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ABSTRACT

Some reinforcement learning (RL) algorithms have the capability of recombining
together pieces of previously seen experience to solve a task never seen before
during training. This oft-sought property is one of the few ways in which dynamic
programming based RL algorithms are considered different from supervised learn-
ing (SL) based RL algorithms. Yet, recent RL methods based on off-the-shelf SL
algorithms achieve excellent results without an explicit mechanism for stitching;
it remains unclear whether those methods forgo this important stitching property.
This paper studies this question in the setting of goal-reaching problems. We show
that the desirable stitching property corresponds to a form of generalisation: after
training on a distribution of (state, goal) pairs, one would like to evaluate on (state,
goal) pairs not seen together in the training data. Our analysis shows that this sort
of generalisation is different from i.i.d. generalisation. This connection between
stitching and generalisation reveals why we should not expect existing RL methods
based on SL to perform stitching, even in the limit of large datasets and models.
We experimentally validate this result on carefully constructed datasets. This
connection also suggests a simple remedy, the same remedy for improving general-
isation in SL: data augmentation. We propose a naive temporal data augmentation
approach and demonstrate that adding it to RL methods based on SL enables them
to stitch together experience so that they succeed in navigating between states and
goals unseen together during training.

1 INTRODUCTION

Recent methods that view RL as a purely SL problem of mapping input states and desired goals, to
optimal actions [1, 2] have gained a lot of attention due to their simplicity, scalability [3]. These
methods sample a goal g from the dataset, which was previously encountered after taking an action a
from a state s, and then imitate a by treating it as an optimal label for reaching g from s. This simple
recipe achieves excellent results on common benchmarks [4]. However, at a deeper and fundamental
level, there are some important differences between RL and SL. This paper studies one of those
differences: the capability of some RL algorithms to stitch together pieces of experience to solve a
task never seen during training. This stitching property [5] is common among RL algorithms that
perform dynamic programming (e.g., DQN [6], DDPG [7], TD3 [8], IQL [9]). While some papers
have claimed that some SL approaches already have this stitching property [2], both our theoretical
and empirical analyses suggest some important limitations of these prior claims.

Our primary contribution is to formally relate this stitching property to a form of generalisation.
Viewing RL as a SL problem, the task of the agent is to generate optimal outputs (actions) given
certain inputs (state-goal pairs). To test the stitching property, we will evaluate the performance on
(start, goal) pairs that do not appear together (but do appear separately) during training. Our analysis
proves that this problem occurs due to a difference in training and testing distributions and that this
difference does not go away by increasing the amount of data. Rather, when data are collected from
a mixture of policies, there can be (state, goal) pairs that are never visited in the same trajectory,
despite being frequented in separate trajectories. This way of data collection reflects real world offline
datasets, which are collected via different sources. Our empirical results support the theory: we
demonstrate that prior RL methods based on SL (DT [2] and RvS [4]) fail to perform stitching, even
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when trained on abundant quantities of data. This result does not contradict experiments from prior
work, but underscores the importance of carefully constructing datasets when testing for stitching.
We have open sourced our benchmark, data, and code for testing the stitching capabilities of RL
algorithms.1

Taking a cue from SL, if generalisation is the problem, then data augmentation is likely an effective
approach [10]. The second contribution of this paper is a way of applying data augmentation to
these same SL methods such that they acquire this stitching property and succeed in navigating
between unseen (start, goal) pairs. This form of data augmentation involves time, rather than random
cropping or shifting colors, by augmenting the goals sampled during training with new goals from
other trajectories. Our data augmentation scheme does require an explicit notion of distance between
states to detect overlapping trajectories. We demonstrate that this data augmentation endows the prior
RL methods based on SL with the stitching generalisation property. In our experiments, we use the
standard L2 distance to solve tasks with state dimensions upto R29.

Overall, our work hints that SL approaches to RL may not obviate the algorithm designer – even
when trained on vast quantities of data, these approaches do not perform stitching. We provide a
framework for studying stitching as a form of generalisation and devise a simple data-augmentation
strategy which improves the generalisation capabilities of SL approaches by up to Todo:XX. For
the RL community, we hope that these results shift the narrative around generalisation and data
augmentation – these are not just computer vision techniques tacked on top of RL methods, but can
actually get to the core differences between supervised learning and reinforcement learning. We
hope that our work shifts the narrative around generalisation and data augmentation in RL. In RL,
we can ask questions about generalisation that do not seem to make sense in other areas of machine
learning; for example, how can we use data from one task to solve an unseen task? And, in RL, data
augmentation is not just a tool for learning perceptual invariances, but also can enable generalisation
to structurally different tasks.

