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Abstract

Remote sensing images usually cover a large
surface area, so the change information is usu-
ally difficult to be precisely localized. Espe-
cially, some changes are easy to be overlooked
due to their inconspicuous locations and fuzzy
shapes. In addition, unlike the natural image
change description task, the remote sensing im-
age change description task aims to capture
the most significant changes without various
influencing factors, such as light, seasonal in-
fluences and complex land cover. To address
the above challenges, in this paper, we pro-
pose a multiple semantic perception network
(MSPN) model to extract more accurate feature
representations to guide the decoder in gener-
ating high-quality change descriptions. In the
visual encoder stage, the global efficient seman-
tic awareness module is designed for global fea-
ture embedding, the self-semantic awareness
module digs deep into the internal connections
between features, and the change semantic in-
teraction module effectively distinguishes se-
mantic changes from irrelevant ones. In the
description generation phase, the Transformer-
based decoder is designed to guide the change
description generation. Extensive experiments
on the LEVIR-CC dataset demonstrate the su-
periority of the MSPN model over many state-
of-the-art techniques.

1 Introduction

With the rapid development of remote sensing tech-
nology, a large amount of high-resolution remote
sensing image data has been acquired. The research
on remote sensing images is widely used in dam-
age assessment (Xu et al., 2019), urban planning
(Chen and Shi, 2020), environmental monitoring
(De Bem et al., 2020) and other fields. Accurate
and semantically rich descriptions of remote sens-
ing image changes not only help to improve the
image interpretation capability, but also make these
images easier to be understood by non-specialized

users, which provides a powerful tool to support
decision-making, planning and management, and
disaster response.

The remote sensing image change description
task aims to describe the change content in a re-
mote sensing image pair in natural language. This
task involves two remote sensing images, usually
corresponding to different points in time in the
same area. The model needs to understand the
differences between these two images, including
changes in features, new or disappeared elements,
etc., and generate text descriptions that can clearly
express these changes.

In recent years, several methods have been pro-
posed to improve the performance of image change
description models. Early pioneer work (Jhamtani
and Berg-Kirkpatrick, 2018) proposed a task to de-
scribe the difference between similar image pairs.
Subsequent research focused on the relationship
between semantic changes and interference factors,
and proposed a series of models, including dual dy-
namic attention model (DUDA) (Park et al., 2019),
viewpoint adaptive matching encoding (Shi et al.,
2020), multi-change caption transformer (MCC-
Formers) (Qiu et al., 2021), etc. At the same time,
some methods emphasize the importance of tasks,
such as new training schemes (Hosseinzadeh and
Wang, 2021) and multimodal end-to-end siamesed
difference captioning model (SDCM) (Oluwasanmi
etal., 2019a). Recent work has further explored the
relationship-aware attention mechanism (Tu et al.,
2023Db), distance-sensitive self-attention (DSA) (Ji
et al., 2022), cyclic consistency (VACC) (Kim et al.,
2021), etc., to improve the model ’s perception of
complex changes. Methods such as the new mod-
eling framework (Yao et al., 2022) and the pro-
gressive scale-aware network (PSNet) (Liu et al.,
2023) aim to optimize the overall performance of
the model. These studies work together to over-
come the challenges of semantic understanding,
viewpoint change and multi-scale information uti-



lization, and provide rich exploration and innova-
tion for the task of remote sensing image change de-
scription. However, although significant progress
has been made in the task of image change descrip-
tion, there are still some deficiencies in semantics.

Currently, for the task of describing changes
in remote sensing images, the key challenges are
mainly in the following aspects: Firstly, the model
lacks fine-grained semantic understanding because
remote sensing images usually cover large surface
areas, and change information is usually difficult
to pinpoint. There are a number of changes that are
usually easily overlooked due to their inconspicu-
ous locations and ambiguous shapes. Secondly, the
model still lacks resistance to confounding factors,
and it is difficult to produce descriptions that in-
volve only real semantic changes. This means that
the model should be able to filter out noise, light-
ing variations, or other environmental factors that
are not relevant to the change and focus on captur-
ing the key semantic information in the image that
reflects the actual surface or scene change. This
immunity to perturbation makes the model more
reliable for real-world applications.

