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ABSTRACT

The scalability of deep learning applications is fundamentally constrained by compute, mem-
ory, and communication. While low-rank adaptation (LoRA) has reduced these costs for
model fine-tuning, its application to model pre-training remain largely unexplored. This pa-
per examines the extension of LoRA to model pre-training, identifying the constraints and
limitations inherent to standard LoRA in the context of pre-training. We introduce LoRA-
the-Explorer (LTE), a novel bi-level optimization algorithm, to facilitate parallel training of
multiple low-rank heads across compute nodes, minimizing the necessity for frequent syn-
chronization. Our methodology involves rigorous experimentation on vision transformers
using ImageNet100, demonstrating that LTE is competitive with standard distributed training
methodologies. Initial scalability tests on ImageNet1k show that LTE can match standard
training performance by leveraging more training iterations.

1 INTRODUCTION

The escalating complexity and computational demands of state-of-the-art deep learning models present signif-
icant challenges, not just in terms of computational power cost but also in memory and communication band-
width requirements. As these challenges exceed the capacities of consumer-grade GPUs, innovative solutions
are imperative to further academic research. Low-rank adaptation (Hu et al., 2021, LoRA), has recently gained
attention in this context, which uses low-rank parameterization of the model to reduce memory requirements
for storing and communicating gradients/optimizer-state during training. With further innovations in parameter
quantization (Dettmers et al., 2023), we now have tools that enables fine-tuning of large models in consumer-
grade GPUs. However, these works are limited to fine-tuning, and tools to pre-train models from scratch are
still absent to this day. Hence, the goal of this paper is to extend adaptation methods to model pre-training.
Specifically, we posit the question: Can neural networks be trained from scratch using low-rank adapters?

Successfully addressing this question carries substantial implications, especially considering that common aca-
demic clusters often have slower cross-node training than single node training with gradient accumulation.
Low-rank adapters effectively compresses the communication between these processors while preserving es-
sential structural attributes for effective model training. Our investigation reveals that while vanilla LoRA
underperforms in training a model from scratch, the use of parallel low-rank updates could bridge this per-
formance gap. Our empirical analyses indicate that synchronization among multiple LoRA heads can occur
sporadically, allowing computation to be re-budgeted towards training rather than synchronization. Our key
findings are summarized as follows:

Principal findings and contributions:

• In Section 3, we establish the limitations inherent to the use of LoRA for model pre-training. We articulate
the need for parallel updates and introduce our algorithmic approach LTE in Section 3.1 and Section 3.2.

• Section 4 shows competitive performance of LTE, even with infrequent synchronization.
• We provide rigorous empirical analysis and ablation study in Section 4.1, Section 4.2, and Section 4.3.
• In Section 4.5, we conduct a resource utilization comparison with standard distributed data parallel (DDP)

training on 8 GPUs. Our findings indicate that, although our method extends the training duration by 40%,
we can fit models that are 3× bigger with roughly half the bandwidth.

• Section 5 discusses related work. Supporting experiments and training details are detailed in Appendix A.
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Our work presents a scientific investigation into using LoRA to pre-train a neural network from scratch. Our
proposed method offers a proof of concept that, by trading off memory and computational resources, we can
train large models from scratch using only low-rank adapters; a previously unexplored avenue. This research
lays the groundwork for future work in scaling up large model training on low-memory GPU devices with slow
interconnect speeds.” Code to replicate our results will be open to public after the reviewing process.

2 PRELIMINARIES

Notation We use x to denote a scalar, x a vector, X a matrix, X a distribution or a set, f(·)
a function and F (·) a composition of functions. We use l(·) to denote a per-sample loss, and
denote the average loss of a network F (·) equipped with parameters W as L(X,Y,F ,W) =
1

|X|
∑

(xi,yi)∼(X,Y) l(F (xi;W),yi). We will often write just L(X,Y) for brevity.

2.1 LOW-RANK ADAPTER: PARAMETER-EFFICIENT ADAPTERS

Adapters serve as trainable functions that modify existing layers in a neural network. They facilitate efficient
fine-tuning of large-scale models by minimizing both the computational cost of gradient calculations and the
memory requirements for optimization. The focus of this work is on the low-rank adapter (Hu et al., 2021,
LoRA), a subclass of linear adapters. The linearity of LoRA allows for the trained parameters to be integrated
into the existing weights post-training, thereby maintaing the original inference cost. LoRA is employed in
fine-tuning transformers, accounting for less than 10% of the total model parameters (and even as low as 0.5%).

Low-rank adapter (LoRA) We are given a linear layer f : Rn → Rm, parameterized by weights
W ∈ Rm×n that operates on input x ∈ Rn. LoRA parameterization uses low-rank matrices B ∈ Rm×r,
A ∈ Rr×n and a fixed scalar s ∈ R, where the rank r is chosen such that r ≪ min(m,n).

flora(x) = Wx+ sBAx (1)

Although the forward pass incurs a minor computational overhead, the significance of LoRA parameterization
pertains to the optimizer memory footprint. Optimizers such as AdamW (Kingma & Ba, 2014; Loshchilov &
Hutter, 2017) typically maintain two states for each parameter, resulting in memory consumption that is twice
the size of the trainable parameters. In the case of LoRA parameterization, the optimizer memory scales with
the combined sizes of A and B. This results in significant memory savings when the memory cost of LoRA
O(r(m+n)) is less than the memory cost of the modelO(mn). Moreover, Hu et al. (2021) and Dettmers et al.
(2023) demonstrated memory savings by storing W in low-precision while keeping the trainable parameters
A and B in high-precision. These works have catalyzed the development of several repositories (Wang, 2023;
Dettmers et al., 2023; Dettmers, 2023; huggingface, 2023), thereby enabling fine-tuning of models with billions
of parameters on consumer-grade GPUs.

3 METHOD

Although low-rank adapters (LoRAs) have proven to be effective for fine-tuning tasks, their limitations become
apparent when training models from scratch. As evidenced in Figure 1, models parameterized with LoRA
demonstrate inferior performance compared to models trained using standard optimization. This performance
gap can be attributed to the inherent rank constraint in LoRA. Specifically, for parameter W ∈ Rm×n, LoRA is
fundamentally incapable of recovering weights that exceed the rank r < min(m,n). Of course, there are excep-
tions in which, by happenstance, a solution exists within a low-rank proximity of the initialization. However,
in Appendix B, we observed the rank of the gradient tends to increase throughout training, creating a necessity
for high-rank updates.

To understand the conditions required to pre-train a model with LoRA, we first identify a specific scenario where
standard training performance can be recovered using LoRA. This serves as a guiding principle for developing
an algorithm that retains the computational efficiency intrinsic to LoRA.
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3.1 MOTIVATION: MULTI-HEAD MERGING PERSPECTIVE
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Figure 1: Full-model vs. LoRA pre-training: ViT-
S trained on ImageNet100 using with and without
LoRA. Low-rank LoRA uses rank r = 64 and full-
rank LoRA uses rank r = min(m,n) set to the dimen-
sion of the original weight W ∈ Rm×n. Increasing r
suffices to match standard training performance.

