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Abstract

High costs and risks involved in extensive environmental interactions hinder the practical
application of current online safe reinforcement learning (RL) methods. Inspired by recent
successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can
be leveraged to facilitate faster and safer online learning, a direction that has yet to be fully
investigated. To fill this gap, we first show that naively applying existing O2O algorithms
from standard RL would not work well in safe RL due to two unique challenges: erroneous
Q-estimations, resulted from offline-online objective mismatch and offline cost sparsity, and
Lagrangian mismatch, resulted from difficulties in aligning Lagrange multipliers between
offline and online policies. To address these challenges, we introduce Marvel, the first
policy-finetuning based framework for O2O safe RL, comprising two key components that
work in concert: Value Pre-Alignment to align the learned Q-functions with the online
objective before finetuning, and Adaptive PID Control to effectively adjust the Lagrange
multipliers during finetuning. Extensive experiments demonstrate the superior performance
of Marvel over related baselines.

1 Introduction

Safe reinforcement learning (safe RL) (Gu et al., 2022; Garcıa & Fernández, 2015) prioritizes not only reward
maximization but also the adherence to safety constraints, enhancing its applicability in real-world scenarios.
For instance, an autonomous vehicle must reach its destination without exceeding a fuel limit. However,
solving safe online RL from scratch in fields such as robotics (Brunke et al., 2022; Kiran et al., 2021) and
healthcare (Yu et al., 2021; Qayyum et al., 2020) is often prohibitive, due to the high risks and costs of
extensive environment interactions. To address this, offline safe RL (Zheng et al., 2024; Ray et al., 2019) has
been introduced, enabling learning safe policies from a static dataset without online interactions. Yet, offline
safe RL faces its own limitations (Ghosh et al., 2022): it typically shows limited performance, relies on the
quality of the offline dataset, and suffers from the impact of out-of-distribution (OOD) actions, restricting
its effectiveness across varying scenarios.

The pretraining-and-finetuning paradigm is a well-known strategy in the fields of computer vision and nat-
ural language processing, for enabling fast online learning based on offline pretrained models. Following a
similar line, offline-to-online RL (O2O RL) in the unconstrained setting (Nair et al., 2020; Wang et al., 2024;
Zhang et al., 2023b) and imitation learning (Yue et al., 2024; Ross et al., 2011) have recently gained promi-
nence. These approaches utilize policies (including Q-functions) derived from offline learning, along with
offline datasets, to expedite online finetuning, which effectively avoids extensive environmental interactions
in training policies from scratch. Thus motivated, a key insight is leveraging the pretraining-and-finetuning
paradigm can also potentially facilitate more efficient and practical online safe RL, which however has not
been fully explored in the literature. To fill this gap, we seek to answer the following question: Can we
design an effective offline-to-online approach for safe RL to address the limitations of both online and offline
safe RL, thereby enabling fast online safe policy learning?

However, achieving this is highly nontrivial, and simply applying existing O2O algorithms in conventional
RL would not work well here due to unique challenges in safe RL. In Fig. 1 (a), ’Warm Start’ refers to
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Figure 1: “Steps" on the x-axis represent the number of policy gradient updates (i.e., optimizer updates).
For each update, the agent interacts with the environment for 3 episodes. This convention is followed in
the subsequent figures. In (a), we evaluate these methods in BallCircle from Bullet Safety Gym (Gronauer,
2022), with a cost limit of 20. As shown, while “Warm Start” begins with a reasonably good initial policy, it
performs poorly and overly conservatively, even worse than “From Scratch” where the policy and Q-functions
are initialized randomly. This implies that directly finetuning the pretrained policy and Q-functions may
hinder online learning. In contrast, “Marvel” achieves impressive results, finding a policy with much higher
return in just a few online steps while adhering to the cost limit. In (b), t-SNE visualization of state in the
environment, reduced to 2D space. Each point represents a state, with rewards uniformly distributed across
the space, while costs are sparse, appearing as isolated points or clusters, reflecting their limited association
with states.

using the offline pretrained policy and Q-networks directly to initialize an online safe RL algorithm. ’From
Scratch’ refers to purely online safe RL training. As illustrated, directly finetuning the offline pretrained
policy and Q-functions by using standard online safe RL often results in suboptimal performance and, in
some cases, complete training failures.

The reasons behind this phenomenon are as follows: a) Erroneous Q-estimations resulting from objective
mismatch and offline cost sparsity. To avoid explorations beyond offline data and reduce the extrapolation
errors, offline safe RL algorithms typically introduce additional regularizations in the objective function to
push up the cost estimates of OOD actions, e.g., VOCE (Guan et al., 2024) and CPQ (Xu et al., 2022),
leading to a different overall objective from standard online safe RL. More critically, the majority of state-
actions in offline datasets for safe RL usually are safe with zero cost (Fig. 1 (b)), resulting in a pretrained
cost Q-function that predicts extremely low cost for most in-distribution (IND) state-actions. By erroneously
giving high values for OOD state-actions and low values for IND state-actions, the pretrained cost Q-function
will conservatively force the online finetuning to stay in the state-action space similar to offline dataset and
be reluctant to explore (e.g., cost of “Warm Start” in Fig. 1). b) Mismatch of Lagrange multipliers. Many
online safe RL algorithms (Chow et al., 2018a; Achiam et al., 2017) solve the constrained optimization
problem based on the primal-dual approach, which requires a synchronous update of Lagrange multipliers.
Nonetheless, initial values for these multipliers that match the offline policies cannot be obtained from offline
safe RL precisely. Using traditional dual ascent methods to update the Lagrange multipliers may result in
slow online learning even with accurately estimated Q-functions, ultimately degrading the performance of
the learned policy. In this work, we seek to design an effective O2O framework for safe RL by addressing
these two challenges above.

The main contribution of this work is the warM-stArt safe Reinforcement learning with Value prE-
aLignment (Marvel) framework, consisting of two key components: Value Pre-Alignment (VPA) and
Adaptive PID Control (aPID). VPA re-aligns pretrained Q-functions to closely match true Q-values of the
offline policy under the online learning objective by re-evaluating the offline policy based on offline data
alone. To further compensate VPA and address the multiplier mismatch problem, aPID quickly adapts
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Lagrange multipliers based on cost violations instead of directly finding the best initial multipliers. Experi-
mental results demonstrate Marvel’s ability to quickly learn a safe, high-reward policy with minimal online
interactions, marking it as a pioneering solution in O2O safe RL that integrates seamlessly with existing
offline and online safe RL methods.

2 Preliminaries

Constrained Markov Decision Process. We consider a standard constrained Markov Decision Process
(CMDP) (Altman, 2021), defined by a tuple (S,A, T,R,C, γ, η, cth). Here S is the state space, A is the
action space, T : S×A×S → [0, 1] is the transition probability function, R : S×A→ [0, Rmax] is the reward
function, and C : S × A → [0, Cmax] is the cost function. γ ∈ [0, 1) is the discount factor, η represents the
initial state distribution, and cth is the cost threshold that sets the limit on cumulative costs for the policy.
A policy π : S → P(A) is a mapping from states to a probability distribution over actions, where π(a♣s)
denotes the probability of selecting action a in state s. Let the policy πθ be parameterized by θ. Given a
policy π, its cumulative reward is defined as R(π) = Eτ∼π [

∑∞
t=0 γ

tr(st, at)], where τ = (s0, a0, s1, a1, . . . ) is a
trajectory induced by policy π, and the expectation is taken over the distribution of trajectories. Similarly, its
cumulative cost is defined as C(π) = Eτ∼π [

∑∞
t=0 γ

tc(st, at)]. The reward Q-function for a policy π is defined
as: Qπ(s, a) = Eτ∼π [

∑∞
t=0 γ

tr(st, at) ♣ s0 = s, a0 = a]. Similarly, the cost Q-function Qπ
c (s, a) is defined as

the expected cumulative cost starting from the same state-action pair (s, a) and thereafter following policy
π: Qπ

c (s, a) = Eτ∼π [
∑∞

t=0 γ
tc(st, at) ♣ s0 = s, a0 = a]. In CMDP, the goal is to find an optimal policy π∗

that maximizes R(π), subject to the constraint that the cumulative cost C(π) does not exceed a predefined
threshold cth. This can be formulated as the following:

maxπ R(π), s.t. C(π) ≤ cth. (1)

To solve this, a common approach is to apply the Lagrangian relaxation method (Ray et al., 2019) by
introducing a Lagrange multiplier λ to enforce the cost constraint, leading to the following primal-dual
formulation:

minλ≥0 maxπ [R(π)− λ(C(π)− cth)] , (2)

which can be solved by iteratively updating policy π and λ. λ is updated with the learning rate αλ:

λt+1 = λt + αλ(C(πt)− cth). (3)

Online Safe RL. Primal-dual based algorithms have shown great effectiveness and superior performance
in the literature for online safe RL. Without loss of generality, we consider SAC-lag (Ray et al., 2019) as the
online algorithm, which integrates the widely used SAC algorithm (Haarnoja et al., 2018) with the Lagrange
multiplier method. More specifically, SAC minimizes the following objectives for the actor (policy) and the
critic (Q-function), respectively:

LSAC
π (θ) = E

s∼d, a∼πθ(·♣s)
[α log πθ(a|s)−Q(s, a;ω)], (4)

LSAC
Q (ω) = E

(s,a,s′)∼d
[(Q̂(s, a;ω)− y(r, s′))2] (5)

where y(r, s′) = r + γEa′∼πθ
[Q̂(s, a′;ω′) − α log π(a′♣s′)], Q(s, a;ω) is parameterized by ω, Q̂(s, a;ω′) is the

target reward Q-function parameterized by ω′, d represents the data distribution in the replay buffer, and
α > 0 is some constant. To be applied in online safe RL, SAC-lag adapts SAC by using the Lagrangian
method, such that:

LSAC
π (θ) =Es∼dEa∼πθ(·♣s)[α log πθ(a|s)− (Q(s, a)− λQc(s, a))].

