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Abstract

We introduce Tune without Validation (Twin), a simple and effective pipeline for tuning
learning rate and weight decay of homogeneous classifiers without validation sets, elimi-
nating the need to hold out data and avoiding the two-step process. Twin leverages the
margin-maximization dynamics of homogeneous networks and an empirical bias–variance
scaling law that links training and test losses across hyper-parameter configurations. This
mathematical modeling yields a regime-dependent, validation-free selection rule: in the non-
separable regime, training loss is monotonic in test loss and therefore predictive of general-
ization, whereas in the separable regime, the parameter norm becomes a reliable indicator of
generalization due to margin maximization. Across 37 dataset-architecture configurations
for image classification, we demonstrate that Twin achieves a mean absolute error of 1.28%
compared to an Oracle baseline that selects HPs using test accuracy. We demonstrate Twin’s
benefits in scenarios where validation data may be scarce, such as small-data regimes, or
difficult and costly to collect, as in medical imaging tasks. We plan to release our code.
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Figure 1: Overview. While traditional
pipelines (TPs) require a cumbersome
two-step process or additional data
collection to tune networks, Twin sim-
plifies the workflow avoiding both.

Like most machine learning models, deep networks are config-
ured by a set of hyper-parameters (HPs) whose values must be
carefully chosen and which often considerably impact the final
outcome (Krizhevsky et al., 2012; He et al., 2019; Yu & Zhu,
2020; Franceschi et al., 2024). Setting up wrong configurations
translates into bad performance, particularly in the most dif-
ficult optimization scenarios, e.g., large models that overfit on
small datasets (Lorraine et al., 2020; Brigato et al., 2021; 2022).

Despite their importance, HP tuning pipelines remain sur-
prisingly cumbersome or data-inefficient. Traditionally, HP
search is performed in two ways, as exemplified in Figure 1
(left and center). When a validation set is unavailable, prac-
titioners must split the training set, which requires a cumber-
some two-step process involving tuning and retraining. If the
dataset is small, the resulting validation subset may yield noisy
and unreliable HP estimates (Lorraine et al., 2020; Brigato
& Mougiakakou, 2023). Alternatively, if a validation set is
available, data must be collected or withheld upfront (typ-
ically 10–30%), which is costly or prohibitive in data-scarce
domains such as medical imaging (Varoquaux & Cheplygina,
2022) or federated learning (McMahan et al., 2017). Although
other methodologies, such as multi-fold or multi-round cross-
validation (Stone, 1974), exist, they are scarcely employed in
deep learning due to their computational overhead. We argue
that splitting or additionally reserving data is avoidable.
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Existing lines of work only partially address our problem. Validation-free early-stopping methods (Forouzesh
& Thiran, 2021) monitor training trajectories to determine when to halt optimization, but they operate
within a single run and do not offer principled cross-trial comparisons. Generalization-gap predictors require
supervised meta-training or calibration across heterogeneous HP draws, limiting their reliability as ranking
metrics (Jiang et al., 2018). Sharpness-based criteria fail to reliably correlate with generalization beyond
specific architectures (Andriushchenko et al., 2023). Finally, current validation-free HPO (Mlodozeniec
et al., 2023) have primarily focused on learning invariances but have struggled to scale beyond simple tasks
(Schwöbel et al., 2022) and modest network sizes (Immer et al., 2022), thereby limiting their adoption.

Motivated by these challenges, we introduce Tune without Validation (Twin), a simple and innovative HP
selection approach enabling practitioners to directly select the learning rate (LR) and weight decay (WD) of
classifiers from the training set, as sketched in Figure 1 (right). Our approach builds upon two complementary
insights: (1) the theoretically grounded margin-maximization of homogeneous classifiers (Lyu & Li,
2019) and (2) an empirical bias-variance scaling law that links training and test loss. When the train
set is non-separable for all optimized networks, test loss typically tracks training loss, so the latter predicts
generalization. Once the model fits the train set (separability), margin maximization induces monotonic
norm growth, making smaller norms indicative of better generalization. Twin exploits this structure by
detecting separability via training accuracy and switching between two validation-free predictors: training
loss in the bias-dominated regime and parameter norms in the variance-dominated regime.

Practically, Twin performs a logarithmic grid search over LR and WD, supporting early-stopping schedulers
to reduce computational burden. The resulting pipeline is simple, model-agnostic, and eliminates the need
for a two-step tuning pipeline or saves validation data collection costs when searching for optimal LR and
WD. On 37 dataset-architecture configurations, including convolutional (ConvNet), vision transformer (ViT),
and feedforward (FF) networks, Twin achieves a mean absolute error of just 1.28% compared to an Oracle
pipeline that selects HPs based on test accuracy. In summary, the contributions of our paper are as follows:

1. We introduce a validation-free generalization predictor linking margin maximization for homoge-
neous classifiers (Lyu & Li, 2019) to an empirical bias–variance scaling law, which reveals when
training loss or parameter norm provides monotonic signals of generalization.

2. We ground the analytical findings in Twin, a simple and novel HP-selection pipeline that practically
optimizes LR and WD without validation sets, avoiding a cumbersome two-step tuning process.

3. We demonstrate Twin’s practical benefits by achieving better performance in small-data regimes,
where validation data is scarce, and by reducing validation data collection in medical imaging.

4. We conduct a comprehensive empirical study, spanning diverse datasets, architectures, and data
scales, complemented by analyses that showcase the robustness of Twin across experimental setups.

2 Problem Definition

We consider an HP optimization (HPO) problem, formalized as a tuple HPO = (A, Q, S), where:

1. A is a learning algorithm, i.e., a stochastic function mapping data, HPs, and budget to an hypothesis:

A : D × A × Λ × T → H (1)

Here D := X × Y is the data space, A and Λ respectively denote the HP spaces we focus on in this work,
i.e., LR and WD, T is a computational budget in terms of learning iterations, and H the hypothesis space.

2. Q is a sampler that proposes HP configurations. Formally, it may depend on previously trained hypotheses,
datasets, and metric evaluations:

Q : (H) × (D) × (M) → A × Λ (2)

The arguments in parentheses are optional: static strategies such as grid search, ignore history, whereas
more complex adaptive ones (e.g., Bayesian optimization) condition on past hypotheses and their fitness. M
is a performance metric mapping hypotheses and data to a scalar score, more formally M : H × D → R.
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3. S is a scheduler that allocates computational resources across candidate hypotheses. It may assign the
full budget to each trial or terminate unpromising runs early, depending on partial metric evaluations:

S : (H) × (D) × (M) → T (3)

Given these three components, the HPO process produces a set of N candidate hypotheses

HHPO =
{

hi = A(Dtrain, αi, λi, τi)
∣∣ (αi, λi) = Q(·), τi = S(·), i = 1, . . . , N

}
(4)

with the goal of identifying the optimal configuration (α⋆, λ⋆) ∈ A × Λ yielding the resulting hypothesis h⋆

which is expected to maximize the performance M for the chosen task on test data.

Learning algorithm and validation. Let Dtrain = {(xi, yi)} ⊆ D and Dtest = {(xj , yj)} ⊆ D be i.i.d.
samples from P (X, Y ). The hypotheses are actually implemented via a deep network f(·, θ) : X → Y with
θ ∈ Rd, i.e., h(·) = f(·, θ). The canonical instantiation of the metric M is the empirical risk L̄ and, together
with Dtrain, the WD λ, and (cross-entropy) loss fuction ℓ, defines the regularized training objective:

L̂(θ) = L̄(f(·, θ), Dtrain) + λ
2 ∥θ∥2, with L̄(h, D) = L(h,D)

|D| , and L(h, D) =
∑

(x,y)∈D

ℓ(h(x), y)

The parameters θ are updated following the general gradient-based formula θt+1 = U
(
θt, ∇θL̂(θt), αt, λ, ϕ

)
,

with ϕ representing optimizer states or additional HPs, and t ≤ T denoting the iteration index.
Let Dval = {(xk, yk)} ⊆ D. In common practice, one sets D = Dval and selects HPs by solving the objective:

h⋆
v = arg min

h∈HHPO
L̄(h, Dval) (5)

This validation-based procedure serves as a surrogate for the population risk E(x,y)∼P (X,Y )
[

ℓ(h(x), y)
]

but
suffers from sampling noise for validation size m (deviation O(1/

√
m), Appendix A) and typically requires

either holding out a sufficiently large validation set or performing a two-step training pipeline (Figure 1).