This section provides intuition on why training many LoRA
heads in parallel with periodic merging is able to approxi-
mate standard full-rank pre-training.

As demonstrated in Figure 1, elevating the rank r of the
LoRA to be the same as the rank min(m,n) of the weight
matrix W ∈ Rm×n is sufficient to replicate standard pre-
training performance, albeit with different inherent dynam-
ics as detailed in Appendix B.2. However, such an approach
compromises the memory efficiency of low-rank adapters.
Given that memory constraints often serve as significant
bottlenecks in model training, we ask: Can equivalent per-
formance be achieved by concurrently training models with
low-rank adapters?

Given a matrix of the form BA ∈ Rd1×d2 with B ∈ Rd1×d

and A ∈ Rd×d2 , it is possible to represent it as the sum of
two lower-rank matrices: B1A1 +B2A2. To demonstrate this, let bi and ai be the column vectors of B and A
respectively. One can then construct B1 = [b1, . . . ,b[d/2]] , B2 = [b[d/2], . . . ,bd], and A1 = [aT1 , . . . ,a

T
[d/2]]

, A2 = [aT[d/2], . . . ,a
T
d ]. This decomposition allows for the approximation of high-rank matrices through a

linear combination of lower-rank matrices. The same conclusion can be reached by beginning with a linear
combination of rank-1 matrices. This forms the basis for a novel multi-head LoRA parameterization, which we
will use as one baseline to compare with LoRA-the-Explorer.

Multi-head LoRA (MHLoRA) Given a matrix W ∈ Rm×n, and constant N , multi-head LoRA
parameterizes the weights as a linear combination of N low-rank matrices Bn and An:

fmhlora(x) = Wx+
s

N

N∑
n=1

BnAnx (2)

Multi-head LoRA reparameterizes the full-rank weights into a linear combination of low-rank weights. Now
we will point out that a single LoRA head can recover the performance of multi-head LoRA provided the single
LoRA head is periodically merged into the full weights. Using the same rank r for all the LoRA parameters,
the dynamics of a single LoRA head (denoted with ·̂ ) is equivalent to multi-head LoRA

argmin
BnAn

L

(
W +

s

N

N∑
n=1

BnAn

)
= argmin

B̂n,Ân

L
(
Ŵ +

s

N
B̂nÂn

)
(3)

when either
∑N

n=1 BnAn is equal to B̂nÂn, or when Ŵ = W + s
N

∑N
j ̸=n BjAj ; here we used a shorthand

notation to indicate that sum is over all the LoRA parameters except for index n. Here we assume the parameters
on both sides of the equation are initialized to be the same: An = Ân and Bn = B̂n∀n. The first scenario is
rank deficient, which we know is unable to recover the original model performance. The latter case necessitates
that Ŵ accumulates all the information of the LoRA parameters at every iteration. However, synchronization
at every iteration can be expensive and a more practical choice is to use stale estimates of the LoRA parameters
Ŵ = W+ s

N

∑N
j ̸=n B

′
jA

′
j with ′ indicating stale estimate of the parameters. This is equivalent to merging the

LoRA parameters.

Merging every iteration ensure that the representation will not diverge from the intended update. While using
stale estimates relaxes this equivalence, we observe that it can still match the standard training performance as
shown in Table 1. Nevertheless, as the estimate becomes inaccurate, the optimization trajectory does indeed di-
verge from the optimization path of multi-head LoRA. We quantify this divergence in Figure 2. The divergence
does not imply that the model won’t optimize; rather, it suggests that the optimization trajectory will deviate
from that of the multi-head LoRA.
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Figure 2: Effects of merging LoRA heads. Left: We measure l2-norm deviation of the effective weights of multi-head
LoRA (MHLoRA), and LoRA-the-explorer (LTE, our method) from the weights of standard training using ViT-S. We use
4 heads for both MHLoRA and LTE using the same initialization. We also plot the individual LoRA heads of LTE. These
heads deviate more from standard training but their average closely follows that of MHLoRA. Depending on the merge
iteration (x-axis), the estimation gap of using stale estimates is roughly the difference between the MHLoRA and LTE. The
later the merge happens, the more LTE deviates from MHLoRA. Right: We project the dynamics of MHLoRA and LTE
on to the parameters of MHLoRA. The y-axis is the initial parameters and x-axis is after training for 25 iterations. The
projection is computed via computing the cosine similarity on the vectorized weights. We use merge iteration of 4 and 12
for LTE. The LTE projection closely follows that of trajectory arc of MHLoRA, where more frequent merges result in less
deviation.

3.2 LORA-THE-EXPLORER

Algorithm 1: LoRA-the-Explorer (LTE)
Input: Dataset Dtrain, model F , loss function L

parameters Θ = {W0, . . . ,WL},
merge scalar s, num workers N , merge iter T

while not converged do
(Optional) quantize Θ. Keep high-precision copy
(in parallel) for each worker n do

if LoRA not initialized then
Bn,An ← lora parameterize(F);

end
else

Reset parameters Bn to zero
(Optional) reinitialize parameter Ai

end
Optimize Bn,An for T iterations by minimizing
Ex,y∼Dtrain [L(F(x),y)]

end
for each worker n do

# Synchronize by communicating LoRA parameters.
for Bn,An in Bn,An do

Merge LoRA params W←W + s
n
BnAn

end
end

end

Our algorithm is designed with two primary
considerations: (1) achieving an informative
update ∆W that does not require materializa-
tion of the full parameter size during training,
and (2) parameterizing W such that it can be
stored in low-precision and communicated ef-
ficiently. The latter can be achieved by using
quantized weights and keeping a high-precision
copy of W.

We propose LoRA-the-Explorer (LTE), an opti-
mization algorithm that approximates full-rank
updates with parallel low-rank updates. The
algorithm creates N -different LoRA parame-
ters for each linear layer at initialization. Each
worker is assigned the LoRA parameter and
creates a local optimizer. Next, the data is in-
dependently sampled from the same distribu-
tion x = {x1, . . .xN}. For each LoRA head
n, the parameters are optimized with respect to
its own data partition for T iterations resulting
in an update δloran = −η

∑T
t=1∇loranxi[t]. We

do not synchronize the optimizer state across
workers. After the optimization, the resulting
LoRA parameters are synchronized to compute
the final update for the main weight ∆lora(x) =
1
N

∑N
n=1 δn. In the next training cycle, the LoRA parameters are re-trained with the updated weights W. Since

we do not train directly on the main parameter W we can use the quantized parameter q(W) instead. Where
one can either keep the high-precision weight only in the master node, or offload it from the device during
training. This reduces not only the memory footprint of each worker but the also the transmission overhead. A
pseudo-code is provided in Algorithm 1 and an illustration in Figure 3.
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Figure 3: LTE diagram: Our method is decomposed into 3 steps. (1) We parameterize the model with multiple LoRA
heads and train them independently for T iterations using different mini-batches sampled from the same distribution. This
results in overall update of δloran(x) = −η

∑
t∇loran(x[t]) (2). Next, we accumulate the individual LoRA updates by

averaging the heads ∆lora(x) =
1
N

∑
n δloran(x). (3) The update is applied to the main weights, and the LoRA parameter

B is reset. The optimization repeats with the new LoRA parameters.

