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Abstract

High costs and risks involved in extensive environmental interactions hinder the practical
application of current online safe reinforcement learning (RL) methods. Inspired by recent
successes in offline-to-online (020) RL, it is crucial to explore whether offline safe RL can
be leveraged to facilitate faster and safer online learning, a direction that has yet to be fully
investigated. To fill this gap, we first show that naively applying existing O20 algorithms
from standard RL would not work well in safe RL due to two unique challenges: erroneous
Q-estimations, resulted from offline-online objective mismatch and offline cost sparsity, and
Lagrangian mismatch, resulted from difficulties in aligning Lagrange multipliers between
offline and online policies. To address these challenges, we introduce Marvel, the first
policy-finetuning based framework for 020 safe RL, comprising two key components that
work in concert: Value Pre-Alignment to align the learned Q-functions with the online
objective before finetuning, and Adaptive PID Control to effectively adjust the Lagrange
multipliers during finetuning. Extensive experiments demonstrate the superior performance
of Marvel over related baselines.

1 Introduction

Safe reinforcement learning (safe RL) (Gu et al., [2022; |Garcia & Fernandez, |2015|) prioritizes not only reward
maximization but also the adherence to safety constraints, enhancing its applicability in real-world scenarios.
For instance, an autonomous vehicle must reach its destination without exceeding a fuel limit. However,
solving safe online RL from scratch in fields such as robotics (Brunke et all [2022; Kiran et all [2021)) and
healthcare (Yu et all [2021; |Qayyum et al. [2020) is often prohibitive, due to the high risks and costs of
extensive environment interactions. To address this, offline safe RL (Zheng et al.l 2024 Ray et al., 2019) has
been introduced, enabling learning safe policies from a static dataset without online interactions. Yet, offline
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safe RL faces its own limitations (Ghosh et al., |2022)): it typically shows limited performance, relies on the
quality of the offline dataset, and suffers from the impact of out-of-distribution (OOD) actions, restricting
its effectiveness across varying scenarios.

The pretraining-and-finetuning paradigm is a well-known strategy in the fields of computer vision and nat-
ural language processing, for enabling fast online learning based on offline pretrained models. Following a
similar line, offline-to-online RL (020 RL) in the unconstrained setting (Nair et al., [2020; |Wang et al., 2024;
Zhang et al. 2023b)) and imitation learning (Yue et al., |2024; Ross et al [2011]) have recently gained promi-
nence. These approaches utilize policies (including Q-functions) derived from offline learning, along with
offline datasets, to expedite online finetuning, which effectively avoids extensive environmental interactions
in training policies from scratch. Note that in offline-to-online safe RL, the goal is not large-scale pretraining
but rather to obtain a safe warm start from offline data and perform limited online finetuning under safety
constraints. Thus motivated, a key insight is leveraging the pretraining-and-finetuning paradigm can also
potentially facilitate more efficient and practical online safe RL, which however has not been fully explored
in the literature. To fill this gap, we seek to answer the following question: Can we design an effective
offline-to-online approach for safe RL to address the limitations of both online and offiine safe RL, thereby
enabling fast online safe policy learning?
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Figure 1: “Steps" on the x-axis represent the number of policy gradient updates (i.e., optimizer updates).
For each update, the agent interacts with the environment for 3 episodes. This convention is followed in
the subsequent figures. In (a), we evaluate these methods in BallCircle from Bullet Safety Gym (Gronauer,
2022)), with a cost limit of 20. As shown, while “Warm Start” begins with a reasonably good initial policy, it
performs poorly and overly conservatively, even worse than “From Scratch” where the policy and Q-functions
are initialized randomly. This implies that directly finetuning the pretrained policy and Q-functions may
hinder online learning. In contrast, “Marvel” achieves impressive results, finding a policy with much higher
return in just a few online steps while adhering to the cost limit. In (b), t-SNE visualization of state in the
environment, reduced to 2D space. Each point represents a state, with rewards uniformly distributed across
the space, while costs are sparse, appearing as isolated points or clusters, reflecting their limited association
with states.

However, achieving this is highly nontrivial, and simply applying existing O20 algorithms in conventional
RL would not work well here due to unique challenges in safe RL. In Fig. [1] (a), "Warm Start’ refers to
using the offline pretrained policy and Q-networks directly to initialize an online safe RL algorithm. 'From
Scratch’ refers to purely online safe RL training. As illustrated, directly finetuning the offline pretrained
policy and Q-functions by using standard online safe RL often results in suboptimal performance and, in
some cases, complete training failures.

The reasons behind this phenomenon are as follows: a) Erroneous @Q-estimations resulting from objective
mismatch and offline cost sparsity. To avoid explorations beyond offline data and reduce the extrapolation
errors, offline safe RL algorithms typically introduce additional regularizations in the objective function to
push up the cost estimates of OOD actions, e.g., VOCE (Guan et al., 2024) and CPQ (Xu et al., 2022),
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leading to a different overall objective from standard online safe RL. More critically, the majority of state-
actions in offline datasets for safe RL usually are safe with zero cost (Fig. [1] (b)), resulting in a pretrained
cost Q-function that predicts extremely low cost for most in-distribution (IND) state-actions. By erroneously
giving high values for OOD state-actions and low values for IND state-actions, the pretrained cost Q-function
will conservatively force the online finetuning to stay in the state-action space similar to offline dataset and
be reluctant to explore (e.g., cost of “Warm Start” in Fig. . b) Mismatch of Lagrange multipliers. Many
online safe RL algorithms (Chow et al., 2018a; |Achiam et al., 2017) solve the constrained optimization
problem based on the primal-dual approach, which requires a synchronous update of Lagrange multipliers.
Nonetheless, initial values for these multipliers that match the offline policies cannot be obtained from offline
safe RL precisely. Using traditional dual ascent methods to update the Lagrange multipliers may result in
slow online learning even with accurately estimated Q-functions, ultimately degrading the performance of
the learned policy. In this work, we seek to design an effective O20 framework for safe RL by addressing
these two challenges above.

The main contribution of this work is the warM-st Art safe Reinforcement learning with Value prE-
aLignment (Marvel) framework, consisting of two key components: Value Pre-Alignment (VPA) and
Adaptive PID Control (aPID). VPA re-aligns pretrained Q-functions to closely match true Q-values of the
offline policy under the online learning objective by re-evaluating the offline policy based on offline data
alone. To further compensate VPA and address the multiplier mismatch problem, aPID quickly adapts
Lagrange multipliers based on cost violations instead of directly finding the best initial multipliers. Experi-
mental results demonstrate Marvel’s ability to quickly learn a safe, high-reward policy with minimal online
interactions, marking it as a pioneering solution in O20 safe RL that integrates seamlessly with existing
offline and online safe RL methods.

2 Preliminaries

Constrained Markov Decision Process. We consider a standard constrained Markov Decision Process
(CMDP) (Altman) 2021), defined by a tuple (S, A,T,R,C,v,n,c,). Here S is the state space, A is the
action space, T : S x A xS — [0, 1] is the transition probability function, R : S x A — [0, Ryax| is the reward
function, and C' : S x A — [0, Cphax] is the cost function. + € [0,1) is the discount factor, i represents the
initial state distribution, and ¢, is the cost threshold that sets the limit on cumulative costs for the policy.
A policy m : S — P(A) is a mapping from states to a probability distribution over actions, where m(a|s)
denotes the probability of selecting action a in state s. Let the policy my be parameterized by 6. Given a
policy 7, its cumulative reward is defined as R(7) = Erurr [>io ¥'7 (5, at)], where 7 = (so, ag, $1,a1,...) isa
trajectory induced by policy 7, and the expectation is taken over the distribution of trajectories. Similarly, its
cumulative cost is defined as C(7) = Erwr [Y 2 7 ¢(st, a¢)]. The reward Q-function for a policy 7 is defined
as: Q7 (s,a) = Eron Yoo (s, at) | o = s,ap = a]. Similarly, the cost Q-function Q7 (s, a) is defined as
the expected cumulative cost starting from the same state-action pair (s,a) and thereafter following policy
m QF(s,a) = Eron [Y 207 c(st,a0) | so = s,a9 = a]. In CMDP, the goal is to find an optimal policy 7*
that maximizes R(7), subject to the constraint that the cumulative cost C'(7) does not exceed a predefined
threshold ¢;. This can be formulated as the following:

max, R(m), s.t. C(m) < cn. (1)

To solve this, a common approach is to apply the Lagrangian relaxation method (Ray et al., 2019) by
introducing a Lagrange multiplier A to enforce the cost constraint, leading to the following primal-dual
formulation:

miny>o maxy [R(m) — A(C(7) — cn)], (2)

which can be solved by iteratively updating policy m and A. X is updated with the learning rate ay:

Atr1 = A + an(C(ms) — cen)- (3)

Online Safe RL. Primal-dual based algorithms have shown great effectiveness and superior performance
in the literature for online safe RL. Without loss of generality, we consider SAC-lag (Ray et al., 2019) as the
online algorithm, which integrates the widely used SAC algorithm (Haarnoja et al,|2018]) with the Lagrange
multiplier method. More specifically, SAC minimizes the following objectives for the actor (policy) and the
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critic (Q-function), respectively:

L£74°(0) = E o laloemlals) = Qs aiw)l, (4)

s~d, a~vmg(-|s

LMW = B Qs aiw) —y(r )] (5)
where y(r,s") = r + YEq/r, [Q(s, a;w') — alogm(a’ls’)], Q(s,a;w) is parameterized by w, Q(s, a;w’) is the
target reward Q-function parameterized by w’, d represents the data distribution in the replay buffer, and
a > 0 is some constant. To be applied in online safe RL, SAC-lag adapts SAC by using the Lagrangian
method, such that:

L3A90) =EsnaBann, (1) [ log mo(als) = (Q(s, a) — AQc(s, a))].
The optimization of the Q-functions for both reward and cost in SAC-lag is with Eq. [5]in SAC.

