromorphic chips, is a promising energy-efficient alternative to traditional AI.
CNN-based SNNs are the current mainstream of neuromorphic computing. By
contrast, no neuromorphic chips are designed especially for Transformer-based
SNNs, which have just emerged, and their performance is only on par with
CNN-based SNNs, offering no distinct advantage. In this work, we propose a
general Transformer-based SNN architecture, termed as “Meta-SpikeFormer",
whose goals are: i) Lower-power, supports the spike-driven paradigm that there
is only sparse addition in the network; ii) Versatility, handles various vision
tasks; iii) High-performance, shows overwhelming performance advantages over
CNN-based SNNs; iv) Meta-architecture, provides inspiration for future next-
generation Transformer-based neuromorphic chip designs. Specifically, we extend
the Spike-driven Transformer in Yao et al. (2023b) into a meta architecture, and
explore the impact of structure, spike-driven self-attention, and skip connection
on its performance. On ImageNet-1K, Meta-SpikeFormer achieves 80.0% top-1
accuracy (55M), surpassing the current state-of-the-art (SOTA) SNN baselines
(66M) by 3.7%. This is the first direct training SNN backbone that can simul-
taneously supports classification, detection, and segmentation, obtaining SOTA
results in SNNs. Finally, we discuss the inspiration of the meta SNN architec-
ture for neuromorphic chip design. Source code and models are available at
https://github.com/BICLab/Spike-Driven-Transformer-V2.

1 INTRODUCTION

The ambition of SNNs is to become a low-power alternative to traditional machine intelligence (Roy
et al., 2019; Li et al., 2023). The unique spike-driven is key to realizing this magnificent concept,
i.e., only a portion of spiking neurons are ever activated to execute sparse synaptic ACcumulate (AC)
when SNNs are run on neuromorphic chips (Roy et al., 2019). Neuromorphic computing is essentially
an algorithm-hardware co-design paradigm (Frenkel et al., 2023). Biological neurons are modeled as
spiking neurons and somehow form SNNs at the algorithmic level(Maass, 1997a). Neuromorphic
chips are then outfitted with spike-driven SNNs at the hardware level (Schuman et al., 2022).

CNN-based SNNs are currently the common spike-driven design. Thus, typical neuromorphic chips,
such as TrueNorth (Merolla et al., 2014), Loihi (Davies et al., 2018), Tianjic (Pei et al., 2019), etc.,
all support spike-driven Conv and MLP operators. Nearly all CNN-era architectures, e.g., VGG
(Simonyan & Zisserman, 2015), ResNet (He et al., 2016b), etc., can be developed into corresponding
SNN versions (Wu et al., 2021). As Transformer (Vaswani et al., 2017) in ANNs has shown great
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potential in various tasks (Dosovitskiy et al., 2021), some Transformer-based designs have emerged
in SNNs during the past two years (Zhang et al., 2022b;c; Han et al., 2023; Zhou et al., 2023).

Most Transformer-based SNNs fail to take advantage of the low-power of SNNs because they are not
spike-driven. Typically, they retain the energy-hungry Multiply-and-ACcumulate (MAC) operations
dominated by vanilla Transformer, such as scaled dot-product (Han et al., 2023), softmax (Leroux
et al., 2023), scale (Zhou et al., 2023), etc. Recently, Yao et al. (2023b) developed a spike-driven
self-attention operator, integrating the spike-driven into Transformer for the first time. However,
while the Spike-driven Transformer Yao et al. (2023b) with only sparse AC achieved SOTA results in
SNNs on ImageNet-1K, it has yet to show clear advantages over Conv-based SNNs.

In this work, we advance the SNN domain by proposing Meta-SpikeFormer in terms of performance
and versatility. Since Vision Transformer (ViT) (Dosovitskiy et al., 2021) showed that Transformer
can perform superbly in vision, numerous studies have been produced (Han et al., 2022). Recently,
Yu et al. (2022a;b) summarized various ViT variants and argued that there is general architecture
abstracted from ViTs by not specifying the token mixer (self-attention). Inspired by this work, we
investigate the meta architecture design in Transformer-based SNNs, involving three aspects: network
structure, skip connection (shortcut), Spike-Driven Self-Attention (SDSA) with fully AC operations.

We first align the structures of Spike-driven Transformer in Yao et al. (2023b) with the CAFormer
in Yu et al. (2022b) at the macro-level. Specifically, as shown in Fig. 2, the original four spiking
encoding layers are expanded into four Conv-based SNN blocks. We experimentally verify that
early-stage Conv blocks are important for the performance and versatility of SNNs. Then we design
Conv-based and Transformer-based SNN blocks at the micro-level (see Table 5). For instance,
the generation of spike-form Query (QS), Key (KS), Value (VS), three new SDSA operators, etc.
Furthermore, we test the effects of three shortcuts based on the proposed Meta-SpikeFormer.

We conduct a comprehensive evaluation of Meta-SpikeFormer on four types of vision tasks, including
image classification (ImageNet-1K (Deng et al., 2009)), event-based action recognition (HAR-DVS
(Wang et al., 2022), currently the largest event-based human activity recognition dataset), object
detection (COCO (Lin et al., 2014)), and semantic segmentation (ADE20K (Zhou et al., 2017),
VOC2012 (Everingham et al., 2010)). The main contributions of this paper are as follows:

• SNN architecture design. We design a meta Transformer-based SNN architecture with only sparse
addition, including macro-level Conv-based and Transformer-based SNN blocks, as well as some
micro-level designs, such as several new spiking convolution methods, the generation of QS , KS ,
VS , and three new SDSA operator with different computational complexities, etc.

• Performance. The proposed Meta-SpikeFormer enables the performance of the SNN domain
on ImageNet-1K to achieve 80% for the first time, which is 3.7% higher than the current SOTA
baseline but with 17% fewer parameters (55M vs. 66M).

• Versatility. To the best of our knowledge, Meta-SpikeFormer is the first direct training SNN
backbone that can handle image classification, object detection, semantic segmentation concurrently.
We achieve SOTA results in the SNN domain on all tested datasets.

• Neuromorphic chip design. We thoroughly investigate the general components of Transformer-
based SNN, including structure, shortcut, SDSA operator. And, Meta-SpikeFormer shows signifi-
cant performance and versatility advantages over Conv-based SNNs. This will undoubtedly inspire
and guide the neuromorphic computing field to develop Transformer-based neuromorphic chips.

2 RELATED WORK

Spiking Neural Networks can be simply considered as Artificial Neural Networks (ANNs) with
bio-inspired spatio-temporal dynamics and spike (0/1) activations (Li et al., 2023). Spike-based
communication enables SNNs to be spike-driven, but the conventional backpropagation algorithm
(Rumelhart et al., 1986) cannot be applied directly because the spike function is non-differentiable.
There are typically two ways to tackle this challenge. One is to discrete the trained ANNs into
corresponding SNNs through neuron equivalence (Deng & Gu, 2021; Hu et al., 2023), i.e., ANN2SNN.
Another is to train SNNs directly, using surrogate gradients (Wu et al., 2018; Neftci et al., 2019). In
this work, we employ the direct training method due to its small timestep and adaptable architecture.
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Backbone in Conv-based SNNs. The architecture of the Conv-based SNN is guided by residual
learning in ResNet (He et al., 2016b;a). It can be roughly divided into three categories. Zheng et al.
(2021) directly copied the shortcut in ResNet and proposed a tdBN method, which expanded SNN
from several layers to 50 layers. To solve the degradation problem of deeper Res-SNN, Fang et al.
(2021) and Hu et al. (2024) proposed SEW-Res-SNN and MS-Res-SNN to raise the SNN depth to
more than 100 layers. Then, the classic ANN architecture can have a corresponding SNN direct
training version, e.g., attention SNNs (Yao et al., 2021; 2023d;a;c), spiking YOLO (Su et al., 2023),
etc. Unfortunately, current CNN-based SNNs fail to demonstrate generality in vision tasks.

