Under review as a conference paper at ICLR 2026

DOUBLE-CHECKER: ENHANCING REASONING OF
SLOW-THINKING LLMS VIA SELF-CRITICAL FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While slow-thinking large language models (LLMs) exhibit reflection-like rea-
soning, commonly referred to as the “aha moment”, their ability to generate
informative critiques and refine prior solutions remains limited. In this paper, we
introduce Double—Checker, a principled framework designed to enhance the
reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique
and iterative refinement of their previous solutions. By fine-tuning on our curated
1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to
iteratively critique and refine their outputs during inference until their solutions
are evaluated as correct under self-generated critiques. We validate the efficacy
of Double-Checker across various reasoning benchmarks, demonstrating that
iterative self-critique significantly enhances the reasoning capabilities of long-CoT
LLMs. Notably, our Double-Checker increases the pass@1 performance on
challenging AIME benchmarks from 4.4% to 18.2% compared to the original
long-CoT LLMs. These results highlight a promising direction for developing
more trustworthy and effective LLMs capable of structured self-critique.

1 INTRODUCTION

Reasoning—the capacity to solve complex tasks by logically connecting facts and drawing conclu-
sions—represents a critical milestone in the quest for Artificial General Intelligence (Feigenbaum &
Feldmanl |1963; Morris et al., 2023; |[Huang et al., 2024; Xu et al.| 2025)). Following the advent of large
language models (LLMs), extensive research has sought to further enhance their reasoning ability,
spanning more effective pretraining (Shao et al., 2024} Yang et al., 2024b), supervised fine-tuning (Yu
et al.| [2023; Xu et al., 2024b}; [Tong et al.,|2024; |Ye et al., 2025a; Muennighoff et al., [2025)), rigorous
evaluation (Xu et al., 2025 Rein et al., [2024; [Phan et al., |2025)), and, more recently, reinforcement
learning (RL) (Jaech et al.| 2024} |Guo et al., [2025; [Team et al.,|2025). In particular, |Guo et al.| (2025)
shows that RL with verifiable rewards can push LLMs toward generating long chains of thought
(long-CoT) (Wei et al.l 2022) and exhibiting reflective-like reasoning behavior, often termed as the
“aha moment” (Gandbhi et al., |2025). Despite these gains, Recent works (Tian et al., 2025; [Hammoud
et al.L[2025) suggest that revisiting and refining previous solutions might unlock further improvements,
motivating us to integrate the “aha moment” into a systematic “reflect-and-refine” loop.

The key concept lies in the “reflect-and-refine” is critique: the model’s explicit evaluation of whether
a solution is correct and, if needed, how it can be improved (Gou et al., 2023} Xie et al., 2025;
Wang et al., [2025). Critique underpins the principle of selectively refining only those solutions
that need fixing, thereby preserving originally correct answers (Zhao et al., [2023; Xu et al.,|[20244a).
Numerous studies have demonstrated that critique can subsequently be utilized to enhance the quality
of generated outputs (Xie et al., [2025; |Wang et al., 2025} [Li et al.| [2025). For example, |Xie et al.
(2025)); Yang et al.| (2025)) train specialized critique-oriented LLMs capable of providing feedback to
generator LLMs. However, employing a separate model exclusively for critique introduces additional
overhead (Xie et al. 2025). Alternatively, Wang et al.| (2025) proposes integrating critique as a
training objective. Nevertheless, the resulting LLMs are unable to leverage self-critique effectively
during inference. Furthermore, Tian et al.|(2025) reports only marginal improvements for Long-CoT
LLMs, even after fine-tuning on 100K self-critique examples. These raise an open question: Do



Under review as a conference paper at ICLR 2026

Question: Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf
clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are
437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the
number of residents of Aimeville who own all four of these things.

Answer: 73

DeepSeek-Distill-Qwen-7B
<think>

</think>

Given the hyperbola, ...

Thus, the final answer is |480

+ probe prompt to induce self-critique:
Alright, let's go through the solution step
by step ...