Offline Safe RL. Offline safe RL algorithms typically push up the cost estimations of OOD actions to
avoid exploration beyond the offline dataset D. Considering the comprehensive performance across various
environments, in this paper we consider the SOTA Lagrangian-based algorithm for offline learning, namely
CPQ (Xu et al) 2022)). More specifically, CPQ first generates OOD actions via a conditional variational
autoencoder (CVAE). The cost of the generated OOD actions is increased by minimizing the following loss
function for cost critic (Q.-function):

ngQ(UJC) =Ep |: (QC(S, a; UJC) — (C =+ ’yEa/Nﬂ.e(ng [Qc(5/7 a/; wé)]))2:| _ ¢E_9~D,QNV[QC(S, a; wc)]

where D represents distribution of (s,a,s’) in the offline dataset. Q.(s,a;w.) is parameterized by w,,
Qc(&a;wé) is the target cost Q-function parameterized by w’, v represents the distribution of OOD ac-
tions generated by the CVAE. Additionally, to ensure both constraint safety and in-distribution safety, CPQ
updates the reward Q-function using only state-action pairs that satisfy the cost threshold I:

‘agPQ (w) =Ep [(Q(& a; UJ) - (T + ’Y]Ea/Nﬂg(<‘S/) [H(Qc(sl7 a/; wc) < l)Q(5/7 CL/; w)]))Q]

where I(-) is the indicator function. The policy loss function is defined as: LEP?(0)
—Ep [Eammy (15 L(Qc(s, a;we) < 1)Q(s,a,w)]]. Similarly, when maximizing the reward, the policy only con-
siders state-action pairs that meet the safety constraints. By assigning a higher cost to OOD actions, CPQ
mitigates the OOD problem while meeting safety constraints.

020 Safe RL. To the best of our knowledge, Guided Online Distillation (Li et all |2024) is the only
work studying O20 safe RL, which leverages a large-scale DT based on GPT-2 (Radford et all |2019) as a
guide policy to accelerate online learning, by following the idea of Jump-start RL (Uchendu et al., [2023).
However, how to achieve fast safe online learning by finetuning a pretrained policy is still not clear due to
the mismatch of Lagrange multipliers and erroneous Q-estimations from objective mismatch and offline cost
sparsity.

In this work, we seek to enable faster and safer policy learning by finetuning policies and Q-functions
pretrained via offline safe RL, using standard online safe RL methods. Our approach does not rely on large
models and is intended as an initial step toward promoting further research on policy-finetuning-based 020
safe RL. In principle, any offline safe RL algorithm that outputs a policy and Q-functions can be used in the
offline pretraining stage. More details of related work are provided in Section

3 020 Safe RL with Value Pre-Alignment

As shown in Fig. [1} naively finetuning the offline policy for safe RL would not work and the finetuned policy
shows clear “inertia" in improving its performance: within a long period after online finetuning starts, its cost
stays far below the limit, but its reward is quite low and not improving. This implies that such a strategy
automatically “inherits" the conservatism from offline safe RL and is reluctant to actively explore to fully
utilize the safe gap below the cost limit. In this section, we delve into this failure of naive finetuning, which
points to two unique challenges for policy finetuning in O20 safe RL, i.e., erroneous offline Q-estimations and
Lagrange multiplier mismatch. To address these, we propose a framework for O20 safe RL, i.e., warM-stArt
safe RL with Value prE-aLignment (Marvel).
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3.1 Pre-Finetune Phase

Challenge I: Erroneous Q-estimations resulting from objective mismatch and offline cost sparsity. By learn-
ing from a fixed dataset only, offline safe RL typically suffers from large extrapolation errors for OOD actions
beyond the support of the dataset. A general principle to handle this is to penalize the reward/cost estima-
tions for the OOD actions in such a way that risky explorations outside the dataset are discouraged. The
Q-functions can be optimized as follows:

2

Q: minEp |:(Q(S, a) - (7‘ + 'yEa’Nweval('\s’)[Q(slv a’l)])) i| + 7/’ : P(S, aOOD)a (6)

Qc: minEp [(Qc(s, a) — (¢ + YEa/ mmpun (1) [@Qe (S, a/)}))ﬂ — e - Pe(s,a00D)- (7)

Here meyar denotes policy under evaluation. 1 - P(s,apop) and 9. - P.(s,apoop) are the penalty terms.
For instance, penalties are introduced in VOCE (Guan et al., [2024) to minimize the reward Q-values and
maximize the cost Q-values for OOD actions. CPQ (Xu et al., |2022)) increases the perceived cost of OOD
actions during Q-function and policy updates. In contrast, the optimization of Q-functions in online safe RL
is standard without any penalty terms, i.e, ) = 0 in Eq. [ and Eq. [7]

Obviously, Offline and online safe RL have distinct objectives for Q-functions, meaning pretrained Q-functions
may not accurately estimate values for state-action pairs encountered during online interactions. As a result,
offline policies tend to act overly conservatively, exploring only low-cost regions during online finetuning.
This limitation actually arises from the joint effect of (i) sparse offline costs—leading the pretrained cost
critic Q. to assign low costs to IND actions—and (ii) offline pessimism that assigns high costs to OOD
actions through conservative extrapolation. Under a Lagrangian update, the policy thus prefers to stay
within the low-cost IND region and avoids OOD regions that the critic deems high-cost, even when those
regions contain high rewards. However, effective online learning requires identifying state—action pairs with
both high rewards and low costs, which necessitates exploring areas with potentially higher costs. This
objective mismatch is even more pronounced in 020 safe RL due to the additional cost Q-function.

Solution: Value Pre-Alignment. To address the first challenge, a naive approach is to reevaluate the
offline policy 7y in online environments using Monte Carlo simulations, which however introduces additional
interaction costs. Motivated by the recent advances in Off-Policy Evaluation (OPE) (Uehara et al.| 2022)),
we borrow the idea from Fitted Q Evaluation (Hao et all |2021)) to align the offline Q-functions with the
online learning objectives for the offline policy, by using the offline dataset before online policy finetuning.
Starting from the pretrained Q-functions, we seek to minimize:

£570) = B [(@0510) = (0 Baery 1[0 1a0) — @ P ol )] 1)) )

Egle(wc) =Ep [(QC(S, a) - (7 Ea/wﬂo('\S’)[QC(slv a‘/) - aXPA IOg WO(GI|SI)} + C)>2:| (9)

where w denotes parameters of Q function and Q is target Q function. Here the entropy terms can result in
both higher rewards and costs for state-action pairs with high entropy, where pretrained policy is ‘uncertain’.
Offline policy remains unchanged during VPA to preserve knowledge extracted from offline data.

Assume that the mismatch between the offline policy-induced distributions of the learned policy 7y and the
offline behavior policy u is bounded by constant C' < oo, i.e., maxX s 4)esx 4 % < C. Let Qop, Qk, and
Q™ be Q-function obtained from offline phase, Q-function after K iterations in VPA and the optimal (fixed-

point solution) Q-function for reward of 7, respectively (similarly, Qc.0, Q¢ k, and Qfo for cost Q-functions).
We can have following result to justify effectiveness of VPA:

Theorem 1. Assume that the reward r and cost ¢ are bounded by 1 for all (s,a) € S x A. With probability
at least 1 — ¢, the Q-estimation errors in VPA can be bounded in the weighted Lo-norm | - ||2,q=0 under the
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state-action distribution induced by policy mg:

e

QK = Qllz.am0 < 7= 5 +7501Q0 — Q|2,avo (10)
A VCEé, A
Qe = QE°ll2,dm0 < 1= +7%Qc0 — Q7°ll2,a0 (11)

where € and €. are the approximation errors. It decreases as the size of the dataset increases while increases

with the values of VP4 and oY T4, respectively.

The full proof and the specific expression of € are provided in Appendix[H] As shown in Theorem [T} the overall
estimation error consists of two terms, i.e., the statistical error in the first term and the iteration error in
the second term. With a larger dataset and more expressive function approximator, the first term vanishes,
and the overall error is dominated by the iteration error, which decays exponentially with training steps
K. This indicates that VPA can yield increasingly accurate Q-function estimates. Moreover, since reward
optimization dominates policy updates at the early stage of online finetuning when Lagrange multiplier is
small, a larger uncertainty in reward Q-estimations is preferred to facilitate more online exploration. To
this end, Theorem [1| further implies that a larger a7 should be selected in Eq. |8 for reward Q-values,
whereas o) ? A in Eq. |§| should be smaller to ensure a more accurate estimation of cost Q-values. While the
theory suggests improved Q estimations for IND and OOD actions, our empirical findings show estimations
for OOD actions after VPA tends to be overoptimistic. This discrepancy is likely due to imperfect data
coverage and function approximation errors. Interestingly, while such overestimation is problematic and
avoided for offline RL. without online explorations, it is indeed beneficial for O20 RL during early phase
of online finetuning, which can encourage more active explorations beyond the offline dataset. While |[Luo
et al.|(2024) considered a similar analysis for unconstrained RL, we focus on the safe RL setting and further
introduce VPA, a pre-finetuning procedure incorporating an entropy term to mitigate erroneous Q-value
estimations.

Table 1: Spearman’s rank correlation coefficients of @-value and Q@Q.-value in BallCircle and CarRun.
“Random” refers to rollouts starting from randomly initialized state-action pairs (potentially OOD), while
“Dataset” refers to rollouts from state-action pairs sampled from the offline dataset.