Scope of our work: validation-free HP selection. We focus on the case where no held-out validation
set is available or desirable. Instead of L̄(h, Dval), we aim to design a surrogate generalization score computed
solely as a function of training-time information, i.e., M = G(h, Dtrain), where G is a function possibly
composed of several modules. Therefore, the model selection objective we are aiming to solve is:

h⋆
vf = arg min

h∈HHPO
G(h, Dtrain) (6)

provided that the function G can reliably rank candidate hypotheses without recourse to held-out validation
data. More formally, our HPO process should yield a hypothesis h⋆

vf such that L̄(h⋆
vf , Dtest) ≤ L̄(h⋆

v, Dtest).

Relation to other research directions. It is essential to situate our contribution in relation to other,
potentially distinct lines of research. We give a technical comparison here and defer a broader literature
review to Section 5. First, we solve a different problem from validation-free early-stopping approaches (e.g.,
(Forouzesh & Thiran, 2021)) that, according to our notation, design a particular class of schedulers S.
Specifically, they optimize t⋆ = arg min1≤t≤T G(ht, Dtrain) which shares with Equation (6) the surrogate
generalization score G but misses explicit design to serve as a valid cross-trial ranking metric making a
direct comparison impossible. Second, we partially differ from generalization-gap prediction approaches,
e.g., (Jiang et al., 2018), which estimate the difference ∆(h) = L̄(h, Dtrain) − L̄(h, Dtest) between training
and test risk for a given hypothesis. These methods typically learn a predictor ∆̂(h) from training signals,
then rank models by G(h, Dtrain) = L̄(h, Dtrain) − ∆̂(h). While sharing our goal of validation-free ranking,
such predictors ∆̂(h) rely on supervised meta-training and must be carefully calibrated across heterogeneous
HP draws before they yield reliable cross-trial and cross-task rankings, whereas our surrogates G(h, Dtrain)
are designed to be directly comparable within the candidate pool HHPO and do not require expensive meta-
training, making a direct comparison unfair. Finally, we note that many prior HPO pipelines may differ in
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their choice of sampler Q or scheduler S (Falkner et al., 2018; Franceschi et al., 2024). These components are
largely orthogonal to our contribution: any alternative sampler or scheduler could in principle be embedded
within Twin provided that the designed G yields hypothesis h⋆

vf such that L̄(h⋆
vf , Dtest) ≤ L̄(h⋆

v, Dtest). As
such, differences in Q or S alone do not provide a direct comparison to our method. Our approach is more
similar in scope and objective to a broad class of methods that analyze sharpness of the loss landscape
around a solution, motivated by its correlation with generalization (Andriushchenko et al., 2023). Sharpness
can indeed be casted as a surrogate generalization score G which is applicable to the hypotheses pool HHPO.

3 Tune without Validation

3.1 Preliminaries: Margin maximization in homogeneous classifiers

Our methodology, which aims at selecting LR and WD without validation sets, leverages the theoretical result
of margin maximization for homogeneous classifiers from (Lyu & Li, 2019). To provide an overview, we recall
the main result we will build upon and refer the interested reader to the original work for additional details.
The authors rigorously establish that, in homogeneous models, optimizing the logistic or cross-entropy loss
with gradient descent or gradient flow leads to a monotonic increase of a smoothed normalized margin, as long
as the training loss drops below a specified threshold. The threshold imposed on Ltrain is sufficiently small
to guarantee separability of the training data, meaning that the network achieves 100% training accuracy.

More formally, the network output is the logit vector z =
(
z1(θ, x), . . . , zC(θ, x)

)
= f(x, θ) = h(x) ∈

RC , where zj(θ, x) denotes the logit assigned to class j. Given the training set Dtrain = {(xi, yi)}N
i=1,

the loss is the cross-entropy objective summed over all training samples L(h, Dtrain) = L(θ, Dtrain) =∑N
i=1 − log(exp(zyi

(θ, xi)) /
∑C

j=1 exp(zj(θ, xi)). For each training example (xi, yi), the margin is defined
as qi(θ) = zyi

(θ, xi) − maxj ̸=yi
zj(θ, xi), and the margin over the entire dataset is defined to be qmin(θ) =

mini∈[N ] qi(θ). A central component of the result in (Lyu & Li, 2019) is the normalized margin, whose
construction relies on the homogeneity of the network f , that is, f(x, bθ) = bkf(x, θ) for all b > 0, with k > 0
denoting the degree of homogeneity (Li & Arora, 2019; Li et al., 2022). To simplify notation, let ρ = ∥θ∥2
and θ̂ = θ/ρ. For a k-homogeneous network, the margin scales with ρ k, making the normalized margin:

γ̄(θ) = qmin(θ̂) = qmin(θ)
ρ k

(7)

The non-smooth minimum margin qmin(θ) can be approximated by replacing the min operation with a
smooth LogSumExp (LSE) over the sample-wise margins qi. This LSE approximation effectively provides
a differentiable surrogate that enables explicit characterization of the smoothed margin as a function of the
training loss. Under gradient descent (and similarly under gradient flow) on smooth homogeneous networks
trained with cross-entropy, the smoothed normalized γ̃ margin is defined by:

γ̃(θ) = −
log

(
eL(θ,Dtrain) − 1

)
ρk

(8)

This surrogate admits the bound γ̃(θ) ≤ γ̄(θ) ≤ γ̃(θ) + log N
ρk establishing that γ̃ closely tracks the

true normalized margin γ̄. Once L(θ, Dtrain) drops below τL = log 2, or equivalently the accuracy reaching
τacc = 100%, indicating perfect separability, additional theoretical guarantees apply: γ̃(θ) becomes provably
non-decreasing with further training, and the gap |γ̃(θ) − γ̄(θ)| → 0 as training continues (Lyu & Li, 2019).
The primary practical implication of this theoretical result, as originally suggested by the authors, is that
training for a longer period can enlarge the normalized margin and, consequently, may have potential benefits
in improving model robustness (Lyu & Li, 2019). Next, we delve deeper into our perspective and how we
leverage this result from a different viewpoint, aiming to better predict the generalization of neural network
configurations without employing validation sets.

4



Under review as submission to TMLR

3.2 Leveraging bias–variance scaling laws and parameter norms for validation-free prediction

Bias-variance scaling law. We first recall that the HPO problem returns a pool of candidate hypotheses
HHPO where each hi ∈ HHPO represents a network f(·, θi) trained up to a budget T of iterations. Let
LHPO(D) = {Li = L(θi, D) = L(hi, D)

∣∣ hi ∈ HHPO} be the formulation referring to the set of loss
evaluations for hypotheses performed either on the training (LHPO(Dtrain)) or testing (LHPO(Dtest)) sets.

Both sets represent empirical observations of a general underlying scaling law Ltest = ξ(Ltrain) linking the
training loss Ltrain to the testing loss Ltest. Motivated by the well-known bias-variance trade-off, we specify
a compact parametric model that aligns well with empirical scaling-law observations and is simple enough to
admit an explicit derivative analysis, which we leverage to derive generalization metrics that depend only on
quantities available at training time. We model the test loss as a sum of three contributions: (1) a decaying
“bias” term, (2) a growing “variance” term, and (3) a floor. A noise-free but analytically valuable model is:

Ltest = ξ(Ltrain) = B Lβ
train︸ ︷︷ ︸

bias

+ V L−v
train︸ ︷︷ ︸

variance

+ E︸︷︷︸
irreducible floor

(9)

where B, V ≥ 0 denote non-negative scaling coefficients for the bias and variance contributions, β, v > 0
control the strength of the respective power-law dependencies, and E ≥ 0 represents a fixed irreducible error.
The above parameters could be empirically estimated from sets LHPO(Dtrain) and LHPO(Dtest) if LHPO(Dtest)
was available. In practice, real train-test loss scaling curves exhibit fluctuations as models begin to fit their
training set. For clarity of exposition, we omit the noise term and discuss its exclusion next.