Vision Transformers. After ViT (Dosovitskiy et al., 2021) showed the promising performance,
improvements and discussions on ViT have gradually replaced traditional CNNs as the mainstay.
Some typical work includes architecture design (PVT (Wang et al., 2021a), MLP-Mixer (Tolstikhin
et al., 2021)), enhancement of self-attention (Swin (Liu et al., 2021), Twins (Chu et al., 2021)),
training optimization (DeiT (Touvron et al., 2021), T2T-ViT (Yuan et al., 2021)), efficient ViT
(Katharopoulos et al., 2020; Xu et al., 2022), etc. In this work, we aim to reference and explore a
meta spiking Transformer architecture from the cumbersome ViT variants available to bridge the gap
between SNNs and ANNs, and pave the way for future Transformer-based neuromorphic chip design.

Neuromorphic Chips. Neuromorphic hardware is non-von Neumann architecture hardware whose
structure and function are inspired by brains Roy et al. (2019). Typical neuromorphic chip features
include collocated processing and memory, spike-driven computing, etc (Schuman et al., 2022).
Functionally speaking, neuromorphic chips that are now on the market either support solely SNN or
support hybrid ANN/SNN (Li et al., 2023). The former group consists of TrueNorth (Merolla et al.,
2014), Loihi (Davies et al., 2018), Darwin (Shen et al., 2016), etc. The latter includes the Tianjic
series (Pei et al., 2019; Ma et al., 2022), SpiNNaker 2 (Höppner et al., 2021). All of these chips
enable CNN-based SNNs, but none of them are designed to support Transformer-based SNNs.

3 SPIKE-DRIVEN TRANSFORMER V2: META-SPIKEFORMER

3.1 THE CONCEPT OF META TRANSFORMER ARCHITECTURE IN ANNS

The self-attention (serves as a token mixer) mechanism for aggregating information between different
spatial locations (tokens) has long been attributed to the success of Transformer. With the deepening
of research, researchers have found that token mixer can be replaced by spatial Multi-Layer Perception
(MLP) (Tolstikhin et al., 2021), Fourier Transform (Guibas et al., 2022), etc. Consequently, Yu et al.
(2022a;b) argue that compared with a specific token mixer, a genera meta Transformer block (Fig. 1),
is more essential than a specific token mixer for the model to achieve competitive performance.

+

Token 
Mixer

Channel 
MLP

+
Channel 

MLP

+Token
Mixer

+

𝑋 𝑋′ 𝑋′′

Figure 1: Meta Transformer Block.

Specifically, the input is first embedded as a
feature sequence (tokens) (Vaswani et al., 2017;
Dosovitskiy et al., 2021):

X = InputEmbedding(I), (1)

where I ∈ R3×H×W and X ∈ RN×D. 3, H , and W denote channel, height and width of the
2D image. N and D represent token number and channel dimension respectively. Then the token
sequence X is fed into repeated meta Transformer block, one of which can be expressed as (Fig. 1)

X ′ = X +TokenMixer(X), (2)

X ′′ = X ′ +ChannelMLP(X ′), (3)

where TokenMixer(·) means token mixer mainly for propagating spatial information among tokens,
ChannelMLP(·) denotes a channel MLP network with two layers. TokenMixer(·) can be self-
attention (Vaswani et al., 2017), spatial MLP (Touvron et al., 2021), convolution (Yu et al., 2022b),
pooling (Yu et al., 2022a), linear attention (Katharopoulos et al., 2020), identity map (Wang et al.,
2023b), etc, with different computational complexity, parameters and task accuracy.

3.2 SPIKING NEURON LAYER

Spiking neuron layer incorporates spatio-temporal information into membrane potentials, then
converts them into binary spikes for spike-driven computing in the next layer. We adopt the standard
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Figure 2: The overview of Meta-SpikeFormer. At the macro level, we refer to the general vision
Transformer architecture in Yu et al. (2022a;b) and align Spike-driven Transformer (Yao et al., 2023b)
with it. The main macro-level alteration is that we enlarge the spike coding layer from four Conv
SNN layers to four Conv-based SNN blocks. At the micro level, we use the meta Transformer block
in Fig. 1 as the basis to upgrade to Conv-based and Transformer-based SNN blocks (see Table 5),
such as Channel Conv, SDSA operations, etc., to bring them more in line with SNN features.

Leaky Integrate-and-Fire (LIF) (Maass, 1997b) spiking neuron layer, whose dynamics are:

U [t] = H[t− 1] +X[t], (4)
S[t] = Hea (U [t]− uth) , (5)
H[t] = VresetS[t] + (βU [t]) (1− S[t]) , (6)

where X[t] (X[t] can be obtained through spike-driven operators such as Conv, MLP, and self-
attention) is the spatial input current at timestep t, U [t] means the membrane potential that integrates
X[t] and temporal input H[t− 1]. Hea(·) is a Heaviside step function which equals 1 for x ≥ 0 and
0 otherwise. When U [t] exceeds the firing threshold uth, the spiking neuron will fire a spike S[t],
and temporal output H[t] is reset to Vreset. Otherwise, U [t] will decay directly to H[t], where β < 1
is the decay factor. For simplicity, we mainly focus on Eq. 5 and re-write the spiking neuron layer as
SN (·), with its input as membrane potential tensor U and its output as spike tensor S.

3.3 META-SPIKEFORMER

In SNNs, the input sequence I ∈ RT×3×H×W , where T denote timestep. For example, images are
repeated T times when dealing with a static dataset. To ease of understanding, we subsequently
assume T = 1 when describing the architectural details of Meta-SpikeFormer.

Overall Architecture. Fig. 2 shows the overview of Meta-SpikeFormer, where Conv-based and
Transformer-based SNN blocks are both variants of the meta Transformer block in Sec 3.1. In Spike-
driven Transformer (Yao et al., 2023b), the authors exploited four Conv layers before Transformer-
based blocks for encoding. By contrast, in the architectural form of Conv+ViT in ANNs, there are
generally multiple stages of Conv blocks (Han et al., 2022; Xiao et al., 2021). We follow this typical
design in ANNs, setting the first two stages to Conv-based SNN blocks, and using a pyramid structure
(Wang et al., 2021a) in the last two Transformer-based SNN stages. Note, to control parameter
number, we set the channels to 10C in stage 4 instead of the typical double (16C). Fig. 2 is our
recommended architecture. Other alternatives and their impacts are summarized in Table 5.

Conv-based SNN Block uses the inverted separable convolution module SepConv(·) with 7×7 kernel
size in MobileNet V2 (Sandler et al., 2018) as TokenMixer(·), which is consistent with (Yu et al.,
2022b). But, we change ChannelMLP(·) with 1× 1 kernel size in Eq. 3 to ChannelConv(·) with
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Figure 3: Spike-Driven Self-Attention (SDSA) modules with different computational complexity.
SDSA-1 is the operator used in Yao et al. (2023b). SDSA-2/3/4 is the newly designed operator in this
paper. We exploit SDSA-3 by default. All SDSAs only have addition, no softmax and scale.

