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Abstract

Remote sensing images usually cover a large001
surface area, so the change information is usu-002
ally difficult to be precisely localized. Espe-003
cially, some changes are easy to be overlooked004
due to their inconspicuous locations and fuzzy005
shapes. In addition, unlike the natural image006
change description task, the remote sensing im-007
age change description task aims to capture008
the most significant changes without various009
influencing factors, such as light, seasonal in-010
fluences and complex land cover. To address011
the above challenges, in this paper, we pro-012
pose a multiple semantic perception network013
(MSPN) model to extract more accurate feature014
representations to guide the decoder in gener-015
ating high-quality change descriptions. In the016
visual encoder stage, the global efficient seman-017
tic awareness module is designed for global fea-018
ture embedding, the self-semantic awareness019
module digs deep into the internal connections020
between features, and the change semantic in-021
teraction module effectively distinguishes se-022
mantic changes from irrelevant ones. In the023
description generation phase, the Transformer-024
based decoder is designed to guide the change025
description generation. Extensive experiments026
on the LEVIR-CC dataset demonstrate the su-027
periority of the MSPN model over many state-028
of-the-art techniques.029

1 Introduction030

With the rapid development of remote sensing tech-031

nology, a large amount of high-resolution remote032

sensing image data has been acquired. The research033

on remote sensing images is widely used in dam-034

age assessment (Xu et al., 2019), urban planning035

(Chen and Shi, 2020), environmental monitoring036

(De Bem et al., 2020) and other fields. Accurate037

and semantically rich descriptions of remote sens-038

ing image changes not only help to improve the039

image interpretation capability, but also make these040

images easier to be understood by non-specialized041

users, which provides a powerful tool to support 042

decision-making, planning and management, and 043

disaster response. 044

The remote sensing image change description 045

task aims to describe the change content in a re- 046

mote sensing image pair in natural language. This 047

task involves two remote sensing images, usually 048

corresponding to different points in time in the 049

same area. The model needs to understand the 050

differences between these two images, including 051

changes in features, new or disappeared elements, 052

etc., and generate text descriptions that can clearly 053

express these changes. 054

In recent years, several methods have been pro- 055

posed to improve the performance of image change 056

description models. Early pioneer work (Jhamtani 057

and Berg-Kirkpatrick, 2018) proposed a task to de- 058

scribe the difference between similar image pairs. 059

Subsequent research focused on the relationship 060

between semantic changes and interference factors, 061

and proposed a series of models, including dual dy- 062

namic attention model (DUDA) (Park et al., 2019), 063

viewpoint adaptive matching encoding (Shi et al., 064

2020), multi-change caption transformer (MCC- 065

Formers) (Qiu et al., 2021), etc. At the same time, 066

some methods emphasize the importance of tasks, 067

such as new training schemes (Hosseinzadeh and 068

Wang, 2021) and multimodal end-to-end siamesed 069

difference captioning model (SDCM) (Oluwasanmi 070

et al., 2019a). Recent work has further explored the 071

relationship-aware attention mechanism (Tu et al., 072

2023b), distance-sensitive self-attention (DSA) (Ji 073

et al., 2022), cyclic consistency (VACC) (Kim et al., 074

2021), etc., to improve the model ’s perception of 075

complex changes. Methods such as the new mod- 076

eling framework (Yao et al., 2022) and the pro- 077

gressive scale-aware network (PSNet) (Liu et al., 078

2023) aim to optimize the overall performance of 079

the model. These studies work together to over- 080

come the challenges of semantic understanding, 081

viewpoint change and multi-scale information uti- 082
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lization, and provide rich exploration and innova-083