Bias regime. First, to analyze the transition between bias-dominated and variance-dominated regimes,
we compute the derivative of the test loss Ltest with respect to the training loss Ltrain:

dLtest

dLtrain
= BβLβ−1

train − V vL−(v+1)
train (10)

Setting the derivative to zero identifies the critical point C where the bias-variance trade-off occurs. In
other words, the critical point corresponds to the training loss value where the test loss is minimized and
transitions from underfitting (bias) to overfitting (variance) behavior:

dLtest

dLtrain
= 0 ⇐⇒ Ltrain =

(
V v

Bβ

) 1
β+v

= C (11)

In parallel, by rearranging Equation (8), we can express the training loss as a deterministic function of the
parameter norm ρ and smoothed normalized margin γ̃. For convenience, we hence derive:

Ltrain = logistic
(
ρkγ̃

)
= log

(
1 + e−ρkγ̃

)
(12)

Now, using Equation (12), we express the critical condition in terms of the smoothed normalized margin γ̃:

Ltrain = log(1 + e−ρkγ̃) = C =⇒ γ̃C = − log(eC − 1)
ρk

C

(13)

where γ̃C and ρk
C respectively correspond to the smoothed normalized margin and the norm at the critical

point C. This relation makes explicit that separability (γ̃ = 0, equivalently Ltrain = log 2) acts as a natural
reference point for the location of the stationary points of the train–test scaling law. In particular, separability
roughly marks the boundary at which the variance term can begin to influence the test loss. When C ≤ log 2,
the stationary point lies in the separable regime (γ̃C ≥ 0). Instead, when C > log 2, the stationary point is
necessarily non-separable (log(eC − 1) > 0 =⇒ γ̃C < 0). The distance from the separability boundary in
margin space is dampened by ρk

C , which is usually large in deep networks, making γ̃C ≈ 0 in practice.
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As a consequence, if none of the models in LHPO(Dtrain) reaches separability, then either no stationary point
is present at all, or any stationary point that may arise lies in a neighborhood of the separability boundary
whose size is controlled by the network norm, making the overall variance contribution negligible in practice.
This observation hence justifies using the train loss as a generalization predictor when Ltest ≈ BLβ

train + E.

Variance regime. When C ≤ log 2, i.e., the critical point belongs to the separable regime, it is more likely
that the scaling law transitions from an underfitting to an overfitting regime. In this more interesting case
for validation-free generalization prediction, namely, when the variance term contributes meaningfully to
Ltest, we will employ the parameter norm ρ as a predictor. To study this relation, we compute the derivative
of the test loss with respect to ρ. By leveraging Equation (10) and Equation (12), the chain rule yields:

dLtest

dρ
= dLtest

dLtrain
· dLtrain

dρ
=

(
BβLβ−1

train − V vL−(v+1)
train

)
·
(

− k ρ k−1γ̃

1 + e ρkγ̃

)
(14)

From the previous analysis, we know that C < log 2 =⇒ γ̃ > 0. Furthermore, being k > 0, ρ > 0, and the
denominator 1 + eρkγ̃ strictly positive make the entire second factor of Equation (14) negative. Thus, the
sign of the derivative dLtest

dρ is entirely determined by the negative of the sign of the first factor:

sign
(

dLtest

dρ

)
= −sign

(
BβLβ−1

train − V vL−(v+1)
train

)
(15)

In particular, for the common case where the variance contribution dominates (V vL−(v+1)
train > BβLβ−1

train),
we get dLtest

dρ > 0. The derivative indicates that the test loss increases with increasing parameter norm,
hence providing a clear mechanism for using the parameter norm as a predictor. Conversely, if the bias term
remains dominant beyond the onset of separability (BβLβ−1

train > V vL−(v+1)
train ), norm-loss monotonicity can

locally be flipped. In this case, the scaling law may admit a stationary point whose location in margin space
is confined to a small neighborhood of the separability threshold due to norm scaling for the same argument
of the previous paragraph (γ̃C ≈ 0). Therefore, the interval in which bias dominance locally reverses the
norm–loss monotonicity is negligible in practice. In summary, for variance-dominated elements, which can
again be reliably checked via separability, the parameter norm ρ, being a validation-free signal, is predictive
of generalization given the monotonic increasing relation dLtest

dρ ≥ 0 for Ltrain ∈ (0, C].

Visual illustration from experimental setup. To complement the previous analysis and provide ad-
ditional insights, we select five dataset-model pairs from our experimental setup (Section 4) that cover
different train-test scaling laws. In Figure 2, we show the bias-variance scaling laws (top row) and test loss
vs parametr norm ρ (bottom row). Due to the popularity of the average losses (rather than their sum), we
fit Equation (9) on L̄HPO(Dtrain) and L̄HPO(Dtest). Each dot represents a model trained with an LR-WD
couple, and both parameters are swept over logarithmic intervals (see next for more details). The color
coding, instead, highlights the training accuracy, i.e., the separability indicator. In a bias-dominated regime
(first column), there is no critical point C, and the training loss is indeed predictive of generalization. In
contrast, the remaining columns from left to right progressively illustrate more variance-dominated settings,
ranging from cases where only a subset of configurations achieves high training accuracy to fully separable
regimes where nearly all models attain 100% accuracy. Once separability is (approximately) reached, the
fitted scaling law may exhibit the characteristic bend induced by the variance term V L̄−v

train, causing L̄test to
increase as L̄train decreases. This transition is accompanied by an equally progressive rise in the parameter
norm ρ (bottom row), which becomes a reliable predictor of generalization within the separable regime.

On the specific focus for LR and WD as HPs. Although the proposed scaling-law analysis is, in
principle, agnostic to the choice of HPs, we concentrate on LR and WD for both theoretical and practical
reasons. The training loss Ltrain, which governs the bias–variance trade-off, is directly and sensitively
modulated by the LR, making it the HP with the most immediate influence on the regime in which the
model operates (underfitting vs. overfitting). Conversely, the parameter norm ρ is strongly impacted by
WD, which monotonically suppresses norm growth, thereby shaping the normalized margin trajectory and
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Figure 2: Bias–variance scaling laws and norm dynamics. Five dataset–model pairs illustrating how
the fitted scaling law (top) and test loss vs. norm relation (bottom) evolve across learning regimes. Each
point corresponds to an LR–WD configuration, color-coded by training accuracy. The leftmost example is
bias-dominated, with no critical point and the train loss predictive of test loss. The remaining columns show
that the parameter norm ρ becomes predictive of generalization within fully separable settings.

regulating the extent to which the variance term in Equation (9) dominates. Thus, WD acts as the primary
handle for constraining ρ in a way that directly aligns with our generalization predictor. Beyond LR and WD,
other regularization mechanisms that explicitly influence norm dynamics could, in principle, be incorporated
into the same framework, thereby broadening its practical impact. Balestriero et al. (2022) demonstrate
that data augmentation can systematically alter parameter norms, suggesting that additional HPs may be
tuned using an analogous norm-based criterion. This opens the door to future extensions of our approach
to a wider class of regularizers, provided their effect on ρ can be characterized with sufficient consistency.

Practical approximations. Finally, in our analysis, we made some simplifying assumptions concerning
the scaling law, the smoothed margin, and exact k-homogeneity, which we discuss further in Appendix B.
Despite these approximations, the qualitative predicted behavior remains remarkably stable and effective in
practice (Section 4), providing a validation-free mechanism for identifying suitable LR and WD.

3.3 Practical tuning pipeline

We now translate the theoretical insights of the previous section into a practical, validation-free HPO pro-
cedure. The resulting Twin pipeline (Algorithm 1) implements a simple rule informed by the modeling of
Section 3.2: (1) If any configuration reaches the separable regime (training-accuracy threshold τacc), then
the model with the smallest parameter norm is selected; (2) Otherwise, the configuration with the lowest
training loss is chosen. This decision rule mirrors the structure revealed by the bias–variance analysis: train
loss is predictive of generalization in the non-separable (bias-dominated) regime, while parameter norms are
predictive in the separable (variance-dominated) regime. Twin consists of a sampler Q, a scheduler S, and a
validation-free surrogate metric M that implements the separability-informed selection rule.

Sampler Q: grid search. Twin executes a total of N = Nα · Nλ training trials, where Nα and Nλ denote
the number of LR and WD values, respectively. By default, Q is instantiated as a logarithmic grid search:
the logsweep function generates values over the ranges [αmin, αmax] and [λmin, λmax] on a log scale. The
resulting sets {αi}Nα

i=1 and {λj}Nλ
j=1 define the HP configurations explored during the search. Although grid

search is less efficient than alternatives (e.g., random search), it remains a common choice for tuning LR and
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WD (Kornblith et al., 2019; Steiner et al., 2022). Furthermore, Twin remains competitive even with coarse
and sparse grid resolutions (Section 4.3). To lower the computational cost, Twin integrates early-stopping
schedulers, as we describe in more detail below.