3× 3 kernel size. The stronger inductive is empirically proved to significantly improve performance
(see Table 5). Specifically, the Conv-based SNN block is written as:

U ′ = U + SepConv(U), (7)

U ′′ = U ′ +ChannelConv(U ′), (8)
SepConv(U) = Convpw2(Convdw(SN (Convpw1(SN (U))))), (9)

ChannelConv(U ′) = Conv(SN (Conv(SN (U ′)))). (10)
where Convpw1(·) and Convpw2(·) are pointwise convolutions, Convdw(·) is depthwise convolution
(Chollet, 2017), Conv(·) is the normal convolution. SN (·) is the spike neuron layer in Sec 3.2.

Transformer-based SNN Block contains an SDSA module and a two-layered ChannelMLP(·):
QS = SN (RepConv1(U)),KS = SN (RepConv2(U)), VS = SN (RepConv3(U)), (11)

U ′ = U +RepConv4(SDSA(QS ,KS , VS)), (12)

U ′′ = U ′ +ChannelMLP(U ′), (13)

ChannelMLP(U ′) = SN (SN (U ′)W1)W2, (14)
where RepConv(·) is the re-parameterization convolutions (Ding et al., 2021) with kernel size 3× 3,
W1 ∈ RC×rC and W2 ∈ RrC×C are learnable parameters with MLP expansion ratio r = 4. Note,
both the input (QS ,KS , VS) and output of SDSA(·) will be reshaped. We omit this for simplicity.

Spike-Driven Self-Attention (SDSA). The main difference of SDSA over vanilla self-attention with
O(N2D) in Dosovitskiy et al. (2021) lies in three folds: i) Query, Key, Value are spiking tensors; ii)
The operations among QS , KS , VS do not have softmax and scale; iii) The computational complexity
of SDSA(·) is linear with the token number N . Four SDSA operators are given in Fig. 3. SDSA-1
is proposed in Yao et al. (2023b). SDSA-2/3/4 are new operators designed in this work. The main
difference between them is the operation between QS , KS , VS . SDSA-1/2 primarily work with
Hadamard product while SDSA-3/4 use matrix multiplication. Spike-driven matrix multiplication can
be converted to additions via addressing algorithms (Frenkel et al., 2023). Spike-driven Hadamard
product can be seen as a mask (AND logic) operation with almost no cost. Thus, SDSA-1/2/3/4 all
only have sparse addition. Details of SDSAs and energy evaluation are given in Appendix A and B.

In this work, we use SDSA-3 by default, which is written as:

SDSA3(QS ,KS , VS) = SN s

(
QS

(
KT

S VS

))
= SN s((QSK

T
S )VS). (15)

where SN s(·) is SN (·) with the threshold s · uth. Note, SDSA3(·) is inspired by the spiking self-
attention SN (QSK

T
S VS ∗ s) in Zhou et al. (2023). Because QSK

T
S VS yield large integers, a scale

factor s for normalization is needed to avoid gradient vanishing in Zhou et al. (2023). In our SDSA-3,
we directly merge the s into the threshold of the spiking neuron to circumvent the multiplication by s.
Further, in SDSA-4, we set the threshold as a learnable parameter.
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Table 1: Performance on ImageNet-1K (Deng et al., 2009). The input crop is 224×224. *We obtain
these results by employing distillation training on method in DeiT (Touvron et al., 2021). When
trained directly, the accuracy are 78.0% (T = 1) and 79.7% (T = 4). Note, “Spike", “Para", and
“Step" in all Table headers of this paper denote “Spike-driven", “Parameters", and “Timestep".

Methods Architecture Spike Param
(M)

Power
(mJ) Step Acc.(%)

ANN2SNN
ResNet-34 (Rathi et al., 2020) ✓ 21.8 - 250 61.5

VGG-16 (Wu et al., 2021) ✓ - - 16 65.1
VGG-16 (Hu et al., 2023) ✓ 138.4 44.9 7 73.0

SEW-Res-SNN ✗ 25.6 4.9 4 67.8
(Fang et al., 2021) ✗ 60.2 12.9 4 69.2

CNN-based MS-Res-SNN ✓ 21.8 5.1 4 69.4
SNN (Hu et al., 2024) ✓ 77.3 10.2 4 75.3

Att-MS-Res-SNN ✗ 22.1 0.6 1 69.2
(Yao et al., 2023d) ✗ 78.4 7.3 4 76.3

ANN RSB-CNN-152 (Wightman et al., 2021) ✗ 60 53.4 1 81.8
ViT (Dosovitskiy et al., 2021) ✗ 86 81.0 1 79.7

SpikFormer ✗ 29.7 11.6 4 73.4
(Zhou et al., 2023) ✗ 66.3 21.5 4 74.8

Spike-driven Transformer ✓ 29.7 4.5 4 74.6
(Yao et al., 2023b) ✓ 66.3 6.1 4 76.3

Transformer ✓ 15.1 4.0 1 71.8
-based SNN ✓ 15.1 16.7 4 74.1

Meta-SpikeFormer ✓ 31.3 7.8 1 75.4
(This Work) ✓ 31.3 32.8 4 77.2

✓ 55.4 13.0 1 79.1*
✓ 55.4 52.4 4 80.0*
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Figure 4: Existing shortcut in SNNs.

Shortcuts. Residual learning in SNNs mainly
considers two points: first, whether identity map-
ping (He et al., 2016a) can be realized, which de-
termines whether there is a degradation problem;
second, whether spike-driven computing can be
guaranteed, which is the basis of SNNs’ low-
power. There are three shortcuts in SNNs, see
Fig. 4. Vanilla Shortcut (VS) (Zheng et al., 2021)
execute a shortcut between membrane potential
and spike that are consistent with those in Res-
CNN (He et al., 2016b). It can be spike-driven,
but cannot achieve identity mapping (Fang et al.,
2021). Spike-Element-Wise (SEW) (Fang et al.,
2021) exploits a shortcut to connect spikes in
different layers. Identity mapping is possible
with SEW, but spike addition results in integers.
Thus, SEW-SNN is an “integer-driven" rather than a spike-driven SNN. Membrane Shortcut (MS)
makes a shortcut between the membrane potential of neurons, and can achieve identity mapping with
spike-driven (Hu et al., 2024). We use MS in this work and report the accuracy of other shortcuts.

4 EXPERIMENTS

In the classification task, we set the timestep T = 1 for 200 epoch training to reduce training cost,
then finetune it to T = 4 with an additional 20 epochs. We here mainly emphasize the network scale.
Other details, such as training schemes and configurations, are in Appendix C.1. Moreover, we use
the model trained on ImageNet classification to finetune the detection or segmentation heads. This is
the first time that the SNN domain has been able to process dense prediction tasks in a unified way.
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Table 2: Performance of event-based action recognition on HAR-DVS (Wang et al., 2022).

Methods Architecture Spike Param(M) Acc.(%)

ANN
SlowFast (Feichtenhofer et al., 2019) ✗ 33.6 46.5
ACTION-Net (Wang et al., 2021b) ✗ 27.9 46.9

TimeSformer (Bertasius et al., 2021) ✗ 121.2 50.8

CNN-based SNN Res-SNN-34 (Fang et al., 2021) ✗ 21.8 46.1

Transformer-based SNN Meta-SpikeFormer (This Work) ✓ 18.3 47.5

4.1 IMAGE CLASSIFICATION

Setup. ImageNet-1K (Deng et al., 2009) is one of computer vision’s most widely used datasets. It
contains about 1.3M training and 50K validation images, covering common 1K classes. As shown in
Fig. 2, changing the channel number can obtain various model scales. We set C = 32, 48, 64. Their
parameters are 15.1M, 31.3M, and 55.4M, respectively. The energy cost of ANNs is FLOPs times
EMAC . The energy cost of SNNs is FLOPs times EAC times spiking firing rate. EMAC = 4.6pJ
and EAC = 0.9pJ are the energy of a MAC and an AC, respectively (more details in Appendix B).