tion for the task of remote sensing image change de-084

scription. However, although significant progress085

has been made in the task of image change descrip-086

tion, there are still some deficiencies in semantics.087

Currently, for the task of describing changes088

in remote sensing images, the key challenges are089

mainly in the following aspects: Firstly, the model090

lacks fine-grained semantic understanding because091

remote sensing images usually cover large surface092

areas, and change information is usually difficult093

to pinpoint. There are a number of changes that are094

usually easily overlooked due to their inconspicu-095

ous locations and ambiguous shapes. Secondly, the096

model still lacks resistance to confounding factors,097

and it is difficult to produce descriptions that in-098

volve only real semantic changes. This means that099

the model should be able to filter out noise, light-100

ing variations, or other environmental factors that101

are not relevant to the change and focus on captur-102

ing the key semantic information in the image that103

reflects the actual surface or scene change. This104

immunity to perturbation makes the model more105

reliable for real-world applications.106

To address the above challenges, we propose107

a Multi-Semantic Perceptual Network (MSPN),108

which utilizes different semantic relation modules109

and a transformer-based decoder for remote sensing110

change description generation. The contributions111

of this paper are summarized as follows:112

(1) A multi-semantic perceptual network is pro-113

posed. Firstly, the global efficient semantic per-114

ception module operates at the perceptual level to115

grasp the global correlation information. Subse-116

quently, the self-semantic awareness module digs117

deep into the internal feature association and en-118

hances the understanding of subtle differences. On119

this basis, the change semantic interaction module120

carefully examines the comparative information121

between features, with particular attention to repre-122

senting differences. Finally, the decoder translates123

the learned change features into natural language124

sentences.125

(2) Comprehensively compare and analyze the126

effects of the encoder-extracted image feature rep-127

resentations of semantic relation embeddings in128

the description generation phase. By performing129

the analysis and evaluation of model parameters,130

we provide insights that may inspire researchers131

to design more effective models to fully utilize bi-132

chronological image features.133

(3) Extensive experiments show that our method134

outperforms other state-of-the-art methods on the 135

LEVIR-CC dataset. 136

2 Methodology 137

2.1 Overall Architecture of MSPN Model 138

The description task for remote sensing image 139

change aims to generate semantic descriptions 140

of remote sensing image changes through auto- 141

mated methods. Formally, given a pair of im- 142

ages (I1, I2), the model generates a caption de- 143

scribing what has been changed between I1 and 144

I2: f (I1, I2; θ) → Ĉ, where θ denotes the model 145

parameters of the change captioning network and 146

Ĉ represents the generated caption. 147

As shown in Figure 1, the architecture of our 148

method consists of four parts : (1) The global effi- 149

cient semantic awareness module quickly captures 150

the global semantic information of the image from 151

two different directions ; (2) The self-semantic 152

awareness module captures internal semantic infor- 153

mation between all features of the same input ; (3) 154

The change semantic interaction module is respon- 155

sible for the information flow interaction between 156

different scale features, and learns the contrast in- 157

formation between them, so as to pay attention 158

to the semantic information of actual changes ; (4) 159

The Transformer-based language decoder translates 160

the learned change features into natural language 161

sentences. 162

The proposed method follows encoder-decoder 163

architecture for change description generation of re- 164

mote sensing images. In the following, we give the 165

details of visual feature extractor and description 166

generation. 167

2.2 Semantic Relation Embedding 168

2.2.1 Global Efficient Semantic Awareness 169

(GESA) 170

Given a dual-temporal image pair (I1, I2), we first 171

use the pre-trained Resnet101 model to extract im- 172

age features and represent them as X1, X2, respec- 173

tively, where, Xi ∈ RC×H×W , C, H , W repre- 174

sent the number, height, and width of channels, 175

respectively. However, the features extracted by 176

the Resnet network are relatively sparse and inde- 177

pendent. It is difficult to distinguish fine-grained 178

changes from a large number of unrelated object 179

regions by using these features alone. In fact, there 180

is a semantic relationship between these original 181

object features (Wu et al., 2019; Huang et al., 2020; 182

Yin et al., 2020). In image understanding, captur- 183
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Figure 1: Overall architecture of our MSPN model.