3.3 IMPLEMENTATION DETAILS

We discuss few of the implementation details we found necessary for improving the convergence speed and the
performance of our method. Full training details and the supporting experiments can be found in Appendix A.

Not resetting matrix A and optimizer states We investigate whether the matrices An would converge to
the same sub-space during training. If so, it would necessitate resetting of matrices An or use of a regularizer.
In Figure 5, we did not observe this to be the case. We observed the orthogonality of A to remain consistent
through-out training and we found it to perform better without resets. We posit that re-learning matrix A and
re-accumulating the optimizer state ends up wasting optimization steps. The comparison figures can be found
in Appendix A.3 and more detailed discussion in Section 4.2.

Scaling up s and lowering learning rate η

It is a common misconception that scaling s has the same effect as tuning the learning rate η. During our
experimentation we were unable to yield comparable performance when using standard value of s (in the range
of 1 ∼ 4). Instead, we found large value of s and slightly lower learning rate η to work the best. The standard
practice is to set the scaling proportionately to the rank of the LoRA s = α/r. This is done to automatically
adjust for the rank (Hu et al., 2021). We use α = 4096 (s = 64) and a learning rate of η = 2 · 10−4. It is worth
noting that the learning-rate does not scale linearly with s and the scalar only effects the forward computation
(Appendix B.1). The scalar s modifies the contribution of the LoRA parameters in the forward pass which has a
non-trivial implication on the effective gradient. Moreover in Appendix B.2, we find that the update-rule moves
in the direction that aligns B and A, and scales quadratically with the learning rate.

Significance of Initialization Strategies

Initialization of LoRA plays a pivotal role in pre-training. Kaiming initialization used in the original work (Hu
et al., 2021) – are not well-suited for rectangular matrices as discussed in (Bernstein et al., 2023; Yang & Hu,
2020). Given that LoRA parameterization often leads to wide matrices, alternative methods from (Bernstein
et al., 2023) and (Glorot & Bengio, 2010) resulted in better empirical performance.

We use initialization scheme prescribed in (Bernstein et al., 2023) that utilizes a semi-orthogonal matrix scaled
by
√

dout/din. Note that these methods were originally designed for standard feed-forward models. Where
as LoRA operate under the assumption that matrix B is zero initialized with residual connection. This as-
pect warrants further study for exact gain calculations. Our ablation studies, in Appendix A.3, indicate the
best performance with Bernstein et al. (2023), with Kaiming and Xavier initializations performing similar. In
ImageNet-1k, we found the performance gap to be more evident.

4 EXPERIMENTS

All training hyper-parameter details are held in Appendix A.1.

4.1 ITERATIVE LORA MERGING
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Figure 4: Full-model vs. LoRA w/ merge: ViT-
S trained on ImageNet100. Merging and resetting
the LoRA parameters achieves better performance
than single-head LoRA pre-training but still can-
not recover the standard full-model pre-training.
Note that LoRA + merge is akin to concurrent
work of ReLoRA (Lialin et al., 2023).

In Section 3.1, we motivated that iteratively merging LoRA pa-
rameters is a key component in accurately recovering the full-
rank representation of the model. As a sanity check, in Ap-
pendix A.2 we assess the effectiveness of merging single LoRA
head in the context of linear networks trained on synthetic least-
squares regression datasets. The underlying rank of the opti-
mal solution, W∗, is controlled, and datasets are generated as
Y = X(W∗)T. Each x ∈ X follows a normal distribution,
x ∼ N (0, I). Figure 8 evaluates the model’s rank recovery
across varying merge iteration T . Dimension of the weights W
are set to m = n = 32. Without merging, the model perfor-
mance plateaus rapidly on full-rank W∗. In contrast, iterative
merging recovers the ground truth solution with the rate increas-
ing with higher merge frequency.

Further tests in Figure 4 using ViT-S (Dosovitskiy et al., 2020)
with a patch-size of 32 on the ImageNet100 dataset (Tian et al.,
2020) (a subset of ImageNet (Russakovsky et al., 2015)) confirm that merging of a single LoRA head out-
performs standalone LoRA parameter training. However, frequent merging delays convergence, likely due to
LoRA parameter re-initialization and momentum state inconsistencies. Additionally, the performance does not
match that of fully trained models, indicating potential local minima when training with rank-deficient repre-
sentations. We find that merge iteration of T = 10 to work the best for batch-size 4096, and T = 20 when using
smaller batch-size of 256. With higher T values, additional training may be required to achieve comparable
performance (Stich, 2018; Wang & Joshi, 2021; Yu et al., 2019). Our initial efforts to improve merging using
methods such as (Yadav et al., 2023) did yield better results. Nonetheless we believe with increased merge iter-
ation, smarter merging techniques may be necessary. Existing literature in federated learning and linear-mode
connectivity/model-averaging may provide insights in designing better merging criteria (refer to Section 5).

4.2 LORA PARAMETER ALIGNMENT
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Figure 5: LoRA alignment: Alignment of LTE
heads when varying parameters and data. Ap-
pendix A.4 provides the corresponding perfor-
mance. “Different param” uses random initializa-
tion across each head, and “different data” uses
different mini-batches. The similarity is computed
on the first epoch of ImageNet100 on ViT-S. We
use LTE of r=8 with 4 LoRA heads. Pair-wise
similarity is averaged across all linear layers.

The efficacy of our optimization algorithm hinges on the abil-
ity of individual heads to explore distinct subspaces within the
parameter space. We examine the extent to which data and ini-
tial parameters influence the intra-head similarity throughout
training. In Figure 5, we compute the average cosine similarity
is computed between the heads based on vectorized matrices
BnAn. These tests were conducted with data samples drawn
from the same distribution, and each set of LoRA parameters
was exposed to a different set of samples. Dropout was disabled
for these experiments.

Our results confirm that LoRA heads do not converge to the
same representation. We find using different initialization
across LoRA heads yields the greatest orthogonality. This or-
thogonality is further increased when different mini-batches are
used. Importantly, the degree of alignment among LoRA heads
remains stable post-initialization. In Appendix A.4, we find that
lower cosine similarity to correspond well with model perfor-
mance, where using different parameters and mini-batches to
significantly outperform other configurations.