2 RELATED WORK

Generalisation in RL is generally associated with making correct predictions for unseen but similar
states and actions [11–13], ignoring irrelevant details [14–16], or robustness towards changes in the
reward or transition dynamics [17–19]. A main thrust of RL research over the last few years seems to
be to look at how large models [20, 21] can provide generalisation [22–24] with impressive results.
We cast stitching as a distinct form of generalisation and show that such large models, trained only
with simple SL objectives, cannot perform stitching [9]. We acknowledge that using a learned model
of the world might facilitate stitching [25–27] because the model can be used to generate trajectories
that navigate between state-goal pairs unseen together in the training data.

Data augmentation in RL has been proposed as a remedy to improve generalisation in RL [28–34],
akin to SL [35]. Our proposed data augmentation requires augmenting the true goal, such that
the optimal action remains the same even for the augmented goals. Perhaps the most similar prior
work are the ones which use dynamic programming to augment existing trajectories to improve the
performance properties of SL algorithms [36–38]. However, because these methods still require
dynamic programming, they don’t have the same simplicity that make SL algorithms appealing
in the first place. Our method is conceptually similar, but draws an important connection between
generalisation and stitching, and our empirical results show that good performance can be achieved
without any dynamic programming.

Prior methods that do some form of explicit stitching. Previous work on stitching abilities of
SL algorithms have conflicting claims. The DT paper [2] shows experiments where their method
performs stitching, suggesting that transformer-based SL algorithms generalise on out-of-distribution
goals. On the contrary, [39] provide a simple example where SL algorithms do not perform stitching,
regardless of whether a transformer is used. RvS [4] shows that a simple SL algorithm with a fully
connected architecture can match the performance of TD algorithms, especially on D4RL’s antmaze
environment, which supposedly requires stitching to achieve high performance. We provide a formal
definition of stitching, and show (both empirically and theoretically) that SL-based RL algorithms do
not exhibit such generalisation.

1See supplementary material for code and datasets.
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3 PRELIMINARIES

Controlled Markov processes. We will study the problem of goal-conditioned RL in a controlled
Markov process with states s ∈ S and actions a ∈ A. The dynamics are p(s′ | s, a), the initial state
distribution is p0(s0), the discount factor is γ. The policy π(a, | s, g) is conditioned on a pair of
state and goal s, g ∈ S. For a policy π, define pπt (st | s0) as the distribution over states visited after
exactly t steps. We can then define the discounted state occupancy distribution and its conditional
counterpart as

pπ+(st+ = g) ≜ Es∼p0(s0)

[
pπ+(st+ = g | s0 = s)

]
, (1)

pπ+(st+ = g | s0 = s) ≜ (1− γ)

∞∑
t=0

γtpπt (st = g | s0 = s), (2)

where st+ is the variable that specifies a future state corresponding to the discounted state occupancy
distribution. Given a state-goal pair s, g ∼ ptest(s, g) at test time, the task of the policy is to maximise
the probability of reaching the goal g in the future

max
π

J(π; s, g), where J(π; s, g) = Es,g∼ptest(s,g)

[
pπ+(st+ = g | s0 = s)

]
. (3)

Data collection. Our work focuses on the offline RL setting where the agent has access to a fixed
dataset of N trajectories D = ({si0, ai0, ..})Ni=1. Our theoretical analysis will assume that the dataset
is collected by a set of policies {β(a | s, h)}, where h specifies some context. For example, h could
reflect different goals, different language instructions, different users or even different start state
distributions. Precisely, we assume that the data was collected by first sampling a context from a
distribution p(h), and then sampling a trajectory from the corresponding policy β(a | s, h). We will
use the shorthand notation βh(· | ·) = β(· | ·, h) to denote the data collecting policy conditioned
on context h. Trajectories are assumed to be stored without h, hence the context denotes all hidden
information that the true data collection policies used to collect the data. This construction covers
real-world cases where data is collected from various sources depending on various hidden factors.

This setup of collecting data corresponds to a mixture of Markovian policies 2. There is a classic
result saying that, for every such mixture of Markovian policies, there exists a Markovian policy that
has the same discounted state occupancy measure.
Lemma 3.1 (Rephrased from Theorem 2.8 of [40], Theorem 6.1 of [41]). Let a set of context-
conditioned policies {βh(a | s)} and distribution over contexts p(h) be given. There exists a
Markovian policy β(a | s) such that it has the same discounted state occupancy measure as the
mixture of policies:

pβ+(st+) = Ep(h)

[
pβh
+ (st+)

]
. (4)

The policy β(a | s) is simple to construct mathematically as follows. For data collected from the
mixture of context conditioned policies, let pβ(h | s) be the distribution over the context given that
the policy arrived in state s.

β(a | s) ≜
∑
h

βh(a | s)pβ(h | s). (5)

Theorem 6.1 [41] proves the correctness of this construction. The policy β(a | s) is also easy to
construct empirically – simply perform behavioral cloning (BC) on data aggregated from the set of
policies. We will hence call this policy the BC policy.