Algorithm 1. Procedure of Our MSPN
Input: (I1, I2) (a pair of bi-temporal images)
Output: Change Description
Define:
GESA: global efficient semantic awareness module
SSA: the self-semantic awareness module
CSI: the change semantic interaction module
DG: the description generation decoder
EM: the word embedding
1. // step1: Feature Extraction
2. for i in (I1, I2) do:
3. Xi = backbone (Ii)
4. end for
5. // step2: Semantic Relation Embedding
6. X ′

1, X ′
2 = GESA (X1, X2)

7. for n in (1 - N) do:
8. X ′′

1 = SSA (X ′
1, X ′

1, X ′
1)

9. X ′′
2 = SSA (X ′

2, X ′
2, X ′

2)
10. X ′′

diff = X ′′
2 - X ′′

1

11. X̃1 = CSI (X ′′
1 , X ′′

diff , X ′′
diff )

12. X̃2 = CSI (X ′′
2 , X ′′

diff , X ′′
diff )

13. X̂diff = [X̃1;X̃2]
14. end for
15. // step3: Description Generation
16. Description = EM (“start”)
17. while w EM (“end”) do:
18. w = DG (X̂diff , Description)
19. Description [Description; w]
20. end while
21. return Description

Table 1: The processing procedure of our MSPN is
shown in Algorithm 1.

Figure 2: Detailed introduction of the global efficient
semantic awareness module.

ing the semantic relationship between objects is 184

crucial for a comprehensive understanding of the 185

image. 186

Global context information can provide the rela- 187

tionship between objects in the image, scene struc- 188

ture and deeper semantic understanding. Remote 189

sensing images involve complex scenes. There- 190

fore, global context information is of great signifi- 191

cance for the task of remote sensing image caption 192

generation, which is helpful to improve the com- 193

prehensive performance of image understanding. 194

For remote sensing images, high-resolution feature 195

maps are often generated, while non-local neural 196

networks need to generate huge attention maps to 197

measure the relationship between each pixel pair, 198

resulting in high computational complexity and oc- 199

cupying a large amount of memory. Inspired by 200

the Criss-Cross attention used in semantic segmen- 201

tation (Huang et al., 2019), the Global Efficient 202

Semantic Awareness (GESA) module relies on it to 203

implicitly model the global semantic relationships 204

in each image. 205

As shown in Figure 2, we first use two 1×1 con- 206

volution layers on the feature map Xi ∈ RC×H×W 207

to generate two feature maps Q and K, where 208

{Q,K} ∈ RC′×H×W , C ′ is the number of chan- 209

nels after dimensionality reduction, and the value 210

is less than C. At each position p in the Q-space 211

dimension, the vector Qp ∈ RC′
can be obtained. 212
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At the same time, by extracting features from K,213