To address the above challenges, we propose
a Multi-Semantic Perceptual Network (MSPN),
which utilizes different semantic relation modules
and a transformer-based decoder for remote sensing
change description generation. The contributions
of this paper are summarized as follows:

(1) A multi-semantic perceptual network is pro-
posed. Firstly, the global efficient semantic per-
ception module operates at the perceptual level to
grasp the global correlation information. Subse-
quently, the self-semantic awareness module digs
deep into the internal feature association and en-
hances the understanding of subtle differences. On
this basis, the change semantic interaction module
carefully examines the comparative information
between features, with particular attention to repre-
senting differences. Finally, the decoder translates
the learned change features into natural language
sentences.

(2) Comprehensively compare and analyze the
effects of the encoder-extracted image feature rep-
resentations of semantic relation embeddings in
the description generation phase. By performing
the analysis and evaluation of model parameters,
we provide insights that may inspire researchers
to design more effective models to fully utilize bi-
chronological image features.

(3) Extensive experiments show that our method

outperforms other state-of-the-art methods on the
LEVIR-CC dataset.

2 Methodology
2.1 Overall Architecture of MSPN Model

The description task for remote sensing image
change aims to generate semantic descriptions
of remote sensing image changes through auto-
mated methods. Formally, given a pair of im-
ages ([1,I2), the model generates a caption de-
scribing what has been changed between I; and
Iy: f(11,15;0) — C, where 0 denotes the model
parameters of the change captioning network and
C represents the generated caption.

As shown in Figure 1, the architecture of our
method consists of four parts : (1) The global effi-
cient semantic awareness module quickly captures
the global semantic information of the image from
two different directions ; (2) The self-semantic
awareness module captures internal semantic infor-
mation between all features of the same input ; (3)
The change semantic interaction module is respon-
sible for the information flow interaction between
different scale features, and learns the contrast in-
formation between them, so as to pay attention
to the semantic information of actual changes ; (4)
The Transformer-based language decoder translates
the learned change features into natural language
sentences.

The proposed method follows encoder-decoder
architecture for change description generation of re-
mote sensing images. In the following, we give the
details of visual feature extractor and description
generation.

2.2 Semantic Relation Embedding

2.2.1 Global Efficient Semantic Awareness
(GESA)

Given a dual-temporal image pair (1, I2), we first
use the pre-trained Resnet101 model to extract im-
age features and represent them as X1, X5, respec-
tively, where, X; € RE*T*W €, H, W repre-
sent the number, height, and width of channels,
respectively. However, the features extracted by
the Resnet network are relatively sparse and inde-
pendent. It is difficult to distinguish fine-grained
changes from a large number of unrelated object
regions by using these features alone. In fact, there
is a semantic relationship between these original
object features (Wu et al., 2019; Huang et al., 2020;
Yin et al., 2020). In image understanding, captur-
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Figure 1: Overall architecture of our MSPN model.

Algorithm 1. Procedure of Our MSPN

Input: ([, I) (a pair of bi-temporal images)
Output: Change Description
Define:

1X1 Cony ————|

GESA: global efficient semantic awareness module Figure 2: Detailed introduction of the global efficient

SSA: the self-semantic awareness module
CSI: the change semantic interaction module
DG: the description generation decoder
EM: the word embedding

1. // stepl: Feature Extraction

2. for i in (I, I5) do:

3 X, = backbone (I;)

4. end for

5. // step2: Semantic Relation Embedding
6. X|, X} = GESA (X1, X»2)

7. fornin (1 - N) do:

8 = SSA (X1, X, X))

9 X =SSA (X}, X}, X))

10. Xdsz_ 4-X7

I X;=CSI(X{, X dsz’ Xt p)
12, Xo=CSL(XY, X[, Xfiisp)
13. Xdsz [Xl,XQ]

14. end for

15. // step3: Description Generation
16. Description = EM (“‘start”)

17. while w EM (“end”) do:

18. w =DG (Xdi r#» Description)
19.  Description [Description; w]
20. end while

21. return Description

semantic awareness module.

ing the semantic relationship between objects is
crucial for a comprehensive understanding of the
image.