Therefore, the final answer is | 480

DoubleChecker-DS-7B Round 0

<think>

</think>

<summary>

Given the hyperbola, ...
Thus, the final answer is | 480
</summary>

DoubleChecker-DS-7B Round 1

<critique>
Overall Judgment: Incorrect
</critique>

<think>

</think>

<summary>
....... the correct answer should be |73
</summary>

Figure 1: Double-Checker correctly solves a math problem in AIME24 leveraging self-critique,
while DeepSeek-Qwen—"7B still gets the same wrong answer under a self-critical probe.

Long-CoT LLMs, which demonstrate reflection-like reasoning, possess the capacity to leverage
self-critique to enhance performance? If not, how can we equip them with this ability?

In this paper, we investigate the integration of reflection-like reasoning with self-critique to enhance
the reasoning abilities of slow-thinking LLMs. Specifically, we start by examining whether long-CoT
LLMs can leverage self-critique to iteratively refine their prior solutions during inference in a probe-
induced manner. Our findings reveal that the occurrence of an "aha moment" does not necessarily
indicate the presence of a self-critique mechanism (see Sec. [3.1)). For instance, as illustrated in Fig.
DeepSeek-Distill-Qwen-7B fails to generate informative critiques of its prior solution, ulti-
mately arriving at the same incorrect answer. To address this, we introduce Double—Checker, a
novel framework designed to empower LLMs to critique and refine their prior solutions iteratively and
adaptively. Through a specialized training process that combines direct inference instances with cu-
rated critique-refine data (1,730 instances in total), our Double-Checker equips long-CoT LLMs
with an effective self-critique capability. This enables iterative improvements in performance during
inference via self-critique. An example of this process is shown in Fig.[I] where Double-Checker
successfully resolves a complex math problem using the "reflect-and-refine" approach.

Our main contributions can be summarized as follows: @ We investigate the self-critical behavior
of long-CoT LLMs via a probing and find that they are unable to generate informative critiques to
improve their prior solutions. ® We propose Double-Checker, a novel framework that pairs
direct inference data with a carefully curated critique-refine dataset (1,730 in total), enabling LLMs
to iteratively correct flawed reasoning during inference. ® Experiments on a wide range of reasoning
benchmarks demonstrate that even with a modest amount of critique data, Double—Checker
unlocks substantial improvements in accuracy. Notably, our method raises pass@ 1 performance on
challenging AIME benchmarks from 4.4% to 18.2%, underscoring the impact of explicit self-critique.

2 RELATED WORK

Long Chain-of-Thought and Slow Thinking. The rise of LLMs has driven extensive research to
enhance their reasoning capabilities through various strategies. Early efforts include advancements in
pretraining methodologies (Shao et al., 2024} |Yang et al., |2024b), supervised fine-tuning (Yu et al.,
2023; Xu et al.| 2024b; Tong et al.l 2024;|Ye et al.l 2025a; Muennighoff et al.,[2025)), and rigorous
evaluation techniques (Xu et al. [2025} Rein et al., 2024; [Phan et al.| 2025). More recently, RL
has emerged as a key paradigm for improving reasoning in LLMs. For instance, |Guo et al.| (2025)
demonstrates that RL with verifiable rewards enables models to generate long chains of thought (long-
CoT) (Wei et al., [2022), fostering more structured, multi-step problem-solving skills. This approach
has been shown to promote reflective reasoning behaviors, termed as the "aha moments" (Gandhi
et al., |2025). These advancements mark significant progress in LLM reasoning (Wen et al.,2025).
However, our work reveals a critical limitation: while strong reflection-like reasoning allows LLMs
to recognize errors or inconsistencies, it does not inherently ensure robust self-improvement (Madaan



Under review as a conference paper at ICLR 2026

et al., 2024; Shinn et al.| |2024). Additionally, existing self-improvement methods (Madaan et al.|
2024; Shinn et al.,|2024) often depend on external tools or explicit feedback mechanisms, making it
challenging to guide a single LLM through multiple, reliable rounds of refinement. Addressing these
challenges is crucial to unlocking the full potential of self-improvement in LLMs.