the feature vector set Ωp ∈ R(H+W−1)×C′
is ob-214

tained, which is located in the same row or col-215

umn as the position p. Then the attention map216

A ∈ R(H+W−1)×(H×W ) is calculated by Eq. (1)217

and softmax layer.218

di,p = QpΩ
T
i,p (1)219

Where di,p ∈ D is the degree of correla-220

tion between characteristic Qp and Ωi,p, i =221

[1, . . . ,H +W − 1], D ∈ R(H+W−1)×(H×W ).222

At the same time, another 1 × 1 convolution layer223

is used to generate the feature V ∈ RC×H×W on224

Xi ∈ RC×H×W . On each position p in the V225

space dimension, the vector Vp ∈ RC and a set226

ϕp ∈ R(H+W−1)×C are obtained, ϕp is the set227

of eigenvectors in V that are in the same row or228

column as the position p. Finally, we can obtain229

the global context information as follows:230

X ′
p =

H+W−1∑
i=0

Ai,pϕi,p +Xp (2)231

Where, Xp is the eigenvector of position p in232

X ′ ∈ RC×H×W .233

After adding the global context information to234

the local feature X , the feature has a wide context235

view, which can better capture the global semantic236

information of the image to enhance the image237

feature representation.238

2.2.2 Hierarchical Semantic Representation239

of Interaction240

Through self-semantic representation, the model241

processes the input and deeply mines the feature242

representation of the image sequence, so as to243

understand the information in the input sequence244

more comprehensively. Further, the change seman-245

tic interaction is used to reveal the change charac-246

teristics, so that the model can effectively locate247

semantic changes without being affected by irrel-248

evant changes. This special architecture design249

provides strong semantic coherence for the model,250

which enables it to accurately and comprehensively251

capture the key semantic information in the image252

sequence.253

Self-Semantic Awareness (SSA) In order to bet-254

ter capture the semantic relationship between ob-255

jects in image features, the self-semantic relation-256

ship perception module is used to explore the fea-257

tures between image pairs. We first apply two258

multi-head self-attention. Different from the pre- 259

vious work that directly uses the features obtained 260

from the backbone deep neural network, the at- 261

tention layer can establish an internal connection 262

between all features of the same scale. In addition, 263

since the features are down-sampled through the 264

backbone network, the computational complexity 265

of the model is relatively low. 266

Specifically, we first transform the existing fea- 267

ture X ′
i ∈ RC×H×W into X ′

i ∈ RC×N , where 268

N=HW , i ∈ (1, 2). Then, Q, K, V are embed- 269

ded into the same-dimensional embedding by Emb 270

method. The SSA module is represented as fol- 271

lows: 272

(Q,K, V ) =
(
X ′

iW
Q
i , X ′

iW
K
i , X ′

iW
V
i

)
(3) 273

Where WQ
i , WK

i , W V
i are learnable parameter 274

matrices, i ∈ (1, 2). 275

SSA (Q,K, V ) = softmax

(
QKT

√
dk

)
V (4) 276

Where dk is the dimension of the vector. 277

When the model can deeply grasp the compre- 278

hensive information in the image, it can better dis- 279

tinguish semantic changes from unrelated changes. 280

That is to say, the result of the self-semantic aware- 281

ness module is used as the input of the change 282

semantic interaction stage, which effectively con- 283

structs the relationship between the image sequence 284

features, which is the basis for obtaining reliable 285

difference representation in the change semantic 286

interaction stage. 287

Change Semantic Interaction (CSI) The self- 288

semantic awareness module embeds the semantic 289

relationship between all the features of the same 290

input into the features X ′
1 and X ′

2, we get X ′
1
′ and 291

X ′
2
′, and then we capture the semantic difference 292

X ′′
diff in object features and relationships through 293

X ′
2
′ − X ′

1
′. Due to the existence of interference 294

information, the difference feature X ′′
diff contains 295

irrelevant information. Through the semantic in- 296

formation flow interaction between X ′′
diff and X ′

1
′, 297

and between X ′′
diff and X ′

2
′, we can distinguish 298

semantic changes from unrelated changes (such 299

as seasonal changes). Inspired by multi-headed 300

cross-attention (Vaswani et al., 2017), based on 301

the feature representations X ′
1
′, X ′

2
′, X ′′

diff , the 302

change semantic interaction module is defined as 303

follows: 304
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(Q,K, V ) =
(
X ′