Results. We comprehensively compare Meta-SpikeFormer with other methods in accuracy, parameter,
and power (Table 1). We can see that Meta-SpikeFormer achieves SOTA in the SNN domain with
significant accuracy advantages. For example, Meta-SpikeFormer vs. MS-Res-SNN vs. Spike-
driven Transformer: Param, 55M vs. 77M vs. 66M; Acc, 79.7% vs. 75.3% vs. 76.3%. If we employ
the distillation strategy in DeiT (Touvron et al., 2021), the accuracy of 55M Meta-SpikeFormer at
T = 1 and T = 4 can be improved to 79.1% and 80.0%. It should be noted that after adding more
Conv layers at stage 1/2, the power of Meta-SpikeFormer increases. This is still very cost-effective.
For instance, Meta-SpikeFormer vs. MS-Res-SNN vs. Spike-driven Transformer: Power, 11.9mJ
(T = 1) vs. 6.1mJ (T = 4) vs. 10.2mJ (T = 4); Acc, 79.1% vs. 75.3% vs. 76.3%. In summary,
Meta-SpikeFormer obtained the first achievement of 80% accuracy on ImageNet-1K in SNNs.

4.2 EVENT-BASED ACTIVITY RECOGNITION

Event-based vision (also known as “neuromorphic vision") is one of the most typical application
scenarios of neuromorphic computing (Indiveri & Douglas, 2000; Gallego et al., 2022; Wu et al.,
2022). The famous neuromorphic camera, Dynamic Vision Sensors (DVS) (Lichtsteiner et al., 2008),
encodes vision information into a sparse event (spike with address) stream only when brightness
changes. Since the spike-driven nature, SNNs have the inherent advantages of low power and low
latency when processing events. We use HAR-DVS to evaluate our method. HAR-DVS (Wang et al.,
2022) is the largest event-based Human Activity Recognition (HAR) dataset currently, containing 300
classes and 107,646 samples, acquired by a DAVIS346 camera with a spatial resolution of 346× 260.
The raw HAR-DVS is more than 4TB, and the authors convert each sample into frames to form a
new HAR-DVS. We handle HAR-DVS in a direct training manner with T = 8. Meta-SpikeFormer
achieves comparable accuracy to ANNs and is better than the Conv-based SNN baseline (Table 2).

4.3 OBJECT DETECTION

So far, no backbone with direct training in SNNs can handle classification, detection, and segmentation
tasks concurrently. Only recently did the SNN domain have the first directly trained model to process
detection (Su et al., 2023). We evaluate Meta-SpikeFormer on the COCO benchmark (Lin et al.,
2014) that includes 118K training images (train2017) and 5K validation images (val2017). We first
transform mmdetection (Chen et al., 2019) codebase into a spiking version and use it to execute our
model. We exploit Meta-SpikeFormer with Mask R-CNN (He et al., 2017). ImageNet pre-trained
weights are utilized to initialize the backbones, and Xavier (Glorot & Bengio, 2010) to initialize the
added layers. Results are shown in Table 3. We can see that Meta-SpikeFormer achieves SOTA results
in the SNN domain. Note, EMS-Res-SNN got performance close to ours using 26.9M parameters,
thanks to its direct training strategy and special network design. In contrast, we only use a fine-tuning
strategy, which results in lower design and training costs. To be fair, we also tested directly trained
Meta-SpikeFormer + Yolo and achieved good performance (Appendix C.2).
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Table 3: Performance of object detection on COCO val2017 (Lin et al., 2014).

Methods Architecture Spike Param(M) Power(mJ) Step mAP@0.5(%)

ANN ResNet-18 (Yu et al., 2022a) ✗ 31.2 890.6 1 54.0
PVT-Tiny (Wang et al., 2021a) ✗ 32.9 1040.5 1 59.2

ANN2SNN Spiking-Yolo (Kim et al., 2020) ✓ 10.2 - 3500 25.7
Spike Calibration (Li et al., 2022) ✓ 17.1 - 512 45.3

CNN-based Spiking Retina (Zhang et al., 2023) ✗ 11.3 - 4 28.5
SNN EMS-Res-SNN (Su et al., 2023) ✓ 26.9 - 4 50.1

Transformer Meta-SpikeFormer (This Work) ✓ 34.9 49.5 1 44.0
-based SNN ✓ 75.0 140.8 1 51.2

Table 4: Performance of semantic segmentation on ADE20K (Zhou et al., 2017).

Methods Architecture Spike Param(M) Power(mJ) Step MIoU(%)

ANN

ResNet-18 (Yu et al., 2022a) ✗ 15.5 147.1 1 32.9
PVT-Tiny (Wang et al., 2021a) ✗ 17.0 152.7 1 35.7
PVT-Small (Wang et al., 2021a) ✗ 28.2 204.7 1 39.8

DeepLab-V3 (Zhang et al., 2022a) ✗ 68.1 1240.6 1 42.7

✓ 16.5 22.1 1 32.3
Transformer Meta-SpikeFormer ✓ 16.5 88.1 4 33.6
-based SNN (This Work) ✓ 58.9 46.6 1 34.8

✓ 58.9 183.6 4 35.3

4.4 SEMANTIC SEGMENTATION

ADE20K (Zhou et al., 2017) is a challenging semantic segmentation benchmark commonly used in
ANNs, including 20K and 2K images in the training and validation set, respectively, and covering 150
categories. No SNN has yet reported processing results on ADE20K. In this work, Meta-SpikeFormers
are evaluated as backbones equipped with Semantic FPN (Kirillov et al., 2019). ImageNet trained
checkpoints are used to initialize the backbones while Xavier (Glorot & Bengio, 2010) is utilized to
initialize other newly added layers. We transform mmsegmentation (Contributors, 2020) codebase
into a spiking version and use it to execute our model. Training details are given in Appendix C.3.
We see that in lightweight models (16.5M in Table 4), Meta-SpikeFormer with lower power achieves
comparable results to ANNs. For example, Meta-SpikeFormer (T = 1) vs. ResNet-18 vs. PVT-
Tiny: Param, 16.5M vs. 15.5M vs. 17.0M; MIoU, 32.3% vs. 32.9% vs. 35.7%; Power, 22.1mJ vs.
147.1mJ vs. 152.7mJ. To demonstrate the superiority of our method over other SNN segmentation
methods, we also evaluate our method on VOC2012 and achieve SOTA results (Appendix C.4).

4.5 ABLATION STUDIES

Conv-based SNN Block. In this block, We follow the ConvFormer in (Yu et al., 2022b), which uses
SpeConv as token mixer in stage-1/2. However, we note that SpeConv in Meta-SpikeFormer seems
less important. After removing SpeConv, the power is reduced by 29.5%, the accuracy is only lost by
0.3%. If we replace the channel Conv with the channel MLP in (Yu et al., 2022b), the accuracy will
drop by up to 2%. Thus, the design of Conv-based SNN Blocks is important to SNNs’ performance.
Moreover, we experimentally verified (specific results are omitted) that keeping only one stage of the
Conv-based block or using only four Conv layers leads to lower performance on downstream tasks .

Transformer-based SNN Block. Spike-driven Transformer in (Yao et al., 2023b) uses linear layers
(i.e., 1 × 1 convolution) to generate QS ,KS , VS . We find that replacing linear with RepConv can
improve accuracy and reduce the parameter number, but energy costs will increase. The design of the
SDSA operator and pyramid structure will also affect task accuracy. Overall, SDSA-3 has the highest
computational complexity (more details in Appendix A), and its accuracy is also the best.