Algorithm 1 Twin
Require: LR range [αmin, αmax], #LRs Nα, WD range

[λmin, λmax], #WDs Nλ, separability threshold τacc, scheduler
S ∈ {FIFO, HB25%, HB12%}

Ensure: Optimal configuration (α⋆, λ⋆)
# Search with trial scheduling
1: Ψ, Θ,P ← zeros(Nα, Nλ)
2: {αi} ← logsweep(αmin, αmax, Nα)
3: {λj} ← logsweep(λmin, λmax, Nλ)
4: for i = 1, . . . , Nα do
5: for j = 1, . . . , Nλ do
6: fθ ← runtrial(Dtrain, αi, λj , S)
7: Ψ[i, j]← L̄(fθ,Dtrain) # Store average train loss
8: Θ[i, j]← ∥θ∥ # Store parameter norm
9: P[i, j]← Accuracy(fθ,Dtrain) # Store train accuracy

10: end for
11: end for

# Validation-free HP selection
12: if any(P ≥ τacc) then # Check for separable regime
13: µ← P ≥ τacc # Mask for separable configs
14: (α⋆, λ⋆)← argmin(Θ⊙ µ)
15: else # Bias-dominated regime
16: (α⋆, λ⋆)← argmin(Ψ)
17: end if

Scheduler S: FIFO or adapted Hyper-
Band. We consider FIFO (no early stop-
ping) and a modified HyperBand algorithm
in which the standard successive-halving
procedure runs until only an X% subset
of promising configurations remains active
that then train to completion. This modi-
fication stabilizes the loss landscape, avoid-
ing premature pruning of LR–WD configu-
rations that might otherwise achieve sepa-
rability. We denote this variant HBX% and
evaluate X ∈ {25%, 12%} in Section 4.3.
Practitioners can safely default to HB25%.

Validation-free metric M:
separability-informed decision rule.
The final stage replaces a held-out val-
idation set with a surrogate metric
M = G(h, Dtrain) directly derived from
the bias–variance analysis. Concretely, the
grid search produces three log-structured
matrices over the LR–WD space: the matrix of average training losses, Ψ ∈ RNα×Nλ , where Ψ[i, j] is the
final empirical risk L̄(fθ, Dtrain) for configuration (αi, λj), the matrix of parameter norms, Θ ∈ RNα×Nλ ,
with Θ[i, j] = ∥θ∥, and the accuracy matrix P ∈ RNα×Nλ . A single threshold τacc determines separability.
Due to the previously mentioned approximations and consequent noise (e.g., smoothed margin), we slightly
relax the separability threshold (τacc = 100%) and set it to τacc = 99% for all experiments. We further
elaborate on this choice in Section 4.3. If at least one configuration satisfies P ≥ τacc, the HPO problem
is (very likely) in the variance-dominated regime, and the theory predicts that the test loss is monotonic
increasing in the parameter norm. Twin therefore selects the model with the smallest norm among separable
configurations by first setting a mask µ = P ≥ τacc, and then computing (α⋆, λ⋆) = argmin(Θ ⊙ µ). If
no configuration reaches separability, the process is in the bias-dominated regime, where the training loss
remains predictive. Twin then selects the model with minimal L̄(fθ, Dtrain), i.e., (α⋆, λ⋆) = argmin(Ψ).

This separability-informed selection rule is simple, fully validation-free, and follows directly from the structure
revealed by the bias–variance scaling law and smoothed margin evolution of Section 3.2.

4 Experiments

4.1 Comparison with Sharpness-Based Selection

Motivation. The sharpness of minima has long been studied as a proxy for generalization in deep learning
(Hochreiter & Schmidhuber, 1994; Jiang et al., 2020; Andriushchenko et al., 2023). Both average-case and
worst-case sharpness have been considered in the literature, with worst-case sharpness generally correlating
more strongly with generalization, particularly when evaluated over small perturbation sets and subsets of
the full training sample (m-sharpness) (Jiang et al., 2020; Dziugaite et al., 2020; Kwon et al., 2021; Foret
et al., 2021). This intuition underpins methods like Sharpness-Aware Minimization (SAM) (Foret et al.,
2021), where optimizing for flatter minima can improve test accuracy. However, SAM does not explicitly
target HP tuning but rather alters the training dynamics to reach more generalizable solutions. As such,
comparing Twin directly to SAM is not appropriate, since SAM modifies the training process, while Twin
focuses on selecting among trained models the best without accessing the validation set. For this reason,

8



Under review as submission to TMLR

we compare Twin to worst-case m-sharpness, a post hoc measure of the sharpness around the final solution.
This remains within the scope of HP selection, as lower sharpness has been shown to correlate with better
generalization (Jiang et al., 2020), yet not in all configurations (Andriushchenko et al., 2023).

Baseline: worst-case m-sharpness. Let Ds = {(xk, yk)} be a subset of the full training set Dtrain (i.e.,
Ds ⊆ Dtrain) and fθ a neural network with parameters θ, trained to minimize the empirical risk L̄. The
worst-case m-sharpness of a model fθ is defined as:

s(fθ, Ds) = EDm∼Ds

[
max

∥δ∥2≤ρs

L̄(fθ+δ, Dm) − L̄(fθ, Dm)
]

(16)

where δ is an adversarial perturbation bounded in ℓ2-norm by ρs and Dm represents the sampled batches
(|Dm| = m). This quantity estimates the local sharpness of the loss landscape around the final solution
θ without retraining and can be used to rank model generalization. To compute worst-case m-sharpness,
we mainly follow (Andriushchenko et al., 2023). Specifically, we employ an HP-free algorithm (Auto-PGD
(Croce & Hein, 2020)) in the parameter space to solve the maximization problem where perturbations δ are
bounded within an ℓ2-ball of radius ρs = 0.05. We evaluate sharpness on mini-batches of size m = 128 out of
|Ds| = 2048 total samples, using 20 gradient ascent steps. We do not use gradient normalization or adaptive
updates. We observed that sharpness alone is not a reliable selection proxy across all trials. Specifically,
the configurations resulting in exceptionally poor training exhibit extremely low sharpness, likely because
the optimizer converges to flat but high-loss regions. To avoid such degenerate solutions, we filter out
any configuration achieving less than 15% training accuracy. This ensures that the evaluated sharpness
values reflect meaningful properties of well-optimized models, rather than failed training runs. Still, it is
worth noting that without this tweak to filter poorly optimized configurations in our experiments, a naive
application of m-sharpness would select trials that result in trivial accuracy.

Datasets. For this comparison, we select popular natural-image datasets such as CIFAR-10/100
(Krizhevsky, 2009) and Tiny Imagenet (Le & Yang, 2015). These datasets contain 50,000/100,000 training
samples from 10 to 200 classes, and image resolutions of 32 × 32 and 64 × 64.

Implementation details. We set the LRs and WDs intervals for the grid search to [5 · 10−5, 5 · 10−1] for
ConvNets, and to [10−6, 10−1] for ViTs. We employ the FIFO scheduler for both Twin and m-sharpness.
On CIFAR, we employ as ConvNets a ResNeXt-11 (4 x 16d) (RNX11) (Xie et al., 2017) and a ResNet of
depth 20 (RN20) (He et al., 2016). As ViTs, we train architectures designed explicitly for CIFAR, such
as the Compact Convolutional Transformer with two encoder and convolutional-stem layers (CCT-2/3×2)
(Hassani et al., 2021). On TinyImagenet, we train a WRN-16-4 (Zagoruyko & Komodakis, 2016) and a
Compact Vision Transformer (Hassani et al., 2021) with 7 encoder layers and a patch size of 8 (CVT-7/8).

Dataset Model Class Model # Trials m-sharpness Twin ∆
C10 ViT CCT-2/3×2 49 82.0 87.3 +5.3
C10 ConvNet RN20 100 91.6 91.8 +0.2
C10 ConvNet RNX11 100 90.0 90.2 +0.2
C100 ViT CCT-2/3×2 49 55.4 64.0 +8.6
C100 ConvNet RN20 100 67.8 67.6 -0.2
C100 ConvNet RNX11 100 67.2 67.7 +0.5

TinyIN ViT CVT-7/8 36 55.9 58.0 +2.1
TinyIN ConvNet WRN-16-4 49 60.8 60.8 +0.0

Average 71.3 73.4 +2.1
# Wins 2 7

Table 1: Twin vs. worst-case m-sharpness. Re-
sults report test accuracy (%). Details on the compu-
tation of m-sharpness are available in Section 4.1.

Twin outperforms m-sharpness on ViTs and
is comparable on ConvNets. Table 1 reports
the comparison between Twin and worst-case m-
sharpness across natural image datasets (CIFAR-
10/100 and TinyImagenet) and network architec-
tures (ConvNets and ViTs). We observe that Twin
outperforms m-sharpness in 6 out of 8 experimental
scenarios and achieves a higher average test accu-
racy (73.4% vs. 71.3%). While sharpness is known
to correlate with generalization in some cases (Jiang
et al., 2020), our results highlight that this correla-
tion is not always strong enough to reliably guide
optimal HP selection. The performance gap is espe-
cially pronounced, up to ≈9 percentage points, for ViTs (CCT-2/3×2 and CVT-7/8), where prior work has
also observed a weaker correlation between sharpness and generalization (Andriushchenko et al., 2023).
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Figure 3: Quantitative comparison with Oracle. Twin closely matches the Oracle on tasks with various
training images per class (left). Twin scores an overall 1.28% MAE against the Oracle pipeline across 37
different dataset-model configurations when using a FIFO scheduler (right).