Outcome Conditional behavioral cloning (OCBC). While our theoretical analysis will consider
generalisation abstracted away from any particular RL algorithm, we will present empirical results
using a simple and popular class of goal-conditioned RL methods: Outcome conditional behavioral
cloning [42]. These methods go by a number of names, including Decision Transformer (DT) [2],
Upside down RL [1], RL via Supervised Learning (RvS) [4], Goal Conditioned Supervised Learning
(GCSL) [43] and many others [44, 45]. These methods take as input a dataset of trajectories

2Note that the mixture is at the level of trajectories, not at the level of individual actions.
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D = {(s0, a0, s1, a1)} and learn a goal-conditioned policy π(a | s, g) using a maximum likelihood
objective:

max
π(·|·,·)

E(s,a,g)∼D [log π(a | s, g)] . (6)

The sampling above can be done by first sampling a trajectory from the dataset (uniformly at random),
then sampling a (state, action) pair from that trajectory, and setting the goal to be a random state that
occurred later in that same trajectory. If we incorporate our data collecting assumptions, then this
sampling can be written as

max
π(·|·,·)

Eh∼p(h)

[
E
s,a∼βh(a|s), p

βh
+ (s)

st+∼p
βh
+ (st+|s,a)

[log π(a | s, st+)]
]
. (7)

4 “STITCHING” AS A FORM OF GENERALISATION

Before concretely defining stitching generalisation, we will describe three desirable properties that
are colloquially associated with “stitching” and the learning dynamics of TD methods. (P.1) The
ability to select infrequently seen paths that are more optimal than frequent ones. While a shorter
trajectory between the state and the goal may occur infrequently in the dataset, TD methods can
find more examples of this trajectory by recombining pieces of different trajectories, thanks to
dynamic programming. This property is enjoyed by both SARSA (expectation over actions) and
Q-learning (max over actions) methods, and is primarily associated with the sample efficiency of
learning. (P.2) The ability to evaluate policies different than those which collected the data, and
perform multiple steps of policy improvement. This property is unique to Q-learning. (P.3) Temporal
difference methods (both Q-learning and SARSA) can also recombine trajectories to find paths
between states never seen together during training. This property is different from the first property in
that it is not a matter of data efficiency – temporal difference methods can find paths that will never be
sampled from the data collecting policies, even if given infinite samples. All three of these properties
are colloquially referred to as “stitching” in the literature. While these properties are not entirely
orthogonal, they are distinct: certain algorithms may have just some of these properties. Obtaining all
these properties in a simpler (than TD) framework is difficult, and it remains unclear whether OCBC
methods possess any of them. Our work takes one step in this direction, by focusing on the third
property. We formalize this property as a form of generalisation which we will refer to as stitching
generalisation.

Defining stitching generalisation will allow us to analyze when and whether OCBC methods perform
stitching, both theoretically (this section) and experimentally (Section 6). Intuitively, stitching
generalisation looks at navigating between states and goals which are never seen together in the
same trajectory, but can be navigated using the information present in different trajectories. It
therefore tests a form of “stitching” [46, 47], akin to “compositional generalisation” [48–50]. To
define this generalisation, we will specify a training distribution and testing distribution. The training
distribution corresponds to sampling a context h ∼ p(h) and then sampling an (s, g) pair from the
corresponding policy βh. This is exactly how OCBC methods are trained in practice (Section 3).
The testing distribution corresponds to sampling an (s, g) pair from the BC policy β(a | s) defined
in Equation (5). For each distribution, we will measure the performance fπ(·|·,g)(s, g) of goal-
conditioned policy π(a | s, g).
Definition 1 (Stitching generalisation). Let a set of context-conditioned policies {βh(a | s)} be
given, along with a prior over contexts p(h). Let β(a | s) be the policy constructed via Eq. (5). Let
π(a | s, g) be a policy for evaluation. The stitching generalisation of a policy π(a | s, g) measures the
differences in goal-reaching performance for goals sampled g ∼ pβ+(st+ | s) versus goals sampled
from g ∼ Ep(h)[p

βh
+ (st+ | s)]:

E s∼pβ
+(s)

g∼pβ
+(st+|s)

[
fπ(·|s,g)(s, g)

]
︸ ︷︷ ︸

test performance

−E
h∼p(h), s∼p

βh
+ (s)

g∼p
βh
+ (st+|s)

[
fπ(·|s,g)(s, g)

]
︸ ︷︷ ︸

train performance

.

The precise way performance f is measured is not important for our analysis: “generalisation” simply
means that the performance under one distribution is similar to the performance under another. In our
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(b) βh=1, βh=2.
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(c) β.