Global context information can provide the rela-
tionship between objects in the image, scene struc-
ture and deeper semantic understanding. Remote
sensing images involve complex scenes. There-
fore, global context information is of great signifi-
cance for the task of remote sensing image caption
generation, which is helpful to improve the com-
prehensive performance of image understanding.
For remote sensing images, high-resolution feature
maps are often generated, while non-local neural
networks need to generate huge attention maps to
measure the relationship between each pixel pair,
resulting in high computational complexity and oc-
cupying a large amount of memory. Inspired by
the Criss-Cross attention used in semantic segmen-
tation (Huang et al., 2019), the Global Efficient
Semantic Awareness (GESA) module relies on it to
implicitly model the global semantic relationships
in each image.

Table 1: The processing procedure of our MSPN is
shown in Algorithm 1.

As shown in Figure 2, we first use two 1x1 con-
volution layers on the feature map X; € RC>*H*W
to generate two feature maps Q and K, where
{Q,K} € REHXW (' is the number of chan-
nels after dimensionality reduction, and the value
is less than C. At each position p in the Q-space
dimension, the vector @, € R®" can be obtained.



At the same time, by extracting features from K,
the feature vector set Qp € RHFW-1xC" g op-
tained, which is located in the same row or col-
umn as the position p. Then the attention map
A € RHFFW=1x(HXW) ig calculated by Eq. (1)
and softmax layer.

dip = QpQ, (1)

Where d;;, € D is the degree of correla-
tion between characteristic (), and €;,, i =
[1,...,H+W —1], D € RUFW-1)x(HxW)

At the same time, another 1 x 1 convolution layer
is used to generate the feature V € RE*H*W op
X; € REXHXW —On each position p in the V
space dimension, the vector V,, € RC and a set
¢y € RHEFTW=1XC are obtained, ¢, is the set
of eigenvectors in V' that are in the same row or
column as the position p. Finally, we can obtain
the global context information as follows:

H+W-1

Xp= D ApbiptX, @

=0
Where, X, is the eigenvector of position p in

X' e RC><H W

After adding the global context information to
the local feature X, the feature has a wide context
view, which can better capture the global semantic
information of the image to enhance the image

feature representation.

2.2.2 Hierarchical Semantic Representation
of Interaction

Through self-semantic representation, the model
processes the input and deeply mines the feature
representation of the image sequence, so as to
understand the information in the input sequence
more comprehensively. Further, the change seman-
tic interaction is used to reveal the change charac-
teristics, so that the model can effectively locate
semantic changes without being affected by irrel-
evant changes. This special architecture design
provides strong semantic coherence for the model,
which enables it to accurately and comprehensively
capture the key semantic information in the image
sequence.

Self-Semantic Awareness (SSA) In order to bet-
ter capture the semantic relationship between ob-
jects in image features, the self-semantic relation-
ship perception module is used to explore the fea-
tures between image pairs. We first apply two

multi-head self-attention. Different from the pre-
vious work that directly uses the features obtained
from the backbone deep neural network, the at-
tention layer can establish an internal connection
between all features of the same scale. In addition,
since the features are down-sampled through the
backbone network, the computational complexity
of the model is relatively low.

Specifically, we first transform the existing fea-
ture X! € ROH>XWinto X! € RO*N, where
N=HW, i € (1,2). Then, @, K, V are embed-
ded into the same-dimensional embedding by Emb
method. The SSA module is represented as fol-
lows:

(Q K, V) = (xjw, xjwl, xiw¥) - 3)

Where WiQ, WZ-K , Wiv are learnable parameter
matrices, ¢ € (1,2).

QKT

SSA(Q,K,V) = SOfthLIE( NG ) V. @

Where d}, is the dimension of the vector.

When the model can deeply grasp the compre-
hensive information in the image, it can better dis-
tinguish semantic changes from unrelated changes.
That is to say, the result of the self-semantic aware-
ness module is used as the input of the change
semantic interaction stage, which effectively con-
structs the relationship between the image sequence
features, which is the basis for obtaining reliable
difference representation in the change semantic
interaction stage.