i
′WQ

i , X ′′
diffW

K
i , X ′′

diffW
V
i

)
(5)305

Where WQ
i , WK

i , W V
i are learnable parameter306

matrices, i ∈ (1, 2).307

CSI (Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)308

Where dk is the dimension of the vector.309

That is to say, we can establish the characteristic310

relationship between the corresponding positions311

between X ′
1
′ and X ′′

diff , and between X ′
2
′ and312

X ′′
diff as follows:313

X̃1 = CSI
(
X ′

1
′, X ′′

diff , X
′′
diff

)
(7)314

X̃2 = CSI
(
X ′

2
′, X ′′

diff , X
′′
diff

)
(8)315

Then, in order to reduce the loss of image fea-316

ture information, the difference information is ac-317

curately judged while highlighting the irrelevant318

information. By splicing and integrating them, the319

stable difference representation in each image pair320

is learned:321

X̂diff = LN
([
X̃1; X̃2

])
(9)322

Where LN is the abbreviation of Layer Normal-323

ization (Ba et al., 2016).324

2.3 Description Generation (DG)325

In this part, we use the Transformer (Huang et al.,326

2019) decoder to generate the change description.327

Specifically, each decoder consists of N stacked328

Transformer decoding blocks. Each block consists329

of a masked multi-head attention layer, a multi-330

head cross-attention layer and a forward propaga-331

tion layer. Now we represent the visual sequence332

obtained from the visual encoder as ṼI .333

Firstly, the description decoder takes each word334

as input, and the masked multi-head attention mech-335

anism embeds the word through Eq. (10):336

E [W ] = {E [w1] , . . . ;E [wm]} (10)337

And the embedding feature Ê [W ] is calculated.338

Then, through multi-head cross-attention, Ê [W ] is339

used to query the most relevant hidden layer feature340

Ĥ from the visual feature ṼI . After that, Ĥ learns341

the enhanced representation H̃ through the forward342

propagation network.343

After stacking N Transformer decoding blocks, 344

the hidden layer state output of the last block hN is 345

used to predict the probability of each output word, 346

which is expressed as follows: 347

pi = softmax
(
W ThNi + bi

)
(11) 348

Where W T is the weight matrix, bi is the bias 349

term, hNi is the hidden layer state vector representa- 350

tion (the attention output of the i-th position), and 351

pi is the probability of the i-th word. 352

3 Experiments and Results 353

3.1 Experimental Setup 354

3.1.1 Datasets 355

The data set used in the experiment is the LEVIR- 356

CC data set provided by Liu et al. (Liu et al., 2022), 357

which is tailored from the building change detec- 358

tion data set LEVIR-CD (Chen and Shi, 2020). Un- 359

like LEVIR-CD, which only focuses on building- 360

related changes, the LEVIR-CC dataset focuses 361

on multiple changing scenes and objects. LEVIR- 362

CC is composed of 10,077 small bi-temporal tiles 363

with a size of 256 × 256 pixels, and each tile is 364

annotated as containing changes or not contain- 365

ing changes. Among them, there are 5038 image 366

pairs with changes and 5039 image pairs without 367

changes. Each image pair is composed of five dif- 368

ferent sentence descriptions, and the length of most 369

sentences is between 5 and 15 words. In the ex- 370

periment, the data set is divided into training set, 371

validation set and test set, including 6815, 1333 372

and 1929 image pairs respectively. 373

3.1.2 Evaluation Metrics 374

In this work, we followed the most advanced 375

change description methods (Yu et al., 2021), (Ji 376

et al., 2022), (Qiu et al., 2020), (Tu et al., 2021), 377

(Ak et al., 2023) and used four common indi- 378

cators to evaluate the accuracy of all methods, 379

namely BLEU-N (where N = 1,2,3,4) (Papineni 380

et al., 2002), ROUGE-L (ROUGE, 2004), ME- 381

TEOR (Banerjee and Lavie, 2005) and CIDEr-D 382

(Vedantam et al., 2015). 383

By comparing the consistency between the 384

model output and the real ground reference data, 385

these indicators provide a comprehensive assess- 386

ment of the effect of the change description model. 387

The higher the measurement score, the higher the 388

similarity between the generated sentence and the 389

reference sentence, that is, the higher the accuracy 390

of the change description. 391
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3.1.3 Experimental Details392