Shortcut. In our architecture, MS has the highest accuracy. Shortcut has almost no impact on power.
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Table 5: Ablation studies of Meta-SpikeFormer on ImageNet-1K. In each ablation experiment, we
start with Meta-SpikeFormer (C = 48) with T = 1 as the baseline and modify just one point to track
how the parameters, power, accuracy vary. * Does not converge.

Ablation Methods Param(M) Power(mJ) Acc.(%)

Meta-SpikeFormer (Baseline) 31.3 7.8 75.4

Conv-based SNN Block
Remove SepConv 30.9 5.5 75.1 (-0.3)

Channel Conv –> Channel MLP 25.9 6.3 73.4 (-2.0)
Stage 1 –> 2C × H

4 × W
4 31.8 7.4 75.2 (-0.2)

Transformer-based
SNN block

RepConv-1/2/3 –> Linear 27.2 6.0 75.0 (-0.4)
RepConv-4 –> Linear 30.0 7.1 75.3 (-0.1)
SDSA-3 –> SDSA-1 31.3 7.2 74.6 (-0.8)
SDSA-3 –> SDSA-2 28.6 6.3 74.2 (-1.2)
SDSA-3 –> SDSA-4 31.3 7.7 75.4 (+0.0)

Shortcut Membrane Shortcut –> Vanilla shortcut 31.3 - *
Membrane Shortcut –> SEW shortcut 31.3 7.8 73.5 (-1.9)

Architecture
Remove Pyramid (Stage4 = Stage 3) 26.9 7.4 74.7 (-0.7)

Fully CNN-based SNN blocks 36.0 2.9 72.5 (-2.9)
Fully Transformer-based SNN blocks 26.2 5.4 71.7 (-3.7)

Architecture. We change the network to fully Conv-based or Transformer-based blocks. Performance
is significantly reduced in both cases. We note that compared to Meta-SpikeFormer, the power of
fully spiking Transformer and spiking CNN are reduced. These observations can inspire future
architectural designs to achieve multiple trade-offs in terms of parameter, power, and accuracy.

5 DISCUSSION AND CONCLUSION

Discussion: How does Meta-SpikeFormer inspire future neuromorphic chip design? The techni-
cal inspiration of Meta-SpikeFormer for chip design lies in three folds: i) Conv+ViT design. This
hybrid progressive local-global modeling can leverage the strengths of both CNNs and Transformers
(Guo et al., 2022), where the former models features and the latter captures long-range dependencies.
We experimentally verify that this design is beneficial to the performance and versatility of SNNs.
ii) SDSA operator is the core design of long-distance dependency modeling in Transformer-based
SNN block, but this is a design that current neuromorphic chips lack. iii) Meta architecture. Given
meta Conv-based and Transformer-based blocks, researchers can perform targeted optimization of
the design details inside the meta SNN blocks according to their requirements in terms of accuracy,
parameters, and power. As shown by our ablation experiments in Table 5.

The significance of Meta-SpikeFormer to chip design lies in three folds: i) Algorithm-hardware
co-design. Most neuromorphic chip design begins from the bottom of the compute stack, i.e.,
the materials and devices (Schuman et al., 2022). The excellent features shown by our algorithm
may attract and inspire algorithm-driven chip design. ii) Confidence in large-scale neuromorphic
computing. Small-scale neuromorphic computing has shown significant power and performance
advantages (Yin et al., 2021; Rao et al., 2022). We demonstrate the potential of larger-scale SNNs
in performance and versatility. iii) Reduce chip design costs. Meta design facilitates follow-up
optimization by subsequent researchers, helps the SNN field to quickly narrow the gap with ANNs,
and reduces the cost of algorithm exploration required before algorithm-driven hardware design.

Conclusion. This paper investigates the meta design of Transformer-based SNNs, involving ar-
chitecture, spike-driven self-attention, shortcut, etc. The proposed Meta-SpikeFormer is the first
direct training SNN backbone that can perform classification, detection, and segmentation tasks
concurrently, and we achieve state-of-the-art results on all tested datasets. Remarkably, for the first
time, we advanced the accuracy of the SNN domain on ImageNet-1K to 80%, which is 3.7% higher
than the prior SOTA result with 17% fewer parameters. This work paves the way for SNN to serve as
a universal vision backbone and can inspire future Transformer-based neuromorphic chip designs.
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Limitations of this work are larger scale models, more vision tasks, further optimization of accuracy,
power and parameter amount, optimization of training consumption caused by multiple timesteps,
etc., and we will work on them in future work. The experimental results in this paper are reproducible.
We explain the details of model training and configuration in the main text and supplement it in the
appendix. Our codes and models of Meta-SpikeFormer will be available on GitHub after review.
Moreover, in this work, the designed meta SNN architecture is tested on vision tasks. For language
tasks, the challenges faced will be different, such as parallel spiking neuron design, long-term
dependency modeling in the temporal dimension, pre-training, architecture design, etc. need to be
considered. This work can at least provide positive inspiration for SNN processing language tasks in
long-term dependency modeling and architecture design, and we are working in this direction.

A SPIKE-DRIVEN SELF-ATTENTION (SDSA) OPERATORS

In this Section, we understand vanilla and spike-driven self-attention from the perspective of compu-
tational complexity.

A.1 VANILLA SELF-ATTENTION (VSA)

Given a float-point input sequence X ∈ RN×D, float-point Query (Q), Key (K), and Value (V )
in RN×D are calculated by three learnable linear matrices, where N is the token number, D is the
channel dimension. The vanilla scaled dot-product self-attention is computed as (Dosovitskiy et al.,
2021):

VSA(Q,K, V ) = softmax

(
QKT

√
d

)
V, (16)

where d = D/H is the feature dimension of one head and H is the head number,
√
d is the scale

factor. Generally, VSA performs multi-head self-attention, i.e., divide Q,K, V into H heads in the
channel dimension. In the i-th head, Qi,Ki, V i in RN×D/H . After the self-attention operation is
performed on the H heads respectively, the outputs are concatenated together.

In VSA, Q and K are matrix multiplied first, and then their output is matrix multiplied with V . The
computational complexity of VSA(·) is O(N2D), which has a quadratic relationship with the toke
number N .

A.2 SPIKE-DRIVEN SELF-ATTENTION (SDSA)

In our Transformer-based SNN blocks, as shown in Fig. 2, given a spike input sequence S ∈
RT×N×D, spike-form (binary) QS , KS , and VS in RT×N×D are calculated by three learnable
re-parameterization convolutions Ding et al. (2021) with 3× 3 kernel size:

QS = SN (RepConv1(U)),KS = SN (RepConv2(U)), VS = SN (RepConv3(U)), (17)

where RepConv(·) denotes the re-parameterization convolution, SN (·) is the spiking neuron layer.
For the convenience of mathematical expression, we assume T = 1 in the subsequent formulas.

SDSA-1. The leftmost SDSA-1 in Fig. 3 is the operator proposed in Spike-driven Transformer (Yao
et al., 2023b). The highlight of SDSA-1 is that the matrix multiplication between QS , KS , VS in
SDSA is replaced by Hadamard product:

SDSA1(QS ,KS , VS) = QS ⊗ SN (SUMc (KS ⊗ VS)) , (18)

where ⊗ is the Hadamard product, SUMc(·) represents the sum of each column, and its output is a
D-dimensional row vector. The Hadamard product between spike tensors is equivalent to the mask
operation. Compared to the VSA in Eq. 16, SUMc(·) and SN (·) take the role of softmax and scale.