4.3 IMPACT OF LORA HEADS, RANK, AND MERGE ITERATION ON PERFORMANCE

We systematically evaluate the effects of varying the number of LoRA heads, rank, and merge iteration on model
performance for ImageNet100 in Table 1. Our findings indicate a monotonic improvement in performance with
increased number of heads and rank. Conversely, extending the merge iteration negatively impacts performance.
As in the case of least-squares regression, we found excessive merging to hurt model accuracy. With large
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Model Patch LTE Heads Rank Merge Test loss ↓ Test acc ↑
ViT-S 32 - - - - 1.78 71.97

h
ea
d

ViT-S 32 ✓ 2 8 10 2.31 54.68
ViT-S 32 ✓ 8 8 10 2.35 54.88
ViT-S 32 ✓ 32 8 10 2.26 58.21
ViT-S 32 ✓ 2 64 10 1.86 69.82
ViT-S 32 ✓ 8 64 10 1.84 71.97
ViT-S 32 ✓ 32 64 10 1.79 73.73

ra
n
k

ViT-S 32 ✓ 32 8 10 2.66 44.00
ViT-S 32 ✓ 32 16 10 2.12 60.35
ViT-S 32 ✓ 32 32 10 1.81 71.20
ViT-S 32 ✓ 32 64 10 1.79 73.73
ViT-S 32 ✓ 32 128 10 1.78 73.54

m
er
ge

ViT-S 32 ✓ 32 64 5 1.87 70.67
ViT-S 32 ✓ 32 64 10 1.79 73.73
ViT-S 32 ✓ 32 64 20 1.97 66.80
ViT-S 32 ✓ 32 64 50 1.99 65.43
ViT-S 32 ✓ 32 64 100 2.10 61.04

Table 1: LTE ablation results on ImageNet100: For fixed
cumulative training epoch of 1200, we vary the number of
heads, rank, and merge iteration of our method.
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Figure 6: LTE with same batch-size per head: ViT-S
trained on ImageNet100. We use the same batch-size
for each LoRA head with rank r = 8. In contrast to
other figures, we plot the loss in optimization steps. LTE
with more heads converge to better solution but require
longer training samples to converge.

enough rank and head, we found the model to converge to better test accuracy, even if the test loss was similar.
We hypothesize it averaging of the LoRA heads have a regularization effect similar to that model ensembling.

We use ViT-S as the primary architecture for analysis, which has a hidden dimension of 384 and an MLP
dimension of 1536. We find that setting the product of the number of heads and the rank of the LoRA larger
than the largest dimension of the model serves as a good proxy for configuring LTE. For example, using 32
heads with r = 64 results in 2048 > 1536. However, when it comes to increasing the number of heads rather
than rank, we noticed longer training iterations were required to achieve comparable performance. We discuss
a potential cause in the slowdown in convergence in the preceding section.

4.4 GRADIENT NOISE WITH PARALLEL UPDATES

In our ablation study, we utilized a fixed cumulative batch size of 4096 and a training epoch of 1200. Each LoRA
head received a reduced batch size of 4096

heads . Our findings indicate that scaling the rank exerts a greater impact
than increasing the number of heads. Due to the proportional scaling of gradient noise with smaller mini-
batches (Smith & Le, 2017), we hypothesize that gradient noise is the primary factor contributing to slower
convergence, in addition to the use of stale parameter estimates. To validate this hypothesis, we employed the
same mini-batch size across all heads in Figure 6, using a reduced rank of r = 8. When we adjusted the batch
size in proportion to the number of heads and measured it with respect to the optimization steps, the impact
of varying the number of heads became more pronounced. While increasing the number of heads necessitates
more sequential FLOPs, it offers efficient parallelization. Furthermore, using a larger batch size for gradient
estimation may prove beneficial in distributed training, as it increases the computational workload on local
devices. Careful optimization of the effective batch size to maximize the signal-to-noise ratio may be crucial
for achieving maximum FLOP efficiency.

Furthermore, the results presented in Figure 10 align with our gradient noise hypothesis. Models trained with
identical mini-batches demonstrate improved performance as the learning rate was lowered by the scheduler.
Using the same mini-batch across multiple LoRA heads may help mitigate the gradient noise near convergence.

4.5 PERFORMANCE SCALING ON IMAGENET-1K

We scaled up our method to ImageNet-1K. We followed the training protocols detailed in Appendix A.1. In
accordance with our initial hypothesis on gradient noise, we doubled the batch size to 8192 (see Appendix A.7).
Since using different mini-batches was crucial early in training, we did not alter the way mini-batches were
sampled. Scheduling the randomness for the mini-batches is an option we have not yet explored.

In the initial training phase, we observed that LTE outperformed standard training. However, as training ap-
proached completion, standard training overtook LTE, necessitating additional iterations for LTE to achieve
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Compute analysis on ImageNet1k
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Figure 7: ImageNet compute analysis: We break down the hypothetical computational cost for training ViT-S on Im-
ageNet1k. We compare against distributed data-parallel with 8 devices. LTE requires 40% longer to achieve the same
performance of 68% top-1 accuracy on 1000-way classification. We used 32 LoRA head with r = 64. Our method re-
quires fewer trainable parameters per device. This in turn could enable fitting of larger models in low-memory hardware,
with increased parallelization. With smaller memory footprint and infrequent communication our method uses lower total
communication cost. Further discussion is in Section 4.5.

comparable performance. Standard training appeared to benefit more from a smaller learning rate compared to
LTE. For ViT-S, the model took 40% longer to converge to the same top-1 accuracy of 68% (see Appendix A.6).

The primary focus of our work was to investigate whether it is possible to train deep networks with parallel
low-rank adapters; hence, we did not aim to maximize efficiency. However, we do provide a hypothetical
computation analysis for future scaling efforts. Let the model size be denoted by Mddp = M , and Mlte for LTE,
and the respective number of devices for each method be denoted with Nddp, and Nlte . With quantization, each
LTE device would require a memory footprint of qM + Mlte. With base model operating in 16-bit precision,
using 4-bit quantization results in q = 0.25. With AdamW, DDP necessitates an additional 2M parameters,
making the total memory footprint 3M per device. For LTE, the total memory footprint per device is qM +
3Mlte. Assuming the training is parameter-bound by the main weights r ≪ min(m,n), LTE can leverage
GPUs that are roughly 1/3 the size required for DDP. It is worth noting that LTE requires 40% more data to
train, and a slowdown of 20% per iteration when using quantization methods such as QLoRA. If the cost of
low-memory devices is lower, these slowdowns may be negligible compared to the speed-up achieved through
parallelization. On average, each LTE device observes 1/3 less data than a device in DDP. With improvements
in our method and future advances in quantization, we believe this gap will reduce. The compute analysis for
ViT-S on ImageNet1k is illustrated in Figure 7.

Communication also presents bottlenecks when training models across nodes. For a single node, one can inter-
leave the communication of gradients asynchronously with the backward pass (Li et al., 2020). In multi-node
systems, the communication scales with the size of the trained parameters, often bottlenecked by interconnect
speed, especially when high-throughput communication hardware, such as InfiniBands, are not utilized. Using
standard all-reduce, gradient is shared between each device for a total communication of Nddp(Nddp − 1)M .
For LTE we communicate every T iteration hence we have 1

T Nlte(Nlte − 1)M . To maximize efficacy of LTE,
an alternative approach is to use a parameter server for 1-and-broadcast communication. Here gradients are
sent to the main parameter server and averaged. The accumulated updates are broadcasted back to other nodes.
DDP with a parameter server would use 2(Nddp−1)M and LTE would use 1

T ((Nlte−1)Mlte+(Nlte−1)qM).
Moreover, LTE can leverage lower-bandwidth communication since the parameters shared between devices are
strictly smaller by a factor of Mddp/Mlte.