Critique LLMs and Integrated Self-Improvement. A parallel line of research employs critique
models or reward estimators to score and refine outputs from a “generator” model, especially in
mathematical domains (Uesato et al., 2022} [Yang et al., |2024a; Wang et al.l 2024a} [Yuan et al.|
2024; Tang et al.). While effective in principle, this split-architecture strategy requires substantial
overhead (running two separate LLMs) or produces numeric feedback that lacks actionable correc-
tions (Ankner et al). Other efforts have tried to incorporate critique into a single model’s training
objective (Wang et al.,|2025)) or train on large multi-round self-critique data (Tian et al.,2025;|Zheng
et al.L[2025)), but with limited gains in iferative refinement. Against this backdrop, our work introduces
Double-Checker, which merges critique and generation into a unified “reflect-and-refine” loop
within one long-CoT LLM. By carefully curating critique-oriented examples and integrating them
with direct-inference data, we equip long-CoT LLMs with the capability to generate meaningful
critiques and adaptively refine their prior solutions based on self-generated critiques, ultimately
enabling robust self-improvement.

3 METHOD

3.1 AHA MOMENT DOES NOT EQUATE TO EFFECTIVE SELF-CRITIQUE

Previous studies have observed that fast-thinking LL.Ms often generate uninformative critiques,
limiting their capacity for self-improvement (Xie et al.| 2025; [Huang et al., 2023). In contrast,
slow-thinking LLMs are believed to exhibit self-reflection behaviors, identifying and potentially
correcting errors in their reasoning steps (Guo et al, 2025). This raises the intriguing question:
Can long-CoT LLMs with strong reflection-like reasoning abilities perform effective self-critique?
To investigate this, we conduct experiments on AIME24 using DeepSeek-R1-Distill-7B
and DeepSeek-R1-Distil1-32B, employing a probe to induce self-critique behavior (see Ap-
pendix for detailed settings). We have the following results: @ DeepSeek-R1-Distill-7B
and DeepSeek—-R1-Distill-32B follow the probe prompt and produce informative critiques in
only 0% and 8.5% of cases, respectively. ® The performance on AIME24 improves slightly after
refinement with self-critique (1.6% for 7B: 57.1% — 58.7% and 0.8% for 32B: 72.1% — 72.9%).
These findings suggest that the aha moment does not inherently translate into effective self-critique.
While these models demonstrate strong capabilities in reflection-type reasoning, their capacity to
autonomously evolve through effective self-critique remains limited. Additionally, this finding is
not limited to SFT-distilled reasoning models; it also holds for models trained with reinforcement
learning. For example, Qwen3-235B-A22B attains a performance change of -0.2% on AIME24 (from
84% to 84.3%) and +0.4% on AIME25 (from 82.3% to 82.7%) after applying a self-critique prompt.

3.2 DouBLE-CHECKER FRAMEWORK

Despite exhibiting the "aha moment," long-CoT LLMs demonstrate limited ability to generate
actionable critiques and effectively apply them for iterative self-refinement. We hypothesize that this
limitation arises because current long-CoT LLMs are primarily trained for direct inference. As a
result, these models do not naturally transition toward interactive refinement through self-critique,
even when prompted with carefully designed probes (see Sec. [3.T). To address this gap, we propose
Double-Checker, a novel framework designed to enable long-CoT LLMs to critique their prior
solutions and iteratively refine their reasoning. An overview of Double-Checker is depicted in
Fig. 2] This section presents the detailed training and inference process of Double-Checker.

3.2.1 TRAINING PROCESS

As shown in Fig. 2] (c), the training process of Double-Checker consists of four key steps: 1)
Initial Generation, 2) Critique with Answer Correctness, 3) Refinement, 4) Distillation, The first
three steps focus on data curation, while the final step involves model training. Start from an original
training dataset Doy = {(Qi, GT;)}, which consists of multiple questions with their corresponding
ground-truth answers, we will detail each step below.



Under review as a conference paper at ICLR 2026

(a) Question Thought (0) Summary (0)
Question Summary (0) Critique (1) Thought (1) Summary (1)
(b) Question Summary (1) Critique (2) Thought (2) Summary (2)
Question Summary (N-1) Critique (N) Thought (N) Summary (N)
(c) Data Curation (1, 2, 3) & Model Training (4) (d) Inference Pipeline
R
1 1
| Cn1 | Tn1 |1
Question Q [ Jl
<
So Q Sn-1

3. Refinewgent

Cy Self-
m Critique
To Ty Ty

T,

1 .
Diséard o
Ground- So s @ Sn
Truth 1 S

g

Pe
()
=

Figure 2: The overview of Double-Checker. (a) Direct inference pipeline of long-CoT LLMs:
generating a long thought (7j) followed by a summary (Sp) that concludes the answer (Ag) for the
question (). (b) The inference pipeline of iterative refinement with self-critique. (c) Training stage
of our Double-Checker. (d) Adaptive inference with self-critique of our Double-Checker.