4.2 Comparison with Oracle and Validation-Based Selection

Motivation. To further assess the effectiveness of Twin, we introduce two additional baselines that are
more robust than sharpness-based selection across experimental setups: namely, the Selection from Vali-
dation Set (SelVS) and the Oracle, or unrealistic selection from the test set. As far as the domains for
experimentation are concerned, we aim to cover scenarios where Twin’s capabilities could be more advanta-
geous. Firstly, our evaluation encompasses small datasets (Section 4.2.1), a setup particularly suitable for
Twin, given that traditional pipelines struggle with HP selection due to the limited dimensions of valida-
tion sets, as explained in Section 2. Additionally, we explore Twin’s applicability in the medical domain
(Section 4.2.2), where its ability to mitigate the need for collecting validation sets is particularly valuable,
considering the complexities and regulations inherent in healthcare settings. Finally, we further examine
Twin in dealing with natural images (Section 4.2.3), as this domain is widely employed for benchmarking.

Baselines: SelVS and Oracle. The SelVS is the traditional reference point, where HP optimization is
conducted exclusively on the validation set. In our experimental setup, the validation set is either subsampled
from the training set (small and natural image datasets) or collected externally (medical data). These two
cases correspond to the left two schemes of Figure 1. SelVS can also be performed with different trial
schedulers, e.g., with early stopping. The Oracle represents the ideal but unrealistic scenario of selecting
HPs directly from the test set. The Oracle always runs a FIFO scheduler. At its best, Twin achieves 0%
mean absolute error (MAE) against the Oracle. Both SelVS and Oracle select the HPs according to the
relevant last-epoch metric with FIFO schedulers and the average of the last five epochs with early stopping.

Comparison with Oracle. We quantitatively compare Twin against our ideal Oracle baseline. In par-
ticular, we show the performance per dataset (Figure 3, left) and the absolute errors across 37 different
dataset-architecture configurations (Figure 3, right). Twin closely matches the Oracle on tasks with various
training images per class, scoring an overall 1.28% MAE against it.

4.2.1 Small Datasets

Datasets. For the experiments on small datasets, we select the benchmark introduced in (Brigato et al.,
2022), which contains five different datasets spanning various domains and data types. In particular, the
benchmark contains sub-sampled versions of ciFAIR-10 (Barz & Denzler, 2020), EuroSAT (Helber et al.,
2019), CLaMM (Stutzmann, 2016), all with 50 samples per class, and ISIC 2018, with 80 samples per class
(Codella et al., 2019). Also, the widely known CUB dataset with 30 images per category is included (Wah
et al., 2011). The spanned image domains of this benchmark hence include RGB natural images (ciFAIR-
10, CUB), multi-spectral satellite data (EuroSAT), RGB skin medical imagery (ISIC 2018), and grayscale
hand-written documents (CLaMM). For EuroSAT, an RGB version is also available. Finally, we include the
Oxford Flowers dataset, which comprises 102 categories with 20 images (Nilsback & Zisserman, 2008).
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Implementation details. Along with the popular ResNet-50 (RN50), which was originally evaluated
on the benchmark (Brigato et al., 2022), we also employ EfficientNet-B0 (EN-B0) (Tan & Le, 2019) and
ResNeXt-101 (32 × 8d) (RNX101) (Xie et al., 2017) to cover three classes of model scales, respectively
tiny, small, and base (Touvron et al., 2021), with 5.3M, 25.6M, and 88.8M parameters. On ciFAIR-10, we
employ a Wide ResNet 16-10 (WRN-16-10). We refer the reader to Appendix C.1 for all the details regarding
training-related parameters. We perform squared grid searches of 100 trials for RN50 and EN-B0 and 36
trials for RNX101. We set the LRs and WDs intervals for the grid search to [5 · 10−5, 5 · 10−1] to span four
orders of magnitude. We report results for Twin and SelVS with early stopping, which respectively employ
HB25% and ASHA as schedulers, with the same number of trials. For the early-stopping parameters, we
follow (Brigato et al., 2022) and keep a halving rate of two and a grace period of 5% of the total epochs.

Method Model CUB ISIC 2018 EuroSAT CLaMM Avg. # Wins
Oracle EN-B0 67.2 66.8 91.0 65.3 72.6 4
SelVS EN-B0 67.0 65.1 86.6 58.0 69.2 3
Twin EN-B0 66.2 64.0 91.0 56.8 69.5 1
Oracle RN50 72.0 69.4 90.2 74.6 76.6 4
SelVS† RN50 70.8 64.5 90.6 70.2 74.0 1
Twin RN50 72.0 68.8 89.6 74.4 76.2 3
Oracle RNX101 73.0 66.7 90.0 75.2 75.9 4
SelVS RNX101 72.1 62.4 90.0 70.1 73.7 1
Twin RNX101 73.0 65.8 88.6 75.2 75.6 3

Table 2: Small datasets. The evaluation metric is
the balanced test accuracy (%) (Brigato et al., 2022).
We allocate 100 and 36 trials for EN-B0/RN50 and
RNX101, respectively. Twin and SelVS respectively
employ the HB25% and ASHA schedulers. †Values are
from (Brigato et al., 2022).

Twin outperforms SelVS by avoiding reliance
on small validation sets. As visible in Table 2,
Twin outperforms the traditional SelVS by scoring
69.5% vs 69.2% with EN-B0, 76.2% vs 74% with
RN50, and 75.6% vs 73.7% with RNX101 when av-
eraging performance across the CUB, ISIC 2018, Eu-
roSAT, and CLaMM datasets. Indeed, SelVS relies
on a small validation set, which may lead to sub-
optimal HPs given the lower reliability of the vali-
dation error. Furthermore, despite aggressive trial
stopping (HB25%), which can make the train-test
scaling law noisier, Twin still finds robust LR-WD
configurations and is thus scalable to computation-
ally intensive search tasks that would be prohibitive
without early stopping strategies. When dealing
with small datasets, it is also common practice to start with a network pre-trained on a larger dataset.
Therefore, we also repeat the optimization runs with ImageNet checkpoints. Twin remains effective in trans-
fer learning scenarios, provided that the overlap between the pre-training and target domains is considered.
In such cases, adapting the scheduler (e.g., via HBX%) enables Twin to maintain low error, as detailed in
Appendix D.

4.2.2 Medical Images

Datasets. We leverage the MedMNIST v2 benchmark (Yang et al., 2023) to test Twin on medical imaging
tasks. We focus on 2D classification and select 11 out of 12 binary/multi-class or ordinal regression tasks
of the MedMNIST2D sub-collection, which covers primary data modalities (e.g., X-ray, OCT, Ultrasound,
CT, Electron Microscope) and data scales (from 800 to 100,000 samples). The MedMNIST2D benchmark
provides held-out validation sets to allow HP tuning. The data diversity of this benchmark presents a
significant challenge. We select the testbed with the images pre-processed to 28 × 28 resolution out of the
full benchmark to maintain the total computational load under a reasonable budget.

Implementation details. We use the ResNet-18 (RN18) originally employed in the benchmark (Yang
et al., 2023), which consists of four stages but with a modified stem more suitable for low-resolution images.
We keep the same Twin configurations tested in Section 4.2.1, except for the trial schedulers that we default
to FIFO for both Twin and SelVS. Refer to Appendix C.2 for additional details on the implementation.

Twin matches SelVS while cutting validation data collection cost. We summarize the empirical
results over MedMNIST2D in Table 3. The Oracle scores an upper bound 84.8% test accuracy averaged
across the 11 tasks. Twin is comparable to the traditional SelVS (83.1% vs 83.2% and 7 vs 5 wins) and
slightly improves its performance in this domain when early stopping is employed (Section 4.3). Twin finds
proper HPs and leads to a cost-effective solution by reducing data collection and labeling expenses associated
with the ∼10% of samples per dataset originally allocated for validation in the MedMNIST2D benchmark.
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Method Path Derma OCT Pneum. Retina Breast Blood Tissue OrganA OrganC OrganS Avg. # Wins
Oracle 91.9 80.8 79.8 92.8 52.5 89.7 97.8 73.2 95.9 94.5 84.4 84.8 11
SelVS 90.5 80.3 78.0 92.5 46.0 85.3 96.9 72.8 94.9 94.4 83.5 83.2 5
Twin 90.0 80.8 77.3 89.3 47.8 85.9 97.1 72.8 95.3 93.7 83.8 83.1 7

Table 3: Medical images. Twin is more cost-effective by eliminating the need for the held-out validation
set (10% of samples are allocated in MedMNIST2D) while being comparable to SelVS. The performance is
the test accuracy (%). We run 100 trials per dataset. All approaches employ RN18 and the FIFO scheduler.