In this paper, the proposed deep learning method393

based on the PyTorch framework is trained and394

evaluated on the NVIDIA A100 graphics pro-395

cessing unit. During training, on the LEVIR-396

CC dataset, we use the Adam optimizer (Kingma,397

2015) to minimize the negative log-likelihood loss398

of the equation. At the same time, the initial learn-399

ing rate is set to 0.0001, and the training batch size400

is set to 32. After each epoch, the model is evalu-401

ated on the validation set, and the best performance402

model is selected according to the highest BLEU-4403

score to evaluate the test set.404

We train the model on the same training set, and405

then evaluate the performance of the model on the406

test set from the following three aspects: 1) the407

whole data set; 2) the data set only containing the408

image pairs with changes; 3) the data set only con-409

taining the image pairs without changes.410

For the data set only containing the image pairs411

with changes, the recognition accuracy and the412

sensitivity of the model to the changed area are413

reflected. It is used to verify the adaptability of414

the model to change detection and description gen-415

eration. For the data set only containing the im-416

age pairs without changes, there are some changes417

only in the interference factors, such as seasonal418

changes and illumination changes. It is used to419

verify whether the model can correctly identify the420

interference factors in the image and provide mean-421

ingful description. The ability of the model to deal422

with irrelevant regions can be examined. In addi-423

tion, we did not report the CIDEr-D measure of424

the test model in this case because the unchanged425

words are monotonous, CIDEr-D will approach 0.426

Therefore, in this case, CIDEr-D cannot measure427

the accuracy of sentences.428

3.2 Ablation Studies429

In order to clarify the contribution of each module430

of the proposed network, we conducted the follow-431

ing ablation studies on LEVIR-CC. We verify the432

overall performance of each block of the proposed433

method by simultaneously testing the model per-434

formance under the changed image pairs and the435

unchanged image pairs. And in the case of differ-436

ent test sets, the experimental results are all shown437

in Table 2.438

It can be seen from Table 2:439

1) Compared with Baseline model, GESA model440

has improved in all indicators. Among them, the441

Method B-4 M R C
Baseline 53.17 35.18 66.36 113.42

35.35 24.99 51.72 57.35
74.10 55.16 80.97 -

GESA 56.49 36.15 68.81 119.90
36.63 25.20 52.14 58.49
80.89 59.23 85.46 -

SSA+CSI 62.87 39.01 73.40 130.36
38.55 25.34 52.40 55.12
91.47 69.77 94.39 -

GESA+SSA+CSI 64.86 40.10 74.82 135.60
39.88 26.10 53.64 62.48
93.60 72.96 95.98 -

Table 2: Ablation studies on LEVIR-CC in terms of
total performance, the change setting and the no-change
setting, respectively. Where B-4, M, R, and C are short
for BLEU-4, METEOR, ROUGE-L, and CIDEr-D, re-
spectively.

BLEU-4 value increased by 6.24%, and the CIDEr- 442

D value increased by 5.71%. It shows that after ex- 443

tracting image features in ResNet101 network, only 444

relying on the global efficient semantic perception 445

module to obtain the global semantic information 446

between samples can improve the model, which 447

proves the effectiveness of GESA module. 448

2) Using both SSA and CSI, the performance 449

of the model is significantly improved. It shows 450

that SSA can be well combined with CSI to im- 451

prove the quality of model generation description. 452

Compared with the baseline model, after adding 453

hierarchical semantic interaction representation, 454

B-4 increased by 18.24%, METEOR increased 455

by 10.89%, ROUGE-L increased by 10.61%, and 456

CIDEr-D increased by 14.94%. 457

3) After combining GESA with SSA + CSI, each 458

evaluation index is improved again, and the CIDEr- 459

D index representing the similarity between the 460

generated description and the reference description 461

reaches 135.60. It shows that the combination of 462

the proposed modules can assist the model to gener- 463

ate a higher quality description, which also proves 464

the superiority of each module. 465

According to the data of Table 2, we can come 466

to the following conclusions: 467

1) This overall evaluation performance verifies 468

the generalization ability of this method, that is, it 469

can not only accurately determine whether there is 470

a semantic change between image pairs, but also 471

can ignore the interference factors to accurately 472

describe the change. 473
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2) It is very effective to capture the difference474

representation by SSA + CSI. Because it estab-475

lishes an internal relationship between all the fea-476

tures of the same input, semantic changes and irrel-477

evant changes can be effectively distinguished by478

semantic information flow interaction.479

3) Capturing the semantic relationships between480

image features is very important, because these481

relationships can enrich the original object features482

and help to explore fine-grained changes.483

3.3 Performance Comparison484

In order to comprehensively and objectively eval-485

uate the relative advantages and disadvantages of486

the proposed method in the remote sensing image487

change description task, the performance with other488

advanced change description methods is compared489

and the results are shown in Table 3.490

The experimental results in Table 3 show that our491

MSPN shows good performance compared with492

other methods. MSPN outperforms all other meth-493

ods in all indicators. Among them, it increased494

the BLEU-4 to 64.86 and the CIDEr-D to 135.60.495

It fully shows that MSPN can make use of the se-496

mantic relationship between image features, so the497

model can obtain good performance and general-498

ization ability.499

3.4 Qualitative Evaluation500

In order to evaluate the quality of the change de-501

scriptions generated by our proposed MSPN model,502

we conducted a qualitative evaluation by selecting503

several representative scenarios from the LEVIR-504

CC dataset. We visualize the image embedding and505

the predicted change description generated by the506

description decoder, as shown in Figure 3, where507

I1 and I2 represent the images captured at time 1508

and time 2, respectively, and Eimg is the visual im-509

age embedding extracted by the semantic relation510

embedding encoder.511

By observing the visual image embedding, our512

network can accurately locate the change area and513

highlight it. At the same time, in the example of514

unchanged image pairs, the network focuses on515

identifying unchanged objects. It shows that our516

network can accurately highlight changes in high-517

resolution dual-time images, allowing the decoder518

to generate a more accurate description.519

Figure 3: An example of visual image embedding and
change description generated by MSPN in LEVIR-CC
dataset.