Now, we analyze the computational complexity of SDSA-1. Before that, we would like to introduce
the concept of linear attention. If the softmax in VSA is removed, K and V can be multiplied first, and
then their output is matrix multiplied with Q. The computational complexity becomes O(ND2/H),
which has a linear relationship with the toke number N . This variant of attention is called linear
attention (Katharopoulos et al., 2020). Further, consider an extreme case in linear attention, set
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H = D. That is, in each head, Qi,Ki, V i in RN×1. Then, the computational complexity is O(ND),
which has a linear relationship with both the toke number N and the channel dimension D. This
variant of linear attention is called hydra attention (Bolya et al., 2023).

SDSA-1 has the same computational complexity as hydra attention, i.e., O(ND). Firstly, KS and
VS in Eq. 18 participate in the operation first, thus it is a kind of linear attention. Further, we consider
the special operation of Hadamard product. Assume that the i-th column vectors in KS and VS are
a and b respectively. Taking the Hadamard product of a and b and summing them is equivalent to
multiplying b times the transpose of a, i.e., SUMc(a⊗ b) = aT b. In total, there are D times of dot
multiplication between vectors, and N additions are performed each time. Thus, the computational
complexity of SDSA-1 is O(ND), which is consistent with hydra attention (Bolya et al., 2023).

SDSA-2. SDSA-1 in Eq. 18 actually first uses QS and KS to calculate the binary self-attention
scores, and then performs feature masking on VS in the channel dimension. We can also get the
binary attention scores using only QS , i.e., SDSA-2 is presented as:

SDSA2(QS , VS) = SN (SUMc (QS))⊗ VS . (19)

We evaluate SDSA-1 and SDSA-2 in Table 5. Specifically, SDSA-1-based Meta-SpikeFormer vs.
SDSA-2-based Meta-SpikeFormer: Param, 31.3M vs. 28.6M; Power, 7.2mJ vs. 6.3mJ; Acc, 74.6%
vs. 74.2%. It can be seen that with the support of the Meta-SpikeFormer architecture, even if the
Key matrix KS is removed, the accuracy is only lost by 0.4%. The number of parameters and
energy consumption are reduced by 8.7% and 12.5% respectively. Since the Hadamard product
between spiking tensors QS and KS in SDSA-1 can be regarded as a mask operation without energy
cost, SDSA-1 and SDSA-2 have the same computational complexity, i.e., O(ND). SDSA-2-based
Meta-SpikeFormer has fewer parameters and power because there is no need to generate KS .

SDSA-3 is the spike-driven self-attention operator used by default in this work, which is presented as:

SDSA3(QS ,KS , VS) = SN s

(
QS

(
KT

S VS

))
= SN s((QSK

T
S )VS). (20)

In theory, the time complexity of QS(K
T
S VS) and (QSK

T
S )VS are O(N2D) and O(ND2), respec-

tively. The latter has a linear relationship with N , thus SDSA-3 is also a linear attention. Since
QSK

T
S VS yields large integers, a scale multiplication s for normalization is needed to avoid gradient

vanishing. In our SDSA-3, we incorporate the s into the threshold of the spiking neuron to circumvent
the multiplication by s. That is, the threshold in Eq. 20 is s · uth. We write such a spiking neuron
layer with threshold s · uth as SN s(·).
SDSA-4. On the basis of SDSA-3, we directly set the threshold of SN (·) in Eq. 15 as a learnable
parameter, and its initialization value is s · uth. We have experimentally found that the performance
of SDSA-3 and SDSA-4 is almost the same (see Table 5). SDSA-4 consumes 0.1mJ less energy than
SDSA-3 because the network spiking firing rate in SDSA-4 is slightly smaller than that in SDSA-3.

A.3 DISCUSSION ABOUT SDSA OPERATORS

Compared with vanilla self-attention, the QS , KS , VS matrices of spike-driven self-attention are
in the form of binary spikes, and the operations between QS , KS , VS do not include softmax and
scale. Since there is no softmax and KS and VS can be computed first, spike-driven self-attention
must be linear attention. This is the natural advantage of a spiking Transformer. On the other hand,
in the current SDSA design, the operation between QS , KS , VS is Hadamard product or matrix
multiplication, both of which can be converted into sparse addition operations. Therefore, SDSA not
only has low computational complexity, but also only has sparse addition. Its energy consumption is
much lower than that of vanilla self-attention (see Appendix B).

In Yu et al. (2022a;b), the authors summarized various ViT variants and argued that there is general
architecture abstracted from ViTs by not specifying the token mixer (self-attention). This paper
experimentally verifies that this view also holds true in Transformer-based SNNs. In Table 5, we
tested four SDSA operators and found that the performance changes between SDSA-1/2/3/4 were not
large (less than 1.2%). We expect the SNN domain to design more powerful SDSA operators in the
future, e.g., borrowing from Swin (Liu et al., 2021), hierarchical attention (Hatamizadeh et al., 2023),
and so on.
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Table 6: FLOPs of self-attention modules. The FLOPs in VSA and SDSA are multiplied by
EMAC = 4.6pJ and EAC = 0.9pJ respectively to obtain the final energy cost. RC , R̂ denote the
sum of spike firing rates of various spike matrices.

VSA SDSA-1 SDSA-2 SDSA-3 SDSA-4

Q,K, V 3ND2 T ·RC · 3 · FLConv T ·RC · 2 · FLConv T ·RC · 3 · FLConv T ·RC · 3 · FLConv

f(Q,K, V ) 2N2D T · R̂ ·ND T · R̂ ·ND T · R̂ ·ND2 T · R̂ ·ND2

Scale N2 - - - -
Softmax 2N2 - - - -
Linear FLMLP T ·RC · FLConv T ·RC · FLConv T ·RC · FLConv T ·RC · FLConv

B THEORETICAL ENERGY EVALUATION

B.1 SPIKE-DRIVEN OPERATORS IN SNNS

Spike-driven operators for SNNs are fundamental to low-power neuromorphic computing. In CNN-
based SNNs, spike-driven Conv and MLP constitute the entire network. Specifically, the matrix
multiplication between the weight and spike matrix in spike-driven Conv and MLP is transformed
into sparse addition, which is implemented as addressable addition in neuromorphic chips (Frenkel
et al., 2023).

By contrast, QS , KS , VS in spike-driven self-attention involve two matrix multiplications. One way
is to execute element-wise multiplication between QS , KS , VS , like SDSA-1 in (Yao et al., 2023b)
and SDSA-2 in this work (Eq. 19). And, element multiplication in SNNs is equivalent to mask
operation with no energy cost. Another method is to perform multiplication directly between QS ,
KS , VS , which is then converted to sparse addition, like spike-driven Conv and MLP (SDSA-3/4 in
this work).

B.2 ENERGY CONSUMPTION OF META-SPIKEFORMER

When evaluating algorithms, the SNN field often ignores specific hardware implementation details
and estimates theoretical energy consumption for a model (Panda et al., 2020; Yin et al., 2021; Yang
et al., 2022; Yao et al., 2023d; Wang et al., 2023a). This theoretical estimation is just to facilitate the
qualitative energy analysis of various SNN and ANN algorithms.

Theoretical energy consumption estimation can be performed in a simple way. For example, the
energy cost of ANNs is FLOPs times EMAC , and the energy cost of SNNs is FLOPs times EAC

times network spiking firing rate. EMAC = 4.6pJ and EAC = 0.9pJ are the energy of a MAC and
an AC, respectively, in 45nm technology (Horowitz, 2014).

There is also a more refined method of evaluating energy consumption for SNNs. We can count the
spiking firing rate of each layer, and then the energy consumption of each layer is FLOPs times EAC

times the layer spiking firing rate. The nuance is that the network structure affects the number of
additions triggered by a single spike. For example, the energy consumption of the same spike tensor
differs when doing matrix multiplication with various convolution kernel sizes.