4.2.3 Natural Images

Datasets. As in Section 4.1, we employ the CIFAR-10, CIFAR-100, and Tiny Imagenet benchmarks.

Implementation details. On CIFAR datasets, in addition to the models described in Section 4.1, we also
consider a WRN-40-2 (Zagoruyko & Komodakis, 2016) and for FF networks, MLPs with batch normalization,
ReLU activations, and hidden layers of constant width. Specifically, we use four hidden layers with 256 units
on CIFAR-10 and 512 units on CIFAR-100 (MLP-4-256 and MLP-4-512). Data augmentation strength varies
from base to medium to strong {+, ++, +++}. All other training settings and additional details follow the
same protocol as outlined in Section 4.1. We provide more details in Appendix C.3.

Dataset Model Class Model # Trials Aug. Oracle SelVS Twin
C10 FF MLP-4-256 100 + 66.1 65.9 65.1
C10 ViT CCT-2/3×2 49 +++ 87.3 87.3 87.3
C10 ConvNet RNX11 100 + 90.7 90.6 90.2
C10 ConvNet WRN-40-2 49 ++ 94.0 93.3 93.7
C100 FF MLP-4-512 100 ++ 35.4 35.1 34.9
C100 ViT CCT-2/3×2 49 +++ 65.0 65.0 64.0
C100 ConvNet RNX11 100 + 68.8 68.6 67.7
C100 ConvNet WRN-40-2 49 ++ 74.2 72.8 74.2

TinyIN ViT CVT-7/8 36 +++ 58.0 58.0 58.0
TinyIN ConvNet WRN-16-4 49 ++ 61.8 61.8 60.8

Average 70.1 69.8 69.6
# Wins 10 8 4

Table 4: Natural Images. Although SelVS achieves more wins,
Twin offers similar average performance (69.6 vs 69.8) with a
single-step tuning process. The reported performance is the test
set accuracy (%). The FIFO scheduler is employed. For details
on data augmentation, refer to Appendix C.3.

Twin matches SelVS with a single-
step tuning pipeline. Twin is, on av-
erage, comparable to SelVS (69.6% vs
69.8%) despite not having access to the
validation set (Table 4). Although SelVS
achieves more wins, Twin offers simi-
lar average performance with a single-
step tuning process, avoiding the cumber-
some two-step model selection pipeline
of first finding the optimal HPs and
then training the final model. Re-
markably, Twin performs consistently
across ConvNets, ViTs, and MLPs, con-
firming its architecture-agnostic nature,
which stems from its reliance on margin-
maximization dynamics and homogene-
ity. Similarly, Twin is agnostic to the
strength of data augmentation.

4.3 Sensitivity Analyses
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Figure 4: Separability threshold.
A slight relaxation of the separabil-
ity threshold enables reliable predic-
tions. The MAE is vs the Oracle.

Separability threshold. In this analysis, we focus on the impact
of the separability threshold τacc, which acts as a practical regime
indicator for when variance effects can begin to meaningfully influ-
ence the bias–variance scaling law. In Figure 4, we sweep τacc in
[70%, 80%, 90%, 95%, 99%, 100%] and measure performance in terms
of the MAE against the Oracle across 37 different configurations. We
observe a clear trend in how the separability criterion affects prediction
quality. Increasing the threshold from 70% to 99% steadily improves
performance, with the MAE decreasing from 7.8 to 1.3. This reflects
the fact that low τacc prematurely classifies many underfitting models
as “separable”, thereby misidentifying the bias regime and introducing
significant errors (norm is not monotonic increasing in Ltest). The best
performance is achieved at τacc = 0.99, which closely matches the theoretical separability boundary of 100%.
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Interestingly, performance degrades when using the strict 100% accuracy threshold, with MAE rising to 3.9.
This behavior is consistent with our theoretical analysis: due to margin smoothing, the surrogate margin γ̃
may already be positive even when the true margin γ̄ is negative, and any stationary point that arises in
this regime lies in a small neighborhood of the separability boundary (γ̃C ≈ 0), but not necessarily exactly
zero. This result confirms that a small relaxation, allowing accuracy just below 100% to count as separable,
provides a more robust and numerically stable criterion for predicting optimal LR and WD in practice.
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Figure 5: Grid sparsity. Twin
scores consistent results even with
randomly sparse search grids. The
MAE is computed against Oracle.

Grid sparsity. We further assess the robustness of Twin under in-
creasingly sparse HP sweeps. Instead of using regular log-spaced pat-
terns as before, we randomly remove a fraction of LR–WD configura-
tions and repeat this procedure across 50 seeds. This setting brings
the evaluation closer to a random-search regime, while still constrained
by the underlying grid, thereby testing Twin under substantially less
structured HP ranges. We sweep the percentage of missing grid cells in
[0%, 20%, 40%, 60%, 80%] and evaluate Twin against the Oracle across
all 37 configurations. The resulting MAE distributions (Figure 5) re-
main close to the full-grid setup: the median MAE only increases from
1.3 at 0% removal to 1.4, 1.5, 1.6, and 1.5 at 20%, 40%, 60%, and
80%, respectively. Even with 60%–80% of the grid cells removed, per-
formance only degrades mildly and exhibits low variance across seeds,
demonstrating that Twin is largely insensitive to grid sparsity. This robustness is particularly relevant in
practical scenarios where dense LR–WD sweeps are infeasible due to computational constraints.

Small Datasets Medical Datasets
Scheduler EN-B0 RN50 RNX101 RN18

FIFO 69.5 76.2 75.6 83.1
HB25% 69.5 (+0.0) 76.2 (+0.0) 75.6 (+0.0) 83.4 (+0.3)
HB12% 69.5 (+0.0) 75.1 (-1.1) 70.4 (-5.2) 83.3 (+0.2)

Table 5: Early stopping. It works robustly with
HB25/12% as well as FIFO. We report the average bal-
anced test accuracy (%) on small datasets and test
accuracy (%) on medical datasets.

Early stopping. In Table 5, we analyze the im-
pact of the early stopping scheduler. As visible,
Twin effectively accommodates HB25% or HB12%.
Practitioners could safely default to either of the
two, with HB25% slightly ahead. The drop in perfor-
mance for RNX101 with HB12% is primarily due to
the aggressive early-stopping budget, which allows
only four out of the 36 trials (6 × 6 grid) to com-
plete, thereby increasing the likelihood of prema-
turely terminating high-performing configurations.
Recall that for Twin, the validation metric used by the scheduler is the train, not the validation loss. There-
fore, a general remark for smaller grids (i.e., ≤ 6 × 6) is to balance the amount of early stopping with the
overall number of trials, since in some cases the loss landscape may become too noisy, preventing Twin from
optimally selecting HPs. Guided by our empirical results, we suggest a minimum of 25% ending trials when
small grids and early stopping are employed.

Dataset Model Optim. Setup Perf. (M)AE

{C10, C100, ES, I2018, c10, CM} {WRN-16-10, RN20, RN50} SGD 75.0 1.8
SGDM 75.6 1.2

C100 CVT-7/8 AdamW 67.7 1.1
C10 MLP-4-256 Adam 65.5 1.8

C10 RN20 SGDM (piece-wise) 91.6 1.1
SGDM (cosine) 91.8 0.9

Table 6: Different optimization setups. Twin works suc-
cessfully beyond SGDM (SGD, Adam, AdamW) and cosine LR
scheduler (piece-wise). Performance is the (balanced) test accu-
racy. The (M)AE is computed against the Oracle baseline.

Optimizers and schedulers. In all
experiments throughout the paper, we
employed SGD with momentum (SGDM)
and LR cosine scheduler as standard
practice in deep learning. In this para-
graph, we elaborate on the possibility of
using different optimization setups. In
particular, we test plain SGD in six con-
figurations involving ConvNets. We also
test a piece-wise LR scheduler. Finally,
we experiment with either Adam or AdamW, two equally popular optimizer choices. In Table 6, we ob-
serve that Twin also closely follows the Oracle in terms of (mean) absolute error (M)AE in such alternative
optimization setups.
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5 Related Work

Hyper-parameter tuning. There is a vast literature tackling the problem of HP tuning for deep networks
(Yu & Zhu, 2020), including works on implicit differentiation (Lorraine et al., 2020), data augmentation
(Cubuk et al., 2019), neural-architecture search (Elsken et al., 2019), general-purpose schedulers (Li et al.,
2017; 2020). A line of work investigated the zero-shot transfer of HPs across different model dimensions
(Yang et al., 2021; Bordelon et al., 2024), data scales (Yun et al., 2020; 2022), and batch sizes via the linear
scaling rule (Goyal et al., 2017). However, only a few studies explore HPO without employing validation
sets, mainly focusing on learning invariances. Bayesian methods either fail to scale to relatively simple
tasks (Schwöbel et al., 2022) or modest network sizes (Immer et al., 2022). Alternatively, previous attempts
either make strong assumptions in advance (Benton et al., 2020) or introduce complexity through model
partitioning and computational overheads (Mlodozeniec et al., 2023). Unlike such methods, Twin easily
scales to increased model and data sizes and simplifies the LR-WD optimization pipeline.