Initial Generation. For each question (), we first obtain its direct inference result from a strong
teacher long-CoT LLM 7T (e.g., DeepSeek-R1)as: T : Q — Ty ® Sy, where Sy contains the

model-generated initial answer . The answer Ag is then evaluated for correctness by comparing
it with the ground-truth answer G7'.

Critique with Answer Correctness. Given a question () and its preceding summary .Sy, we employ
a proficient LLM C to generate detailed critiques. The critique explicitly signals the correctness of
the initial answer Ag (correct/incorrect). To optimize critique quality, we employ distinct prompts
tailored to correct and incorrect Ay (see App.[A.3). This answer correctness signal is indispensable
for effective critique generation. Formally, critique generation follows:

C : {Instruction incorporating Answer Correctness Signal} & Q @ Sy — C;

where C adheres to the structured format defined in App.[A.2]

Refinement. When the initial answer Ay is correct, we collect the corresponding critique C and
store the triplet (Q, Sp, C1) into our training set D ique. For incorrect Ay, we refine the solution
using a Refinement long-CoT LLM R, which takes the question ), prior summary Sy, and critique
Ciasinput: R : Q ® Sy ® C; — T & S1, where T and Sy represent the refined reasoning and
summary, respectively. The refined answer A; is extracted from Sy and compared to the ground truth
GT'. If Ay matches GT, (Q, So, C1,Th1,S1) is added to Deritigue; otherwise, it is discarded.

Distillation. After the data curation stage, training examples are categorized into two formats:
(Q, So, C1) for correct answers Ag and (Q, Sp, C1,71,S1) for incorrect answers. For simplic-
ity, instances with (Q, Sp, C1) are padded to (@, Sy, C1, Ty, S}) using a predefined template (see
App.[A.4). To maintain the ability of direct inference of the original long-CoT LLM M, we will mix

critigue With a direct inference training set Dgjyec = {(Q To,So)}. Finally, our training set will
be Dirain = Dairec U Deritigue- The learning objective is

. 1
mm{—D _|<ZIOgPM@(TO@SOQ Z IOgPMe(Cl@Tl@Sl|Q@SO)>}
train

6
Diirect Deritique

where 0 is the parameters of long-CoT LLM M and | Dy, | denotes the number of training examples.



Under review as a conference paper at ICLR 2026

Algorithm 1 Double—-Checker Inference Pipeline

Require: Question Q, Long-CoT LLM M, number of iterations N
1: Generate initial output 7o @ So ~ Pa(+|Q) >Direct Inference
2: forn < 1to N do

3 Critique previous summary and refine C,, ® T, @ Sn ~ Paq(+|Q @ Sn—1) >Self-Critique & Refine
4 if C), indicates that A,,_1 (the answer of S,,_1) is correct then >Stopping Criteria
5: return S,,_1
6
7
8

end if
: end for
. return Sy

3.2.2 INFERENCE PIPELINE

We will first introduce a paradigm shift from direct inference (Fig. [2](a)) to iterative refinement via
self-critique (Fig. 2| (b)). Concretely:

* Round 0 (Direct Inference). Given a question (), the model M generates a detailed reasoning chain
Ty and a final summary Sy, i.e.,
M Q — TO &) So.
where @ denotes the string concatenation. This baseline (long-CoT) forms the initial solution.

* Round 1 (Self-Critique + Refinement). We now feed both () and the prior summary Sy to M. The
model produces a critique C; of Sy and then refines the solution into a new thought 77, finally
yielding a new summary S;. Formally,

MZQ@SO — Cl@TlEBSl.