The optimization of the Q-functions for both reward and cost in SAC-lag is with Eq. 5 in SAC.

Offline Safe RL. Offline safe RL algorithms typically push up the cost estimations of OOD actions to
avoid exploration beyond the offline dataset D. Considering the comprehensive performance across various
environments, in this paper we consider the SOTA Lagrangian-based algorithm for offline learning, namely
CPQ (Xu et al., 2022). More specifically, CPQ first generates OOD actions via a conditional variational
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autoencoder (CVAE). The cost of the generated OOD actions is increased by minimizing the following loss
function for cost critic (Qc-function):

LCP Q

Qc
(ωc) = ED

[ (
Qc(s, a;ωc)−

(
r + γEa′∼πθ(·♣s′) [Q̂c(s, a′;ω′

c)]))2
]

− ψEs∼D,a∼ν [Qc(s, a;ωc)]

where Qc(s, a;ωc) is parameterized by ωc, Q̂c(s, a;ω′
c) is the target cost Q-function parameterized by ω′

c, ν
represents the distribution of OOD actions generated by the CVAE. Additionally, to ensure both constraint
safety and in-distribution safety, CPQ updates the reward Q-function using only state-action pairs that
satisfy the cost threshold l:

LCP Q

Q (ω) = ED

[
(Q(s, a;ω)− (r + γEa′∼πθ(·♣s′)[I(Qc(s′, a′;ωc) < l)Q(s, a′;ω)]))2

]

where I(·) is the indicator function. The policy loss function is defined as: LCP Q
π (θ) =

−ED

[
Ea∼πθ(·♣s)[I(Qc(s, a;ωc) < l)Q(s, a, ω)]

]
. Similarly, when maximizing the reward, the policy only con-

siders state-action pairs that meet the safety constraints. By assigning a higher cost to OOD actions, CPQ
mitigates the OOD problem while meeting safety constraints.

O2O Safe RL. To the best of our knowledge, Guided Online Distillation (Li et al., 2024) is the only
work studying O2O safe RL, which leverages a large-scale DT based on GPT-2 (Radford et al., 2019) as a
guide policy to accelerate online learning, by following the idea of Jump-start RL (Uchendu et al., 2023).
However, how to achieve fast safe online learning by finetuning a pretrained policy is still not clear due to
the mismatch of Lagrange multipliers and erroneous Q-estimations from objective mismatch and offline cost
sparsity.

In this work, we seek to enable faster and safer policy learning by finetuning policies and Q-functions
pretrained via offline safe RL, using standard online safe RL methods. Our approach does not rely on large
models and is intended as an initial step toward promoting further research on policy-finetuning-based O2O
safe RL. In principle, any offline safe RL algorithm that outputs a policy and Q-functions can be used in the
offline pretraining stage. More details of related work are provided in Section B.

3 O2O Safe RL with Value Pre-Alignment

As shown in Fig. 1, naively finetuning the offline policy for safe RL would not work and the finetuned policy
shows clear “inertia" in improving its performance: within a long period after online finetuning starts, its cost
stays far below the limit, but its reward is quite low and not improving. This implies that such a strategy
automatically “inherits" the conservatism from offline safe RL and is reluctant to actively explore to fully
utilize the safe gap below the cost limit. In this section, we delve into this failure of naive finetuning, which
points to two unique challenges for policy finetuning in O2O safe RL, i.e., erroneous offline Q-estimations and
Lagrange multiplier mismatch. To address these, we propose a framework for O2O safe RL, i.e., warM-stArt
safe RL with Value prE-aLignment (Marvel).

3.1 Pre-Finetune Phase

Challenge I: Erroneous Q-estimations resulting from objective mismatch and offline cost sparsity. By learn-
ing from a fixed dataset only, offline safe RL typically suffers from large extrapolation errors for OOD actions
beyond the support of the dataset. A general principle to handle this is to penalize the reward/cost estima-
tions for the OOD actions in such a way that risky explorations outside the dataset are discouraged. The
Q-functions can be optimized as follows:

Q: minED

[(
Q(s, a)− (r + γE[max

a′

Q(s′
, a

′)])
)2

]

+ ψ · P(s, aOOD), (6)

Qc: minED

[(
Qc(s, a)− (c+ γE[max

a′

Qc(s′
, a

′)])
)2

]

− ψc · Pc(s, aOOD). (7)

Here ψ · P(s, aOOD) and ψc · Pc(s, aOOD) are the penalty terms. For instance, penalties are introduced
in VOCE (Guan et al., 2024) to minimize the reward Q-values and maximize the cost Q-values for OOD
actions. CPQ (Xu et al., 2022) increases the perceived cost of OOD actions during Q-function and policy
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updates. In contrast, the optimization of Q-functions in online safe RL is standard without any penalty
terms, i.e, ψ = 0 in Eq. 6 and Eq. 7.

Obviously, Offline and online safe RL have distinct objectives for Q-functions, meaning pretrained Q-functions
may not accurately estimate values for state-action pairs encountered during online interactions. As a result,
offline policies tend to act overly conservatively, exploring only low-cost regions during online finetuning.
However, effective online learning requires identifying state-action pairs with both high rewards and low
costs, which necessitates exploring areas with potentially higher costs. This objective mismatch is even more
pronounced in O2O safe RL due to the additional cost Q-function. The sparsity of offline cost leads to a
pretrained cost Q-function that predicts low costs for IND state-actions, further limiting exploration during
finetuning.

Solution: Value Pre-Alignment. To address the first challenge, a naive approach is to reevaluate the
offline policy π0 in online environments using Monte Carlo simulations, which however introduces additional
interaction costs. Motivated by the recent advances in Off-Policy Evaluation (OPE) (Uehara et al., 2022),
we borrow the idea from Fitted Q Evaluation (Hao et al., 2021) to align the offline Q-functions with the
online learning objectives for the offline policy, by using the offline dataset before online policy finetuning.
Starting from the pretrained Q-functions, we seek to minimize:

LVPA
Q (ω) = ED

[

L2



Q(s, a)− (γ Ea′∼π0(·♣s′)[Q̂(s′, a′)− αVPA log π0(a′♣s′)] + r)
]

(8)

LVPA
Qc

(ωc) = ED

[

L2



Qc(s, a)− (γ Ea′∼π0(·♣s′)[Q̂c(s′, a′)− αVPA
c log π0(a′♣s′)] + c)

]

(9)

where D represents distribution of (s, a, s′) in the offline dataset. ω denotes parameters of Q function and
Q̂ is target Q function. Here the entropy terms can result in both higher rewards and costs for state-action
pairs with high entropy, where pretrained policy is ‘uncertain’. Offline policy remains unchanged during
VPA to preserve knowledge extracted from offline data.

Assume that the mismatch between the offline policy-induced distributions of the learned policy π0 and the

offline behavior policy µ is bounded by constant C < ∞, i.e., max(s,a)∈S×A
dπ0 (s,a)
dµ(s,a) ≤ C. Let Q0, QK , and

Q̂π0 be Q-function obtained from offline phase, Q-function after K iterations in VPA and the optimal (fixed-
point solution) Q-function for reward of π0, respectively (similarly, Qc,0, Qc,K , and Q̂π0

c for cost Q-functions).
We can have following result to justify effectiveness of VPA:

Theorem 1. Assume that the reward r and cost c are bounded by 1 for all (s, a) ∈ S ×A. With probability
at least 1− δ, the Q-estimation errors in VPA can be bounded in the weighted L2-norm ∥ · ∥2,dπ0 under the
state-action distribution induced by policy π0:

∥QK − Q̂π0∥2,dπ0 ≤
√
Cϵ̃

1− γ + γK∥Q0 − Q̂π0∥2,dπ0 , (10)

∥Qc,K − Q̂π0

c ∥2,dπ0 ≤
√
Cϵ̃c

1− γ + γK∥Qc,0 − Q̂π0

c ∥2,dπ0 (11)

where ϵ̃ and ϵ̃c are the approximation errors that decrease the size of the dataset while increasing with the
values of αV P A and αV P A

c , respectively.

The full proof and the specific expression of ϵ̃ are provided in Appendix G. As shown in Theorem 1, the overall
estimation error consists of two terms, i.e., the statistical error in the first term and the iteration error in
the second term. With a larger dataset and more expressive function approximator, the first term vanishes,
and the overall error is dominated by the iteration error, which decays exponentially with training steps
K. This indicates that VPA can yield increasingly accurate Q-function estimates. Moreover, since reward
optimization dominates policy updates at the early stage of online finetuning when Lagrange multiplier is
small, a larger uncertainty in reward Q-estimations is preferred to facilitate more online exploration. To
this end, Theorem 1 further implies that a larger αV P A should be selected in Eq. 8 for reward Q-values,
whereas αV P A

c in Eq. 9 should be smaller to ensure a more accurate estimation of cost Q-values. While the
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theory suggests improved Q estimations for IND and OOD actions, our empirical findings show estimations
for OOD actions after VPA tends to be overoptimistic. This discrepancy is likely due to imperfect data
coverage and function approximation errors. Interestingly, while such overestimation is problematic and
avoided for offline RL without online explorations, it is indeed beneficial for O2O RL during early phase
of online finetuning, which can encourage more active explorations beyond the offline dataset. While Luo
et al. (2024) considered a similar analysis for unconstrained RL, we focus on the safe RL setting and further
introduce VPA, a pre-finetuning procedure incorporating an entropy term to mitigate erroneous Q-value
estimations.

Table 1: Spearman’s rank correlation coefficients of Q-value and Qc-value in BallCircle and CarRun.
“Random” refers to rollouts starting from randomly initialized state-action pairs (potentially OOD), while
“Dataset” refers to rollouts from state-action pairs sampled from the offline dataset.