In this paper, we count the spiking firing rate of each layer, then estimate the energy cost. Specifically,
the FLOPs of the n-th Conv layer in ANNs Molchanov et al. (2017) are:

FLConv = (kn)
2 · hn · wn · cn−1 · cn, (21)

where kn is the kernel size, (hn, wn) is the output feature map size, cn−1 and cn are the input and
output channel numbers, respectively. The FLOPs of the m-th MLP layer in ANNs are:

FLMLP = im · om, (22)

where im and om are the input and output dimensions of the MLP layer, respectively.

For spike-driven Conv or MLP, we only need to consider additional timestep T and layer spiking firing
rates. The power of spike-driven Conv and MLP are EAC ·T ·RC ·FLConv and EAC ·T ·RM ·FLMLP

respectively. RC and RM represent the layer spiking firing rate, defined as the proportion of non-zero
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elements in the spike tensor. For the SDSA modules in Fig. 3, the energy cost of the Rep-Conv part is
consistent with spike-driven Conv. The energy cost of the SDSA operator part is given in Table 6.
Combining Table 5, we observe that the SDSA(·) function itself does not consume much energy
because the Q, K, and V matrices themselves are sparse. The evidence is that SDSA-1 saves about
0.6mJ of energy consumption compared to SDSA-3 (see Table 5). In order to give readers an intuitive
feeling about the spiking firing rate, we give the detailed spiking firing rates of a Meta-SpikeFormer
model in Table 11.

C DETAILED CONFIGURATIONS AND HYPER-PARAMETER OF
META-SPIKEFORMER MODELS

C.1 IMAGENET-1K EXPERIMENTS

On ImageNet-1K classification benchmark, we employ three scales of Meta-SpikeFormer in Table 7
and utilize the hyper-parameters in Table 8 to train models in our paper.

Table 7: Configurations of different Meta-SpikeFormer models.

stage # Tokens Layer Specification 15M 31M 55M

1

H

2
×
W

2

Downsampling Conv 7x7 stride 2
Dim 32 48 64

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

H

4
×
W

4

Downsampling Conv 3x3 stride 2
Dim 64 96 128

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

2 H

8
×
W

8

Downsampling Conv 3x3 stride 2
Dim 128 192 256

Conv-based
SNN block

SepConv DWConv 7x7 stride 1
MLP ratio 2

Channel Conv Conv 3x3 stride 1
Conv ratio 4

# Blocks 2

3 H

16
×
W

16

Downsampling Conv 3x3 stride 2
Dim 256 384 512

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

# Blocks 6

4 H

16
×
W

16

Downsampling Conv 3x3 stride 1
Dim 360 480 640

Transformer-based
SNN block

SDSA RepConv 3x3 stride 1
Channel MLP MLP ratio 4

# Blocks 2

C.2 COCO EXPERIMENTS

In this paper, we have used two methods to utilize Meta-SpikeFormer for object detection. We first
exploit Meta-SpikeFormer as backbones for object detection, fine-tuning for 24 epochs after inserting
the Mask R-CNN detector (He et al., 2017). The batch size is 12. The AdamW is employed with
an initial learning rate of 1× 10−4 that will decay in the polynomial decay schedule with a power
of 0.9. Images are resized and cropped into 1333 × 800 for training and testing and maintain the
ratio. Random horizontal flipping and resize with a ratio of 0.5 was applied for augmentation during
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Table 8: Hyper-parameters for image classification on ImageNet-1K
Hyper-parameter Directly Training Finetune

Model size 15M/31M/55M 15M/31M/55M
Timestemp 1 4

Epochs 200 20
Resolution 224*224
Batch size 1568 336
Optimizer LAMB

Base Learning rate 6e-4 2e-5
Learning rate decay Cosine

Warmup eopchs 10 2
Weight decay 0.05

Rand Augment 9/0.5
Mixup None
Cutmix None

Label smoothing 0.1

training. This pre-training fine-tuning method is a commonly used strategy in ANNs. We use this
method and get SOTA results (see Table 3), but with many parameters. To address this problem, we
then train Meta-SpikeFormer in a direct training manner in conjunction with the lightweight Yolov5
1 detector, which Yolov5 is re-implemented by us in a spike-driven manner. Results are reported
in Table 9. The current SOTA result in SNNs on COCO is EMS-Res-SNN (Su et al., 2023), which
improves the structure. We get better performance using parameters that are close to EMS-Res-SNN.

Table 9: Performance of object detection on COCO val2017 (Lin et al., 2014)

Methods Architecture Spike
-driven

Param
(M)

Power
(mJ)

Time
Step

mAP@0.5
(%)

Conv-based SNN EMS-Res-SNN (Su et al., 2023) ✓ 26.9 - 4 50.1

Transformer-based SNN Meta-SpikeFormer + Yolo ✓ 16.8 34.8 1 45.0
(This Work) ✓ 16.8 70.7 4 50.3

C.3 ADE20K EXPERIMENTS

Meta-SpikeFormer is employed as the backbone equipped with Sementic FPN Lin et al. (2017),
which is re-implemented in a spike-driven manner. In T = 1, ImageNet-1K trained checkpoints are
used to initialize the backbones while Xavier is utilized to initialize other newly added SNN layers.
We train the model for 160K iterations with a batch size of 20. The AdamW is employed with an
initial learning rate of 1× 10−3 that will decay in the polynomial decay schedule with a power of
0.9. Then we finetuned the model to T = 4 and decreased the learning rate to 1× 10−4. To speed up
training, we warm up the model for 1.5k iterations with a linear decay schedule.

C.4 ADDITIONAL RESULTS ON VOC2012 SEGMENTATION

VOC2012 (Everingham et al., 2010) is a benchmark for segmentation which has 1460 and 1456
images in the training and validation set respectively, and covering 21 categories. Previous work
using SNN for segmentation has used this dataset. Thus we also test our method on this dataset. We
train the Meta-SpikeFormer for 80k iterations in T = 1 with ImageNet-1k trained checkpoints to
initialize the backbones while Xavier is utilized to initialize other newly added SNN layers. Then we
finetune the model to T = 4 with lower learning rate 1× 10−4. Other experiment settings are the
same as the ADE20k benchmark. Results are given in Table 10, and we achieve SOTA results.

1https://github.com/ultralytics/yolov5
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Table 10: Performance of semantic segmentation on VOC2012 (Everingham et al., 2010)

Methods Architecture Spike
-driven

Param
(M)

Power
(mJ)

Time
Step MIoU(%)

ANN FCN-R50 (Long et al., 2015) ✗ 49.5 909.6 1 62.2
DeepLab-V3 (Chen et al., 2017) ✗ 68.1 1240.6 1 66.7

ANN2SNN Spike Calibration (Li et al., 2022) ✓ - - 64 55.0

CNN-based Spiking FCN (Kim et al., 2022) ✓ 49.5 383.5 20 9.9
SNN Spiking DeepLab (Kim et al., 2022) ✓ 68.1 523.2 20 22.3

Transformer Meta-SpikeFormer ✓ 16.5 81.4 4 58.1
-based SNN (This Work) ✓ 58.9 179.8 4 61.1
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Table 11: Layer spiking firing rates of model Meta-SpikeFormer (T = 4,
31.3M, SDSA-3) on ImageNet-1K.