Predicting generalization Most of the work on predicting generalization in deep learning has focused
on assessing the generalization gap, via several complexity metrics based on model parameters, the training
set, and distributional robustness, among others (Keskar et al., 2016; Chuang et al., 2021; Smith & Le,
2017; Dziugaite & Roy, 2017; Dinh et al., 2017; Dziugaite et al., 2020; Jiang et al., 2020; Corneanu et al.,
2020; Jiang et al., 2018; Neyshabur et al., 2017). For differences with Twin, refer to Section 2. Another
popular line of research has long studied the sharpness of minima as a proxy for generalization in deep
learning (Hochreiter & Schmidhuber, 1994; Jiang et al., 2020; Andriushchenko et al., 2023). The intuition
from these studies underpinned methods like SAM (Foret et al., 2021). Unlike sharpness, we propose a
separability-informed decision rule that uses the training loss and parameter norm to predict optimal LR
and WD configurations.

Early stopping without validation sets. Several works aim to design stopping criteria that remove the
need for a held-out validation set while preventing overfitting. Approaches exploit training dynamics, such
as gradient signals (Forouzesh & Thiran, 2021), the convergence behavior of parallel models (Vardasbi et al.,
2022), or neuron’s transfer functions (Dalmasso et al., 2025). More recent methods address robustness to
label noise (Yuan et al., 2025a), or introduce instance-level criteria to reduce unnecessary updates (Yuan
et al., 2025b). Bayesian perspectives have also been explored, framing early stopping as posterior sampling
along the optimization trajectory (Mahsereci et al., 2017). For differences with Twin, refer to Section 2.

6 Conclusions

We introduced Twin, a simple yet effective HP tuning approach that reliably predicts LR and WD of deep
homogeneous classifiers without using validation sets across dataset sizes, imaging domains, architectures,
model scales, and training setups. Beyond the practical algorithm, which simplifies model selection, our
paper introduced an analysis connecting margin maximization in homogeneous networks with an empirical
bias–variance scaling law, yielding a regime-dependent understanding of when training loss or parameter
norms reliably predict test performance. We hope that this work will stimulate further investigation into
validation-free approaches for predicting generalization in deep networks, informed by training dynamics and
train-objective scaling behavior.

Limitations and future work. Like any other new approach, Twin comes with its own limitations. For
instance, Twin currently optimizes LR and WD, which are essential yet represent a restricted subset of
HPs. We expand upon them in Appendix E. Interesting future directions (Appendix F) include grounding
theoretical understanding, refining generalization indicators, extending the pipeline to support additional
samplers and schedulers, testing Twin on other tasks and modalities, and extending it to other regularization
strategies that explicitly affect norm dynamics (e.g., data augmentation (Balestriero et al., 2022)).
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A Estimation of Validation Error Variance

To estimate optimal HPs such as α and λ, we typically rely on a validation set as a surrogate for test perfor-
mance. Standard approaches either split Dtrain into D̂train and Dval, with |D̂train| = n − m and |Dval| = m or
collect an external Dval. Let δ = E[ℓ(fθ(x), y)] and σ2 = Var[ℓ(fθ(x), y)] denote the expected and variance of
generalization error over unseen samples. Let the validation loss be L̄(fθ, Dval) = 1

m

∑m
i=1 ℓ(fθ(xi), yi).

By applying the linearity of expectation and the defined relationships, we derive E[L̄(fθ, Dval)] = δ,
Var[L̄(fθ, Dval)] = σ2

m , and Std = O(1/
√

m). This implies that the validation estimate deviates from the test
error by a term depending on m: E[L̄(fθ, Dval)] = δ ± O(1/

√
m). Hence, a small m leads to a noisy estimate

of generalization performance for HP selection, presenting a major drawback for practitioners.

B Modeling Approximations

In our derivation of Section 3.2, we made some simplifying assumptions concerning the noise in the scaling
law, the smoothed margin, and exact k-homogeneity, which we discuss further here.

1. Noiseless scaling law. Although the mathematical modeling relied on the noiseless scaling law for
clarity, a more realistic empirical relation between training and test loss is better described by the het-
eroskedastic form Ltest = ξ(Ltrain)+ϵ, where ϵ is a zero-mean noise term whose scale often depends on Ltrain
(e.g., Std[ϵ] = ϵ0 L−e

train with e ≥ 0). Empirically, this heteroskedastic structure leads to increased variability
in Ltest as models approach overfitting. Such fluctuations may slightly blur the exact transition between
bias- and variance-dominated behavior and cause local irregularities in the observed (Ltrain, Ltest) relation.
We hypothesize that tailored variance reduction techniques may further improve validation-free prediction.

2. Smoothed normalized margin. Our analysis relies on the smoothed normalized margin γ̃, which
introduces a quantization gap from the normalized margin γ̄. The bound γ̃(θ) ≤ γ̄(θ) ≤ γ̃(θ) + log N

ρk

implies that, e.g, when the normalized margin γ̄ is negative, the smoothed surrogate γ̃ can be already
positive, adding a small, norm- and dataset-dependent noise to the separability transition, particularly for
low-norm networks (small ρ) trained on big datasets (large N). To address the presence of such noise, we
slightly adapted the separability threshold τacc and showed the effectiveness of this tweak in Section 4.3.

3. Homogeneity of degree k. Commonly-used neural models are usually only approximately homogeneous
of degree k since different architectural components within a model, such as the final linear layer versus an
attention block, create deviations from exact k-homogeneity, making models multi-homogeneous (Li et al.,
2022). Lyu & Li (2019), extend the formula expressed in Equation (8) to the multi-homogeneous case and
show that the relation holds by substituting ρk with

∏
i ρki

i , where ρi represents the norm of each multi-
homogeneous part. Our simplification, therefore, introduces a typically minor additional source of noise
in the mapping between norm dynamics, margin evolution, and train-loss decay, with the possibility of
extending the analysis to the multi-homogeneous setting left for future work.

C Implementation Details

C.1 Small Datasets

We train all networks with batch sizes of 10 samples, given the better generalization performance of small
batch sizes in small-sample regimes (Brigato et al., 2021; 2022). The training iterations are drawn from
(Brigato et al., 2022), with a minimum of 25,000 for the smaller datasets and a maximum of roughly 120,000
for CUB. We employ standard image pre-processing transformations, including data augmentation utilizing
random crops and horizontal flipping, also following (Brigato et al., 2022). More precisely, all input images
were normalized by subtracting the channel-wise mean and dividing by the standard deviation computed
on the training splits. For datasets with a small, fixed image resolution, i.e., ciFAIR-10 and EuroSAT, we
perform random shifting by 12.5% of the image size and horizontal flipping in 50% of the cases. For all other
datasets, we apply scale augmentation using the RandomResizedCrop transform from PyTorch1 as follows: A

1https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomResizedCrop
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Figure 6: (Left) Normalized balanced accuracy on the LR-WD space of the Oracle with ImageNet pre-
trained (top) or from-scratch RN50 (bottom). Optimal generalization occurs at lower regularization (bottom
left area) when pre-training/downstream features overlap (i.e., CUB, Flowers, EuroSAT-RGB, ISIC 2018),
a trend not observed in CLaMM (hand-written documents). (Right) Twin plus early stopping (EN-B0,
RN50, and RNX101) counteracts this LR-WD landscape change by scoring a low MAE. Domain overlap
dictates the most suitable scheduler choice: aggressive early stopping (HB12%) is preferred with high
class/feature overlap and more moderate or absent early stopping in the opposite case (HB25% or FIFO).

crop with a random aspect ratio drawn from [ 3
4 , 4

3 ] and a dataset-dependent area between Amin and 100% of
the original image area is extracted from the image and then resized to 224×224 pixels. We use Amin = 20%
for CLaMM and Amin = 40% for CUB and ISIC 2018. For ISIC 2018 and EuroSAT, we perform random
vertical flipping in addition to horizontal flipping since these datasets are completely rotation-invariant, and
vertical reflection augments the training sets without drifting them away from the test distributions. On
CLaMM, in contrast, we do not perform any flipping since handwritten scripts are not invariant, even against
horizontal flipping.

C.2 Medical Images

We fixed the batch size to 50 samples and aimed for roughly 50,000 training steps, accordingly adapting
the number of epochs per dataset. For data augmentation, we perform random translations of a maximum
of four pixels per side as done in (He et al., 2016). We keep the same Twin configurations tested in the
small-dataset experiments.