4 Related Work 520

4.1 Image Captioning 521

Li et al. (2022) introduced the long-short-term re- 522

lational converter (LSRT) to fully understand the 523

relationship between objects. On the other hand, 524

Tu et al. (2022) proposed an internal and relational 525

embedding transformer (I2Transformer), which 526

makes full use of various modalities through the en- 527

hancement of cross-modal information. In the task 528

of image caption generation, Yu et al. (2021) ap- 529

plied the dual attention mechanism to the pyramid 530

feature map, so as to better locate the regions in the 531

image. Although the self-attention (SA) network 532

has achieved great success in image captioning, the 533

existing SA network has the problems of distance 534

insensitivity and low-rank bottleneck. To this end, 535

Ji et al. (2022) introduced distance-sensitive self- 536

attention (DSA). The traditional attention mecha- 537

nism usually only considers the one-way flow from 538

vision to linguistics, resulting in that the visual 539

features of attention are usually irrelevant to the 540

state of the target word. Tu et al. (2023b) improved 541

the traditional attention mechanism and proposed a 542

relationship-aware attention mechanism with two 543

kinds of graph learning. 544

4.2 Change Captioning 545

Jhamtani and Berg-Kirkpatrick (2018) made a pi- 546

oneering contribution to this field. Subsequently, 547

Park et al. (2019) introduced the Double Dynamic 548

Attention Model (DUDA). In order to solve the 549

common viewpoint change problem, Shi et al. 550

(2020) proposed viewpoint adaptive matching cod- 551

ing. Different from other methods, Hosseinzadeh 552

and Wang (2021) explored a new image change de- 553

scription training scheme. Subsequently, Qiu et al. 554

(2021) introduced the multi-change caption trans- 555
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Method B-1 B-2 B-3 B-4 M R C
DUDA (Park et al., 2019) 81.44 72.22 64.24 57.79 37.15 71.04 124.32
MCCFormer-S (Qiu et al., 2021) 79.90 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormer-D (Qiu et al., 2021) 80.42 70.87 62.86 56.38 37.29 70.32 124.44
PSNet (Liu et al., 2023) 83.86 75.13 67.89 62.11 38.80 73.60 132.62
RSICCformer (Liu et al., 2022) 84.72 76.27 68.87 62.77 39.61 74.12 134.12
MSPN (Ours) 86.03 78.14 70.87 64.86 40.10 74.82 135.60

Table 3: Comparisons experiments on the LEVIR-CC dataset. Where B-1, B-2, B-3, B-4, M, R, and C are short for
BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, and CIDEr-D, respectively. The bold numbers are
the best performance.