Figure 1: (a) The MDP has 5 states and two actions (up and right). Prior work [39, 51] also have similar
counterexamples, though they have not related this to generalisation to the best of our knowledge.(b) Data is
collected using two contexts conditioned policies shown in blue and red. Both policies collect an equal amount
of data p(h = 1) = p(h = 2) = 0.5. (c) The behavior cloned policy (equation 5) is shown in purple to indicate
that it is obtained from combining data from both blue and red policies. The conditional occupancy distribution
of the purple policy is used to test stitching. This distribution is different from the training distribution. During
training (b), state 2 and goal 4 will never be sampled together, but during testing (c), state 2 and goal 4 have a
non-zero probability of being sampled.

experiments, we will look at performance measured by the success rate at reaching the commanded
goal.

On the surface, it may seem like stitching generalisation is the same as the standard i.i.d. generalisation
studied in SL. It may seem that both the test and train distributions are the same. Lemma 3.1 about
reducing mixtures of policies to a single Markovian policy seems to hint that this might be true.
However, stitching generalisation is not the same as i.i.d. generalisation, and is more akin to
combinatorial generalisation [50]. Indeed, this distinction has not been made before while analysing
OCBC methods [39, 42]. This misconception is demonstrated by the following lemma:
Lemma 4.1. There exist a collection of policies {βh} and context distribution p(h) such that,
conditioned on a state, the distribution of states and goals for the data collecting policies (training) is
different from the distribution of states and goals (testing) for BC policy β.

Ep(h)

[
pβh
+ (st+ | s)pβh

+ (s)
]
̸= pβ+(st+ | s)pβ+(s) for some states s, st+. (8)

Proof. We prove this Lemma by providing a simple counterexample. Consider the deterministic
MDP shown in Figure 1 which has five states [1, 5] and two actions {right, up}. The states four and
five are absorbing states; once the agent enters one of these states, it will stay there for eternity. There
are two data collecting agents βh with contexts h = 1 and h = 2, which navigate upward from state
two to state five, and rightward from state one to state four respectively. Both policies collect equal
amount of data p(h = 1) = p(h = 2) = 0.5. We will prove that the training and testing distribution
(LHS and RHS of Eq. (8)) for the state-goal pair {s = 2, st+ = 4} are not equal.

Ep(h)

[
pβh
+ (st+ = 4 | s = 2)pβh

+ (s = 2)
]

=
pβh=1
+ (4 | 2)pβh=1

+ (2)

2
+

pβh=2
+ (4 | 2)pβh=2

+ (2)

2

=
pβh=1
+ (4 | 2)(1− γ)

2
+

0× (1− γ)

2

=
(1− γ)2

2

∞∑
t=0

γtpβh=1
t (4 | 2)

=
(1− γ)2

2
× 0 = 0

pβ+(st+ = 4 | s = 2)pβ+(s = 2)

=
pβ+(st+ = 4 | s = 2)(1− γ)

2

=
(1− γ)2

2

∞∑
t=0

γtpβt (4 | 2)

=
(1− γ)2

2
(
γ2

2
+

γ3

2
+ . . . )

=
(1− γ)γ2

4

The LHS and RHS are unequal for all values of γ ∈ (0, 1).
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Algorithm 1 OCBC + Temporal Data Augmentation

1: Input: Dataset : D = ({s0, a0, . . . }).
2: Initialize OCBC policy πθ(a|s, g) with parameters θ.
3: Set ϵ = augmentation probability, m = mini-batch size.
4: ({d0, d1, . . . }) = CLUSTER({s0, s1, . . . }). ▷ Group all states in the dataset.
5: while not converged do
6: for t = 1, · · · ,m do
7: Sample (st, at, gt+) ∼ D. ▷ Equation (7)
8: if u ∼ unif [0, 1] ≤ ϵ then
9: Get the group of the goal: k = dt+.

10: Sample waypoint states from the same group: w ∼ {si;∀i such that di = k} .
11: Sample augmented goal g̃ from the future of w, from the same trajectory as w.
12: Augment the goal gt+ = g̃.
13: Collect the loss Lt(θ) = − log πθ(at | st, gt+).
14: Update θ using gradient descent on the mini-batch loss 1

m

∑m
t=1 Lt(θ)

15: Return : πθ(a|s, g)

In summary, while the BC policy β(a | s) will visit the same states as the mixture of data collecting
policies on average, conditioned on some state, the BC policy β(a | s) may visit a different
distribution of future states than the mixture of policies. Even if infinite data is collected from the data
collecting policies, there can be pairs of states that will never be visited by any one data collecting
policy in a single trajectory. The important implication of this negative result is that stitching requires
the OCBC algorithm to recover a distribution over state-goal pairs (β) which is different from the one
it is trained on (βh=1, βh=2). In theory, the training distribution has enough information to recover
the state-goal distribution of the BC policy and it is upto the algorithm to extract this. For example,
TD-learning algorithms can recover this implicitly, without the knowledge of the contexts of the data
collecting policies.