5 RELATED WORKS

Training with adapters The use of LoRA has garnered considerable attention in recent research. While our
work focuses on using adapters to pre-train model from scratch, majority of the works have focused on en-
hancing fine-tuning processes through these adapters (Chavan et al., 2023; Zhang et al., 2023b), while others
aim to diminish computational requirements (Zhang et al., 2023a) or to offset part of the pre-training compu-
tation (Lialin et al., 2023). Moreover Wang et al. (2022) explores the use mixture-of-adapters (MoE-variant)
for parameter efficient fine-tuning and uses “model-soup”-style (Wortsman et al., 2022b) averaging for efficient
inference. Various forms of adapters have been proposed in prior research, each serving specific applications.
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Additive adapters (Zhang et al., 2021) augment the model size for inference, and hence the community has
turned towards linear adapters either in the form residual connections (Cai et al., 2020) or affine parameters in
batch-norm, (Bettelli et al., 2006; Mudrakarta et al., 2018). Adapters have been applied for natural language
processing (Houlsby et al., 2019; Stickland & Murray, 2019), video (Yang et al., 2023; Xing et al., 2023), com-
puter vision (Sax et al., 2020; Zhang & Agrawala, 2023; Chen et al., 2022b), incremental learning (Rosenfeld
& Tsotsos, 2018), domain adaptation (Rebuffi et al., 2018), and vision-language tasks (Gao et al., 2023; Rad-
ford et al., 2021; Sung et al., 2022), text-to-vision generative models (Mou et al., 2023), and even perceptual
learning (Fu et al., 2023).

Distributed Training and Federated Learning Our work has relevance to both distributed and federated
learning paradigms, wherein each head is conceptualized as a distinct computational device. Federated learn-
ing addresses various topics including low-compute devices, high-latency training, privacy, and both cross and
in-silo learning, as comprehensively discussed in (McMahan et al., 2017; Wang et al., 2021). Communication
efficiency serves as a cornerstone in both distributed and federated learning. Techniques such as local steps have
been employed to mitigate communication load (Lin et al., 2018; Povey et al., 2014; Smith et al., 2018; Su &
Chen, 2015; Zhang et al., 2016). These methods defer the averaging of weights to specific optimization steps,
thus alleviating the communication cost per iteration. The effectiveness of decentralized training have been
studied in (Lian et al., 2017; Koloskova et al., 2019; 2020; Coquelin et al., 2022). Traditionally, activation com-
putations have dominated the computational load. However, the advent of gradient checkpointing (Chen et al.,
2016) and reversible gradient computation (Gomez et al., 2017; Mangalam et al., 2022) has shifted the training
process toward being increasingly parameter-bound. Techniques such as gradient or weight compression also
seek to reduce the communication burden (Lin et al., 2017; Aji & Heafield, 2017; Wen et al., 2017). Combining
models in federated learning is often credited to FedAvg (McMahan et al., 2017). Numerous studies explore the
use of weighted averaging to improve convergence speed (Li et al., 2019). Since then, many works have tried
to use probabilistic frameworks to understand and improve merging (Hsu et al., 2019; Wang et al., 2019; Reddi
et al., 2020). The conditions for optimal merging is still an open question, with recent efforts to improve up-
dating with stale parameters has been explored in Chen et al. (2022a). Server momentum and adaptive methods
constitute another active area of research. Where macro synchronization steps may be interpreted as gradients,
thus facilitating bi-level optimization schemes (Hsu et al., 2019; Wang et al., 2019; Reddi et al., 2020). Initial
efforts to employ federated learning with large models have been made. Yuan et al. (2022) examined the cost
models for pre-training Language Learning Models (LLMs) in a decentralized configuration. Wang et al. (2023)
suggested the utilization of compressed sparse optimization methods for efficient communication.

Linear mode connectivity and model averaging Linear mode connectivity (Garipov et al., 2018) pertains
to the study of model connecitivity. Deep models are generally linearly disconnected but can be connected
through nonlinear means (Freeman & Bruna, 2016; Draxler et al., 2018; Fort & Jastrzebski, 2019). Under
the same initialization, linear paths with constant energy exists in trained models (Nagarajan & Kolter, 2019;
Frankle et al., 2020; Wortsman et al., 2022b). For models with different initializations, parameter permutations
can be solved to align them linearly (Brea et al., 2019; Tatro et al., 2020; Entezari et al., 2021; Simsek et al.,
2021). Following this line research, numerous works have delve into model averaging and stitching. Where
averaging of large models have shown to improve performance (Wortsman et al., 2022b; Ainsworth et al., 2022;
Stoica et al., 2023; Jordan et al., 2022). Model stitching (Lenc & Vedaldi, 2015) has also shown to yield
surprising transfer capabilities (Moschella et al., 2022). This idea is conceptually related to optimal averaging
in convex problems (Scaman et al., 2019) and the “Anna Karenina” principle where successful models converge
to similar solutions (Bansal et al., 2021). The effectiveness of averaging models within ensembles is well-
established (Huang et al., 2017; Izmailov et al., 2018; Polyak & Juditsky, 1992). Utilizing an average model
as a target has also been investigated (Tarvainen & Valpola, 2017; Cai et al., 2021; Grill et al., 2020; Jolicoeur-
Martineau et al., 2023; Wortsman et al., 2022a).

6 CONCLUSION

In this work, we investigated the feasibility of using low-rank adapters for model pre-training. We introduced
LTE, a bi-level optimization method that capitalizes on the memory-efficient properties of LoRA. Although we
succeeded in matching performance on moderately sized tasks, several questions remain unresolved. These
include: how to accelerate convergence during the final 10% of training; how to dynamically determine the
number of ranks or heads required; whether heterogeneous parameterization of LoRA is feasible, where each
LoRA head employs a variable rank r; and leveraging merging strategies to accompany higher local optimiza-
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tion steps. Our work serves as a proof-of-concept, demonstrating the viability of utilizing low-rank adapters for
neural network training from scratch. However, stress tests on larger models are essential for a comprehensive
understanding of the method’s scalability. Addressing these open questions will be crucial for understanding
the limitations of our approach. We anticipate that our work will pave the way for pre-training models in
computationally constrained or low-bandwidth environments, where less capable and low-memory devices can
collaboratively train a large model, embodying the concept of the “wisdom of the crowd.”
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A APPENDIX

A.1 TRAINING DETAILS

Training details: We adhere to the standard training protocols. Below are the references:

Vision training code PyTorch TorchVision references
ViT implementation PyTorch TorchVision models
MLP-mixer implementations huggingface/pytorch-image-models
Quantization TimDettmers/bitsandbytes

We replace the fused linear layers with standard linear layers to use LoRA. LoRA is applied across all linear
layers. All experiments incorporate mixed-precision training. For nodes equipped with 4 GPU devices, we
implement gradient checkpointing. Gradient checkpointing is also utilized for ViT-L models.

Hardware: Our experiments were conducted using various NVIDIA GPUs, including V100 and Titan RTX.