VPA
BallCircle CarRun

Random Dataset Random Dataset

Q-value
Before -0.2387 -0.3852 -0.1143 -0.5078

After 0.5661 0.8278 -0.0125 0.8314

Qc-value
Before -0.2521 0.1725 -0.2431 -0.4327

After 0.3579 0.8252 0.1254 0.4937

To empirically characterize the performance of VPA in correcting Q-estimations, we leverage Spearman’s rank
correlation coefficient, which measures the strength and direction of a monotonic relationship between two
ranked variables. The reason is that relative ranking of Q-values are more important than absolute values
for policy update. We provide more details of Spearman’s rank correlation coefficient in Appendix F.1.
Specifically, given a dataset collected by the offline policy in the environment, we compare the ranking of
learned reward/cost Q-values before and after VPA with that of estimated actual return via Monte Carlo
simulations. A large Spearman’s rank correlation coefficient implies that distribution of learned Q-values
is more aligned with the distribution of true Q-values. As shown in Table 1, it is evident that coefficient
increases significantly after VPA for both reward and cost Q-values, no matter if offline policy rolls out from
a seen state-action pair in offline dataset or from a randomly selected OOD state-action pair. This clearly
demonstrates effectiveness of VPA in aligning the pretrained Q-functions.

3.2 Finetune Phase

Challenge II: Lagrange multiplier mismatch. Conventional value-based online safe RL relies on updating
Lagrange multipliers alongside the policy and Q-functions during training, to push the overall cost below
the limit while balancing between maximizing the reward and minimizing constraint violations. Although
the policy and Q-functions can benefit from offline pretraining for a warm start, offline safe RL algorithms
like CPQ (Xu et al., 2022) and BEAR-lag (Ray et al., 2019) cannot accurately estimate Lagrange multipliers
with regularizing strengths matching the cost of the offline policy, e.g., a small multiplier is not powerful
enough to push down the policy cost, while a large multiplier prevents active exploration of high-reward
state-action pairs. For instance, in BallCircle, the offline Lagrange multiplier value obtained using the
BEAR-lag algorithm is approximately 1500, whereas during online finetuning, the SAC-lag requires a value
of only about 0.65. The gap between these values precludes the direct use of offline Lagrange multipliers.
Improper initialization can lead to extensive constraint violations or training stagnation, an issue we term
as the Lagrange multiplier mismatch.

On the other hand, as VPA promotes active exploration of high-reward state-actions by optimistically esti-
mating rewards and pessimistically estimating costs, it inevitably increases the risk of exploring high cost
state-actions, which in turn amplifies the need for appropriate Lagrange multipliers to quickly reduce the
constraint violations. Figure 2 compares online finetuning performance in BallCircle when using VPA with:
(1) a well-initialized Lagrange multiplier vs. (2) zero initialization, both with standard dual ascent updates.
A good initial multiplier enables effective cost control, while poor initialization leads to significant constraint
violations and slower convergence. The results also imply that although VPA aligns the distributions of
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Figure 2: Comparison of online finetuning performance after VPA with two different initial values of the
Lagrange multiplier. In ‘VPA w/o init’, the initial value is set to 0, whereas we initialize Lagrange multipliers
with a good value found empirically (0.65 in BallCircle and 0.5 in CarRun) in ‘VPA w/ init’. The multiplier
is then updated using the standard dual ascent method.

Q-values, it may introduce high costs for online finetuning, which can be addressed with an appropriate
initial Lagrange multiplier.

Solution: Adaptive PID Control. Clearly, finding a good initial value of the Lagrange multiplier can jointly
address the mismatch problem and mitigate the potential risk of VPA. However, achieving this through
experimental tuning is challenging, and currently, there is no theory to accurately predict these values. To
address this problem, instead of directly finding the best initial value, we take an alternative path by quickly
adapting the Lagrange multipliers in an effective manner. Motivated by the recent success of leveraging PID
control for updating the multiplier in online safe RL (Stooke et al., 2020; Yuan et al., 2022; Zhou et al.,
2021), we introduce an adaptive PID control approach specifically tailored for O2O safe RL.

More specifically, compared to standard dual ascent in Eq. 3, PID control (Johnson & Moradi, 2005) offers
a different approach to updating the Lagrange multiplier:

λt+1 = λt +Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt
≈ λt +Kpe(t) +Ki

∑t

k=0
e(k)∆t+Kd

e(t)−e(t−1)
∆t

(12)

where e(t) captures the cost violation (errors) at time t, namely the cumulative cost difference from the
policy rollout compared to the cost threshold. Here, Kp is the proportional gain, corresponding to the
instantaneous value of the error; Ki is the integral gain to characterize the accumulation of past errors and
Kd is the differential gain corresponding to the rate of change of the error. In practice, the integral and
differential are usually discretized. By taking the rate of change into consideration, the PID control can be
especially useful in scenarios where costs fluctuate significantly, which however is not sufficient to handle the
unique challenges in O2O safe RL. Specifically, to address the objective mismatch and the over conservatism
exacerbated by sparse costs in the offline learning, VPA encourages active exploration but increases the risk
of high cost. This requires a stronger control strength at the early stage of online finetuning to quickly
reduce the cost. As training progresses and the cost approaches the limit, a weaker control strength is
however preferred to stabilize the learning and keep the cost below the limit without large oscillations. The
need of dynamic strength points to the need of adaptive control for O2O safe RL.

To this end, we propose an adaptive PID control method to update the Lagrange multiplier, which dynam-
ically adjusts the PID control parameters during online finetuning based on the incurred policy cost over a
time window of n steps:

Kp ← clip



Kp ·



1 + α ·
c̄− cth

c̄



,Kpmin
,Kpmax



, (13)

Ki ← clip



Ki ·



1 + β ·
c̄− cth

c̄



,Kimin
,Kimax



, (14)

Kd ← clip



Kd ·



1 + γ ·
σc

c̄



,Kdmin
,Kdmax



(15)

where the average cost c̄ = 1
n

∑n
i=1 ci, the standard deviation σc =

√
1

n−1

∑n
i=1(ci − c̄)2, α, β and γ

are hyper-parameters. The design rationale is as follows: 1) When the average cost exceeds the limit
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(c̄ > cth), Kp and Ki are increased to enhance the sensitivity of the PID controller to accelerate error
correction. On the other hand, when the average cost is below the limit (c̄ < cth), Kp and Ki are decreased
to prevent overreaction of the PID controller, thus avoiding unnecessary oscillations and ensuring stability.
By dynamically adjusting Kp and Ki in this manner, the controller adapts its low-frequency gain to match
the current error magnitude, balancing speed and stability in error correction. 2) Because Kd captures the
volatility of cost changes, it will be adjusted using the standard deviation σc of the cost over the period to
stabilize cost control. A larger σc indicates greater fluctuations in the error signal, suggesting the presence
of high-frequency disturbances or noise. Kd will be correspondingly increased, such that the controller can
enhance its damping characteristics, adding phase lead and improving transient response. This mitigates
the effects of sudden changes and stabilizes the system. The α, β, and γ adjust the PID parameters which
improve the robustness of the initial PID settings. Appendix D.3.2 demonstrates that these parameters are
easy to tune but also robust in their own selection (e.g., same across all environments in the experiments).

In a nutshell, combining VPA and aPID leads to our proposed framework Marvel: 1) Given the pretrained
policy and Q-functions from offline learning, Marvel first applies VPA to align the pretrained Q-functions
for both reward and cost using the offline dataset; 2) Marvel next utilizes Lagrangian-based online safe RL
algorithms to further finetune both the pretrained policy and aligned Q-functions, by using aPID to update
the Lagrange multipliers. We present the algorithmic framework of Marvel in Appendix A. Here VPA and
aPID work in concert: aPID addresses the Lagrange multiplier mismatch problem and quickly pushes down
the potential high cost resulted by VPA, whereas VPA facilitates active exploration of high-reward state-
action pairs and the usage of the pretrained policy as a warm-start for fast online finetuning with aPID
control.

4 Experiments

The objective of O2O safe RL is to utilize offline data to enable fast online finetuning, i.e., maximizing
rewards while satisfying the cost threshold, with minimal interactions with the environment. Therefore, an
important evaluation criterion for effective O2O safe RL methods is whether the method can quickly obtain
a good policy with high rewards and low safety violations only after a limited number of online interactions,
which is the setup considered in this paper. Due to the space limit, we delegate the experimental details and
some additional results to Appendix D and Appendix F.

4.1 Evaluation Setup

Benchmarks. We consider the DSRL benchmark (Liu et al., 2023b) and select ten environments from the
Bullet Safety Gym (Gronauer, 2022) and Safety Gymnasium (Ji et al., 2023): BallRun, BallCircle, CarRun,
CarCircle, HalfCheetah, AntCircle, AntRun, DroneCircle, Hopper, and Swimmer (results for the last four
are in Appendix D.1). The cost threshold is set to be 20 in these environments. As mentioned earlier in
Section 2, we choose CPQ and SAC-lag as base algorithms in our proposed framework Marvel for offline
training and online finetuning, respectively, due to the effectiveness and representativeness of them. Each
experiment was conducted using five random seeds, and the results were averaged to generate the final
learning curves. We use a dataset that includes data provided by DSRL (Liu et al., 2024) and random data
generated by a random policy to control the quality of the offline dataset.