‘ VPA ‘ BallCircle ‘ CarRun
‘ ‘ Random  Dataset ‘ Random  Dataset
Q-value Before -0.2387 -0.3852 -0.1143 -0.5078
After 0.5661 0.8278 -0.0125 0.8314
Qe-value Before -0.2521 0.1725 -0.2431 -0.4327
¢ After 0.3579 0.8252 0.1254 0.4937

To empirically characterize the performance of VPA in correcting Q-estimations, we leverage Spearman’s rank
correlation coefficient, which measures the strength and direction of a monotonic relationship between two
ranked variables. The reason is that relative ranking of Q-values are more important than absolute values
for policy update. We provide more details of Spearman’s rank correlation coefficient in Appendix [G.1]
Specifically, given a dataset collected by the offline policy in the environment, we compare the ranking of
learned reward/cost Q-values before and after VPA with that of estimated actual return via Monte Carlo
simulations. A large Spearman’s rank correlation coefficient implies that distribution of learned Q-values
is more aligned with the distribution of true Q-values. As shown in Table[I] it is evident that coefficient
increases significantly after VPA for both reward and cost Q-values, no matter if offline policy rolls out from
a seen state-action pair in offline dataset or from a randomly selected OOD state-action pair. This clearly
demonstrates effectiveness of VPA in aligning the pretrained Q-functions.

3.2 Finetune Phase

Challenge II: Lagrange multiplier mismatch. Conventional value-based online safe RL relies on updating
Lagrange multipliers alongside the policy and Q-functions during training, to push the overall cost below



Published in Transactions on Machine Learning Research (01/2026)

the limit while balancing between maximizing the reward and minimizing constraint violations. Although
the policy and Q-functions can benefit from offline pretraining for a warm start, offline safe RL algorithms
like CPQ (Xu et al.}|2022) and BEAR-lag (Ray et al.l [2019) cannot accurately estimate Lagrange multipliers
with regularizing strengths matching the cost of the offline policy, e.g., a small multiplier is not powerful
enough to push down the policy cost, while a large multiplier prevents active exploration of high-reward
state-action pairs. For instance, in BallCircle, the offline Lagrange multiplier value obtained using the
BEAR-lag algorithm is approximately 1500, whereas during online finetuning, the SAC-lag requires a value
of only about 0.65. The gap between these values precludes the direct use of offline Lagrange multipliers.
Improper initialization can lead to extensive constraint violations or training stagnation, an issue we term
as the Lagrange multiplier mismatch.
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. . 360 L L
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Figure 2: Comparison of online finetuning performance after VPA with two different initial values of the
Lagrange multiplier. In ‘VPA w/o init’, the initial value is set to 0, whereas we initialize Lagrange multipliers
with a good value found empirically (0.65 in BallCircle and 0.5 in CarRun) in ‘VPA w/ init’. The multiplier
is then updated using the standard dual ascent method.

On the other hand, as VPA promotes active exploration of high-reward state-actions by optimistically esti-
mating rewards and pessimistically estimating costs, it inevitably increases the risk of exploring high cost
state-actions, which in turn amplifies the need for appropriate Lagrange multipliers to quickly reduce the
constraint violations.

Figure [2| compares online finetuning performance in BallCircle when using VPA with: (1) a well-initialized
Lagrange multiplier vs. (2) zero initialization, both with standard dual ascent updates. A good initial
multiplier enables effective cost control, while poor initialization leads to significant constraint violations
and slower convergence. The results also imply that although VPA aligns the distributions of Q-values, it
may introduce high costs for online finetuning, which can be addressed with an appropriate initial Lagrange
multiplier.

Solution: Adaptive PID Control. Finding a good initial value of the Lagrange multiplier can address the
mismatch problem and mitigate the risk brought by VPA. However, obtaining such a value by manual tuning
is challenging, and no theory provides a reliable prediction. We therefore adapt the multiplier rapidly and
effectively by using a PID-style controller that has shown strong empirical performance in online safe RL
(Stooke et al.l |2020; [Yuan et al., [2022; |Zhou et al., [2021), and we tailor it to the O20 setting.

We use a discrete, position-form PID update. Let the discounted total episode cost be ¢; at training
iteration ¢, the limit be ¢, and the violation be e; = ¢; — ¢y,. Define an EMA-smoothed violation é =
apés—1+ (1 —ap)e; with smoothing factor a, € [0,1). Define an EMA-smoothed cost & = aqéi—1 + (1 —aq)c;
with smoothing factor ag € [0,1), and a derivative buffer of length d € N. The integral state and the
derivative signal follow the implementation:

I, = max(0, I;_1 + K;e;), Dy = max(0, & — &—q).

The multiplier is then
)‘t = maX(O, Kpét—FIt —|—Kth) (12)
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This position-form matches the code path where the proportional term uses €;, the integral term uses e,
and the derivative term uses a lagged difference of smoothed costs D;. The integral channel provides the
same role as dual ascent.

VPA relaxes offline conservatism and increases exploration of high-return state-action pairs during early
finetuning, which can raise violations. A larger control strength in early stages reduces violations rapidly,
and a smaller control strength near the limit stabilizes learning and suppresses oscillations. This motivates
an adaptive gain schedule.

Gains are adapted from a short buffer of smoothed costs. Let the buffer contain the last n values of ¢&

that are also used to form the derivative buffer. Define the average ¢; = %Z?:l Ct+1—; and the standard

deviation oy = \/% Yo (Gep1—i — &) With coefficients «, 3,7 > 0, the update is

Kp — Chp (Kp . (1 +a- Ct__Cth) 5 Kp,miru Kp,max) ) (13)

Ct
. Ct — Cth
K; <+ clip (Ki . (1 + - _> , K min, Ki,max) ) (14)
Ct
gt

Kd < Clip (Kd (1 + - c > y Kd,mina Kd,max) . (15)

t
This schedule increases (K, K;) when ¢ > ¢, to raise low-frequency gain and accelerate correction, and
decreases (K, K;) when ¢; < ¢, to avoid overreaction and improve stability. The schedule increases Ky
when o} is large to provide additional damping against short-horizon volatility. K4 tends to plateau naturally
once oy stabilizes. The minimum and maximum bounds of each PID gain are set to 0.1 and 10 times its initial
value, respectively. Since K is non-decreasing by design, we set K4 min only to keep notation consistent
with (Kp,min; Ki,min)~

Appendix [D-3.2] demonstrates that these parameters are easy to tune but also robust in their own selection
(e.g., same across all environments in the experiments).

In a nutshell, combining VPA and aPID leads to our proposed framework Marvel: 1) Given the pretrained
policy and Q-functions from offline learning, Marvel first applies VPA to align the pretrained Q-functions
for both reward and cost using the offline dataset; 2) Marvel next utilizes Lagrangian-based online safe RL
algorithms to further finetune both the pretrained policy and aligned Q-functions, by using aPID to update
the Lagrange multipliers. We present the algorithmic framework of Marvel in Appendix [A]

Here VPA and aPID work in concert: aPID addresses the Lagrange multiplier mismatch problem and quickly
pushes down the potential high cost resulted by VPA, whereas VPA facilitates active exploration of high-
reward state-action pairs and the usage of the pretrained policy as a warm-start for fast online finetuning
with aPID control.

4 Experiments

The objective of 020 safe RL is to utilize offline data to enable fast online finetuning, i.e., maximizing
rewards while satisfying the cost threshold, with minimal interactions with the environment. Therefore, an
important evaluation criterion for effective O20 safe RL methods is whether the method can quickly obtain
a good policy with high rewards and low safety violations only after a limited number of online interactions,
which is the setup considered in this paper. Due to the space limit, we delegate the experimental details and
some additional results to Appendix [D] and Appendix [G]

4.1 Evaluation Setup

Benchmarks. We consider the DSRL benchmark (Liu et al.| 2023b)) and select ten environments from the
Bullet Safety Gym (Gronauer), 2022)) and Safety Gymnasium (Ji et al} [2023)): BallRun, BallCircle, CarRun,
CarCircle, HalfCheetah, AntCircle, AntRun, DroneCircle, Hopper, and Swimmer (results for the last four
are in Appendix . The cost threshold is set to be 20 in these environments. As mentioned earlier in
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Section [2] we choose CPQ and SAC-lag as base algorithms in our proposed framework Marvel for offline
training and online finetuning, respectively, due to the effectiveness and representativeness of them. Each
experiment was conducted using five random seeds, and the results were averaged to generate the final
learning curves. We use a dataset that includes data provided by DSRL (Liu et al)|2024) and random data
generated by a random policy to control the quality of the offline dataset.

Baselines. While Guided Online Distillation (Li et al., |2024) is the only work studying O20 safe RL, its
usage of large pretrained model leads to an unfair comparison with standard RL frameworks using typically
small-scale policy networks. In this work, we compare Marvel with JSRL (Uchendu et al |2023)), as Guided
Online Distillation mainly follows this approach except using DT as the pretrained policy. Besides, we
further adapt some SOTA approaches in O20 RL to 020 safe RL, including SO2 (Zhang et al. 2024]) and
PEX (Zhang et al.l 2023a), and a Warm Start approach as baselines. SO2 improves Q-value estimation
through Perturbed Value Updates, JSRL and PEX utilize offline pretrained policies for exploration, and
Warm Start directly finetunes the policy and Q-networks from offline safe RL without modifications. We
compare with online learning from scratch, namely From Scratch, i.e., SAC-lag, which can achieve strong
performance but require a large number of online interactions. For completeness, we also evaluate the
performance of Cal-QL (Nakamoto et al., [2023) and SAC-Lag with an offline replay buffer across
four representative environments: BallCircle, BallRun, CarCircle, and CarRun. The corresponding results
are presented in Fig. @ Given the interaction and network update settings in our experiments, we compare
our implementation of SAC-lag with the standard FSRL library (Liu et al., 2024)) in Appendix and the
results show that their performance is highly comparable.