Change Semantic Interaction (CSI) The self-
semantic awareness module embeds the semantic
relationship between all the features of the same
input into the features X and X}, we get X/’ and
X/, and then we capture the semantic difference
X7 £y in object features and relationships through
X} — X{'. Due to the existence of interference
information, the difference feature Xj; 7y contains
irrelevant information. Through the semantic in-
formation flow interaction between X, ,» and X1/,
and between X[j; ., and X3', we can distinguish
semantic changes from unrelated changes (such
as seasonal changes). Inspired by multi-headed
cross-attention (Vaswani et al., 2017), based on
the feature representations X7’, X5', Xg.,, , the
change semantic interaction module is defined as
follows:



(QaKv V) - (Xz{/WinXdszWK XdszWV)

(&)
Where WQ WK WY are learnable parameter
matrices, ¢ € (1, 2).

CSI(Q,K,V) = softmax(%) Vo (6)

Where dj, is the dimension of the vector.
That is to say, we can establish the characteristic
relationship between the corresponding positions

between X7’ and Xj,; , and between X3’ and
Xy as follows:

— CSI ( D ¢ Xc/lliff) 0
= CSI (X3, Xl Xbipg) — ®

Then, in order to reduce the loss of image fea-
ture information, the difference information is ac-
curately judged while highlighting the irrelevant
information. By splicing and integrating them, the
stable difference representation in each image pair
is learned:

XdiffZLNqXUXQD )
Where LN is the abbreviation of Layer Normal-
ization (Ba et al., 2016).

2.3 Description Generation (DG)

In this part, we use the Transformer (Huang et al.,
2019) decoder to generate the change description.
Specifically, each decoder consists of IV stacked
Transformer decoding blocks. Each block consists
of a masked multi-head attention layer, a multi-
head cross-attention layer and a forward propaga-
tion layer. Now we represent the visual sequence
obtained from the visual encoder as V7.

Firstly, the description decoder takes each word
as input, and the masked multi-head attention mech-
anism embeds the word through Eq. (10):

EW]={Elw,...;Elwal}  (10)

And the embedding feature £ [W] is calculated.
Then, through multi-head cross-attention, £ [IW] is
used to query the most relevant hidden layer feature
H from the visual feature VI After that, H learns
the enhanced representation H through the forward
propagation network.

After stacking N Transformer decoding blocks,
the hidden layer state output of the last block A" is
used to predict the probability of each output word,
which is expressed as follows:

p; = softmazx (WThZN + bi) (11)

Where W7 is the weight matrix, b; is the bias
term, hfv is the hidden layer state vector representa-
tion (the attention output of the i-th position), and
p; 1s the probability of the ¢-th word.

3 Experiments and Results

3.1 Experimental Setup

3.1.1 Datasets

The data set used in the experiment is the LEVIR-
CC data set provided by Liu et al. (Liu et al., 2022),
which is tailored from the building change detec-
tion data set LEVIR-CD (Chen and Shi, 2020). Un-
like LEVIR-CD, which only focuses on building-
related changes, the LEVIR-CC dataset focuses
on multiple changing scenes and objects. LEVIR-
CC is composed of 10,077 small bi-temporal tiles
with a size of 256 x 256 pixels, and each tile is
annotated as containing changes or not contain-
ing changes. Among them, there are 5038 image
pairs with changes and 5039 image pairs without
changes. Each image pair is composed of five dif-
ferent sentence descriptions, and the length of most
sentences is between 5 and 15 words. In the ex-
periment, the data set is divided into training set,
validation set and test set, including 6815, 1333
and 1929 image pairs respectively.

3.1.2 Evaluation Metrics

In this work, we followed the most advanced
change description methods (Yu et al., 2021), (Ji
et al., 2022), (Qiu et al., 2020), (Tu et al., 2021),
(Ak et al., 2023) and used four common indi-
cators to evaluate the accuracy of all methods,
namely BLEU-N (where N = 1,2,3,4) (Papineni
et al., 2002), ROUGE-L (ROUGE, 2004), ME-
TEOR (Banerjee and Lavie, 2005) and CIDEr-D
(Vedantam et al., 2015).

By comparing the consistency between the
model output and the real ground reference data,
these indicators provide a comprehensive assess-
ment of the effect of the change description model.
The higher the measurement score, the higher the
similarity between the generated sentence and the
reference sentence, that is, the higher the accuracy
of the change description.