Baselines. While Guided Online Distillation (Li et al., 2024) is the only work studying O2O safe RL, its
usage of large pretrained model leads to an unfair comparison with standard RL frameworks using typically
small-scale policy networks. In this work, we compare Marvel with JSRL (Uchendu et al., 2023), as Guided
Online Distillation mainly follows this approach except using DT as the pretrained policy. Besides, we
further adapt some SOTA approaches in O2O RL to O2O safe RL, including SO2 (Zhang et al., 2024) and
PEX (Zhang et al., 2023a), and a Warm Start approach as baselines. SO2 improves Q-value estimation
through Perturbed Value Updates, JSRL and PEX utilize offline pretrained policies for exploration, and
Warm Start directly finetunes the policy and Q-networks from offline safe RL without modifications. We
compare with online learning from scratch, namely From Scratch, i.e., SAC-lag, which can achieve strong
performance but require a large number of online interactions. For completeness, we also evaluate the
performance of Cal-QL (Nakamoto et al., 2023) and SAC-Lag with an offline replay buffer across
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four representative environments: BallCircle, BallRun, CarCircle, and CarRun. The corresponding results
are presented in Fig. 6. Given the interaction and network update settings in our experiments, we compare
our implementation of SAC-lag with the standard FSRL library (Liu et al., 2024) in Appendix D.5, and the
results show that their performance is highly comparable.

More importantly, aPID is used to update Lagrange multipliers in all these baseline methods (instead of
traditional dual ascent), which in fact already improves the performance of these methods compared to their
original designs. These baselines provide a meaningful comparison to demonstrate the effectiveness of Marvel,
but also indicate the need of addressing the two challenges simultaneously for O2O safe RL. We provide the
detailed descriptions of each baseline algorithm in Appendix C. Additionally, we provide a comparison with
CDT (Liu et al., 2023c), using a smaller decision transformer (around 600k parameters) than the one in (Li
et al., 2024), in Appendix D.1, and also demonstrate Marvel’s superiority over baselines with large models.

Table 2: The “offline" column represents the performance of the offline safe RL pre-training. We present
the performance at 20% of the total training steps during the finetuning process, as well as the performance
after all the training steps are completed, e.g. “100 steps r/c" and “500 steps r/c" for reward and cost,
respectively. Cost values greater than 20 are shown in gray. Bold numbers represent the highest reward
while satisfying the cost threshold. The plots are in Appendix D.

Environment Marvel (ours) From Scratch Warm Start SO2 JSRL PEX Offline

BallCircle
100 steps: r/c 580.3 / 19.2 170.8 / 88.9 54.7 / 0.0 54.4 / 0.0 -7.6 / 137.5 0.0 / 119.7

166.0 / 11.0
500 steps: r/c 603.9 / 19.8 241.7 / 10.9 176.6 / 18.5 58.4 / 2.0 1.6 / 165.4 -4.3 / 39.9

BallRun
100 steps: r/c 276.0 / 5.8 1055.9 / 75.4 346.3 / 22.1 338.6 / 19.9 -120.5 / 37.2 270.3 / 42.9

262.0 / 3.0
500 steps: r/c 306.6 / 5.5 315.2 / 5.6 132.2 / 23.0 286.8 / 12.1 174.0 / 92.1 -555.6 / 88.8

CarCircle
100 steps: r/c 330.6 / 18.8 49.1 / 16.4 73.2 / 71.1 69.3 / 17.6 2.4 / 36.3 -0.5 / 69.4

265.0 / 14.0
500 steps: r/c 341.3 / 19.5 115.2 / 12.7 141.6 / 24.1 115.9 / 9.1 1.1 / 130.0 -12.6 / 142.9

CarRun
100 steps: r/c 537.9 / 17.0 337.1 / 74.3 383.9 / 64.4 510.2 / 17.3 -186.4 / 140.8 -183.6 / 112.5

544.0 / 72.0
500 steps: r/c 547.5 / 18.2 293.5 / 7.2 391.4 / 16.9 522.2 / 16.2 126.6 / 128.2 153.0 / 38.8

AntCircle
800 steps: r/c 4.0 / 0.0 1.2 / 0.0 1.1 / 0.0 2.4 / 0.0 0.0 / 0.0 1.3 / 0.2

4.0 / 39.0
4000 steps: r/c 5.6 / 0.9 1.5 / 0.0 1.3 / 0.0 3.7 / 1.3 0.6 / 1.9 6.9 / 2.3

HalfCheetah
800 steps: r/c 1343.6 / 19.2 39.3 / 0.0 1695.9 / 180.5 1169.5 / 27.1 0.1 / 0.0 -70.6 / 0.0

113.0 / 17.0
4000 steps: r/c 1544.8 / 20.0 1074.3 / 28.8 974.1 / 15.4 559.4 / 23.9 27.6 / 3.8 -155.6 / 0.2

BallCircle (BEAR-lag)
100 steps: r/c 621.1 / 19.2 170.8 / 88.9 174.5 / 101.9 -9.8 / 135.1 4.7 / 150.2 24.5 / 129.4

394.0 / 19.0
500 steps: r/c 552.3 / 15.2 241.7 / 10.9 440.2 / 100.0 71.8 / 16.6 10.5 / 163.0 -13.6 / 5.8

CarRun (BEAR-lag)
100 steps: r/c 410.3 / 60.0 337.1 / 74.3 398.7 / 38.1 191.1 / 1.3 125.0 / 84.2 97.8 / 15.2

270.0 / 17.0
500 steps: r/c 510.5 / 19.2 293.5 / 7.2 204.6 / 50.1 -59.6 / 0.0 31.9 / 113.6 200.6 / 34.0

4.2 Main Results

As shown in Table 2, Marvel demonstrates better or comparable performance compared to all baselines
consistently across all environments, i.e., achieving the higher return while keeping the cost below the
threshold. In particular, as shown in Fig. 4, Marvel demonstrates superior stability compared to other
baseline algorithms. Note that a key aspect of safe RL is ensuring safety, which requires keeping the cost
below the predefined threshold while maximizing reward. Marvel achieves this balance effectively, as its cost
remains below the threshold in all environments. In stark contrast, the naive warm start method proves
largely ineffective, often causing performance drop or stagnation during training. Without aligning the Q-
estimations, both JSRL and PEX struggles a lot to improve during online learning and fails to control the
cost. While SO2 mitigates the inaccuracies of Q-estimations related to O2O RL, it does so only to a limited
extent and cannot maintain its performance consistently across different environments, even though aPID
has already been used to boost its performance. On the other hand, the fact that SO2 performs better than
other baselines further indicates 1) the great potentials of enabling fast and safe online learning through
policy finetuning (compared to using the pretrained policy only as a guide policy as in JSRL and PEX) and
2) the need of correcting pretrained Q-estimations before online finetuning.

More importantly, Marvel demonstrates the ability to find a good and safe online policy very quickly with
minimal online interactions, as shown in Fig. 4 and Fig. 5 (shown in Appendix D). For instance, in the
BallCircle and CarCircle environments, near-optimal performance can be achieved with merely 20 steps
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Figure 3: ‘aPID’ refers to adaptive PID applied only during online finetuning; ‘VPA’ refers to VPA is only
used in pre-finetuning. ‘VPA+PID’ uses standard PID and VPA, while ‘VPA+aPID’ combines VPA with
adaptive PID. VPA+aPID shows the best learning efficiency, stability, and convergence.

of gradient updates. By leveraging offline policies and aligned Q-functions, Marvel rapidly explores high-
reward regions while addressing the overly conservative nature of offline pretrained policies. Although initial
finetuning may cause a cost spike (Fig. 4), aPID effectively reduces costs by guiding the policy towards low-
cost state-actions in high-reward regions. Also, Marvel achieves the best max reward for a given cumulative
cost, illustrated in Fig. 15, demonstrating superior performance while incurring fewer violations in the
environment.” Notably, the same aPID parameters are used across all environments, showcasing its
robustness and adaptability.

Compatibility of Marvel: In O2O safe RL, compatibility with different offline safe RL methods is es-
sential. Given the non-interactive nature of offline training and the potential unavailability of algorithms
due to privacy concerns, this compatibility becomes even more critical compared to online algorithms. Our
design of Marvel naturally fits a variety of offline safe RL methods and only requires a pretrained policy
and Q-functions. To further verify this, the last two columns of table 2 show the training process using
BEAR+Lagrangian (BEAR-lag) (Kumar et al., 2019) in the offline phase and SAC-lag in online finetuning.
Note that BEAR-lag was not specifically designed for offline safe RL, but rather it incorporates the Lagrange
multiplier into offline RL. In BallCircle, Marvel achieves the highest reward while satisfying cost constraints,
and in the CarRun environment, it also outperformed others while maintaining cost below the threshold.
This highlights the flexibility of our algorithm across different offline safe RL methods.

4.3 Ablation Studies

We conduct experiments in various setups to better understand Marvel. As shown in Fig. 3, the performance
is best when both VPA and aPID are used. In contrast, if only VPA is used with traditional dual ascent
during online finetuning, it significantly slows down safe online learning and takes a much longer time to
reduce the cost. If only aPID is applied without VPA, the learning performance is very similar to naive
policy finetuning, which struggles to improve due to the erroneous Q-estimations. We also evaluate the
effectiveness of adaptive control in aPID, by comparing the performance between Marvel (VPA+aPID) and
Marvel with aPID replaced by PID (VPA+PID). In Fig. 3, the training curve for cost exhibits significant
fluctuations without using aPID. More critically, when the cost is close to the limit, PID cannot reduce
its control strength. As a result, even if on average the cost of VPA+PID is close to the threshold, it is
very frequent that the real-time cost exceeds the limit substantially, which is in fact not safe. Moreover,
the inability to adjust the Lagrange multiplier promptly and appropriately affects the weight of reward and
cost in policy updates, thereby influencing reward performance, as shown in the plots for CarCircle and
HalfCheetah (Appendix D.2).

In practical O2O safe RL training, the quality of offline datasets can vary significantly, making it essential to
evaluate whether Marvel maintains strong performance under different pretrained policies and Q-networks.
As shown in Table 3, we train offline policies (and corresponding Q-networks) with varying quality lev-
els. Marvel rapidly achieves near-optimal performance (with only a few online interaction steps, shown in
Figure 9) regardless of the quality of the offline dataset or the effectiveness of the pretrained policy. This
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Table 3: Performance comparison between VPA+aPID (which is standard Marvel), VPA, and Warm Start
when agent have different performance of offline policy. Note that although the second line shows Marvel
exceeding the cost threshold, the violation is minor and can be corrected with just a few update steps.