former (MCCFormers), and began to pay attention556

to the changes at the semantic level. Tan et al.557

(2019) elaborated on the editing transformation558

between two images, highlighting the differences559

in semantics. Further, Oluwasanmi et al. (2019b)560

proposed a fully convolutional CaptionNet (FCC).561

Through the multi-modal end-to-end connected562

difference caption model (SDCM), (Oluwasanmi563

et al., 2019a) captured, aligned, and calculated the564

differences between the two image features, which565

enhanced the understanding of the semantic level566

feature differences. Chang and Ghamisi (2023)567

proposed an attention change caption network, fo-568

cusing on generating accurate captions. In order569

to improve the model ’s ability to perceive various570

changes, a neighborhood contrast transformer is571

designed in Tu et al. (2023a). In addition, Yue et al.572

(2023) proposed the internal and internal represen-573

tation interaction network (I3N), which focuses574

on learning fine differential representation. In or-575

der to make the changing caption model capture576

the actual changes, Kim et al. (2021) proposed a577

view-independent changing subtitle network with578

cyclic consistency (VACC). Facing the challenges579

in the Image Difference Captioning (IDC) task, Yao580

et al. (2022) proposed a new modeling framework581

to learn stronger visual and linguistic associations.582

Liu et al. (2023) introduced a progressive scale-583

aware network (PSNet). And Huang et al. (2021)584

proposed an instance-level fine-grained differential585

captioning (IFDC) model, which focuses on the586

rich explicit features of the object to solve the chal-587

lenge of accurately locating the changing object in588

the context.589

However, although the above research has made590

significant progress, there are still some shortcom-591

ings. First of all, the current method mainly focuses592

on the description of object-level differences, while593

fine-grained semantic changes still need to be fur-594

ther explored. Secondly, there is still a lack of com-595

prehensive solutions for subtle semantic changes 596

in specific scenarios and complex situations. In 597

addition, the current research pays less attention 598

to the rich explicit features of objects in the con- 599

text, which may pose some challenges in accurately 600

locating changing objects. 601

5 Conclusion 602

In this paper, we propose a multi-semantic rela- 603

tionship perception network (MSPN). The network 604

has significant advantages in fully understanding 605

the internal semantic information of the images by 606

obtaining a variety of semantic relationships. In 607

addition, the network can effectively identify and 608

ignore interference factors. Therefore, it is good at 609

accurately representing image changes and gener- 610

ating descriptions with rich semantics. Extensive 611

experiments on the LEVIR-CC dataset show that 612

the proposed method achieves state-of-the-art re- 613

sults. 614

6 Limitations 615

Although the proposed multiple semantic percep- 616

tion network can deeply understand various seman- 617

tic relations in images, there are still some limita- 618

tions for fine-grained semantic changes. Moreover, 619

when dealing with interference factors in complex 620

scenes, the method still has some limitations. In ad- 621

dition, the limitations of the experimental data set 622

and the applicability and versatility of the method 623

also need to be further verified and explored. There- 624

fore, future research should focus on further im- 625

proving the accuracy and robustness of semantic 626

methods to more comprehensively analyze and de- 627

scribe changes in remote sensing images to meet 628

the demands for higher standards of detail, diversity 629

and complexity. 630
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A Parameter Analysis 809

The depth parameters of the network can have a 810

significant impact on the accuracy of the gener- 811

ated image description. Usually, the optimal depth 812

parameter is determined by experiments to obtain 813

the best performance on specific tasks. In this sec- 814

tion, in order to evaluate the performance of the 815

proposed MSPN model at different depths on the 816

LEVIR-CC dataset, a series of experiments in Ta- 817

ble 4 were performed. In the quantization results 818

of Table 4, E.D represents the depth of the encoder, 819

and D.D represents the depth of the decoder. We 820

observed that the model performed best when E.D 821

= 2 and D.D = 1. 822
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E.D D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
1 1 84.36 77.06 69.73 63.56 38.82 73.86 131.07
2 1 86.03 78.14 70.87 64.86 40.10 74.82 135.60
3 1 84.99 76.42 68.62 62.06 39.24 74.76 135.57
4 1 82.50 73.45 65.96 59.92 38.20 73.10 130.17
1 2 84.87 76.10 68.86 62.93 39.58 74.19 134.66
2 2 84.90 76.59 69.25 63.15 39.65 74.40 134.94
3 2 85.21 76.38 69.17 63.34 39.70 74.41 135.07
4 2 85.12 77.09 69.80 63.75 39.00 73.83 132.59
1 3 85.80 77.32 69.80 63.32 39.57 74.42 134.89
2 3 85.78 77.06 69.42 63.23 40.04 74.84 136.47
3 3 83.54 74.62 67.41 61.70 39.14 73.77 132.45
4 3 84.98 76.77 69.08 62.88 39.17 73.98 132.62
1 4 84.71 76.24 69.02 63.25 39.34 74.10 133.66
2 4 85.34 77.30 70.08 64.01 39.91 74.95 135.66
3 4 85.21 77.04 69.78 63.69 39.33 73.90 133.72
4 4 85.00 76.58 68.91 62.44 39.04 73.18 130.56

Table 4: Performance of MSPN model at different depths on the LEVIR-CC dataset.
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