Architecture detail:

Architecture ViT-S ViT-B ViT-L

Patch-sizse 32 32 32
Attention blocks 12 12 24
Attention heads 6 12 16
Hidden dim 6 768 1024
MLP dim 1536 3072 4096

Total parameters 22.9M 88.2M 306.5M

Table 2: ViT architecture details.

Architecture Mixer-T Mixer-S Mixer-B

Patch-sizs 32 32 32
Mixer blocks 6 8 12
Embed dim 384 512 768
MLP dim 1536 2048 3072

Total parameters 8.8M 19.1M 60.3M

Table 3: MLP-mixer architecture details

Architecture NanoGPT GPT2

Block-size 256 1024
Attention blocks 6 12
Attention heads 6 12
Hidden dim 384 768
MLP dim 1152 2304

Total parameters 10.7M 124.4M

Table 4: LLM GPT architecture details.
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Dataset details:

Dataset CIFAR10 CIFAR100 STL10 CALTECH256 SUN397 ImageNet100 ImageNet1K

Original image-size 32x32 32x32 96x96 Variable Variable Variable Variable
Training image-size 224x224 224x224 224x224 224x224 224x224 224x224 224x224
Number of classes 10 100 10 257 397 100 1,000
Number of images 60,000 60,000 13,000 30,607 108,754 130K >1.2M

Learning-rate ηdefault 3 ·10−4 3 ·10−4 3 ·10−4 3 ·10−4 3 ·10−3 3 ·10−3 3 ·10−3

Learning-rate ηlte 2 ·10−5 2 ·10−5 2 ·10−5 2 ·10−5 5 ·10−6 3 ·10−5 3 ·10−5

Batch-size 1024 1024 1024 1024 1024 4096 8192

Table 5: Specifications for vision datasets. Most images in variable size datasets are larger than the training image-size. We
provide training configuration used for ViT. For MLP-Mixer on ImageNet100, we use learning rate of 0.001 for full-model
pre-training and 1 · 10−4 for LTE, both with a batch-size of 4096.

Dataset Shakespeare TinyStories

Total number of tokens 1.0M 474.0M
Tokenizer size 65 50304

Learning-rate ηdefault 1 ·10−3 6 ·10−4

Learning-rate ηlte 2 ·10−6 5 ·10−5

Batch-size 512 512
Block-size 256 1024

Table 6: Specifications for LLM datasets and hyper-parameters used for miniGPT on Shakespeare and GPT2 on Tinystories.

LTE Optimization Details: We use α = 4096 ∼ 8192, which is s = 128 ∼ 256 when r = 32 and
s = 64 ∼ 128 when r = 64. A good rule of thumb for the learning rate is to set it at approximately 0.1 ∼ 0.05×
the standard model training learning rate. We use the same learning rate scheduler as the standard pre-training,
which is cosine learning-rate decay with linear warmup.

LTE Batching Detail: We use a fixed cumulative batch size for LTE. This means that given a batch size B
with N LoRA heads, each head receives a batch size of [B/N ]. When counting the training iterations, we count
B and not [B/N ]. Counting using [B/N ] would significantly inflate our number, overselling our method. LTE
training epochs were set to 4× the cumulative batch size, and we exit early when we match the performance
of full-model training. For smaller datasets, our method seemed to consistently outperform the baseline, likely
due to the regularization properties of rank and over-parameterization.

LTE Implementation Details: We implemented LTE using Parameter Server and PyTorch DDP. While the for-
mer is theoretically more beneficial for our method, we conducted most of our development using the latter due
to its well-optimized backend that does not require rewriting communication logic. We utilize ‘torch.vmap’
and simulate multiple devices on the same GPU.

LTE for Convolution, Affine, and Embedding Layers: Specific choices for all these layers did not seem to
make a significant impact on the final performance, but we detail the choices we made below.

For convolution layers, we use the over-parameterization trick in (Huh et al., 2023), which uses 1 × 1 for the
second layer. Since convolution layers are typically used at most once in the models we tested, we did not
explore beyond this parameterization. However, there are other potential choices for low-rank parameterization
of convolution layers, such as channel-wise convolution and separable convolutions.

For affine parameters, there is no notion of low-rank decomposition, but it is used in normalization layers. We
tried various strategies to train and communicate these parameters, all resulting in comparable performance. For
affine parameters, we tried: (1) LoRA-style vector-vector parameterization a,b, (2) LoRA-style vector-scalar
parameterization A = a, b, (3) DDP-style averaging, and (4) removing affine parameters. We use vector-scale
parameterization for the experiments in the main paper.

Lastly, for the embedding layer, we found that using the standard averaging technique or allowing only one
model to train the embedding layer worked best. We chose to use standard averaging at the same iteration as
the rest of the LoRA layers.
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A.2 MERGE WITH LEAST-SQUARES
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Figure 8: Least-squares with LoRA: Linear models parameterized with LoRA with varying target rank. Least-squares
with R32×32, with target rank of 32 (right) and 8 (left). LoRA is parameterized with rank r = 4. With merging, the model
can recover the solution, with convergence scaling with merge frequencies.

We train a linear networks, parameterized with LoRA, on least-squares regression. Here we artificially con-
structed the problem to control for the underlying rank of the solution W∗. We then constructed a dataset by
randomly generating Y = X(W∗)T. Where for each element x ∈ X is drawn from a normal distribution
x ∼ N (0, I).

Figure 8 visualizes the model’s ability to recover the underlying ground-truth solution across various merge
iterations T . Here, the optimal solution W∗ is set to be full rank where m = n = 32. We employ a naive
re-initialization strategy of initializing A with a uniform distribution scaled by the fan-out.

Without merging the LoRA parameters, the model’s performance rapidly plateaus. In contrast, models trained
with merges can eventually recover the full-rank solution, with the recovery rate scaling with the frequency of
merges.
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A.3 ABLATION
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Figure 9: Ablation: These models were trained using ViT-S with 8 heads with rank r = 16. (Left) different
initialization scheme. (Middle) resetting A. (Right) resetting optimizer states for both A and B.

We conducted an ablation study focusing on initialization, resetting of LoRA A, and resetting the optimizer
for the LoRA parameters. All ablation studies presented here were conducted with a LTE with rank r = 16, 8
heads using ViT-S on ImageNet100.

Kaiming initialization serves as the default scheme for LoRA. The conventional Kaiming initialization is tai-
lored for square matrices and is dependent solely on the input dimension. Given that LoRA parameters often
manifest as wide matrices, we experimented with various initialization schemes. Xavier initialization (Glorot
& Bengio (2010)) preserves the variance relationship of a linear layer for rectangular matrices. Bernstein et
al. (Bernstein et al. (2023)) employ semi-orthogonal initialization to preserve the spectral norm of the input.
As depicted in Figure 9a, the method by Bernstein et al. proved most effective. It should be noted that all
these initialization methods do not assume residual connection or zero-ed out LoRA parameters. Hence, further
tuning of the gain parameters might be needed.

When resetting the LoRA parameters, we investigated the impact of resetting matrix A as well as its optimizer.
As shown in Figure 9b, we found that resetting matrix A adversely affects model performance, possibly due
to the necessity of relearning the representation at each iteration and discarding the momentum states. In Fig-
ure 9c, we also experimented with retaining the LoRA parameters while resetting the optimizer state for those
parameters. Similarly, we found that resetting the optimizer state diminishes performance.