Environment VPA+aPID VPA Warm Start Offline

BallCircle

100 steps: r/c 580.3 / 19.2 579.0 / 18.4 54.4 / 0.0
166.0 / 11.0

500 steps: r/c 610.1 / 19.6 511.3 / 16.9 176.6 / 18.5

100 steps: r/c 543.6 / 20.5 576.8 / 92.1 430.7 / 13.5
446.0 / 6.0

500 steps: r/c 605.4 / 20.9 400.1 / 24.3 269.7 / 17.4

CarCircle

100 steps: r/c 283.8 / 20.0 320.1 / 49.7 107.3 / 8.8
145.0 / 17.0

500 steps: r/c 327.2 / 19.5 306.3 / 21.9 176.4 / 20.8

100 steps: r/c 330.6 / 18.8 260.6 / 19.6 73.2 / 71.1
265.0 / 14.0

500 steps: r/c 341.3 / 19.5 283.1 / 17.2 141.6 / 24.1

demonstrates the robustness of Marvel to variations in offline data quality. Furthermore, the algorithm
consistently enforces cost constraints while improving rewards, thereby accommodating pretrained policies
and Q-networks with diverse performance levels.

Regarding the necessity of each component of Marvel, Table 4 illustrates the importance of applying VPA
to both the Q and Qc networks initialized from offline pre-trained models, as well as the contribution of the
entropy term. Finetuning the pretrained Q-networks also outperforms learning new Q-networks from scratch
in VPA, which implies that the pretrained Q-networks, although not accurate, can still provide meaningful
prior knowledge.

The training curves corresponding to Table 3 and Table 4 are presented in Appendix D.2, which further
validating Marvel’s robustness and design choices.: 1) Through extensive experiments across diverse envi-
ronments, we confirm that the algorithm consistently maintains cost constraints while improving rewards
across offline datasets of varying quality, which consequently accommodates offline pretrained policies and
Q-networks with different performance levels. 2) The training dynamics confirm the rationality of VPA’s
design, particularly the necessity of updating all Q-networks in conjunction with the entropy term. 3) Pa-
rameter sensitivity analyses in Appendix D.3 and Appendix D.4 reveal acceptable performance variance
despite the introduced hyper-parameters. Furthermore, we verify correctness of our baseline implementation
by demonstrating comparable performance to the standard library FSRL (Liu et al., 2024) under identical
experimental settings, including interaction steps and policy update frequencies.

Offline Q Qc Entropy Pre-trained Q Performance

166.0 / 11.0

✓ ✓ ✓ ✓ 603.9 / 19.8
✓ ✓ ✓ 511.3 / 16.9
✓ ✓ 364.7 / 11.2

✓ ✓ 64.1 / 5.3
✓ ✓ ✓ 1.2 / 51.0

Table 4: Ablation study of VPA on BallCircle. “Offline” shows the initial policy/Q values. “Entropy”
indicates whether entropy regularization is used. “Q”/“Qc” columns denote the targets of VPA. “Pre-
trained Q” shows if VPA starts from an offline Q network. “Performance” reports final reward and cost.

5 Conclusion

O2O safe RL has great potential to put safe RL on the ground in real-world applications, by leveraging offline
learning to facilitate fast online safe learning. In this paper, we proposed the first policy-finetuning based
framework, namely Marvel, for O2O safe RL. In particular, by showing that naive finetuning would not work
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well, we identified two unique challenges in O2O safe RL, i.e., the erroneous Q-estimations and Lagrangian
mismatch. To address these challenges, Marvel consisted of two key designs: 1) value pre-alignment to
correct the Q-estimations before online finetuning, and 2) adaptive PID control to dynamically change the
control parameters so as to rapidly and appropriately control the cost. Extensive experiments demonstrate
the superiority of Marvel over multiple baselines. More importantly, Marvel is compatible to a variety of
offline and online safe RL approaches, making it very practically appealing. We hope our work bridges the
gap between offline and online safe RL, distinct from unconstrained RL, and enhances the efficiency of online
safe RL, paving the way for practical applications.
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A Overview of Algorithm

Algorithm 1 Marvel

1: Input: Offline RL algorithm ¶LQφ

off , L
Qcφc

off , Lπθ

off♢;
Online RL algorithm ¶LQφ

on , L
Qcφc
on , Lπθ

on♢
2: Output: Offline dataset Doff , Online dataset Don, Network parameters ϕ, ϕc, θ, Lagrange multiplier λ
3: while in offline training phase do

4: ϕ← ϕ− λQ∇φL
Qφ

off

5: ϕc ← ϕc − λc
Q∇φc

L
Qcφc

off

6: θ ← θ − λπ∇θL
πθ

off

7: end while
8: % VPA with offline dataset
9: while in VPA phase do

10: for each VPA step do
11: Sample transitions (s, a, r, c, s′) ∼ Doff

12: Update Q by Eq. 8, Update Qc by Eq. 9
13: end for
14: end while
15: while in online training phase do
16: for each environment step do
17: at ∼ πθ(st), st+1 ∼ T (st, at)
18: Don = Don ∪ ¶st, at, r(st, at), c(st, at), st+1♢
19: end for
20: for each update step do

21: ϕ← ϕ− λQ∇φL
Qφ
on

22: ϕc ← ϕc − λc
Q∇φc

L
Qcφc
on

23: θ ← θ − λπ∇θL
πθ
on

24: % update Lagrange multiplier with aPID
25: Update λ by Eq. 12
26: update PID parameters by Eq. 13
27: end for
28: end while

B Related Work

Online Safe RL. Online safe RL approaches can be generally divided into several categories. The first
category includes primal-dual based methods, such as PDO (Chow et al., 2018a), which combines PPO
(Schulman et al., 2017) with the Lagrange multiplier method to obtain a policy that satisfies safety con-
straints. CPPO-PID (Stooke et al., 2020) combines PID control with Lagrangian methods to dampen cost
oscillations. Similar Lagrangian-based methods are applied in conjunction with other unconstrained safe RL
algorithms, such as TRPO-lag, PPO-lag, and SAC-lag. CPO (Achiam et al., 2017) inherits from TRPO
(Schulman, 2015), optimizing with the Lagrange multiplier method within the trust region. CUP (Yang
et al., 2022) extends CPO by incorporating the generalized advantage estimator. In comparison, RCPO
(Tessler et al., 2018) uses different update rates for the primal and dual variables. Two-stage iterative
methods have also been developed for online safe RL, e.g., PCPO (Yang et al., 2020) and FOCOPS (Zhang
et al., 2020). Besides the primal-dual based methods, primal methods, which are also known as Lyapunov
methods, have been leveraged in some studies for online safe RL. For instance, IPO (Liu et al., 2020) uses
logarithmic barrier functions. P3O (Zhang et al., 2022) employs an exact penalty function to derive an
equivalent unconstrained objective and restrict policy updates within the trust region. (Chow et al., 2018b)
leverages Lyapunov functions to handle constraints, which contains two parts, safe policy iteration and safe
value iteration. Additionally, some studies (Wabersich et al., 2023; Choi et al., 2020) borrow techniques from
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the control theory, such as HJ reachability (Bansal et al., 2017; Yu et al., 2022) and control barrier functions
(Ames et al., 2019), to ensure state-wise zero costs.

Offline Safe RL. Offline safe RL seeks to learn a safe policy from static datasets without online environ-
mental interactions. Similar to online safe RL, Lagrangian methods can still be applied here, by adapting
offline unconstrained RL algorithms like BCQ (Fujimoto et al., 2019) and BEAR (Kumar et al., 2019) to the
safe RL setting. CPQ (Xu et al., 2022) uses a VAE to detect OOD (Ren et al., 2019) actions and penalizes
them in terms of cost. COptiDICE (Lee et al., 2022a) extends OptiDICE (Lee et al., 2021) by adding safety
constraints and derives a safe policy through the stationary distribution of the optimal policy. FISOR (Zheng
et al., 2024) decouples the process of satisfying safety constraints from maximizing rewards and employs a
diffusion model as the policy. VOCE (Guan et al., 2024) estimates Q-values of both cost and reward in a
pessimistic way, mitigating extrapolation errors caused by OOD actions. Decision transformer (DT) (Chen
et al., 2021) has also been applied to safe RL, leading to constrained decision transformer (Liu et al., 2023c).

O2O Unconstrained RL. O2O RL has recently attracted much attention in the unconstrained case, where
a policy pretrained on an offline dataset is used to assist online policy learning, e.g., through finetuning or
serving as a guide policy. More specifically, (Hester et al., 2018; Nair et al., 2018; Rajeswaran et al., 2017)
and (Rudner et al., 2021) explore various combinations of offline demonstration data with online learning.
The core idea is that pure offline RL often struggles with limited performance due to heavy reliance on
dataset quality. However, if interaction with the environment is allowed, pffline pretrained policy can be
finetuned for improved performance. However, naive implementation of this process often leads to suboptimal
performance (Nair et al., 2020; Uchendu et al., 2023). AWAC (Nair et al., 2020) prioritizes actions with
high advantage estimates, while AW-Opt (Lu et al., 2022) builds on AWAC by applying positive sample
filtering and using hybrid actor-critic exploration during online finetuning. (Lee et al., 2022b) finetunes the
pretrained policy by balancing the offline and online datasets. FamO2O (Wang et al., 2024) trains a family of
policies using a universal model and then employs a balance model to select the most suitable policy for each
state. Cal-QL (Nakamoto et al., 2024) constrains the updates to the Q-network during online finetuning to
prevent underestimation of the Q-values. SO2 (Zhang et al., 2024) improves Q-value estimation by updating
Q-values more frequently and using noise-augmented actions. Instead of directly finetuning the pretrained
policy, Jump-start RL (Uchendu et al., 2023) and PEX (Zhang et al., 2023a) follows another direction to
leverage the offline policy, by using it to guide the update of the online policy during online learning.