* Round n (Repeated Refinement). For subsequent rounds (1 < n < N), the model receives
Q @ S,,—1, generates C), to critique the previous summary, and refines the solution into 7}, and S,,.
Symbolically,

M : Q@Sn—l — Cn@Tn@Sn
We continue until the critique C,, deems the answer correct or a maximum iteration limit N is
reached.

Context Window. The thought T; is typically lengthy, while the corresponding summary \S; usually
encapsulates all the essential information of 7}, serving as a concise version of 7;. Discarding 7; and
retaining only S; for each refinement round will ensure that the entire refinement process remains
within the context window of Long-CoT LLMs.

Critique Space. The critique evaluates the prior summary, assessing whether the answer is correct
and proposing actionable suggestions to enhance the solution when needed. Following Xie et al.
(2025)), our critique consists of three components: 1) an analysis of the summary, 2) actionable
improvement suggestions, 3) an answer correctness judgment (correct/incorrect). This judgment
enables early termination of the iterative refinement process when the solution is deemed correct (see
Sec.[3.2). An example of the critique structure is provided in Appendix[A.2]

As illustrated in Fig. ] (d), our Double-Checker adopts an iterative refinement pipeline that
alternates between: (1) appending the previous summary (S,,_1) to the input question (@), and
(2) generating an informative critique (C),) followed by refining the prior solution (7},, S,,). The
process terminates when the critique C, predicts the correctness of the answer extracted from .S;, ;.
The complete inference procedure is formally presented in Algorithm|[I] To ensure termination, we
define a maximum iteration limit /N. Although theoretically the process could iterate infinitely until
all test examples achieve critique-verified correctness, we impose a finite N in practice to prevent
computational divergence due to potential inability to predict correctness for certain cases.

4 EXPERIMENTS AND RESULTS

4.1 TRAINING SETUP

Training Data Construction. To construct the original training set D,,;4, we compile a pool
of candidate problems from existing mathematical reasoning datasets: S1.1 (Muennighoft et al.|



Under review as a conference paper at ICLR 2026

2025)), DeepMath-103K (He et al., [2025)), OpenRS (Dang & Ngo, [2025)), and ORZ-Math-Hard (Hu
et al., 2025)). We filter these candidates using two key criteria: 1) Answer Verifiability: Ensuring
ground-truth labels are verifiable via rule-based validation, 2) Difficulty: Selecting problems with
appropriate complexity. We get a collection of around 8K high-quality questions, calibrated for
both difficulty and correctness. For initial generation, critique annotation, and refinement, we utilize
Qwen3-235B-A22B (Teaml [2025) and DeepSeek-R1 (Guo et al.,[2025)), i.e., 7 = C = R, but
with different instructions. We also incorporate a subset of S1.1 training instances as our Dgj,cct,
resulting in a total training set Dyyqin, = Dairec U Deritique 0f 1,730 training instances. The details
of our data sources, filtering process, and estimated computational costs are given in App.

Training Details. We train the Distilled long CoT variants of DeepSeek-R1 (7B and 32B parameters)
on our curated training set Dy, using full-parameter fine-tuning. The training process employs
DeepSpeed ZeRO optimization (Rajbhandari et al. [2020) for efficient memory utilization and
FlashAttention2 (Dao, [2023) for accelerated training. Following the implementation in |Ye et al.
(20254), we set the maximum sequence length to 16,384 tokens and adopt a learning rate of 5 x 10~°.
Implementation details are in App.

4.2 EVALUATION SETUP

Evaluation Setting. We evaluate on AIME24, AIME25, MATHS500 (Hendrycks et al.,[2021)), and
OlympiadBench (He et al., 2024) for mathematical reasoning, and GPQA (Rein et al.| 2024) for
multidisciplinary problems. Following|Ye et al.|(2025a), we adopt an unbiased pass@ 1 metric for
AIME24 and AIME2S, generating 16 samples with a decoding temperature of 0.6. For the remaining
benchmarks, we generate 4 samples per problem to report pass@1. We use vLLM (Kwon et al.,
2023) to accelerate inference and set the maximum sequence length to be 32,768 tokens. We set N
in Algorithm|IJto 3 for Double-Checker-DS-7B and 1 for Double-Checker-DS-32B. A
brief introduction to different benchmarks and detailed evaluation setting can be found in App. [B.3]