C.3 Natural Images

We split the original training sets into 80%-20% to perform the HP selection for the SelVS baseline. All
convolutional and feed-forward networks are optimized with a batch size of 50 for 100 epochs. As discussed
in the paper, we vary the data augmentation strength from base to medium to strong and represent it with
{+, ++, +++}. The lowest level (+) corresponds to the plain 4-pixel translation plus random horizontal
flipping as initially proposed in (He et al., 2016). The second level uses the more aggressive RandAugment
(RA) strategy (Cubuk et al., 2020) with default parameters (N = 2, M = 9), except for WRN-40-2 (N = 3,
M = 4) following (Cubuk et al., 2020). Finally, the highest level of data augmentation (+++) implemented
even stronger RA parameters (N = 2, M = 14), MixUp (Zhang et al., 2017) (αmixup = 0.8) and CutMix
(Yun et al., 2019) (αcutmix = 1.0). The augmentation level +++ is typical for training ViTs, which are more
difficult to train given the lack of inductive biases. Following the original work of (Hassani et al., 2021), we
also add to the CCT and CVT training pipeline label smoothing of 0.1 and a cosine annealing scheduler with
a learning rate warm start. The warm start ends at 10% of the total number of iterations. To train ViTs,
we employed batch sizes of 128 images for 500 epochs and set the LR and WD intervals to [10−6, 10−1].
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Figure 7: Bias–variance scaling laws and norm dynamics in transfer learning. Five experiments
with RN50 illustrating how the fitted scaling law (top) and test loss vs. norm relation (bottom) evolve across
learning regimes when performing transfer learning. Each point corresponds to an LR–WD configuration,
color-coded by training accuracy. The overlap between pre-training/downstream classes is significant for
CUB and Flowers. There is also some high-level feature transfer for EuroSAT RGB and ISIC 2018 datasets.
In these cases, the train-test scaling law is noisier (top row) and hence reduces monotonicity among the test
loss and parameter norm (bottom row). However, this is not the case for CLaMM (low feature overlap),
where the scaling law resembles the cases shown in Figure 2 (training from scratch).

D Transfer Learning Experiments

D.1 Domain Overlap Affects LR-WD Landscapes and Bias-Variance Scaling Law

When dealing with small datasets, it is common practice to start from a network pre-trained on a larger
amount of data (e.g., ImageNet (Russakovsky et al., 2015)). Therefore, we also experiment with transfer
learning and repeat a subset of the optimization runs with ImageNet checkpoints. In Figure 6 (left), we notice
that the generalization of networks as a function of the LR-WD space may differ from when training from
scratch, and the main cause regards the overlapping between the source and target domains. Expectedly,
with a strong class (CUB and Flowers) or feature (EuroSAT RGB, ISIC 2018) overlap, the best generalization
region shifts towards smaller regularization. In these cases, the overlap between pre-trained and downstream
representations induces a noisier relation between training and test loss, which weakens the monotonic
correspondence between test loss and parameter norm (Figure 7, top left). As a consequence, the fitted
scaling law becomes less reliable and Twin underperforms, as reflected by the higher MAE (up to ∼5%)
observed for CUB, EuroSAT RGB, and ISIC 2018 (Figure 6, right).

To mitigate this effect, we employ early stopping to prune heavily regularized configurations whose training
loss decays slowly. As shown in Figure 6 (right), Twin combined with HB12% substantially reduces the MAE
relative to the Oracle, reaching ≤ 1% for CUB, EuroSAT RGB, and ISIC 2018. In contrast, for CLaMM
(hand-written documents), which exhibits neither class overlap nor strong feature alignment with the pre-
training data, the LR-WD landscape remains largely unchanged by transfer learning (Figure 6, left). In this
setting, the train-test scaling law remains well-structured (Figure 7), enabling Twin to identify competitive
HP configurations with both the FIFO and HB25% schedulers, achieving an MAE below 2%.

In summary, when applying transfer learning, it is critical to consider the level of domain overlap to select
the most suitable scheduler for the Twin configuration. Extending Twin to explicitly model the interaction
between transfer learning and scaling-law noise remains an important direction for future work.
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E Limitations

First, although Twin is grounded in a mathematical analysis that combines theoretical results on margin-
maximization dynamics in homogeneous classifiers (Lyu & Li, 2019) with an empirical bias–variance scaling
law, the resulting methodology necessarily relies on a set of simplifying assumptions. In particular, the
analytical derivations abstract away sources of stochasticity and architectural heterogeneity that may affect
real training dynamics. As a consequence, there may exist regimes where the assumed monotonic relations
between training loss, parameter norm, and generalization are weakened or partially violated. One such
example arises in transfer learning, where optimization dynamics may enter qualitatively different regimes
depending on the degree of class or feature overlap between pre-training and downstream tasks (Appendix D).
As we empirically demonstrated, strong overlap can introduce additional noise in the train–test scaling
relation, which we mitigate through more aggressive early stopping. Nevertheless, a more comprehensive
theoretical characterization of these regimes remains to be explored.

From the perspective of empirical scope, Twin currently focuses on tuning LR and WD. While these HPs
are both fundamental and among the most commonly tuned by practitioners, they represent only a subset of
the broader HP landscape. Moreover, our experimental evaluation is restricted to image classification tasks.
Given that margin maximization and bias–variance scaling laws are largely domain-agnostic, our results on
vision benchmarks provide a promising foundation for future extensions to other modalities.

Finally, regarding HPO design choices, Twin currently operates over a grid-based LR–WD search combined
with simple scheduling strategies. While grid search remains a widely adopted baseline in practice (Kornblith
et al., 2019; Steiner et al., 2022), it can be inefficient compared to more adaptive sampling strategies. We
partially address this through early-stopping schedulers (HBX%) and by demonstrating robustness to grid
sparsity (Section 4.3). Nonetheless, integrating Twin with more flexible or adaptive search mechanisms is a
natural direction for improvement.

These limitations open up several promising future directions, which we outline next.

F Future Work

F.1 Refinement of Generalization Indicators and Theoretical Understanding

While our analysis relies on a deterministic bias–variance scaling law for clarity, empirical train–test relations
are inherently noisy, especially in overfitting regimes. A promising direction is therefore the development of
tailored variance-reduction techniques that stabilize validation-free generalization signals. Such techniques
may be architectural, for instance, residual connections are known to induce approximately linear variance
growth with depth (Brock et al., 2021). Alternatively, they may arise from explicit loss penalties that regu-
larize train loss fluctuations. Understanding how architectural choices and regularization schemes modulate
the variance term in the scaling law could substantially improve the reliability of validation-free predictors.

More precisely characterizing the role of the smoothed normalized margin used in our analysis would also be
interesting. Quantifying how the gap between the smoothed surrogate and the true normalized margin affects
the separability transition, especially as a function of dataset size and parameter norm, would sharpen the
theoretical guarantees of the method. Closely related is the extension of the analysis to multi-homogeneous
networks, where different components contribute distinct degrees of homogeneity. Furthermore, designing
architectures that are explicitly k-homogeneous (Li et al., 2022) may offer a principled way to strengthen
the connection between margin maximization, norm growth, and generalization.

Finally, transfer learning remains a particularly compelling setting in this context. Pre-training and fine-
tuning can induce nontrivial interactions between weight decay, parameter norms, and effective margins,
often resulting in noisier or distorted bias–variance scaling laws. Developing a theoretical and empirical
understanding of how domain or feature overlap influences these dynamics could extend validation-free
prediction to a broader class of practical scenarios, including large-scale pre-trained models.
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F.2 Extension of Empirical Scope and Practical Tuning Pipeline

We see the broadening of the empirical scope as another important avenue. Testing Twin on different
modalities and beyond image classification will strengthen its generality.

Moreover, the current formulation of Twin focuses on LR and WD. Extending it to other regularization
strategies that directly affect norm dynamics could make the method more broadly useful to practitioners.
For instance, Balestriero et al. (2022) has shown that data augmentation has a direct impact on the magnitude
of the parameter norm. This suggests the possibility of tuning the data augmentation strength by following
the same principle applied for WD. More generally, adapting Twin to optimize multiple HPs simultaneously,
while maintaining simplicity and effectiveness, is a valuable research direction.

Finally, a valuable direction is the practical improvement of the pipeline in terms of efficiency and supported
components. Replacing the current grid search and schedulers with more advanced strategies could further
reduce computational costs while maintaining or even improving performance. This line would require the
development of robust filtering modules to identify the fitting regions, due to more noisy loss landscapes
in the HP search space. We demonstrated in our sensitivity analysis on grid density that this is a viable
direction, given that Twin, in its current form, supports grid densities of varying sparsity.
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