C Details on Baselines

Considering the characteristics of safe RL, which requires keeping the cost below a certain threshold, not all
O2O unconstrained RL algorithms are suitable for O2O safe RL. For instance, AWAC (Nair et al., 2020),
which maximizes the advantage function, has not yet been applied in the safe RL context. We compare
Marvel with the following baselines:

SO2 (Zhang et al., 2024). By analyzing Q-value estimation in offline to online transitions, the SO2 algorithm
achieves more accurate Q-value estimation through Perturbed Value Update and by increasing the frequency
of Q-value updates.

JSRL (Uchendu et al., 2023). JSRL employs an offline pretrained policy as the exploration policy and a
policy under training during the online phase as the target policy. Initially, the exploration policy is used,
followed by the target policy during online interaction to facilitate curriculum learning. To adapt to the safe
RL setting, we update the Lagrange multipliers using the aPID method when updating the target policy.

PEX (Zhang et al., 2023a). Similar to JSRL, PEX uses an offline pretrained policy and a policy under
training during the online phase for online interaction. However, PEX selects one of the actions based on
the Q-networks’s value estimation of actions chosen by the two policies. To meet the safe RL requirements
concerning cost, like the modifications to JSRL, we use the aPID method to update the Lagrange multipliers.

Cal-QL (Nakamoto et al., 2023). This method fine-tunes policies using a better-calibrated Q-function. We
employ the aPID method to update the Lagrange multipliers.
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SAC with an offline replay buffer. This baseline naively incorporates offline data into the online replay
buffer. As with our modifications before, we use the aPID method to update the Lagrange multipliers.

Warm Start. We directly utilize the policy, Q-network, and Qc-network networks obtained from offline
safe RL without any modifications (no VPA and aPID), and apply online safe RL algorithms for finetuning.

We selected SO2, JSRL, PEX and Warm Start as baselines because they represent prominent methods in
O2O RL, and adapting them to the safe RL context provides a meaningful comparison. Including these
baselines allows us to demonstrate the effectiveness of Marvel in a fair and relevant context.

D More Experimental Results

D.1 More experiments

In Fig. 4, we provide training curve of Marvel and baseline algorithms in BallRun, BallCircle, CarRun,
CarCircle, HalfCheetah, AntCircle. In environments like BallCircle and CarCircle, Marvel finds a good
policy within less than 15 steps, dominating baseline methods in both performance and speed. Note that all
approaches indeed start from the offline policy and Q-functions, i.e., the same point at step 0 (ignored in all
figures).

In Fig. 5, we additionally provide experimental results in more environments, including DroneCircle, AntRun,
Hopper, and Swimmer. The results indicate that our proposed Marvel algorithm achieves competitive
performance across these settings.

In Fig. 6, Cal-QL, which fine-tunes policies using a better-calibrated Q-function, demonstrates reasonable
performance. However, since it was not originally designed for safe reinforcement learning, its direct appli-
cation in this setting is inappropriate, since it fails to fully address the issues of erroneous Q-estimations
and Lagrangian mismatch, as illustrated before. Similarly, the naive use of offline data, SAC with an offline
replay buffer, fails to achieve satisfactory outcomes, as its incurred cost substantially exceeds the predefined
threshold. This violation of safety constraints highlights the algorithm’s inability to succeed under such
conditions.

In Table 5, We conpare our Marvel with CDT(Liu et al., 2023c). Due to CDT’s design for offline settings,
we use the replay buffer to apply CDT in the online setting, which is represented as "CDT-finetune" in the
table. It can be seen that CDT, having more parameters, generally performs better than CPQ in the offline
phase. However, since the finetuning process was not specifically designed, performance stagnation and even
degradation occur during finetuning.

Table 5: Comparison of Marvel and CDT

Environment
Offline Online

CPQ CDT Marvel (ours) CDT-finetune

BallCircle 166.0 / 11.0 521.7 / 18.3 603.9 / 19.8 468.7 / 9.3

BallRun 262.0 / 3.0 448.5 / 48.5 306.6 / 5.5 449.0 / 50.3

CarCircle 265.0 / 14.0 328.7 / 18.1 341.3 / 19.5 320.2 / 23.1

CarRun 544.0 / 72.0 553.9 / 25.1 547.5 / 18.2 542.0 / 23.3

AntCircle 4.0 / 39.0 221.6 / 54.7 5.6 / 0.9 161.2 / 36.4

HalfCheetah 113.0 / 17.0 1358.0 / 24.3 1544.8 / 20.0 1536.7 / 3.9

D.2 More ablations

D.2.1 VPA on Q vs Qc vs Both and if VPA need entropy term

Fig. 7 presents more detailed ablation experiments, including whether VPA needs to be applied to both the
Q-network and Qc-network, as well as whether the entropy term should be added to VPA. By comparing
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Figure 4: Performance comparison between Marvel and baseline methods in multiple environments. It is
clear that Marvel can quickly find a high-return policy while keeping the cost below the limit.

Figure 5: We provide experiments on more environments.

VPA(Q), VPA(Qc), and VPA(Q+Qc), we can observe that applying VPA solely to the Qc-network results
in very poor performance during online finetuning. For example, in the BallCircle environment, results
similar to naive finetuning shown in Fig. 1 were observed. On the other hand, applying VPA only to the
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Figure 6: This figure presents a performance comparison between Marvel, Cal-QL, and SAC with an offline
replay buffer. As shown, Marvel achieves the best overall performance.

Q-network leads to significant instability during finetuning (e.g., large error bands in BallCircle, CarCircle,
and HalfCheetah) and poor performance in terms of cost (e.g., the cost curve in CarRun shows a sharp
increase beyond the cost threshold). This occurs because if only the reward is optimistically estimated while
the cost is pessimistically overestimated, it causes the agent to neglect the cost during exploration, adversely
affecting finetuning performance. The experiments demonstrate that applying VPA to both the Q-network
and Qc-network simultaneously has the best results, which aligns with the motivation discussed in Section 3.
Comparing VPA(Q+Qc) with VPA(Q+Qc) with entropy, it is evident that optimistically estimating both
reward and cost, while aligning with the pretrained policy, proves to be effective.

Figure 7: In the figure, VPA(Q), VPA(Qc), and VPA(Q+Qc) represent applying VPA to the Q-network, the
Qc-network, and both simultaneously, without using the entropy term. This corresponds to setting α and
αc to 0 in Eq. 8 and Eq. 9. Conversely, VPA(Q+Qc) with entropy indicates that the entropy term is used
in VPA, meaning αc and αc are non-zero. In all experiments represented by the curves, we employed aPID.

20



Under review as submission to TMLR

D.2.2 Finetune Q-networks vs train new Q-networks in VPA

In Marvel, VPA finetunes the offline pretrained Q-networks. Fig. 8 illustrates the training curves when,
instead of finetuning the pretrained Q-networks, the Q-networks are retrained from scratch during the VPA
phase and subsequently finetuned online. As shown, finetuning the pretrained Q-networks achieves better
performance. This is because, although the pretrained Q functions may be inaccurate, they still provide
meaningful prior knowledge from the offline dataset and serve as a valuable starting point for Q function
finetuning. This would generally speed up the learning and lead to a better local optima compared to learning
from scratch based on the offline data from a random initial point. Moreover, considering the limited number
of steps allowed in VPA for efficiency, directly learning completely forgoes the knowledge learned offline and
can fail to find good Q estimations.

Figure 8: In the figure, “VPA (finetune)" refers to finetuning the offline pretrained Q-networks during the
VPA phase, while “VPA (from scratch)" refers to training new Q-networks from scratch during the VPA
phase.

D.2.3 Marvel’s Ability to Improve Pretrained Policies at Different Performance Levels

As shown in Fig. 9, regardless of the quality of the offline dataset or the performance of the pretrained
policy, Marvel is able to quickly achieve optimal performance with only a few online interaction steps. This
highlights the robustness of the Marvel algorithm to variations in the quality of the offline dataset.

D.3 Parameter sensitivity of aPID

D.3.1 PID

The SAC-lag algorithm in (Liu et al., 2024) utilizes PID control, with PID parameters carefully optimized.
However, if their provided parameters are used directly under the environmental settings, policy updates,
and Q-network update configurations of this paper, the performance is suboptimal. Fig. 10 presents a
comparison, showing that when the PID parameters from the FSRL library are applied, the performance
of online finetuning is significantly degraded. It is clear that the implementation of PID in our paper
indeed significantly outperforms the implementation of PID provided by FSRL. More importantly, even
with inappropriate PID parameters, aPID effectively boosts performance, achieving higher rewards while
maintaining more stable cost levels.

D.3.2 Parameters in aPID

α, β, and γ are the parameters used in aPID to adjust the PID parameters. These parameters enhance the
robustness of the initial settings for the PID parameters while being inherently robust themselves. Although
our method aPID introduces more parameters, this is very common for adaptive algorithms in order to
control the adaptation during the learning procedure. Fig. 11 illustrates the performance under various
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Figure 9: In the figure, “high" and “low" represent the different performance levels of offline pretrained policies
resulting from varying quality in the offline dataset. These policies are then finetuned online. The results
demonstrate that the Marvel algorithm is robust to both different offline dataset qualities and pretrained
policy performances.

combinations of α, β, and γ, with values ranging from 0.01 to 0.5. All curves achieve similar performance in
terms of reward and cost by the end of training. This demonstrates that these parameters are both easy to
tune and robust in their selection.

D.4 Parameter sensitivity of VPA

The selection of α and αc follows a similar approach to the selection of α in SAC. These values need to be
empirically determined based on the evaluation results of the pretrained policy, the entropy of the policy,
and the scale of the Q-values provided by the Q networks. It is crucial to ensure that the values of these
parameters do not cause the entropy term to dominate the Q-value update process. The tuning process
involves starting with small values, such as those in the range of 1 × 10−5. Considering that the entropy
value is typically a negative single-digit number, the upper limit for α and αc should generally be around
1 × 10−1. For relatively conservative offline pretrained policies, larger values of α and αc may be more
suitable.