19



Under review as a conference paper at ICLR 2024

A.4 THE EFFECT OF RANDOMNESS IN LORA PARAMETERS AND DATA
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Figure 10: The effect of training with different mini-batches and LoRA parameters

In Section 4.2, we observed that variations in mini-batches and LoRA head initialization influenced the cosine
similarity between the heads. In this section, we trained the model to convergence using these configurations.
The model either utilized the same or different mini-batches drawn from an identical distribution. We also
initialized the LoRA parameters to be either the same or different. Our findings indicate that cosine similarity
serves as a reliable metric for evaluating model performance. However, models employing identical data bene-
fited more when the learning rate was reduced. This suggests that minimizing gradient noise by gradually using
similar mini-batches is crucial. Alternatively, one could incrementally increase the batch size.
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A.5 GRASSMAN AND COSINE DISTANCE OF LORA HEADS

We measure cosine and Grassman distance of the LoRA heads to measure orthogonality between the optimized
sub-spaces. Grassman distance measures the distance of two linear subspaces and is defined as:

Grassman distance Given subspaces U and V , and given the singular values UTV = XΣY T , where
Σ is a diagonal matrix with singular values σi. The principal angles θi between U and V are given by
θi = cos−1(σi). Then the Grassmann distance dGrassman(U, V ) is then defined as:

dGrassman(U, V ) =

(
k∑

i=1

θ2i

) 1
2

where k is the number of principal angles, typically the dimension of the smaller subspace.

For LoRA the number of principal components will most likely be spanned by the LoRA rank r. The pairwise
Grassman distance is measured by:

1

2N

∑
(i,j)∈[1,N ]∧i ̸=j

dGrassman(BiAi,BjAj) (4)

The Grassmann distance measures how different two subspaces is by summing over the principal angles. This
metric was used in (Hu et al., 2021). For cosine distance, the angle is measured on the vectorized parameters
and measures the angle/alignment between the updates.

Figure 11 plots the is computed on ViT-S with 4 LoRA heads with rank r = 32. For both metrics, we measure
the average pairwise distance of the LoRA heads using LTE with T = 10. We plot the distance for 6 linear
layers throughout model, and also plot the average of all layers. We observe consistent orthogonality between
each heads throughout optimization for both measures.
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Figure 11: Cosine and Grassman distance of LTE.
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A.6 TRAINING CURVE ON IMAGENET1K
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Figure 12: ImageNet1k test curve

We plot the test curves in Figure 12 for both standard and LTE training on ImageNet-1K, using a cosine learning
rate scheduler for both. Training LTE for 300 epochs performed roughly 5% worse. Hence, we repeated the
experiment by setting training epoch to 600. The final performance was matched at around 420 epochs. LTE
was also trained with doubled batch size of 8192. Early in the training phase, the baseline outperformed LTE,
but this trend was quickly reversed after first initial epochs. LTE approached its final performance quite rapidly.
However, LTE fell short when compared to the standard training duration by 300 epochs, and additional 120
epochs were required to reach the same test accuracy. Unlike LTE, we found that standard training benefited
significantly from small learning rate. Although we posit that gradient noise and stale parameter estimates are
the primary cause of this gap, further investigation is required. We observed this trend across all ViT sizes. Few
potential way to mitigate the slow convergence may be to synchronize the mini-batches or the LoRA parameters
as the model is trained.
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A.7 EFFECT OF BATCH-SIZE ON IMAGENET1K
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Figure 13: ImageNet1k with doubled accumulative batch-size

Utilizing larger batch sizes is beneficial for maximizing FLOP efficiency. However, when evaluated in terms
of samples seen, larger batch sizes are known to underperform Masters & Luschi (2018). Given that LTE
introduces more noise, we hypothesized that a reduced learning rate could be adversely affected by both gradient
noise and estimate noise from using merges. In Figure 13, we experimented with increasing the batch size and
observed a moderate improvement of 3% with bigger batches.
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B RANK OF THE MODEL IN PRE-TRAINING
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Figure 14: Rank dynamics of ViT for standard training and LTE. Rank is measured using effective rank.
We track the rank of the weights and update to the main weight throughout training.

We measure the effective rank (Roy & Vetterli, 2007) of standard training and LTE throughout training.

(Definition) Effective rank (spectral rank) For any matrix A ∈ Rm×n, the effective rank ρ is defined
as the Shannon entropy of the normalized singular values:

ρ(A) = exp

−min(n,m)∑
i=1

σ̄i log(σ̄i)

 ,

where σ̄i = σi/
∑

j σj are normalized singular values, such that
∑

i σ̄i = 1.

The rank of the updates for standard training are the gradients ∇WL, and for LTE its s
N

∑
n BnAn. In the

context of standard training, the rank of the weights exhibits only a minor decrease throughout the optimization
process. Conversely, the rank of the gradient monotonically increases following the initial epochs. This obser-
vation serves as an empirical evidence that approximating the updates with a single LoRA head is not feasible.
LTE, despite its markedly different dynamics, has the capability to represent full-rank updates throughout the
training period. This may also be useful for designing how many LoRA heads to use with LTE, where the
number of LoRA heads can start with one and slowly annealed to match the maximum rank of the weights.
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B.1 IS SCALING s THE SAME AS SCALING THE LEARNING RATE?

There is a misconception that the scalar s only acts as a way to tune learning-rate in these updates. Focusing on
the update for B (same analysis holds for A), we can write out the gradient as:

g(B) =
∂L
∂B

= s
∂L

∂zout
(Azin)

T = sḡt (5)

If we were using stochastic gradient descent, we would expect s to behave like a linear scaling on the learning
rate:

∆(B) = −ηsḡ (6)

Where we denoted ḡ as the component of the gradient with s factored out. We now show that s does not
linearly scale the learning rate for Adam (this analysis can be extended to scale-invariant optimizers). Using
the same notation used in , Adam is a function of the first-order momentum mt and second-order momentum
vt. One can factor out s from the momentum term: mt = sm̂t = sβ1m̂t−1 + (1 − β1)ĝt and vt = s2v̂t =
s2β1v̂t−1 + (1 − β1)ĝ

2
t . Incorporating the gradient in to the update rule we see that the adaptive update does

not depend linearly on s:

∆(B) = −η mt√
vt + ϵ

= −η sm̂t√
s2v̂t + ϵ

= −η m̂t√
v̂t + ϵ

(7)

However, ĝt is not invariant to s. Therefore, while s is not the same as the learning rate, it will impact the
downward gradient ∂L(...,s)

∂zout
. We discuss this in the next sub-section. It is worth noting that s quadratically

impacts the attention maps. Consider a batched input X with the output of a linear as X̂ = WX + sBAX =
WX+ sD. Then un-normalized attention map is dominated by the LoRA parameters:(

WQX̂
)(

WKX̂
)T

= WQ (WX+ sD)
(
XTWT + sDT

)
WT

K (8)

= · · ·+ s2WQDDTWT
K (9)