T = 1 T = 2 T = 3 T = 4 Average

Stage 1

Downsampling Conv 1 1 1 1 1

ConvBlock
SepConv PWConv1 0.2662 0.4505 0.3231 0.4742 0.3785

DWConv&PWConv2 0.3517 0.4134 0.3906 0.4057 0.3903

Channel Conv Conv1 0.3660 0.5830 0.4392 0.5529 0.4852
Conv2 0.1601 0.1493 0.1662 0.1454 0.1552

Downsampling Conv 0.4408 0.4898 0.4929 0.4808 0.4761

ConvBlock
SepConv PWConv1 0.2237 0.3658 0.3272 0.3544 0.3178

DWConv&PWConv2 0.2276 0.2672 0.2590 0.2567 0.2526

Channel Conv Conv1 0.3324 0.4640 0.4275 0.4433 0.4168
Conv2 0.0866 0.0838 0.0811 0.0775 0.0823

Stage 2

Downsampling Conv 0.3456 0.3916 0.3997 0.3916 0.3821

ConvBlock
SepConv PWConv1 0.2031 0.3845 0.3306 0.3648 0.3207

DWConv&PWConv2 0.1860 0.2101 0.2020 0.1988 0.1992

Channel Conv Conv1 0.2871 0.4499 0.4013 0.4233 0.3904
Conv2 0.0548 0.0541 0.0501 0.0464 0.0513

ConvBlock
SepConv PWConv1 0.3226 0.4245 0.4132 0.4158 0.3940

DWConv&PWConv2 0.1051 0.1051 0.1025 0.0995 0.1030

Channel Conv Conv1 0.2863 0.3787 0.3732 0.3728 0.3528
Conv2 0.0453 0.0418 0.0408 0.0382 0.0415

stage3

Downsampling Conv 0.3817 0.4379 0.4436 0.4401 0.4259

Block1
SDSA

RepConv-1/2/3 0.1193 0.2926 0.2396 0.2722 0.2309
QS 0.2165 0.2402 0.2377 0.2213 0.2289
KS 0.0853 0.0931 0.0935 0.0818 0.0884
VS 0.0853 0.1414 0.1227 0.1234 0.1182

KT
S VS 0.3083 0.4538 0.4238 0.4023 0.3971

QS(K
T
S VS) 0.7571 0.8832 0.8674 0.8426 0.8376

RepConv-4 0.4115 0.6402 0.6034 0.5398 0.5487

Channel MLP Linear 1 0.2147 0.3849 0.3263 0.3637 0.3224
Linear 2 0.0353 0.0298 0.0262 0.0232 0.0286

Block2
SDSA

RepConv-1/2/3 0.2643 0.4093 0.3706 0.3918 0.3590
QS 0.1594 0.1859 0.1913 0.1871 0.1809
KS 0.0774 0.1029 0.1061 0.1034 0.0975
VS 0.0852 0.1271 0.1228 0.1232 0.1146

KT
S VS 0.4125 0.5852 0.5805 0.5835 0.5404

QS(K
T
S VS) 0.8246 0.9216 0.9231 0.9190 0.8970

RepConv-4 0.4148 0.6622 0.6737 0.6545 0.6013

Channel MLP Linear 1 0.2899 0.4026 0.3756 0.3884 0.3641
Linear 2 0.0302 0.0269 0.0239 0.0219 0.0258

Block3
SDSA

RepConv-1/2/3 0.2894 0.3877 0.3706 0.3773 0.3562
QS 0.1419 0.1397 0.1437 0.1405 0.1415
KS 0.0590 0.0609 0.0639 0.0616 0.0614
VS 0.0904 0.1232 0.1279 0.1261 0.1169

KT
S VS 0.3674 0.4703 0.4825 0.4863 0.4516

QS(K
T
S VS) 0.8423 0.8912 0.9010 0.8961 0.8827

RepConv-4 0.3613 0.4850 0.5281 0.5072 0.4704

Channel MLP Linear 1 0.3047 0.3795 0.3676 0.3727 0.3561
Linear 2 0.0274 0.0248 0.0227 0.0211 0.0240

Continued on next page
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Table 11 – continued from previous page
T = 1 T = 2 T = 3 T = 4 Average

Block4
SDSA

RepConv-1/2/3 0.2833 0.3469 0.3400 0.3430 0.3283
QS 0.1910 0.1884 0.1937 0.1893 0.1906
KS 0.0570 0.0620 0.0658 0.0642 0.0622
VS 0.0834 0.0986 0.1065 0.1043 0.0982

KT
S VS 0.3421 0.4375 0.4566 0.4670 0.4258

QS(K
T
S VS) 0.8279 0.8925 0.9067 0.9097 0.8842

RepConv-4 0.3632 0.4932 0.5457 0.5365 0.4847

Channel MLP Linear 1 0.3040 0.3562 0.3487 0.3512 0.3400
Linear 2 0.0282 0.0267 0.0244 0.0230 0.0256

Block5
SDSA

RepConv-1/2/3 0.2882 0.3334 0.3280 0.3298 0.3198
QS 0.1577 0.1487 0.1501 0.1482 0.1512
KS 0.0440 0.0496 0.0528 0.0534 0.0499
VS 0.0853 0.1276 0.1363 0.1377 0.1217

KT
S VS 0.3633 0.4934 0.5187 0.5365 0.4780

QS(K
T
S VS) 0.8424 0.9031 0.9178 0.9213 0.8961

RepConv-4 0.3550 0.5158 0.5620 0.5678 0.5001

Channel MLP Linear 1 0.3211 0.3551 0.3477 0.3503 0.3436
Linear 2 0.0247 0.0223 0.0205 0.0194 0.0217

Block6
SDSA

RepConv-1/2/3 0.3072 0.3335 0.3286 0.3310 0.3251
QS 0.1468 0.1392 0.1392 0.1376 0.1407
KS 0.0373 0.0437 0.0442 0.0449 0.0426
VS 0.0935 0.1255 0.1331 0.1333 0.1213

KT
S VS 0.3380 0.4449 0.4569 0.4667 0.4266

QS(K
T
S VS) 0.8073 0.8623 0.8706 0.8725 0.8532

RepConv-4 0.2862 0.4085 0.4315 0.4352 0.3903

Channel MLP Linear 1 0.3084 0.3267 0.3192 0.3230 0.3193
Linear 2 0.0241 0.0218 0.0202 0.0194 0.0214

stage4

Downsampling Conv 0.2456 0.2487 0.2414 0.2438 0.2449

Block1
SDSA

RepConv-1/2/3 0.1662 0.3402 0.3052 0.3280 0.2849
QS 0.2044 0.1330 0.1202 0.1096 0.1418
KS 0.0221 0.0259 0.0214 0.0205 0.0225
VS 0.0870 0.1556 0.1438 0.1443 0.1327

KT
S VS 0.1782 0.2832 0.2455 0.2412 0.2370

QS(K
T
S VS) 0.6046 0.6607 0.5710 0.5285 0.5912

RepConv-4 0.2379 0.2635 0.1852 0.1592 0.2115

Channel MLP Linear 1 0.2332 0.3966 0.3615 0.3859 0.3443
Linear 2 0.0262 0.0252 0.0192 0.0171 0.0219

Block2
SDSA

RepConv-1/2/3 0.3053 0.4001 0.3907 0.4018 0.3745
QS 0.1389 0.1245 0.1176 0.1108 0.1230
KS 0.0227 0.0231 0.0224 0.0218 0.0225
VS 0.0764 0.1038 0.1051 0.1048 0.0975

KT
S VS 0.1600 0.1968 0.1985 0.1979 0.1883

QS(K
T
S VS) 0.5439 0.5558 0.5348 0.5079 0.5356

RepConv-4 0.1718 0.1697 0.1578 0.1384 0.1594

Channel MLP Linear 1 0.3000 0.3811 0.3768 0.3913 0.3623
Linear 2 0.0030 0.0035 0.0032 0.0029 0.0032

Head Linear 0.4061 0.4205 0.4323 0.4545 0.4283
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