To demonstrate the robustness of the chosen α and αc, we scaled the values provided in this paper by a
factor of five, ranging from 1×10−4 to 3×10−5. As shown in Fig. 12, the choice of different α and αc values
has minimal impact on the final performance.

D.5 Correctness of our implementation of SAC-lag

The primary goal of O2O safe RL algorithms is to achieve competitive performance with minimal en-
vironment interactions and in the shortest time by leveraging offline information to accelerate online
learning. In contrast, the algorithm in (Liu et al., 2024) (and other similar online algorithms) achieves higher
performance but relies on significantly more interactions. For example, in the BallCircle environment,
(Liu et al., 2024) utilized 1.5 million environment interactions, whereas our method required only 120,000
interactions (with an average of 600 interactions per gradient update). This significant reduction highlights
the efficiency of our approach, particularly in resource-constrained and safety-critical settings where the
number of online interactions is strictly limited.

To validate the correctness of our implementation of SAC-lag, we conducted additional experiments compar-
ing it to the SAC-lag implementation provided by the FSRL library under the same experimental settings
(including both environment interaction steps and policy update frequencies). The results, presented in
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Figure 10: “Our PID" and “Our aPID" refer to using the PID and aPID parameters proposed in this paper
for adjusting the Lagrange multipliers, respectively. Similarly, “FSRL PID" and “FSRL aPID" represent the
parameters provided by the FSRL library for the same purpose.

Fig. 13, show that both implementations demonstrate similar performance in terms of reward and cost. This
validates the correctness of our implementation and ensures its reliability as a baseline for comparisons in
our study.

D.6 Without VPA but with good initial values of the Lagrangian multipliers

As shown in Fig. 14, when VPA is not used and the Lagrange multipliers are updated using dual ascent (as
described in Eq. 3), even with appropriately chosen initial values for the Lagrange multipliers (“Warm Start
w/ lag init"), the performance, while better than initializing with zero (“Warm Start"), still falls short of
achieving optimal results.

E More Analysis of Marvel

Similar to the analysis presented in (Liu et al., 2023a), this section introduces an alternative way to evaluate
safe RL performance beyond training curves, as shown in Fig. 15. The cumulative cost represents the total
cost accumulated from all environment interactions up to a given timestep during training, while the max
reward denotes the highest reward achieved up to that timestep. The relationship between these two metrics
reflects the algorithm’s ability to achieve maximum reward performance under a certain amount of cost
incurred in the environment.

The figure shows that Marvel achieves the best max reward for a given cumulative cost. Moreover, when
targeting a specific performance level (i.e., reward), Marvel requires the least cumulative cost. This further
highlights Marvel’s superior performance from another perspective.
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Figure 11: The three numbers within “[ ]" represent the three parameters for adaptively adjusting Kp, Ki

and Kd, namely α, β and γ.

Figure 12: The two numbers inside “[ ]" represent the values of α and αc used in VPA, as described in Eq. 8
and Eq. 9.

F Experimental Details

We conduct all experiments in a single Nvidia 4080 GPU.

F.1 Spearman’s rank correlation coefficients

We aim to explore the effect of VPA on the distribution of the Q and Qc networks. Specifically, for different
state-action pairs, we need to analyze the true Q and Qc values versus the predicted values from the Q and
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Figure 13: “Our SAC-lag" refers to the SAC-lag algorithm implemented in this paper, while “FSRL SAC-
lag" represents the SAC-lag algorithm provided by the FSRL library. Using the same environment settings
(including interaction steps) and update frequencies as in this paper, the results from the FSRL library are
shown to be similar to ours.

Figure 14: In the figure, “Marvel" and “Warm Start" follow the legend defined in Fig. 1. “Warm Start w/ lag
init" represents the approach of empirically selecting appropriate initial values for the Lagrange multipliers
and performing online finetuning.

Qc networks. To achieve this, we choose to use Spearman’s rank correlation coefficient, which allows us to
quantify the ranking accuracy of the Q and Qc values over a sequence of state-action pairs.

Spearman’s rank correlation coefficient, denoted as ρ, is a non-parametric measure of the strength and
direction of the association between two ranked variables. It evaluates how well the relationship between
two variables can be described using a monotonic function, rather than assuming a linear relationship. This
makes it particularly useful in our case, where we are more concerned with the rank ordering of predicted
versus true Q and Qc values rather than their exact numerical differences.

Mathematically, Spearman’s rank correlation coefficient is given by:
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Figure 15: The legends in this figure follow the conventions of this paper and illustrate the relationship
between cumulative cost and maximum reward.

ρ = 1− 6
∑
d2

i

n(n2 − 1)
(16)

where di is the difference between the ranks of the corresponding values of the two variables (in this case,
the true and predicted Q or Qc values) for each state-action pair. n is the number of state-action pairs.

Spearman’s coefficient ranges from −1 to 1, where ρ = 1 indicates a perfect positive rank correlation (i.e., the
predicted Q and Qc values perfectly match the rank of the true values) ρ = −1 indicates a perfect negative
rank correlation, ρ = 0 indicates no correlation between the ranks of the predicted and true values.

By applying this measure, we can rigorously assess how well the Q and Qc networks preserve the relative
rankings of the true values across various state-action pairs, thus quantifying the alignment between the
predicted and true distributions.

F.2 Estimation of Q-values and Qc-values through Monte Carlo Simulations in Table 1

The Q-values represent the expected cumulative reward from a given state when following a specific policy,
while the Qc-values represent the expected cumulative cost. These values are estimated through Monte
Carlo (MC) simulations, making them accurate because the simulations explicitly capture the sequential
interactions of the agent with the environment under the given policy.

For the MC simulations, we use the pre-trained policy derived from the training phase. Each simulation
starts from a selected initial state. The number of interaction steps with the environment depends on the
specific settings of the environment. For instance, in the BallCircle environment, the maximum number of
steps is 200. A total of 10 Monte Carlo simulations are performed, and at each timestep, we record both
the reward and the cost. To compute the true Q-values and Qc-values, the recorded rewards and costs are
averaged cumulatively across all steps in the episodes.

Regarding the choice of the initial state, the term "dataset" refers to selecting the initial state from the
offline dataset used during VPA, whereas "random" indicates that the initial state is chosen randomly. This
approach ensures a diverse evaluation and enhances the robustness of the estimated values.

F.3 Experimental Setup

In Table 6, we present the specific hyper-parameters used in the experiments. Table 7 lists the configurations
of the environments used in the experiments.

G Proof of Theorem 1

We first define a modified VPA Bellman operator with entropy regularization as follows:

T VPAQ(s, a) = r(s, a) + γEs′∼P (·♣s,a)

a′∼π(·♣s′)

[Q(s′, a′)− α log π(a′♣s′)] (17)
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Hyper-parameter Value

Policy Learning Rate 5e-5

Q-network Learning Rate 3e-5

Qc-network Learning Rate 8e-5

Lagrangian Learning Rate 1e-4

SAC-lag: α 5e-3

VPA Entropy Coefficient : α 1e-3

VPA Entropy Coefficient : αc 5e-4

aPID: Kp 1e-4

aPID: Ki 1e-5

aPID: Kd 1e-5

aPID: α 0.05

aPID: β 0.05

aPID: γ 0.05

Batch Size 256

MLP hidden layer size [256, 256]

discount 0.99

τ 5e-2

replay buffer size 1e6

Table 6: Experiment hyper-parameters

Environment Episode length Cost threshold

BallCircle 200 20

BallRun 100 20

CarCircle 200 20

CarRun 200 20

AntCircle 500 20

AntRun 200 20

DroneCircle 200 20

HalfCheetah 1000 20

Hopper 1000 20

Swimmer 1000 20

Table 7: Environment setup

where α denotes the entropy regularization term αVPA or αVPA
c , depending on the context. We use α for

simplicity in following proof. We can have the following result to characterize the contraction property of
T VPA. π0 is the policy obtained in the offline phase which is the fixed policy in VPA and also the initial
policy of online finetune.

Considering the similarity in the derivations for Q and Qc, we will proceed with the derivation for Q, and
the derivation for the cost Q-function Qc follows in the same manner.

Assumption 1 (Concentrability). ∃C <∞ such that

max
(s,a)∈S×A

dπ0 (s, a)

dµ (s, a)
≤ C
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where dπ0(s, a) denotes the state-action distribution induced by the offline policy π0, and dµ(s, a) is the
distribution induced by the behavior policy µ that generates the offline dataset. For notational simplicity, we
refer to the behavior policy’s state-action distribution as µ, i.e., dµ(s, a) := µ.

Theorem 2 (Contraction Property). The VPA Bellman operator T VPA is a γ-contraction under the L2

norm weighted by the state-action distribution dπ0 :

∥T VPAQ1 − T VPAQ2∥2,dπ0 ≤ γ∥Q1 −Q2∥2,dπ0 . (18)

Here, γ ∈ (0, 1) is the discount factor, and ∥ · ∥2,dπ0 is defined as:

∥f∥2,dπ0 :=
(
E(s,a)∼dπ0

[
f(s, a)2

])1/2
.

Proof. Let ∆ = Q1 −Q2. Note that the entropy terms cancel when taking the difference between T VPAQ1

and T VPAQ2, so we have:

∥T VPAQ1 − T VPAQ2∥2
2,dπ0

= E(s,a)∼dπ

[(
γ Es′∼P (·♣s,a), a′∼π0(·♣s′)[∆(s′, a′)]

)2
]

≤ γ2
E(s,a)∼dπ0

[
Es′∼P (·♣s,a), a′∼π(·♣s′)[∆(s′, a′)2]

]
(by Jensen’s inequality)

= γ2
E(s,a)∼dπ0

[
E(s′,a′)∼P (·♣s,a)[∆(s′, a′)2]

]

= E(s′,a′)∼dπ0 [∆(s′, a′)2]

= ∥∆∥2
2,dπ0 .