Unlike learning rate, scaling s affects both the forward and backward dynamics. Large s emphasizes the con-
tribution of the LoRA parameters, which may explain why we have observed better performance when using
larger s for pre-training. It is possible that using a scheduler for s could further speed up training, or even better
better understand how to fuse s into the optimizer or A; we leave this for future work. Next, we dive into the
effect of s on ḡt.
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B.2 THE EFFECTIVE UPDATE RULE FOR LORA IS DIFFERENT FROM STANDARD UPDATE

Effective update of LoRA. Let W be the original weight of the model, and denote g(W) = g as the
gradient of the parameter. Let Ŵ = W + sBA be the effective weight of the LoRA parameterization,
and g(Ŵ) = ĝ be its corresponding effective gradient. Then the LoRA parameterization is related to
the gradient of the standard parameterization by

ĝ = s
(
BBT g − gATA

)
− s2η

(
g (BA)

T
g
)

(10)

When s is small, we can safely discard the second term as it will scale quadratically with learning rate ηĝ.
However, when s is large, the contribution of the second term becomes non-negligible. This term can be
interpreted as the alignment of the LoRA parameters, and taking a step in this direction encourages B and A to
be spectrally aligned. The increased contribution of the LoRA parameters and the alignment induced by larger s
may explain our observation that higher s leads to better performance. It’s important to note that with a learning
rate scheduler, the contribution of the second term would decay to zero.

B.3 DERIVATION

Over-parameterization or linear-reparameterization in general has a non-trivial effect on the optimization dy-
namics. Here we analyze the update of the effective weight, to point out a rather surprising interaction between
s and η. Consider a standard update rule for SGD for zin ∈ Rn×1, and zout ∈ Rm×1 and W ∈ Rm×n:

g(W) =
∂L
∂W

=
∂L

∂zout

∂zout
∂W

=
∂L

∂zout
zTin (11)

We will denote g(W) = g from now on for clarity. For standard LoRA with parameters Ŵ = W + sBA,
where B ∈ Rm×r, A ∈ Rr×n, the update rule on the effective weight is:

Ŵ←W + s

(
B− η

∂L
∂B

)(
A− η

∂L
∂A

)
(12)

= W + sBA− sη

((
B

∂L
∂A
−A

∂L
∂B

)
+ η

∂L
∂B

∂L
∂A

)
(13)

We denote g(Ŵ) as ĝ. With the resulting effective update being:

ĝ =

(
B

∂L
∂A
− ∂L

∂B
A

)
− η

∂L
∂B

∂L
∂A

(14)

Computing the derivative for each variable introduces the dependency on s.
∂L
∂B

=
∂L

∂zout

∂zout
∂zres

∂zres
∂B

= s
∂L

∂zout
(Azin)

T (15)

∂L
∂A

=
∂L

∂zout

∂zout
∂zres

∂zres
∂A

= sBT ∂L
∂zout

zTin (16)

Plugging it back in we have

ĝ =

(
B

(
sBT ∂L

∂zout
zTin

)
−
(
s

∂L
∂zout

(Azin)
T

))
A− η

(
s

∂L
∂zout

(Azin)
T

)(
sBT ∂L

∂zout
zTin

)
(17)

= s

(
∂L

∂zout
zTinA

TA−BBT ∂L
∂zout

zTin

)
− s2η

(
∂L

∂zout
zTinA

TBT ∂L
∂zout

zTin

)
(18)

= s
(
BBT g − gATA

)
− s2η

(
gATBT g

)
(19)
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When s is small both terms exist. When s is large, the second term dominates. Since the last term is quadratic
with g, one can safely ignore the second term when learning rate is sufficiently small. Simiarly, when using
a learning rate scheduler, the contribution of the second term would decays to zero. The second-term can be
interpreted as an alignment loss. Where the gradient is moves in the direction that aligns LoRA parameters.
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C METHOD ILLUSTRATIONS

In our illustrations, we detail the distinctions between our method and other common strategies. Distributed
Data Parallel (DDP) synchronizes the model at every iteration, with only the gradients being communicated
between devices. This necessitates model synchronization across devices every iteration. Therefore, if there’s
significant delay in synchronization due to slow interconnect speeds or large model sizes, synchronization be-
comes a bottleneck. One way to mitigate this is through local optimization, often referred to as local steps or
local SGD in federated learning. Here, instead of communicating gradients, model weights are shared. Local
steps are known to converge on expectation, but they still require communicating the full model, which is loaded
in half or full precision, which will quickly become infeasible in 1B+ size models

Our proposed method addresses both communication and memory issues by utilizing LoRA. Each device loads
a unique set of LoRA parameters, and these parameters are updated locally. As discussed in our work, this
enabled efficient exploration of full-rank updates. We communicate only the LoRA parameters, which can
be set to be order of magnitude smaller than original model’s size. Our approach balances single contiguous
memory use with the ability to utilize more devices. The aim is to enable training of large models using low-
memory devices.
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Figure 15: Method illustration: Comparisons between distributed learning methods to our method.
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D ADDITIONAL RESULTS

In all of our experiments, we present two distinct curves for analysis: one that represents the total training data
observed across all devices, and another that shows the training samples or tokens seen per device.

D.1 VISION IMAGE CLASSIFICATION

We conduct additional experiments in image classification, covering datasets like CIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011), Caltech256 (Griffin et al., 2007), and
SUN397 (Xiao et al., 2016). For these tests, we retuned all baseline learning rates. Detailed information about
these datasets is available in Appendix A.1. For LTE we use rank of r = 64 and N = 32 heads.
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Figure 16: Additional results on various image classification datasets using ViT-S
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D.2 SCALING UP VIT MODEL SIZE

We train larger variants of the Vision Transformer (ViT) model. Details on these architectures are provided
in Appendix A.1. Across all sizes, our results remained consistent. For ViT-L where we used a rank of r = 128.
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Figure 17: ImageNet100 classification on varying ViT scale
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D.3 LTE ON MLP-MIXER

To evaluate the generalizability of our method to non-Transformer based architectures, we train MLP-
Mixer (Tolstikhin et al., 2021) using LTE. The specific details of the architecture used in datasets is listed
in Appendix A.1. Our findings are consistent results across different scales of the MLP-Mixer. For Mixer-B,
we use a rank of r = 128.
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Figure 18: ImageNet100 classification on MLP-Mixer of varying scale
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D.4 LANGUAGE MODELING

We also apply our method to language modeling. For these experiments, we utilized the nanoGPT code-
base (Karpathy, 2023). Detailed information about the architectures and datasets employed can be found in Ap-
pendix A.1. Shakespeare’s dataset was trained using MiniGPT (Karpathy, 2023), while TinyStories (Eldan &
Li, 2023) was trained on GPT2 (Radford et al., 2019). For Shakespeare, we used a configuration with rank
r = 16 and N = 32 heads, and for TinyStories, we employed rank r = 64 and N = 32 heads. Consistent
results were observed across all sizes. Note: The training for TinyStories is still in progress, and we will update
the paper with the final results as soon as they become available.
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Figure 19: ImageNet100 classification on MLP-Mixer of varying scale
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