Many RL methods sidestep this negative result by doing dynamic programming (i.e., temporal
difference learning). One way of viewing dynamic programming is that it considers all possible ways
of stitching together trajectories, and selects the best among these stitched trajectories. But for OCBC
algorithms based on SL (e.g., DT [2], RvS [4], GCSL [43], PCHID [44], URL [1]), it is not clear
apriori why these methods should have the stitching generalisation property, leading to the following
hypothesis:

Hypothesis 1. Conditional imitation learning methods do not have the stitching generalisation
property.

We will test this hypothesis empirically in our experiments. In Appendix A, we discuss connections
between stitching generalisation and spurious correlations.

5 TEMPORAL AUGMENTATION FACILITATES GENERALISATION

The previous section introduced forms of generalisation tailored to the RL setting. These definitions
allow us to rethink the oft-sought “stitching” property as a form of generalisation, and measure
that generalisation in the same way we measure generalisation in SL: by measuring a difference in
performance under two objectives.

Casting stitching as a form of generalisation allows us to employ a standard tool from SL: data
augmentation. When the computer vision expert wants a model that can generalize to random crops,
they train their model on randomly-cropped images. Indeed, prior work has applied data augmentation
to RL to achieve various notions of generalisation [28, 50]. However, we use a different type of data
augmentation to facilitate stitching. In this section, we describe a data augmentation approach that
allows OCBC methods to improve their stitching capabilities.

Recall that OCBC policies are trained on (s, a, g) triplets. To perform data augmentation, we will
replace g with a different goal g̃. To sample these new goals g̃, we first take the original goal g and
identify states from the offline dataset which are nearby to this goal ( Section 5). Let w denote one of
these nearby “waypoint” states. Looking at the trajectory that contains w, the new goal g̃ is a random
state that occurs after w in this trajectory. We visualize this data augmentation in Fig. 2.
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Umaze Medium Large

Figure 3: Offline datasets that do require stitching. Different colors represent the navigation regions of
different data collecting policies. These visualisations are for the “point” mazes. The “ant” maze datasets are
similar to these ones. Appendix Fig. 11 shows the “ant” maze datasets.

w

Figure 2: DATA AUGMENTATION FOR STITCH-
ING: After sampling an initial training example
(s, a, g) (Eq. (7)), we look for a waypoint state w in
the light blue region around the original goal g, and then
sample a new augmented goal g̃ from later in that trajec-
tory. This is a simple approach to sample cross trajectory
goals g̃ such that the action a is still an optimal action at
state g.

Identifying nearby states. The problem of
sampling nearby states can be solved by clus-
tering all the states from the offline dataset be-
fore training. This assumes a distance metric
in the state space. Using this distance metric,
every state can be assigned a discrete label from
k different categories using a clustering algo-
rithm [52, 53]. Finding a good distance metric
is difficult, especially in high-dimensional set-
tings [54].

Theoretical intuition on temporal data aug-
mentation. While exact theoretical guarantees
for temporal data augmentation will depend on
how good the distance metric is, we can think
of the data augmentation as trying to approxi-
mately sample goals from pβ+(st+ = g | s). To
understand this, we can dry run temporal data
augmentation on the MDP in Fig. 1 and see how
it enables the agent to traverse from state 2 to state 4. Suppose that the OCBC algorithm normally
samples an (s, a, g) = (2, up, 3) triplet from the replay buffer Eq. (6). The data augmentation will
sample a waypoint state from the same group as g. Since we are in a tabular MDP, the waypoint
would be s = 3 itself, but from other trajectories. Suppose the waypoint s = 3 is sampled from the
red trajectory. Then the augmented goal g̃ will be a state in the red trajectory, randomly sampled
from the future of the waypoint. Since, there is only one state in the future, the augmented goal will
be g̃ = 4, and the augmented training sample will be (s, a, g) = (2, up, 4). This training sample is
optimal for reaching state 4 from state 2. But without temporal augmentation, OCBC methods will
never see this sample.

Method summary. Algorithm 1 summarizes how our data augmentation can be applied on top
of existing OCBC algorithms. Given a method to group all the states in the offline dataset, we can
add our data-augmentation to existing OCBC algorithms by adding about 5 lines of code (marked
in blue). In our experiments, we use the k-means algorithm [52] to group states together. We use
two types of inputs to the k-means to group states together (1) Entire state vector, and (2) Only
the goal coordinates of the state vector. In all our experiments, goals are specified by the desired
x, y coordinates. The first approach does not assume separate access to the goal coordinates and is
therefore generally applicable. In our experiments, all OCBC policies do have separate access to the
goal information as they are only conditioned on desired x, y coordinates. For generality, we include
results corresponding to both types of data-augmentations.