3.1.3 Experimental Details

In this paper, the proposed deep learning method
based on the PyTorch framework is trained and
evaluated on the NVIDIA A100 graphics pro-
cessing unit. During training, on the LEVIR-
CC dataset, we use the Adam optimizer (Kingma,
2015) to minimize the negative log-likelihood loss
of the equation. At the same time, the initial learn-
ing rate is set to 0.0001, and the training batch size
is set to 32. After each epoch, the model is evalu-
ated on the validation set, and the best performance
model is selected according to the highest BLEU-4
score to evaluate the test set.

We train the model on the same training set, and
then evaluate the performance of the model on the
test set from the following three aspects: 1) the
whole data set; 2) the data set only containing the
image pairs with changes; 3) the data set only con-
taining the image pairs without changes.

For the data set only containing the image pairs
with changes, the recognition accuracy and the
sensitivity of the model to the changed area are
reflected. It is used to verify the adaptability of
the model to change detection and description gen-
eration. For the data set only containing the im-
age pairs without changes, there are some changes
only in the interference factors, such as seasonal
changes and illumination changes. It is used to
verify whether the model can correctly identify the
interference factors in the image and provide mean-
ingful description. The ability of the model to deal
with irrelevant regions can be examined. In addi-
tion, we did not report the CIDEr-D measure of
the test model in this case because the unchanged
words are monotonous, CIDEr-D will approach 0.
Therefore, in this case, CIDEr-D cannot measure
the accuracy of sentences.

3.2 Ablation Studies

In order to clarify the contribution of each module
of the proposed network, we conducted the follow-
ing ablation studies on LEVIR-CC. We verify the
overall performance of each block of the proposed
method by simultaneously testing the model per-
formance under the changed image pairs and the
unchanged image pairs. And in the case of differ-
ent test sets, the experimental results are all shown
in Table 2.

It can be seen from Table 2:

1) Compared with Baseline model, GESA model
has improved in all indicators. Among them, the

Method B-4 M R C
Baseline 53.17 35.18 6636 113.42
3535 2499 51.72 57.35
74.10 55.16 8097 -
GESA 5649 36.15 6881 119.90
36.63 2520 52.14 58.49
80.89 59.23 8546 -
SSA+CSI 62.87 39.01 7340 130.36
38.55 2534 5240 55.12
9147 69.77 9439 -
GESA+SSA+CSI  64.86 40.10 74.82 135.60
39.88 26.10 53.64 62.48
93.60 7296 9598 -

Table 2: Ablation studies on LEVIR-CC in terms of
total performance, the change setting and the no-change
setting, respectively. Where B-4, M, R, and C are short
for BLEU-4, METEOR, ROUGE-L, and CIDEr-D, re-
spectively.

BLEU-4 value increased by 6.24%, and the CIDEr-
D value increased by 5.71%. It shows that after ex-
tracting image features in ResNet101 network, only
relying on the global efficient semantic perception
module to obtain the global semantic information
between samples can improve the model, which
proves the effectiveness of GESA module.

2) Using both SSA and CSI, the performance
of the model is significantly improved. It shows
that SSA can be well combined with CSI to im-
prove the quality of model generation description.
Compared with the baseline model, after adding
hierarchical semantic interaction representation,
B-4 increased by 18.24%, METEOR increased
by 10.89%, ROUGE-L increased by 10.61%, and
CIDEr-D increased by 14.94%.

3) After combining GESA with SSA + CSI, each
evaluation index is improved again, and the CIDEr-
D index representing the similarity between the
generated description and the reference description
reaches 135.60. It shows that the combination of
the proposed modules can assist the model to gener-
ate a higher quality description, which also proves
the superiority of each module.

According to the data of Table 2, we can come
to the following conclusions:

1) This overall evaluation performance verifies
the generalization ability of this method, that is, it
can not only accurately determine whether there is
a semantic change between image pairs, but also
can ignore the interference factors to accurately
describe the change.



2) It is very effective to capture the difference
representation by SSA + CSI. Because it estab-
lishes an internal relationship between all the fea-
tures of the same input, semantic changes and irrel-
evant changes can be effectively distinguished by
semantic information flow interaction.

3) Capturing the semantic relationships between
image features is very important, because these
relationships can enrich the original object features
and help to explore fine-grained changes.