Baselines. We compare Double—-Checker against a comprehensive set of baselines, categorized as
follows: 1) DeepSeek—-R1-Distill-Qwen Series (7B, 32B): Strong long-CoT LLMs distilled
from DeepSeek-R1 using 800K examples. 2) S1.1 (7B, 32B) (Muennighoff et al. [2025):
Two CoT LLMs distilled from DeepSeek—R1 using 1K high-quality from multiple sources. 3)
LIMO-32B (Ye et al., 2025a): A powerful LLM trained on 837 carefully curated examples. 4)
InftyThink (7B, 32B) (Yan et al.| 2025): Models trained on 333K examples adapted from
OpenR1-Math, with results from the original paper using multi-round interactive inference. 5)
Light-R1 (7B, 32B) (Wen et al.,2025): Two-stage SFT (79K data) + RL-trained models. 6) Naive-
SFT Baseline (7B, 32B): DeepSeek-R1-Distill-Qwen trained on questions of our Dy,.qin
using standard SFT (without critique learning), which can isolate the contribution of training data.
7) We also include OpenAI-o1 series (Jaech et al.,|2024) and DeepSeek—R1 for reference. 8)
We also adapt ThinkTwice (Tian et al.| [2025) with DeepSeek-R1-Distill-Qwen Series to see
the effect of "reflect-and-refine" without any finetuning. 9) Self-Refine: We adopt a similar
approach as|Madaan et al.|(2024). 10) We also introduce a sequential test-time scaling approach by
appending "wait" before the end of thinking (Muennighoff et al.l 2025). For 4) and 7), we report the
results from other papers directly (see App.[C.I), and run the remaining baselines by our own.

4.3 MAIN RESULTS

Table [T summarizes the primary evaluation results on multiple challenging reasoning benchmarks.
From Table[T} we have several key observations:

Double-Checker consistently enhances the performance of original long-
CoT LLMs across all reasoning benchmarks and model scales. Our model,
Double-Checker-DS-7B, outperforms DeepSeek-Distill-Qwen-7B by an aver-
age of 4.1%, while Double-Checker-DS-32B exceeds DeepSeek-Distill-32B by 6.6%.
Notably, Double-Checker-DS-32B achieves a significant improvement of 18.2% in pass@1
on the AIME25 benchmark, and Double-Checker—-DS-7B boosts performance on AIME24 by
9.7%, demonstrating the effectiveness of Double-Checker on complex reasoning tasks.

Self-critique is a crucial factor in driving performance improvements across benchmarks.
Compared to the "naive SFT" baseline, which utilizes the same training problems but excludes



Under review as a conference paper at ICLR 2026

Table 1: Main results (in %) on various benchmarks. The best results within each group are in
bold. * indicates that the results of the corresponding LLM are sourced from their technical reports
or other references due to the cost of using APIs or the unavailability of the LLM. Please refer to
Appendix for corresponding references. The remaining results are from our own runs.

Model AIME24 AIME25 MATHS00 Olympiad GPQA AVG
OpenAl-ol-Preview* 44.6 37.9 85.5 52.1 73.3 -
OpenAI-ol-mini* 63.6 53.8 90.0 - 60.0 -
OpenAI-0l1-1217% 79.2 - 96.4 - 75.7 -
DeepSeek—-R1* 79.8 70.0 97.3 - 71.5 -