Popular offline datasets do not evaluate stitching. While the maze datasets from D4RL [46] were
originally motivated to test the stitching capabilities of RL algorithms, we find that most test state-goal
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pairs are in-training distribution, i.e, they are visited by a single data collecting policy. Thus, a good
success rate on these datasets does not necessarily mean that a method performs stitching. This may
explain why OCBC methods have achieved excellent results on the original maze tasks [4], despite
the fact that our theory suggests that these methods do not perform stitching. In our experiments,
we collect new offline datasets that explicitly test for stitching. To evaluate stitching generalisation,
we need to test the policy on out of distribution state-goal pairs – states which occur in the test
distribution, but not in the train distribution 1. These state-goal pairs satisfy two conditions: 1)
No individual data collection policy (βh) should navigate between the state-goal pairs; 2) The BC
policy (β) should have some chance of navigating between the state-goal pairs. Formally this means
that we should test using (s, g) pairs such that

pβ+(st+ = g | s) > 0 and pβh
+ (st+ = g | s) = 0 ∀ h. (9)

Figure 3 visualises the datasets that we collect for our experiments. Different data collecting policies
(shown in different colors) have different regions of navigation. During data collection, these policies
navigate between random state-goal pairs chosen from their region of navigation. In Appendix C.3,
we contrast our datasets with the original D4RL datasets (see Fig. 12 for a similar visualisation
of the original D4RL datasets) and discuss the differences that are necessary to test for stitching
generalisation.

6 EXPERIMENTS

The experiments aim (1) to verify our theoretical claim that OCBC methods do not always exhibit
stitching generalisation; and (2) to evaluate how adding temporal augmentation to OCBC methods
improves stitching.

OCBC methods. RvS [4] is an OCBC algorithm that uses a fully connected neural network
policy and often achieves results comparable to TD-learning algorithms on various offline RL
benchmarks [4]. DT [2] treats RL as a sequential SL problem and uses the transformer architecture
as a policy. DT outputs an action, conditioning not only on the current state, but a history of states,
actions and goals. We use all the original hyperparameters of the baselines. See Appendix C.2 for
implementation details.

Tasks. We use the “point” and “ant” mazes (umaze, medium and large) from D4RL [46]. As
discussed in Section 5, we carefully collect our new offline datasets to test for stitching (see Fig. 3
and Fig. 11 for visualisation).

Differences between original D4RL and our datasets. We made two main changes in the way
our datasets (Fig. 3, Fig. 11) were collected compared to the original D4RL datasets (Fig. 12). First,
we ensure that different data collecting policies have distinct navigation regions, with only a small
overlapping region. This change helps to clearly distinguish between algorithms that can and cannot
perform stitching generalisation. Second, the agent in the original D4RL datasets often moves in a
direction that is largely dependent on its current location in the maze. For example in the topmost row
of the umaze, the D4RL policy always moves towards the right. To reduce such spurious relations,
we randomize the start-state and goal sampling, for the data collecting policies. That is, in the
topmost row of our umaze datasets, the data collecting policy moves both towards the right or left,
depending on its start-state and goal. Details about how such spurious relations can hamper stitching
generalisation are discussed in Appendix A.

Testing for stitching. We command the agent to navigate between (state, goal) pairs previously
unseen together, and measure the success rate. Each task chooses states and goals randomly from 2-6
different regions in the maze. In Fig. 4, we can see that both DT and RvS struggle to solve unseen
tasks at test-time. However, applying temporal data-augmentation to RvS improves the goal-reaching
success rate on 5/6 tasks, likely because the augmentation results in sampling (state, goal) pairs
otherwise unseen together. While temporal augmentation boosts the success rates, there remains
room for other scalable methods to achieve even better performance.

Does more data remove the need for augmentation? Although our theory (Lemma 4.1) suggests
that generalisation is required because of a change in distribution and is not a problem due to limited
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performing augmentation. The reason we do not add data augmentation with DT is that because DT [2] takes in
a context of previous states and actions, the data augmentation method should cluster a history of states and
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Figure 5: Comparison of DT trained on different
sizes of offline dataset (left) and using a different num-
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augmentation on the complete state. Even with larger
datasets or model sizes, the generalisation of DT is
worse than RvS + data augmentation.
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Figure 6: MDP with 5 states and 2 actions (up and
right). All episodes end after taking two actions. Data
is collected using two policies (red and blue). The
only difference between v1 and v1-stochastic, is the
data collecting policies are stochastic at states 0 and 1.
The stitching task is to navigate from states 1 to 4.

data, conventional wisdom says that larger datasets generally result in better generalisation. To
empirically test whether this is the case, we train DT on 10 million transitions (10 times more than
Fig. 4) on the point-maze large task. In Fig. 5 (left), we see that even with more data, the stitching
generalisation of DT does not improve much. Lastly, scaling the size of transformer models [55] is
known to perform better in many SL problems. To understand whether this can have an effect on
stitching capabilities, we increased the number of layers in the original DT model. In Fig. 5 (right),
we can see that increasing the number of layers does not have an effect on DT’s stitching capabilities.