More importantly, aPID is used to update Lagrange multipliers in all these baseline methods (instead of
traditional dual ascent), which in fact already improves the performance of these methods compared to their
original designs. These baselines provide a meaningful comparison to demonstrate the effectiveness of Marvel,
but also indicate the need of addressing the two challenges simultaneously for O20 safe RL. We provide the
detailed descriptions of each baseline algorithm in Appendix[C] Additionally, we provide a comparison with
CDT (Liu et al., 2023c)), using a smaller decision transformer (around 600k parameters) than the one in (Li
et al.| [2024)), in Appendix and also demonstrate Marvel’s superiority over baselines with large models.

Table 2: The “offline” column represents the performance of the offline safe RL pre-training. We present
the performance at 20% of the total training steps during the finetuning process, as well as the performance
after all the training steps are completed, e.g. “100 steps r/c" and “500 steps r/c" for reward and cost,
respectively. Cost values greater than 20 are shown in gray. Bold numbers represent the highest reward
while satisfying the cost threshold. The plots are in Appendix E

Environment ‘Marvel (ours) ‘From Scratch‘ ‘Warm Start‘ SO2 ‘ JSRL ‘ PEX ‘ Offline
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panmun | ] e /0s | s/ ne ”J% :i“’f. Mok 121 | oot | oo sk | 202030
Cardircle | 0 e | Sana ) 108 | 12 ar | oo oit | A8 fas | 1/ i00 | sa) s | 290/ 140
CarRun iggiiﬁi ffﬁ :i;géigg ‘ 2935/1742; ‘ 39£Z/1‘Z; ‘ ;;ggﬂg; ‘711;((;)’.'(;4 Ilji'; |1\>)§(lyl st\ 5440 /720
e A e BV B T T IV TP T
HalfCheetah ‘j:)[i)sst:eppss::rr//cc igﬁﬁgfégiﬁ\ 945;/ 03\ 1304.‘1)/1;.113 1}::;’4) ;)Tul 20%.16//03.[)8 ‘ 7_1205.6;3//%92 1130 /17.0
Bt e | 0 7 | SO | T 0 e e | | e s e o
ot arsen | | ST a0 | o )| e | 0 | R [ e




Published in Transactions on Machine Learning Research (01/2026)

4.2 Main Results

As shown in Table [2 Marvel demonstrates better or comparable performance compared to all baselines
consistently across all environments, i.e., achieving the higher return while keeping the cost below the
threshold. In particular, as shown in Fig. [d] Marvel demonstrates superior stability compared to other
baseline algorithms. Note that a key aspect of safe RL is ensuring safety, which requires keeping the cost
below the predefined threshold while maximizing reward. Marvel achieves this balance effectively, as its cost
remains below the threshold in all environments. In stark contrast, the naive warm start method proves
largely ineffective, often causing performance drop or stagnation during training. Without aligning the Q-
estimations, both JSRL and PEX struggles a lot to improve during online learning and fails to control the
cost. While SO2 mitigates the inaccuracies of Q-estimations related to O20 RL, it does so only to a limited
extent and cannot maintain its performance consistently across different environments, even though aPID
has already been used to boost its performance. On the other hand, the fact that SO2 performs better than
other baselines further indicates 1) the great potentials of enabling fast and safe online learning through
policy finetuning (compared to using the pretrained policy only as a guide policy as in JSRL and PEX) and
2) the need of correcting pretrained Q-estimations before online finetuning.

More importantly, Marvel demonstrates the ability to find a good and safe online policy very quickly with
minimal online interactions, as shown in Fig. [4| and Fig. [5| (shown in Appendix @[) For instance, in the
BallCircle and CarCircle environments, near-optimal performance can be achieved with merely 20 steps
of gradient updates. By leveraging offline policies and aligned Q-functions, Marvel rapidly explores high-
reward regions while addressing the overly conservative nature of offline pretrained policies. Although initial
finetuning may cause a cost spike (Fig. [4]), aPID effectively reduces costs by guiding the policy towards low-
cost state-actions in high-reward regions. Also, Marvel achieves the best max reward for a given cumulative
cost, illustrated in Fig. [I6] demonstrating superior performance while incurring fewer violations in the
environment.” Notably, the same aPID parameters are used across all environments, showcasing its
robustness and adaptability.

Compatibility of Marvel: In 020 safe RL, compatibility with different offline safe RL methods is es-
sential. Given the non-interactive nature of offline training and the potential unavailability of algorithms
due to privacy concerns, this compatibility becomes even more critical compared to online algorithms. Our
design of Marvel naturally fits a variety of offline safe RL methods and only requires a pretrained pol-
icy and Q-functions. To further verify this, the last two rows of table [2] show the training process using
BEAR+Lagrangian (BEAR-lag) (Kumar et al.| [2019) in the offline phase and SAC-lag in online finetuning.
Note that BEAR-lag was not specifically designed for offline safe RL, but rather it incorporates the Lagrange
multiplier into offline RL. In BallCircle, Marvel achieves the highest reward while satisfying cost constraints,
and in the CarRun environment, it also outperformed others while maintaining cost below the threshold.
This highlights the flexibility of our algorithm across different offline safe RL methods.

4.3 Ablation Studies

We conduct experiments in various setups to better understand Marvel. As shown in Fig.[3] the performance
is best when both VPA and aPID are used. In contrast, if only VPA is used with traditional dual ascent
during online finetuning, it significantly slows down safe online learning and takes a much longer time to
reduce the cost. If only aPID is applied without VPA, the learning performance is very similar to naive
policy finetuning, which struggles to improve due to the erroneous Q-estimations. We also evaluate the
effectiveness of adaptive control in aPID, by comparing the performance between Marvel (VPA+aPID) and
Marvel with aPID replaced by PID (VPA+PID). In Fig. [3] the training curve for cost exhibits significant
fluctuations without using aPID. More critically, when the cost is close to the limit, PID cannot reduce
its control strength. As a result, even if on average the cost of VPA+PID is close to the threshold, it is
very frequent that the real-time cost exceeds the limit substantially, which is in fact not safe. aPID can
adjust A more precisely, which directly affects how the policy balances reward and cost at every timestep.
In contrast, a delayed or inaccurate adjustment of the Lagrange multiplier alters the relative weighting of
reward and cost, thereby degrading reward performance, as observed in the CarCircle and HalfCheetah plots

(Appendix |D.2).
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Figure 3: ‘aPID’ refers to adaptive PID applied only during online finetuning; ‘VPA’ refers to VPA is only
used in pre-finetuning. ‘VPA+PID’ uses standard PID and VPA, while ‘VPA+aPID’ combines VPA with
adaptive PID. VPA+4aPID shows the best learning efficiency, stability, and convergence.

Table 3: Performance comparison between VPA+aPID (which is standard Marvel), VPA, and Warm Start
when agent have different performance of offline policy. Note that although the second line shows Marvel
exceeding the cost threshold, the violation is minor and can be corrected with just a few update steps.

Environment ‘ VPA+aPID ‘ VPA ‘ ‘Warm Start ‘ Offline
100 steps: r/c | 580.3 / 19.2 | 579.0 / 18.4 54.4 /0.0 166.0 / 11.0

BallCircle | 500 steps: r/c | 610.1 / 19.6 | 511.3 / 16.9 | 176.6 / 18.5 ’ '
100 steps: r/c | 543.6 / 20.5 | 576.8 / 92.1 | 430.7 / 13.5 446.0 / 6.0

500 steps: r/c | 605.4 / 20.9 | 400.1 / 24.3 | 269.7 / 17.4 ’ '
100 steps: r/c | 283.8 / 20.0 | 320.1 / 49.7 107.3 / 8.8 145.0 / 17.0

. < 3 91 C 1m0 A ¢ $ . .

CarCircle | 200 steps: r/c | 327.2 / 19.5 | 306.3 / 21.9 | 176.4 / 20.8

100 steps: r/c | 330.6 / 18.8 [ 2606 / 19.6 [ 732/ TL1 [ o0

500 steps: r/c | 341.3 / 19.5 | 283.1 / 17.2 | 141.6 / 24.1 ’ '

In practical O20 safe RL training, the quality of offline datasets can vary significantly, making it essential to
evaluate whether Marvel maintains strong performance under different pretrained policies and Q-networks.
As shown in Table [3] we train offline policies (and corresponding Q-networks) with varying quality lev-
els. Marvel rapidly achieves near-optimal performance (with only a few online interaction steps, shown in
Figure E[) regardless of the quality of the offline dataset or the effectiveness of the pretrained policy. This
demonstrates the robustness of Marvel to variations in offline data quality. Furthermore, the algorithm
consistently enforces cost constraints while improving rewards, thereby accommodating pretrained policies
and Q-networks with diverse performance levels.

Regarding the necessity of each component of Marvel, Table [4] illustrates the importance of applying VPA
to both the Q and Q¢ networks initialized from offline pre-trained models, as well as the contribution of the
entropy term. Finetuning the pretrained Q-networks also outperforms learning new Q-networks from scratch
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in VPA, which implies that the pretrained Q-networks, although not accurate, can still provide meaningful
prior knowledge.