3.3 Performance Comparison

In order to comprehensively and objectively eval-
uate the relative advantages and disadvantages of
the proposed method in the remote sensing image
change description task, the performance with other
advanced change description methods is compared
and the results are shown in Table 3.

The experimental results in Table 3 show that our
MSPN shows good performance compared with
other methods. MSPN outperforms all other meth-
ods in all indicators. Among them, it increased
the BLEU-4 to 64.86 and the CIDEr-D to 135.60.
It fully shows that MSPN can make use of the se-
mantic relationship between image features, so the
model can obtain good performance and general-
ization ability.

3.4 Qualitative Evaluation

In order to evaluate the quality of the change de-
scriptions generated by our proposed MSPN model,
we conducted a qualitative evaluation by selecting
several representative scenarios from the LEVIR-
CC dataset. We visualize the image embedding and
the predicted change description generated by the
description decoder, as shown in Figure 3, where
I; and I, represent the images captured at time 1
and time 2, respectively, and £, is the visual im-
age embedding extracted by the semantic relation
embedding encoder.

By observing the visual image embedding, our
network can accurately locate the change area and
highlight it. At the same time, in the example of
unchanged image pairs, the network focuses on
identifying unchanged objects. It shows that our
network can accurately highlight changes in high-
resolution dual-time images, allowing the decoder
to generate a more accurate description.

Figure 3: An example of visual image embedding and
change description generated by MSPN in LEVIR-CC
dataset.

4 Related Work

4.1 Image Captioning

Li et al. (2022) introduced the long-short-term re-
lational converter (LSRT) to fully understand the
relationship between objects. On the other hand,
Tu et al. (2022) proposed an internal and relational
embedding transformer (/ 2Transformer), which
makes full use of various modalities through the en-
hancement of cross-modal information. In the task
of image caption generation, Yu et al. (2021) ap-
plied the dual attention mechanism to the pyramid
feature map, so as to better locate the regions in the
image. Although the self-attention (SA) network
has achieved great success in image captioning, the
existing SA network has the problems of distance
insensitivity and low-rank bottleneck. To this end,
Ji et al. (2022) introduced distance-sensitive self-
attention (DSA). The traditional attention mecha-
nism usually only considers the one-way flow from
vision to linguistics, resulting in that the visual
features of attention are usually irrelevant to the
state of the target word. Tu et al. (2023b) improved
the traditional attention mechanism and proposed a
relationship-aware attention mechanism with two
kinds of graph learning.

4.2 Change Captioning

Jhamtani and Berg-Kirkpatrick (2018) made a pi-
oneering contribution to this field. Subsequently,
Park et al. (2019) introduced the Double Dynamic
Attention Model (DUDA). In order to solve the
common viewpoint change problem, Shi et al.
(2020) proposed viewpoint adaptive matching cod-
ing. Different from other methods, Hosseinzadeh
and Wang (2021) explored a new image change de-
scription training scheme. Subsequently, Qiu et al.
(2021) introduced the multi-change caption trans-



Method B-1 B-2 B-3 B-4 M R C

DUDA (Park et al., 2019) 81.44 7222 6424 57779 37.15 71.04 12432
MCCFormer-S (Qiu et al., 2021) 7990 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormer-D (Qiu et al., 2021) 80.42 70.87 62.86 5638 37.29 7032 124.44
PSNet (Liu et al., 2023) 83.86 75.13 67.89 62.11 38.80 73.60 132.62
RSICCformer (Liu et al., 2022) 84.72 7627 6887 62.777 39.61 74.12 134.12
MSPN (Ours) 86.03 78.14 70.87 64.86 40.10 74.82 135.60

Table 3: Comparisons experiments on the LEVIR-CC dataset. Where B-1, B-2, B-3, B-4, M, R, and C are short for
BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, and CIDEr-D, respectively. The bold numbers are

the best performance.