7 DISCUSSION

In this work, we shined a light over an area that the community has been investigating recently, can
SL-based approaches perform stitching. We find that theoretically and empirically, OCBC methods
can not perform the type of stitching that temporal difference methods are known to have. We found
that this limitation is tied to a type of generalisation we call stitching generalisation. We propose a
type of temporal data augmentation to precisely perform the desired type of stitching and help bridge
the gap between OCBC and temporal difference algorithms. Using this data augmentation, we are
able to increase the stitching abilities of OCBC algorithms by a factor of 2× in “point" maze and
2.5× in “ant" maze.

Limitations and future work. While we gave an intuitive argument for why augmentation facili-
tates stitching, there is more work to be done to provide a formal proof that this augmentation always
results in stitching. Our proposed augmentation also assumes an access to a good distance metric in
the state space. Lifting these assumptions and developing scalable OCBC algorithms that generalise
is a promising direction for future work.
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A RELATIONSHIP WITH SPURIOUS CORRELATIONS.
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Figure 7: SPURIOUS CORRELATIONS: To
understand how spurious correlations are re-
lated to stitching, let’s look at this simple
determinisitc MDP in which three data col-
lecting policies (red, blue and green) collect
the offline dataset. Note that an OCBC al-
gorithm which ignores the state, can also
achieve a zero training loss Eq. (6) on this of-
fline dataset. Whenever 4 is the desired goal
in the dataset, action right is always optimal
irrespective of the current state. Any SL al-
gorithm that learns a minimal decision rule
will in fact learn to ignore the state to reduce
the training loss to zero in this case [56]. But
during test time, starting at state 2 and condi-
tioned on goal 4 such an SL algorithm will
ignore the current state and move towards
right which is clearly suboptimal.

Handling stitching is somewhat akin to handling spuri-
ous correlations studied in the SL community. In the RL
setting, we want to navigate from A to B given a dataset
that contains some trajectories with A and some with B
but none with both A and B. This is somewhat analogous
to common settings in object detection in computer vi-
sion, where the object background is highly indicative of
the object class. For example, the common waterbirds
dataset [57] aims to classify images of birds into two
classes, “land birds” and “water birds,” but the image
backgrounds are correlated with the class: water birds are
usually depicted on top of a background with water. For
evaluation, the classifier is shown an image of a “water
bird” on top of a land background (and vice versa). Sim-
ilar to the RL setting, SL evaluation is done using pairs of
inputs that are rarely seen together during training. How-
ever, whereas the SL setting aims to learn a classifier that
ignores certain aspects of the input, the RL setting is dif-
ferent because the aim is to learn a policy that can reason
about both inputs.

There is another connection between the RL setting and
spurious correlations, a connection that makes the RL
setting look the opposite of the SL setting. For some goal-
conditioned RL datasets, the current state is sufficient for
predicting which action leads to the goal – the policy does
not need to look at the goal. In other datasets, the goal is
sufficient for predicting the correct action. However, for
navigating between pairs of states unseen together in the
dataset, a policy must look at both the state and the goal
inputs.

B ADDITIONAL EXPERIMENTS.
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Figure 8: Comparison of our data augmentation trained with different number of centroids in the K-means
algorithm on pointmaze-medium and antmaze-medium. All values outperform RvS across both tasks.

B.1 ABLATING THE NUMBER OF CENTROIDS FOR K-MEANS.

In Fig. 8, we ablate the choice of the number of centroids used in K-means on two environments –
pointmaze-medium and antmaze-medium. All choices of centroids significantly outperform the RvS
method on both tasks.

14



umaze medium large
0.00

0.25

0.50

0.75

1.00

su
cc

es
s r

at
e

visual point-maze
RvS RvS + image augmentation (ours)

Figure 9: Comparison RvS + data augmen-
tation with RvS on 3 image based pointmaze
tasks. Applying K-means on high dimen-
sional images enables generalisation, even
when using a naive L2 distance. Note that
our method makes no extra assumption and
uses the same information as the baseline.
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Figure 10: To estimate the difference in performance
caused by clustering in high dimensions, we perform
an experiment on the state based pointmaze task. We
handicap the data augmentation method, by applying
the clustering on images instead of the low level states,
while keeping all other things the same. The clusters
obtained using images do increase generalisation, even
outperforming state based augmentation on the largest
maze.