The training curves corresponding to Table [3] and Table [ are presented in Appendix [D-2] which further
validating Marvel’s robustness and design choices.: 1) Through extensive experiments across diverse envi-
ronments, we confirm that the algorithm consistently maintains cost constraints while improving rewards
across offline datasets of varying quality, which consequently accommodates offline pretrained policies and
Q-networks with different performance levels. 2) The training dynamics confirm the rationality of VPA’s
design, particularly the necessity of updating all Q-networks in conjunction with the entropy term. 3) Pa-
rameter sensitivity analyses in Appendix [D.3] and Appendix [D-4] reveal acceptable performance variance
despite the introduced hyper-parameters. Furthermore, we verify correctness of our baseline implementation
by demonstrating comparable performance to the standard library FSRL (Liu et al., |2024)) under identical
experimental settings, including interaction steps and policy update frequencies.

Offline ‘ Q Qc Entropy Pre-trained Q ‘ Performance

v Y v v 603.9 / 19.8

v Y v 511.3 / 16.9

166.0 / 11.0 | v v 364.7 / 11.2
v v 64.1 /5.3

v Y v 1.2 / 51.0

Table 4: Ablation study of VPA on BallCircle. “Offline” shows the initial policy/Q values. “Entropy”
indicates whether entropy regularization is used. “Q”/“Qc” columns denote the targets of VPA. “Pre-
trained Q” shows if VPA starts from an offline Q network. “Performance” reports final reward and cost.

5 Conclusion

020 safe RL has great potential to put safe RL on the ground in real-world applications, by leveraging offline
learning to facilitate fast online safe learning. In this paper, we proposed the first policy-finetuning based
framework, namely Marvel, for O20 safe RL. In particular, by showing that naive finetuning would not work
well, we identified two unique challenges in O20 safe RL, i.e., the erroneous Q-estimations and Lagrangian
mismatch. To address these challenges, Marvel consisted of two key designs: 1) value pre-alignment to
correct the Q-estimations before online finetuning, and 2) adaptive PID control to dynamically change the
control parameters so as to rapidly and appropriately control the cost. Extensive experiments demonstrate
the superiority of Marvel over multiple baselines. More importantly, Marvel is compatible to a variety of
offline and online safe RL approaches, making it very practically appealing. We hope our work bridges the
gap between offline and online safe RL, distinct from unconstrained RL, and enhances the efficiency of online
safe RL, paving the way for practical applications.
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A

Overview of Algorithm

Algorithm 1 Marvel

1:

9:
10:
11:
12:
13:

Input: Offline dataset Dyss, environment &; offline RL loss functions {L?fq’f, Lf;}’c, L’OT]’} f}, and on-
line RL loss functions {L3y, L?ﬁc, L7 }; offline learning rates (ngf ! 772’9{ . peff): online learning rates
(ng" 1o, na); PID hyper-parameters and initial controller state (Ao, lo, Do)

% These loss functions define a generic actor—critic safe RL algorithm: L9¢ and L%oc are the objective
functions for learning the reward critic QQ and the cost critic Q., respectively; L™ is the policy optimiza-
tion objective. Marvel treats them as modular components, allowing any safe RL algorithm to be plugged
into the framework.
% In our implementation, we instantiate the offline losses using CPQ (Xu et al., |2029) and the on-
line losses using SAC-lag (Ray et al., 12019), but Marvel is compatible with any actor—critic safe RL
formulation.
Output: Trained policy parameters 6, critic parameters ¢, ¢., online replay buffer D,,,, and final La-
grange multiplier A.
Initialize network parameters ¢, ¢, 6; initialize D,,, < 0; set (X, I, D) < (Ag, Lo, Do).
while in offline training phase do

Sample minibatch (s,a,r,¢,s") ~ Dosy

6 =g VoL3

Qe
(bc — (Zsc - ﬂgg{qubc[/of})c

00 —n VoL,
end while
% VPA with offline dataset
while in VPA phase do

14:  for each VPA step do

15: Sample transitions (s, a,7,¢,s") ~ Doy

16: Update @ by Eq.[8] update Q. by Eq. [

17:  end for

18: end while

19: while in online training phase do

20:  Roll out one episode in £ with policy g, collect transitions (s;, a;, 7, ¢;, Si+1) and append to Dy,
21:  Compute total episode cost ¢; and update EMA-smoothed cost ¢
22:  for each update step do

23: Sample minibatch (s, a,r,¢,s") ~ Doy,

24: b & — n&”Wngrf

2B et Be— NGV Lon®

26: 0—0—n"VelLle

27: Update X\ by Eq. [[2] with input &

28: Update PID parameters by Eq. [I5]

29:  end for

30: end while

B Related Work

Online Safe RL. Online safe RL approaches can be generally divided into several categories. The first
category includes primal-dual based methods, such as PDO (Chow et al., [2018a), which combines PPO
(Schulman et al., 2017) with the Lagrange multiplier method to obtain a policy that satisfies safety con-
straints. CPPO-PID (Stooke et al., |2020) combines PID control with Lagrangian methods to dampen cost
oscillations. Similar Lagrangian-based methods are applied in conjunction with other unconstrained safe RL
algorithms, such as TRPO-lag, PPO-lag, and SAC-lag. CPO (Achiam et al., [2017) inherits from TRPO
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(Schulman)|, [2015)), optimizing with the Lagrange multiplier method within the trust region. CUP
let all |2022)) extends CPO by incorporating the generalized advantage estimator. In comparison, RCPO
(Tessler et al) [2018) uses different update rates for the primal and dual variables. Two-stage iterative
methods have also been developed for online safe RL, e.g., PCPO (Yang et al., [2020) and FOCOPS
. Besides the primal-dual based methods, primal methods, which are also known as Lyapunov
methods, have been leveraged in some studies for online safe RL. For instance, IPO uses
logarithmic barrier functions. P30 (Zhang et al) [2022) employs an exact penalty function to derive an
equivalent unconstrained objective and restrict policy updates within the trust region. (Chow et al., 2018b)
leverages Lyapunov functions to handle constraints, which contains two parts, safe policy iteration and safe
value iteration. Additionally, some studies (Wabersich et al 2023;|Choi et al., 2020) borrow techniques from
the control theory, such as HJ reachability (Bansal et al., 2017, |Yu et al., 2022) and control barrier functions
(Ames et al., [2019)), to ensure state-wise zero costs.

Offline Safe RL. Offline safe RL seeks to learn a safe policy from static datasets without online environ-
mental interactions. Similar to online safe RL, Lagrangian methods can still be applied here, by adapting
offline unconstrained RL algorithms like BCQ (Fujimoto et al.,|2019) and BEAR (Kumar et al., 2019) to the
safe RL setting. CPQ uses a VAE to detect OOD (Ren et al.| 2019) actions and penalizes
them in terms of cost. COptiDICE (Lee et al.l 2022a)) extends OptiDICE (Lee et al., |2021) by adding safety
constraints and derives a safe policy through the stationary distribution of the optimal policy. FISOR
decouples the process of satisfying safety constraints from maximizing rewards and employs a
diffusion model as the policy. VOCE (Guan et al., [2024)) estimates Q-values of both cost and reward in a
pessimistic way, mitigating extrapolation errors caused by OOD actions. Decision transformer (DT) (Chen

2021) has also been applied to safe RL, leading to constrained decision transformer (Liu et al., 2023c).

020 Unconstrained RL. 020 RL has recently attracted much attention in the unconstrained case, where
a policy pretrained on an offline dataset is used to assist online policy learning, e.g., through finetuning or
serving as a guide policy. More specifically, (Hester et al., 2018; [Nair et al. |2018; Rajeswaran et al., 2017)
and (Rudner et al., 2021)) explore various combinations of offline demonstration data with online learning.
The core idea is that pure offline RL often struggles with limited performance due to heavy reliance on
dataset quality. However, if interaction with the environment is allowed, pflline pretrained policy can be
finetuned for improved performance. However, naive implementation of this process often leads to suboptimal
performance (Nair et al., |2020; [Uchendu et al., 2023). AWAC (Nair et al., |2020) prioritizes actions with
high advantage estimates, while AW-Opt (Lu et al., [2022) builds on AWAC by applying positive sample
filtering and using hybrid actor-critic exploration during online finetuning. (Lee et al. [2022b)) finetunes the
pretrained policy by balancing the offline and online datasets. FamO20 (Wang et al.||2024)) trains a family of
policies using a universal model and then employs a balance model to select the most suitable policy for each
state. Cal-QL (Nakamoto et all [2024) constrains the updates to the Q-network during online finetuning to
prevent underestimation of the Q-values. SO2 (Zhang et al. 2024) improves Q-value estimation by updating
Q-values more frequently and using noise-augmented actions. Instead of directly finetuning the pretrained
policy, Jump-start RL (Uchendu et al. |2023) and PEX (Zhang et all [2023a) follows another direction to
leverage the offline policy, by using it to guide the update of the online policy during online learning.
propose to finetune an offline policy without retaining the offline data. Their method first
warms up training by interacting with the environment using the offline policy before performing any policy
updates.

C Details on Baselines

Considering the characteristics of safe RL, which requires keeping the cost below a certain threshold, not all
020 unconstrained RL algorithms are suitable for 020 safe RL. For instance, AWAC (Nair et al.] [2020]),
which maximizes the advantage function, has not yet been applied in the safe RL context. We compare
Marvel with the following baselines:

SO2 (Zhang et al.,[2024). By analyzing Q-value estimation in offline to online transitions, the SO2 algorithm
achieves more accurate Q-value estimation through Perturbed Value Update and by increasing the frequency
of Q-value updates.
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JSRL (Uchendu et al., [2023). JSRL employs an offline pretrained policy as the exploration policy and a
policy under training during the online phase as the target policy. Initially, the exploration policy is used,
followed by the target policy during online interaction to facilitate curriculum learning. To adapt to the safe
RL setting, we update the Lagrange multipliers using the aPID method when updating the target policy.