Taking the square root of both sides gives:

∥T VPAQ1 − T VPAQ2∥2,dπ0 ≤ γ∥Q1 −Q2∥2,dπ0 .

The next result will show that the Q-value function is bounded under the conditions considered in this paper.

Lemma 1 (Bounded Value Function). Under the conditions that the maximum reward max ♣r♣ ≤ 1 and
max(s,a)∈S×A ♣ log π0(a♣s)♣ ≤ B, the value function of VPA satisfies:

♣Qπ0(s, a)♣ ≤ 1 + αB

1− γ . (19)

Proof. We start from the entropy-augmented Bellman equation:

Qπ0(s, a) = r(s, a) + γEs′∼P (·♣s,a)

a′∼π0(·♣s′)

[Qπ0(s′, a′)− α log π0(a′♣s′)] .

Taking absolute values and applying triangle inequality:

♣Qπ0(s, a)♣ ≤ E


∞∑

t=0

γt (♣r(st, at)♣+ α♣ log π0(at♣st)♣)
]

≤
∞∑

t=0

γt(1 + αB)

=
1 + αB

1− γ .
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As a direct consequence of the pointwise boundedness of Qπ0 , we can also derive an upper bound on its L2

norm under the state-action distribution dπ0 . Recall that the bound in Lemma 1 is given in terms of the
absolute value, i.e., ♣Qπ0(s, a)♣ ≤ 1+αB

1−γ for all (s, a) ∈ S×A. Since the ℓ∞-norm is defined as the supremum
of the absolute value over the domain, we have

∥Qπ0∥∞ = sup
(s,a)

♣Qπ0(s, a)♣ ≤ 1 + αB

1− γ .

Moreover, for any measurable function f and any distribution d, it holds that ∥f∥2,d ≤ ∥f∥∞. Therefore,
we obtain:

∥Qπ0∥2,dπ0 ≤ ∥Qπ0∥∞ ≤
1 + αB

1− γ . (20)

This result provides a useful uniform bound in the L2 sense, which will be instrumental in the subsequent
generalization and convergence analysis.

G.1 Final Convergence Bound for VPA

we are now ready to quantify how the Q–function produced by K steps of VPA evaluation deviates from the
fixed–point solution under the offline policy π0.

We begin by briefly reviewing Theorem 1. As the number of iterations K increases, the estimated Q-function
QK progressively moves away from the initialization Q0, and converges toward the fixed-point solution Q̂π

under the offline policy π0. The closeness between the two is measured in the weighted L2-norm ∥ · ∥2,dπ0 ,
which denotes the expected squared error with respect to the state-action distribution induced by policy π0.

Based on max(s,a)∈S×A
dπ0 (s,a)
dµ(s,a) ≤ C and Lemma 1, after K iterations, with probability at least 1− δ:

∥QK − Q̂π0∥2,dπ0 ≤
√
Cϵ̃

1− γ + γK∥Q0 − Q̂π0∥2,dπ0 . (21)

where ϵ̃ = 22(1+αB)2 log(♣F♣/δ)
♣D♣ +20dπ0,VPA

F . δ ∈ (0, 1) is the confidence level parameter, F denotes the function

class used to approximate Q-values, and ♣D♣ is the number of samples in the dataset. The term dπ0,VPA
F

represents the inherent Bellman evaluation error under policy π0 using the VPA operator. The parameter α
corresponds to the entropy coefficient in the VPA Bellman operator, and B = max(s,a) ♣ log π0(a♣s)♣ denotes
the maximum policy entropy. The constant C comes from the concentrability assumption, and γ ∈ (0, 1) is
the standard discount factor in Markov decision processes.

Proof. We decompose the error at iteration k using triangle inequality:

∥Qk − Q̂π0∥2,dπ0 ≤ ∥Qk − T VPAQk−1∥2,dπ0

︸ ︷︷ ︸

(I) Approximation error

+ ∥T VPAQk−1 − Q̂π0∥2,dπ0

︸ ︷︷ ︸

(II) Iteration error

.

Term (I): Based on the concentrability,

(I) ≤
√
C∥Qk − T VPAQk−1∥2,µ.

At each iteration k, the VPA algorithm performs a supervised regression to update the Q-function estimate
Qk, using regression targets constructed from the previous iterate Qk−1 under an VPA Bellman operator.
Given the offline dataset D, the Q-function is updated one step to minimize the following objective:

Qk ← arg min
Q∈F

♣D♣
∑

i=1

[Q(si, ai)− yi]
2

29



Under review as submission to TMLR

where F denotes the function class used to approximate Q-functions, and the target value yi incorporates
an entropy penalty defined as:

yi = ri + γ


Ea′∼π0(·♣s′

i
) [Qk−1(s′

i, a
′)− α log π0(a′♣s′

i)]


.

The training objective seeks to minimize the squared deviation between the predicted Q-values and the soft
Bellman target computed from Qk−1 at each iteration.

To bound ♣yi♣, using ∥Qk−1∥∞ ≤ 1+αB
1−γ (see Lemma 1) and the boundedness assumptions ♣ri♣ ≤ 1,

max(s,a)∈S×A ♣ log π0(a♣s)♣ ≤ B, we obtain:

♣yi♣ ≤ ♣ri♣+ γ (∥Qk−1∥∞ + αB)

≤ 1 + γ


1 + αB

1− γ + αB



≤ 2 · 1 + αB

1− γ = 2V̄ .

To control the one-step regression error, we apply the least squares generalization bound (Lemma 11) from
(Agarwal et al., 2019), which provides a high-probability upper bound on the expected squared error between
the regression output Qk and the target yi computed from Qk−1.

Specifically, given that (1) the supervised regression target yi is uniformly bounded, i.e., ♣yi♣ ≤ 2V̄ (2) the
function class F used to fit Qk is finite or has bounded covering number (3) the sample inputs (si, ai) are
drawn i.i.d. from the offline dataset, we can get the following bound with probability at least 1− δ:

∥Qk − T VPAQk−1∥2
2,µ ≤

22V̄ 2 log(♣F♣/δ)
♣D♣ + 20dπ0,VPA

F

where dπ0,VPA
F denotes the approximation error between the best function in F and the Bellman target under

policy π0.

Substituting V̄ = 1+αB
1−γ into the bound above:

∥Qk − T VPAQk−1∥2,µ ≤
√

22(1 + αB)2 log(♣F♣/δ)
♣D♣(1− γ)2

+ 20dπ0,VPA
F =

√
ϵ̃.

Thus, we can get the bound of approximation error (I):

(I) ≤
√
C∥Qk − T VPAQk−1∥2,µ ≤

√
Cϵ̃.

Term (II):Based on Theorem 2, we have:

∥T VPAQk−1 − Q̂π0∥2,dπ0 = ∥T VPAQk−1 − T VPAQ̂π0∥2,dπ0 ≤ γ∥Qk−1 − Q̂π0∥2,dπ0 .

Combining both (I) and (II) term:

∥Qk − Q̂π0∥2,dπ0 ≤
√
Cϵ̃+ γ∥Qk−1 − Q̂π0∥2,dπ0 .

Let Q0 be the Q-function learned offline, which is the starting point for VPA. Unroll the recursion:
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∥QK − Q̂π0∥2,dπ0 ≤
√
Cϵ̃+ γ∥QK−1 − Q̂π0∥2,dπ0

≤
√
Cϵ̃+ γ

√
Cϵ̃+ γ∥QK−2 − Q̂π0∥2,dπ0



=
√
Cϵ̃(1 + γ) + γ2∥QK−2 − Q̂π0∥2,dπ0

≤
√
Cϵ̃(1 + γ + γ2) + γ3∥QK−3 − Q̂π0∥2,dπ0

...

≤
√
Cϵ̃

K−1∑

k=0

γk + γK∥Q0 − Q̂π0∥2,dπ0

=

√
Cϵ̃

1− γ (1− γK) + γK∥Q0 − Q̂π0∥2,dπ0

≤
√
Cϵ̃

1− γ + γK∥Q0 − Q̂π0∥2,dπ0 .

H Limitation

While Marvel performs well in most environments, it does not exhibit the same effectiveness in certain
scenarios, such as in the AntRun environment. As depicted in Fig. 5, during finetuning, Marvel does not
significantly improve cost and reward metrics. Consequently, aPID evidently does not function optimally
in these settings. This suggests that further enhancements are needed for VPA to increase the agent’s ex-
ploratory behavior during online finetuning. Combined with aPID’s efficient control over costs, this approach
could achieve optimal performance with minimal interaction with the environment, thus minimizing the time
required.

31


	Introduction
	Preliminaries
	O2O Safe RL with Value Pre-Alignment
	Pre-Finetune Phase
	Finetune Phase

	Experiments
	Evaluation Setup
	Main Results
	Ablation Studies

	Conclusion
	Overview of Algorithm
	Related Work
	Details on Baselines
	More Experimental Results
	More experiments
	More ablations
	VPA on Q vs Qc vs Both and if VPA need entropy term
	Finetune Q-networks vs train new Q-networks in VPA
	Marvel’s Ability to Improve Pretrained Policies at Different Performance Levels

	Parameter sensitivity of aPID
	PID
	Parameters in aPID

	Parameter sensitivity of VPA
	Correctness of our implementation of SAC-lag
	Without VPA but with good initial values of the Lagrangian multipliers

	More Analysis of Marvel
	Experimental Details
	Spearman’s rank correlation coefficients
	Estimation of Q-values and Qc-values through Monte Carlo Simulations in Table 1
	Experimental Setup

	Proof of Theorem 1
	Final Convergence Bound for VPA

	Limitation