B.2 IMAGE BASED EXPERIMENTS.

As mentioned in Section 5, it can be difficult to provide a good distance metric, especially high for
dimensional problems. We test this empirically using two image based experiments across three
pointmaze tasks.

Fig. 9. : We compare RvS and data augmentation on 3 image based pointmaze tasks (umaze, medium
and large). The datasets are collected similar to our main experiments Fig. 1. The only difference
is that instead of the x, y coordinates, the observations consist of a top down image of the maze
(64× 64). In Fig. 9, we can see that even a naive L2 distance based K-means achieves much better
stitching generalisation than RvS.

Fig. 10. : To remove other factors like the difficulty of learning a policy from images, we repeat the
same state-based experiment as Fig. 1, on pointmaze tasks. The only difference is that, we include a
version of data augmentation that clusters states by applying K means on the corresponding images,
instead of states. This experiment handicaps the data augmentation, while the policy learns from low
level states. In Fig. 10, we can see that the image based clusters perform much better than RvS on all
three tasks, even outperforming the state based clusters on the largest maze.

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENTS

We use the “point” and “ant” mazes (umaze, medium and large) from D4RL [46]. As discussed
in Section 5, we carefully collect our new offline datasets to test for stitching generalisation (see
Fig. 3 for visualisation). In the “point" maze, the task is to navigate a ball with 2 degrees of freedom
that is force-actuated in the cartesian directions x and y. In the “ant" maze task, the agent is a 3-d
ant from Farama Foundation [58]. To collect data for the “point” maze, we use a PID controller. To
collect data for the “ant” maze, we use the same pre-trained policy from D4RL [46]. In Fig. 11, we
provide a visualisation of the offline dataset in all “ant” mazes.

C.2 IMPLEMENTATION DETAILS

In this section we provide all the implementation details as well as hyper-parameters used for all the
algorithms in our experiments – DT, RvS, and RvS + temporal data augmentation.

DT. We used the exact same hyper-parameters that the original DT paper [2] used for their mujoco
experiments. The original DT paper [2] conditioned the transformer on future returns rather than
future goals. For our experiments, we switch this conditioning to goals instead. At every time-step
the transformer takes in as input the previous action, current state, and desired goal. The desired goal
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Umaze Medium Large
Figure 11: Offline datasets that we collect for the “ant" mazes. Different colors represent the navigation regions
of different data collecting policies. See Fig. 3 for a similar visualisation of the “point" maze datasets.

remains constant throughout the episode, but is still fed to the transformer at every timestep. All
hyperparameters used for DT are mentioned in Table 1.

Table 1: Hyperparameters for DT.

hyperparameter value

training steps 1× 105

batch size 256
context len 20
optimizer AdamW
learning rate 1× 10−3

warmup steps 5000
weight decay 1× 10−4

dropout 0.1
hidden layers (self attention layers) 3
embedding dimension 128
number of attention heads 1

RvS. RvS is an OCBC algorithm which uses a fully connected neural network policy. We use
the hyperparameters as prescribed by the original paper [4]. All hyperparameters used for RvS are
mentioned in Table 2.

Table 2: Hyperparameters for RvS.

hyperparameter value

training steps 1× 106

batch size 256
optimizer Adam
learning rate 1× 10−3

hidden layers 2
hidden layer dimension 1024

RvS + temporal data augmentation. As mentioned in Algorithm 1, given a method to cluster states
together, it only requires 5 lines of code to add the temporal data augmentation on top of an OCBC
method. We use the k-means algorithm from scikit-learn [59] with the default parameters to group
states together. Adding data augmentation on top of RvS introduces 2 extra hyperparameters, which
we mention in Table 3. We do not tune both of these hyperparameters in our paper. Nevertheless, we
do ablate the choice of K in k-means.
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Table 3: Hyperparameters for temporal data augmentation.

hyperparameter value

K (number of clusters for k-means) :
umaze 20
medium 40
large 80

ϵ (probability of augmenting a goal) 0.5

C.3 DIFFERENCES BETWEEN THE ORIGINAL D4RL AND OUR DATASETS.

Umaze Medium Large

Figure 12: Similar to Fig. 3 and Fig. 11, we create a visualisation of the original d4rl dataset. This is not an
exact visualisation of the actual trajectories that are present inside those datasets, but a visualisation of the data
collecting policies that those datasets used [46]. During data collection, the policy starts from one starting region,
which is marked by a white star. The policy navigates to a goal selected from one of the goal regions, which
are marked by white circles. During test time, start-states and goals are selected from similar starting and goal
regions, making it difficult to evaluate the stitching generalisation of offline RL algorithms.
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