PEX (Zhang et al., [2023a)). Similar to JSRL, PEX uses an offline pretrained policy and a policy under
training during the online phase for online interaction. However, PEX selects one of the actions based on
the Q-networks’s value estimation of actions chosen by the two policies. To meet the safe RL requirements
concerning cost, like the modifications to JSRL, we use the aPID method to update the Lagrange multipliers.

Cal-QL (Nakamoto et al., 2023). This method fine-tunes policies using a better-calibrated Q-function. We
employ the aPID method to update the Lagrange multipliers.

SAC with an offline replay buffer. This baseline naively incorporates offline data into the online replay
buffer. As with our modifications before, we use the aPID method to update the Lagrange multipliers.

Warm Start. We directly utilize the policy, Q-network, and Qc-network networks obtained from offline
safe RL without any modifications (no VPA and aPID), and apply online safe RL algorithms for finetuning.

We selected SO2, JSRL, PEX and Warm Start as baselines because they represent prominent methods in
020 RL, and adapting them to the safe RL context provides a meaningful comparison. Including these
baselines allows us to demonstrate the effectiveness of Marvel in a fair and relevant context.

D More Experimental Results

D.1 More experiments

In Fig. @] we provide training curve of Marvel and baseline algorithms in BallRun, BallCircle, CarRun,
CarCircle, HalfCheetah, AntCircle. In environments like BallCircle and CarCircle, Marvel finds a good
policy within less than 15 steps, dominating baseline methods in both performance and speed. Note that all
approaches indeed start from the offline policy and Q-functions, i.e., the same point at step 0 (ignored in all

figures).

In Fig.[f] we additionally provide experimental results in more environments, including DroneCircle, AntRun,
Hopper, and Swimmer. The results indicate that our proposed Marvel algorithm achieves competitive
performance across these settings.

In Fig. [6] Cal-QL, which fine-tunes policies using a better-calibrated Q-function, demonstrates reasonable
performance. However, since it was not originally designed for safe reinforcement learning, its direct appli-
cation in this setting is inappropriate, since it fails to fully address the issues of erroneous Q-estimations
and Lagrangian mismatch, as illustrated before. Similarly, the naive use of offline data, SAC with an offline
replay buffer, fails to achieve satisfactory outcomes, as its incurred cost substantially exceeds the predefined
threshold. This violation of safety constraints highlights the algorithm’s inability to succeed under such
conditions.

In Table [5] We conpare our Marvel with CDT(Liu et al., [2023c)). Due to CDT’s design for offline settings,
we use the replay buffer to apply CDT in the online setting, which is represented as "CDT-finetune" in the
table. It can be seen that CDT, having more parameters, generally performs better than CP(Q in the offline
phase. However, since the finetuning process was not specifically designed, performance stagnation and even
degradation occur during finetuning.

D.2 More ablations
D.2.1 VPA on Q vs Qc vs Both and if VPA need entropy term

Fig. [7] presents more detailed ablation experiments, including whether VPA needs to be applied to both the
Q-network and Qc-network, as well as whether the entropy term should be added to VPA. By comparing
VPA(Q), VPA(Qc), and VPA(Q+Qc), we can observe that applying VPA solely to the Qc-network results
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Figure 4: Performance comparison between Marvel and baseline methods in multiple environments. It is
clear that Marvel can quickly find a high-return policy while keeping the cost below the limit.
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Figure 5: We provide experiments on more environments.

in very poor performance during online finetuning. For example, in the BallCircle environment, results
similar to naive finetuning shown in Fig. [1] were observed. On the other hand, applying VPA only to the
Q-network leads to significant instability during finetuning (e.g., large error bands in BallCircle, CarCircle,
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Figure 6: This figure presents a performance comparison between Marvel, Cal-QL, and SAC with an offline
replay buffer. As shown, Marvel achieves the best overall performance.

Table 5: Comparison of Marvel and CDT

Environment Offtine Online
CPQ CDT Marvel (ours) CDT-finetune
BallCircle |166.0 /11.0 521.7 / 18.3 603.9 / 19.8 468.7 / 9.3
BallRun 262.0 / 3.0 448.5 / 48.5 306.6 / 5.5 449.0 / 50.3
CarCircle 265.0 / 14.0 328.7 /18.1 341.3 / 19.5 320.2 / 23.1
CarRun | 544.0 / 72.0 553.9 /25.1 | 547.5 / 18.2 542.0 / 23.3
AntCircle 4.0 / 39.0 221.6 / 54.7 5.6 /0.9 161.2 / 36.4
HalfCheetah | 113.0 / 17.0 1358.0 / 24.3 | 1544.8 / 20.0 1536.7 / 3.9

and HalfCheetah) and poor performance in terms of cost (e.g., the cost curve in CarRun shows a sharp
increase beyond the cost threshold). This occurs because if only the reward is optimistically estimated while
the cost is pessimistically overestimated, it causes the agent to neglect the cost during exploration, adversely
affecting finetuning performance. The experiments demonstrate that applying VPA to both the Q-network
and Qc-network simultaneously has the best results, which aligns with the motivation discussed in Section [3]
Comparing VPA(Q+Qc) with VPA(Q+Qc) with entropy, it is evident that optimistically estimating both
reward and cost, while aligning with the pretrained policy, proves to be effective.

D.2.2 Finetune Q-networks vs train new Q-networks in VPA

In Marvel, VPA finetunes the offline pretrained Q-networks. Fig. [§] illustrates the training curves when,
instead of finetuning the pretrained Q-networks, the Q-networks are retrained from scratch during the VPA
phase and subsequently finetuned online. As shown, finetuning the pretrained Q-networks achieves better
performance. This is because, although the pretrained Q functions may be inaccurate, they still provide
meaningful prior knowledge from the offline dataset and serve as a valuable starting point for Q function
finetuning. This would generally speed up the learning and lead to a better local optima compared to learning
from scratch based on the offline data from a random initial point. Moreover, considering the limited number
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Figure 7: In the figure, VPA(Q), VPA(Qc), and VPA(Q+Qc) represent applying VPA to the Q-network, the
Qc-network, and both simultaneously, without using the entropy term. This corresponds to setting o and
. to 0 in Eq. |8|and Eq. @ Conversely, VPA(Q+Qc) with entropy indicates that the entropy term is used
in VPA, meaning «. and . are non-zero. In all experiments represented by the curves, we employed aPID.

of steps allowed in VPA for efficiency, directly learning completely forgoes the knowledge learned offline and
can fail to find good Q estimations.
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Figure 8: In the figure, “VPA (finetune)" refers to finetuning the offline pretrained Q-networks during the
VPA phase, while “VPA (from scratch)" refers to training new Q-networks from scratch during the VPA
phase.

D.2.3 Marvel’s Ability to Improve Pretrained Policies at Different Performance Levels

As shown in Fig. 0] regardless of the quality of the offline dataset or the performance of the pretrained
policy, Marvel is able to quickly achieve optimal performance with only a few online interaction steps. This
highlights the robustness of the Marvel algorithm to variations in the quality of the offline dataset.

D.3 Parameter sensitivity of aPID
D.3.1 PID

The SAC-lag algorithm in (Liu et all |[2024]) utilizes PID control, with PID parameters carefully optimized.
However, if their provided parameters are used directly under the environmental settings, policy updates,
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Figure 9: In the figure, “high" and “low" represent the different performance levels of offline pretrained policies
resulting from varying quality in the offline dataset. These policies are then finetuned online. The results
demonstrate that the Marvel algorithm is robust to both different offline dataset qualities and pretrained
policy performances.

and Q-network update configurations of this paper, the performance is suboptimal. Fig. [I0] presents a
comparison, showing that when the PID parameters from the FSRL library are applied, the performance
of online finetuning is significantly degraded. It is clear that the implementation of PID in our paper
indeed significantly outperforms the implementation of PID provided by FSRL. More importantly, even
with inappropriate PID parameters, aPID effectively boosts performance, achieving higher rewards while
maintaining more stable cost levels.

D.3.2 Parameters in aPID

«, B, and ~ are the parameters used in aPID to adjust the PID parameters. These parameters enhance the
robustness of the initial settings for the PID parameters while being inherently robust themselves. Although
our method aPID introduces more parameters, this is very common for adaptive algorithms in order to
control the adaptation during the learning procedure. Fig. illustrates the performance under various
combinations of «, £, and ~y, with values ranging from 0.01 to 0.5. All curves achieve similar performance in
terms of reward and cost by the end of training. This demonstrates that these parameters are both easy to
tune and robust in their selection.

D.4 Parameter sensitivity of VPA

The selection of « and «, follows a similar approach to the selection of o in SAC. These values need to be
empirically determined based on the evaluation results of the pretrained policy, the entropy of the policy,
and the scale of the Q-values provided by the Q networks. It is crucial to ensure that the values of these
parameters do not cause the entropy term to dominate the Q-value update process. The tuning process
involves starting with small values, such as those in the range of 1 x 107®. Considering that the entropy
value is typically a negative single-digit number, the upper limit for a and a. should generally be around
1 x 107!, For relatively conservative offline pretrained policies, larger values of o and a, may be more
suitable.

To demonstrate the robustness of the chosen « and «., we scaled the values provided in this paper by a
factor of five, ranging from 1 x 10=* to 3 x 10~°. As shown in Fig. the choice of different o and «, values
has minimal impact on the final performance.
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Figure 10: “Our PID" and “Our aPID" refer to using the PID and aPID parameters proposed in this paper
for adjusting the Lagrange multipliers, respectively. Similarly, “FSRL PID" and “FSRL aPID" represent the
parameters provided by the FSRL library for the same purpose.