former (MCCFormers), and began to pay attention
to the changes at the semantic level. Tan et al.
(2019) elaborated on the editing transformation
between two images, highlighting the differences
in semantics. Further, Oluwasanmi et al. (2019b)
proposed a fully convolutional CaptionNet (FCC).
Through the multi-modal end-to-end connected
difference caption model (SDCM), (Oluwasanmi
et al., 2019a) captured, aligned, and calculated the
differences between the two image features, which
enhanced the understanding of the semantic level
feature differences. Chang and Ghamisi (2023)
proposed an attention change caption network, fo-
cusing on generating accurate captions. In order
to improve the model ’s ability to perceive various
changes, a neighborhood contrast transformer is
designed in Tu et al. (2023a). In addition, Yue et al.
(2023) proposed the internal and internal represen-
tation interaction network (I3N), which focuses
on learning fine differential representation. In or-
der to make the changing caption model capture
the actual changes, Kim et al. (2021) proposed a
view-independent changing subtitle network with
cyclic consistency (VACC). Facing the challenges
in the Image Difference Captioning (IDC) task, Yao
et al. (2022) proposed a new modeling framework
to learn stronger visual and linguistic associations.
Liu et al. (2023) introduced a progressive scale-
aware network (PSNet). And Huang et al. (2021)
proposed an instance-level fine-grained differential
captioning (IFDC) model, which focuses on the
rich explicit features of the object to solve the chal-
lenge of accurately locating the changing object in
the context.

However, although the above research has made
significant progress, there are still some shortcom-
ings. First of all, the current method mainly focuses
on the description of object-level differences, while
fine-grained semantic changes still need to be fur-
ther explored. Secondly, there is still a lack of com-

prehensive solutions for subtle semantic changes
in specific scenarios and complex situations. In
addition, the current research pays less attention
to the rich explicit features of objects in the con-
text, which may pose some challenges in accurately
locating changing objects.

5 Conclusion

In this paper, we propose a multi-semantic rela-
tionship perception network (MSPN). The network
has significant advantages in fully understanding
the internal semantic information of the images by
obtaining a variety of semantic relationships. In
addition, the network can effectively identify and
ignore interference factors. Therefore, it is good at
accurately representing image changes and gener-
ating descriptions with rich semantics. Extensive
experiments on the LEVIR-CC dataset show that
the proposed method achieves state-of-the-art re-
sults.

6 Limitations

Although the proposed multiple semantic percep-
tion network can deeply understand various seman-
tic relations in images, there are still some limita-
tions for fine-grained semantic changes. Moreover,
when dealing with interference factors in complex
scenes, the method still has some limitations. In ad-
dition, the limitations of the experimental data set
and the applicability and versatility of the method
also need to be further verified and explored. There-
fore, future research should focus on further im-
proving the accuracy and robustness of semantic
methods to more comprehensively analyze and de-
scribe changes in remote sensing images to meet
the demands for higher standards of detail, diversity
and complexity.
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ated image description. Usually, the optimal depth
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the best performance on specific tasks. In this sec-
tion, in order to evaluate the performance of the
proposed MSPN model at different depths on the
LEVIR-CC dataset, a series of experiments in Ta-
ble 4 were performed. In the quantization results
of Table 4, E.D represents the depth of the encoder,
and D.D represents the depth of the decoder. We
observed that the model performed best when E.D
=2and D.D=1.
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D.D BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D

A LW ROV BROND =B WD -

AA A D OLWWWRNRNNND — — — =

84.36
86.03
84.99
82.50
84.87
84.90
85.21
85.12
85.80
85.78
83.54
84.98
84.71
85.34
85.21
85.00

77.06
78.14
76.42
73.45
76.10
76.59
76.38
77.09
77.32
77.06
74.62
76.77
76.24
77.30
77.04
76.58

69.73
70.87
68.62
65.96
68.86
69.25
69.17
69.80
69.80
69.42
67.41
69.08
69.02
70.08
69.78
68.91

63.56
64.86
62.06
59.92
62.93
63.15
63.34
63.75
63.32
63.23
61.70
62.88
63.25
64.01
63.69
62.44

38.82
40.10
39.24
38.20
39.58
39.65
39.70
39.00
39.57
40.04
39.14
39.17
39.34
39.91
39.33
39.04

73.86
74.82
74.76
73.10
74.19
74.40
74.41
73.83
74.42
74.84
73.77
73.98
74.10
74.95
73.90
73.18

131.07
135.60
135.57
130.17
134.66
134.94
135.07
132.59
134.89
136.47
132.45
132.62
133.66
135.66
133.72
130.56

Table 4: Performance of MSPN model at different depths on the LEVIR-CC dataset.
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