D.5 Correctness of our implementation of SAC-lag

The primary goal of 020 safe RL algorithms is to achieve competitive performance with minimal en-
vironment interactions and in the shortest time by leveraging offline information to accelerate online
learning. In contrast, the algorithm in , (and other similar online algorithms) achieves higher
performance but relies on significantly more interactions. For example, in the BallCircle environment,
utilized 1.5 million environment interactions, whereas our method required only 120,000
interactions (with an average of 600 interactions per gradient update). This significant reduction highlights
the efficiency of our approach, particularly in resource-constrained and safety-critical settings where the
number of online interactions is strictly limited.

To validate the correctness of our implementation of SAC-lag, we conducted additional experiments compar-
ing it to the SAC-lag implementation provided by the FSRL library under the same experimental settings
(including both environment interaction steps and policy update frequencies). The results, presented in
Fig. show that both implementations demonstrate similar performance in terms of reward and cost. This
validates the correctness of our implementation and ensures its reliability as a baseline for comparisons in
our study.

D.6 Without VPA but with good initial values of the Lagrangian multipliers

As shown in Fig. when VPA is not used and the Lagrange multipliers are updated using dual ascent (as
described in Eq. [3]), even with appropriately chosen initial values for the Lagrange multipliers (“Warm Start
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Figure 12: The two numbers inside “[ |" represent the values of o and «.. used in VPA, as described in Eq.
and Eq. [9]

w/ lag init"), the performance, while better than initializing with zero (“Warm Start"), still falls short of
achieving optimal results.

D.7 Additional Baseline: Distilling Q-values of the Behavior Policy

To further evaluate the effectiveness of Marvel, we include an additional baseline that distills the Q-values
of the policy which generated the offline dataset. In offline RL, the dataset is not necessarily produced by a
single policy; it can be a mixture of trajectories collected from multiple behavior policies of varying quality.
To align with such a mixed dataset, we first use behavior cloning (BC) to obtain a policy consistent with the
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Figure 13: “Our SAC-lag" refers to the SAC-lag algorithm implemented in this paper, while “FSRL SAC-
lag" represents the SAC-lag algorithm provided by the FSRL library. Using the same environment settings
(including interaction steps) and update frequencies as in this paper, the results from the FSRL library are
shown to be similar to ours.
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Figure 14: In the figure, “Marvel" and “Warm Start" follow the legend defined in Fig. |1} “Warm Start w/ lag
init" represents the approach of empirically selecting appropriate initial values for the Lagrange multipliers
and performing online finetuning.

offline data distribution. We then perform off-policy evaluation to distill the Q-values of this cloned policy
and use the resulting critics to initialize online finetuning.

However, our experiments show that this approach fails to keep the cost below the safety threshold during
online finetuning. Because the BC policy directly imitates actions from the offline dataset, it inevitably
learns unsafe action patterns present in the data. When the distilled critics are subsequently used for online
updates, these unsafe patterns remain and cannot be corrected even with the adaptive control provided

by aPID. As a result, the policy cannot maintain safety and exhibits performance significantly worse than
MARVEL.
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Figure 15: Comparison between Marvel and the additional baseline that distills Q-values of the behavior
policy. The BC-distilled baseline fails to control the cost below the threshold due to inherited unsafe patterns
from the offline dataset, leading to high constraint violations and lower returns, whereas MARVEL effectively

maintains safety and achieves superior performance.

E More Analysis of Marvel

Similar to the analysis presented in (Liu et al.,|2023a)), this section introduces an alternative way to evaluate
safe RL performance beyond training curves, as shown in Fig. The cumulative cost represents the total
cost accumulated from all environment interactions up to a given timestep during training, while the max
reward denotes the highest reward achieved up to that timestep. The relationship between these two metrics
reflects the algorithm’s ability to achieve maximum reward performance under a certain amount of cost

incurred in the environment.

The figure shows that Marvel achieves the best max reward for a given cumulative cost. Moreover, when
targeting a specific performance level (i.e., reward), Marvel requires the least cumulative cost. This further
highlights Marvel’s superior performance from another perspective.
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Figure 16: The legends in this figure follow the conventions of this paper and illustrate the relationship
between cumulative cost and maximum reward.

F Additional PID Design Details

For completeness we provide additional details on the PID controller used in Marvel and clarify how each
component corresponds to our implementation. We employ a discrete, position-form PID update. Let c¢;
denote the total episode cost at training iteration ¢ and ¢, the cost limit. The instantaneous violation is

€t = Ct — Cth-

EMA-smoothed proportional signal. To reduce variance, the proportional channel operates on an

exponentially smoothed violation:
ét = apét,1 —+ (1 — ap)et,

where a,, € [0,1) is the smoothing factor.
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EMA-smoothed cost for the derivative channel. We first compute a smoothed version of the episode
cost,
¢t = aqCi—1 + (1 — ag)ce,

with smoothing factor a4 € [0,1). This low-pass filtering mitigates the high variance of raw episode costs.

Lagged derivative approximation. Instead of estimating the derivative by immediate finite differences,
we compute a lagged derivative using a delay window of length d:

Dt = maX(O, ét — étfd).

This corresponds exactly to our implementation, where we maintain a buffer of the past d smoothed costs
and take their difference. Such a delay-based derivative approximation is common in discrete PID controllers,
as it substantially reduces sensitivity to noise while retaining responsiveness to sustained increases in cost.

Anti-windup mechanism. The integral state is updated as
I, = max(0, I_1 + Kiey),

which prevents the integral term from accumulating negative values and ensures stability. This clipping-based
anti-windup mechanism is the same as in the implementation.

Final position-form update. The Lagrange multiplier used by the policy optimization step is computed
as

A = max (0, Kpéy + Iy + KqDy).
Thus the proportional term uses the smoothed violation €;, the integral term accumulates the raw violation

e+, and the derivative term is a lagged difference of smoothed costs. This matches the code path in our
implementation and avoids introducing a second integrator.

These design choices (EMA smoothing, lagged derivative, and anti-windup) follow standard practice in
discrete PID control and were found to improve robustness and stability in our reinforcement learning
setting.

G Experimental Details
We conduct all experiments in a single Nvidia 4080 GPU.

G.1 Spearman’s rank correlation coefficients

We aim to explore the effect of VPA on the distribution of the Q and Qc networks. Specifically, for different
state-action pairs, we need to analyze the true QQ and Qc values versus the predicted values from the Q and
Qc networks. To achieve this, we choose to use Spearman’s rank correlation coefficient, which allows us to
quantify the ranking accuracy of the Q and Qc values over a sequence of state-action pairs.

Spearman’s rank correlation coefficient, denoted as p, is a non-parametric measure of the strength and
direction of the association between two ranked variables. It evaluates how well the relationship between
two variables can be described using a monotonic function, rather than assuming a linear relationship. This
makes it particularly useful in our case, where we are more concerned with the rank ordering of predicted
versus true Q and Qc values rather than their exact numerical differences.

Mathematically, Spearman’s rank correlation coeflicient is given by:

63 d (16)

:1—
P n(n? —1)

where d; is the difference between the ranks of the corresponding values of the two variables (in this case,
the true and predicted Q or Qc values) for each state-action pair. n is the number of state-action pairs.
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Spearman’s coefficient ranges from —1 to 1, where p = 1 indicates a perfect positive rank correlation (i.e., the
predicted Q and Qc values perfectly match the rank of the true values) p = —1 indicates a perfect negative
rank correlation, p = 0 indicates no correlation between the ranks of the predicted and true values.

By applying this measure, we can rigorously assess how well the Q and Qc networks preserve the relative
rankings of the true values across various state-action pairs, thus quantifying the alignment between the
predicted and true distributions.

G.2 Estimation of Q-values and Qc-values through Monte Carlo Simulations in Table [I]

The Q-values represent the expected cumulative reward from a given state when following a specific policy,
while the Qc-values represent the expected cumulative cost. These values are estimated through Monte
Carlo (MC) simulations, making them accurate because the simulations explicitly capture the sequential
interactions of the agent with the environment under the given policy.

For the MC simulations, we use the pre-trained policy derived from the training phase. Fach simulation
starts from a selected initial state. The number of interaction steps with the environment depends on the
specific settings of the environment. For instance, in the BallCircle environment, the maximum number of
steps is 200. A total of 10 Monte Carlo simulations are performed, and at each timestep, we record both
the reward and the cost. To compute the true Q-values and Qc-values, the recorded rewards and costs are
averaged cumulatively across all steps in the episodes.

Regarding the choice of the initial state, the term "dataset" refers to selecting the initial state from the
offline dataset used during VPA, whereas "random" indicates that the initial state is chosen randomly. This
approach ensures a diverse evaluation and enhances the robustness of the estimated values.

G.3 Experimental Setup

In Table[6] we present the specific hyper-parameters used in the experiments. Table[7]lists the configurations
of the environments used in the experiments.

H Proof of Theorem [1]

We first define a modified VPA Bellman operator with entropy regularization as follows:

TVPAQ(S7 a) = T(Sv CL) + VES'NP(-\S,(L) [Q(S/’ Cl/) -« logﬂ(a’\s’)] (17)

a’ ~m(-|s")

where a denotes the entropy regularization term oVF4 or ayP2, depending on the context. We use « for
simplicity in following proof. We can have the following result to characterize the contraction property of
TVPA 1y is the policy obtained in the offline phase which is the fixed policy in VPA and also the initial

policy of online finetune.
Considering the similarity in the derivations for @ and ., we will proceed with the derivation for @), and
the derivation for the cost Q-function ). follows in the same manner.
Assumption 1 (Concentrability). 3C' < oo such that

d™ (s,a)

<C
(s,;?gng dr (s,a) —

where d™(s,a) denotes the state-action distribution induced by the offline policy mg, and d*(s,a) is the
distribution induced by the behavior policy p that generates the offline dataset. For notational simplicity, we
refer to the behavior policy’s state-action distribution as p, i.e., d*(s,a) = .

Theorem 2 (Contraction Property). The VPA Bellman operator T VP4 is a ~y-contraction under the Lo
norm weighted by the state-action distribution d™°:

1TVFAQ) — TVPAQa 2,470 < 7]|Q1 — Qall2.am0- (18)
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Hyper-parameter Value
Policy Learning Rate 5e-5
Q-network Learning Rate 3e-5
Qc-network Learning Rate 8e-5
Lagrangian Learning Rate le-4
SAC-lag: « 5e-3
VPA Entropy Coefficient : « le-3
VPA Entropy Coefficient : a. 5e-4
aPID: Kp le-4
aPID: Ki le-5
aPID: Kd le-5
aPID: « 0.05
aPID: g 0.05
aPID: ~ 0.05
Batch Size 256
MLP hidden layer size (256, 256]
discount 0.99
T 5e-2
replay buffer size le6

Table 6: Experiment hyper-parameters

Environment Episode length Cost threshold

BallCircle 200 20
BallRun 100 20
CarCircle 200 20
CarRun 200 20
AntCircle 500 20
AntRun 200 20

DroneCircle 200 20
HalfCheetah 1000 20
Hopper 1000 20
Swimmer 1000 20

Table 7: Environment setup

Here, v € (0,1) is the discount factor, and || - ||2,4w0 is defined as:

1/2

1 fll2,am0 = (E(s,a)Ndm [f(Saa)Q])
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Proof. Let A = Q1 — Q2. Note that the entropy terms cancel when taking the difference between 7VFPAQ,
and TVPAQ,, so we have:

[ TVPAQ: — TVPAQ2 13,40
2
= IE(s,a)wd” |:(7 Es/wP(-\s,a), a’~mo(|s’) [A(SI’ al)]) i|

<42 E(s,0)~d0 [Bs'mP(|5,0), a'mr(- |S [A(s',a')ZH (by Jensen’s inequality)

2
=7 Es,a)mdo [E(sr,a)~p([s,0)[A(5'a")?]
= E(s’,a’)fvd"ﬂ [A(S @ )2}
= | Al13 gro-

Taking the square root of both sides gives:
ITVPAQ1 — TVPAQ2 2,070 < YI1Q1 — Q22,070
O

The next result will show that the Q-value function is bounded under the conditions considered in this paper.

Lemma 1 (Bounded Value Function). Under the conditions that the mazimum reward max|r| < 1 and
max(s q)esxA | logmo(als)| < B, the value function of VPA satisfies:

14+ aB
7o < . 19
Q™ (s.0)| < T (19)
Proof. We start from the entropy-augmented Bellman equation:
Qﬂ-o(S? a) = T(S7 a) + ’YES/NP(~\s,a) [Qﬂ'o (Sl7 a’/) -« IOg o (a’|s’)] .
a’~mo(-|s’)
Taking absolute values and applying triangle inequality:
Q™ (s,a) < E | 34" (Ir(st, ar)| + al log mo(also)])
t=0
<Y 41 +aB)
t=0
_1+aB
=1
O

As a direct consequence of the pointwise boundedness of Q™ , we can also derive an upper bound on its Lo
norm under the state-action distribution d™. Recall that the bound in Lemma [1f is given in terms of the

absolute value, i.e., |Q™(s,a)| < % for all (s,a) € S x A. Since the {o.-norm is defined as the supremum
of the absolute value over the domain, we have

i ™ 1+aB
197 loo = sup [Q™(s, )] < ———
(s,a) -

Moreover, for any measurable function f and any distribution d, it holds that || f|l2,a < ||fllcc- Therefore,
we obtain:

1+aB

-7

This result provides a useful uniform bound in the L, sense, which will be instrumental in the subsequent
generalization and convergence analysis.

< Q™ oo

(20)
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H.1 Final Convergence Bound for VPA

we are now ready to quantify how the Q—function produced by K steps of VPA evaluation deviates from the
fixed—point solution under the offline policy .

We begin by briefly reviewing Theorem[I} As the number of iterations K increases, the estimated Q-function
@k progressively moves away from the initialization @, and converges toward the fixed-point solution Q’r
under the offline policy mp. The closeness between the two is measured in the weighted Lo-norm || - ||2,470,
which denotes the expected squared error with respect to the state-action distribution induced by policy 7.

K

Based on max(, .)esx 4 w < C and Lemma |1} after K iterations, with probability at least 1 — §:

(Sva) -
A Ce AT
Qs = Q@ llzaro < 70 +7%1Q0 = Q2o (1)

where € = QQ(HO‘B‘);llOg(‘}-l/&) +20d§°’VPA. § € (0,1) is the confidence level parameter, F denotes the function

class used to approximate Q-values, and |D| is the number of samples in the dataset. The term d}f?’VPA

represents the inherent Bellman evaluation error under policy 7y using the VPA operator. The parameter «
corresponds to the entropy coefficient in the VPA Bellman operator, and B = max s 4) | log mo(als)| denotes
the maximum policy entropy. The constant C' comes from the concentrability assumption, and v € (0,1) is
the standard discount factor in Markov decision processes.

Proof. We decompose the error at iteration k using triangle inequality:

1Qk — Q™|2,a70 < Q1 — TVPAQu—1]l2,am0 + | TVFAQro1 — Q™|

(I) Approximation error (IT) Iteration error

2,dmo -

Term (I): Based on the concentrability,

(I < \FCHQk - TVPAQkAHQ,w

At each iteration k, the VPA algorithm performs a supervised regression to update the Q-function estimate
Qp, using regression targets constructed from the previous iterate Q1 under an VPA Bellman operator.
Given the offline dataset D, the Q-function is updated one step to minimize the following objective:

D]
. 2
— i Qi) = Yi
Qk argglelgizgl [Q(si,a;) — yi]

where F denotes the function class used to approximate Q-functions, and the target value y; incorporates
an entropy penalty defined as:

i = i+ (Earmemy s (@ (51, 0') — o logmo(a’]s)])

The training objective seeks to minimize the squared deviation between the predicted Q-values and the soft
Bellman target computed from Qi_1 at each iteration.

To bound |y;|, using [|Qr_1]lcc < 11+_°‘f

maxX (s q)esx 4 | 10g mo(als)| < B, we obtain:

(see Lemma i and the boundedness assumptions |r;] < 1,

lyil < [ril +7 (1Qk—1lloc +aB)

1+aB
§1+7<1+a —|—aB>
1+aB -
<9. 112 oy
I—vy
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To control the one-step regression error, we apply the least squares generalization bound (Lemma 11) from
(Agarwal et al..|2019)), which provides a high-probability upper bound on the expected squared error between
the regression output Q; and the target y; computed from Qy_1.

Specifically, given that (1) the supervised regression target y; is uniformly bounded, i.e., |y;| < 2V (2) the
function class F used to fit Q) is finite or has bounded covering number (3) the sample inputs (s;, a;) are
drawn i.i.d. from the offline dataset, we can get the following bound with probability at least 1 — 9:

22V 2 log(|F|/6)

QOdTI'(J,VPA
I

1Qr — TVPAQr—1l3,, <

where d’}o’VPA denotes the approximation error between the best function in F and the Bellman target under
policy 7.

Substituting V = % into the bound above:

22(1 + a.B)? log(|F|/9)
DI(1—7)?

1Qk — TVPAQp 1|2, < \/ +20d30 VA = Ve

Thus, we can get the bound of approximation error (I):

(D) <VCIQk = TV Qi1 |2,y < VCE.
Term (IT):Based on Theorem [2] we have:

| TVPAQr_1 — Q™ 2,dm0 = [ TVPAQr—1 — TVPAQTFOHZCFO <YQk-1 — Qm’Hz,dfo-

Combining both (I) and (IT) term:

1Qk — Q™ ||2.4m0 < VCE+7[Qr—1 — Q™||2,a0-

Let Qo be the Q-function learned offline, which is the starting point for VPA. Unroll the recursion:

1Qk — Q™ |l2,4m0 < VCE+7]Qr—1 — Q™ ||2,470
<VCé+~ (\/&4- YQr—2 — Qﬂ-O”Q,d"O)
= VOE1+7) +7?|Qr—2 — Q™|2,470
<VCE 1+ 7+ + 1@k 3 — Q™| 2,470

K-1
<VCE Y A 4+ 4510 — Q™ la.ao
k=0
Ve N
=1 7(1 =) +51Q0 — Q™ ||2,ar0
N(er: .
< +751Qo — Q™||2,ao -

S1-5
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| Limitation

While Marvel performs well in most environments, it does not exhibit the same effectiveness in certain
scenarios, such as in the AntRun environment. As depicted in Fig. [f} during finetuning, Marvel does not
significantly improve cost and reward metrics. Consequently, aPID evidently does not function optimally
in these settings. This suggests that further enhancements are needed for VPA to increase the agent’s ex-
ploratory behavior during online finetuning. Combined with aPID’s efficient control over costs, this approach
could achieve optimal performance with minimal interaction with the environment, thus minimizing the time
required. In addition, it would be interesting to investigate strategies that explicitly re-initialize or reset Ky
when the environment undergoes new phases of non-stationarity.
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