7B Models
S1.1-7B 17.5 19.6 80.7 42.8 41.3 40.4
InftyThink-7B* 40.0 - 91.7 - 51.9 -
LightR1-7B-DS 57.1 454 90.3 59.0 23.1 55.0
DeepSeek-R1-Distill-7B (initial model) 56.7 43.7 92.2 59.0 354 57.4
DeepSeek-R1-Distill-7B + self-refine 55.0 37.5 91.6 58.4 36.8 55.9
DeepSeek-R1-Distill-7B + ThinkTwice 58.7 429 92.3 58.7 35.5 57.6
DeepSeek-R1-Distill-7B + Wait 57.5 443 93.1 58.8 36.6 58.1
Double—Checker-DS-7B naive SFT 57.1 433 914 58.6 28.7 55.8
Double-Checker-DS-7B 66.4 48.1 92.7 60.0 40.4 61.5
32B Models
LIMO-32B 57.1 50.8 93.0 66.1 64.5 66.3
S1.1-32B 56.7 47.5 92.9 58.8 66.8 64.5
InftyThink-32B* 62.5 - 96.0 - 65.6 -
QwQ-32B-Preview 442 342 89.7 63.6 58.8 58.1
LightR1-32B-DS 76.6 65.4 95.2 67.5 68.7 74.7
DeepSeek-R1-Distil1-32B (initial model) 72.1 50.4 93.5 63.0 64.9 68.8
DeepSeek-R1-Distill-32B + ThinkTwice 729 54.8 93.5 63.3 64.4 69.8
DeepSeek-R1-Distill-32B + wait 72.8 53.4 94.2 63.8 65.7 70.0
Double-Checker-DS-32B naive SFT 74.6 60.4 93.4 67.2 63.8 71.9
Double-Checker-DS-32B 79.8 68.6 94.3 68.2 66.0 75.4

explicit critical data, our Double—Checker consistently shows superior performance across all
benchmarks. On average, Double—-Checker outperforms the "naive SFT" baseline by 5.7% for
the 7B model and 3.5% for the 32B model. These results underscore the pivotal role of self-critique
in enhancing the reasoning of long-CoT LLM:s.

Double-Checker demonstrates strong generalizability. Although the training data primarily
consists of math reasoning problems, Double-Checker achieves remarkable performance on
GPQA, a multidisciplinary QA benchmark. Notably, the only source of reasoning problems from
other disciplines is derived from S1.1 dataset, and our training problems constitute a proper subset of
S1.1. However, our Double-Checker even shows significant improvements over S1 . 1, achieving
a21.1% performance gain for the 7B model and a 10.9% gain for the 32B model on GPQA. A similar
trend is also observed in LiveCodeBench and MMLU-Pro (Business and Law), further validating the
generalizability of Double-Checker, given that it was not trained on any related examples (see
App.[D.T). Additionally, Double—-Checker, which relies solely on SFT, performs comparably to
models trained with large-scale RL, such as LightR1. These results align with previous findings
that smaller models tend to benefit more from SFT than RL (DeepSeek-Al, 2025} |Team), 2025)).

5 ANALYSIS

5.1 THE EFFECT OF SELF-CRITIQUE

To verify the effectiveness of self-critique, we evaluate different model configurations on AIME24.
Figure [3| displays the results for both 7B and 32B models under the following settings:

* DS-Distill-Qwen: A distilled long-CoT baseline.
* Naive SFT: Fine-tuned with the same problems as our training set without explicit critical data.

* N=0,1,2,3: Our Double-Checker approach with N = 0,1, 2,3 rounds of inference-stage
self-critique and refinement.



Under review as a conference paper at ICLR 2026

7B 32B

AIME24 Accuracy (%)
AIME24 Accuracy (%)

AIME24 AIME24

[ DS-Distill-Qwen [ Naive SFT [ N=0 [ N=1 @ N=2 [ N=3

Figure 3: Accuracy comparisons on AIME24 for two model sizes (7B and 32B). We compare: (1)
DS-Distill-Qwen (a distilled baseline), (2) Naive SFT (fine-tuning without explicit critique),
and (3) Double-Checker with varying rounds of self-critique (N = 0, 1, 2, 3).

Table 2: Ablation study (in %) on Training Data.

Model AIME24 AIME25 MATHS00 Olympiad GPQA AVG
DeepSeek-R1-Distill-7B 56.7 43.7 92.2 59.0 354 57.4
Double-Checker-DS-7B naive SFT 57.1 433 91.4 58.6 28.7 55.8
Double-Checker-DS-7B exclude Dpirect 57.5 442 88.9 573 23.3 54.2
Double-Checker-DS-7B w.o. Qwen3 62.0 45.6 91.6 59.7 39.9 59.8
Double-Checker-DS-7B 66.4 48.1 92.7 60.0 40.4 61.5
Double—-Checker-DS-7B + data (N=2) 66.7 46.7 93.2 58.6 40.0 61.1

We notice that at the 7B and 32B scales, self-critique leads to immediate accuracy gains over the
distilled baseline. In the 7B setting, moving from N=0 (no refinement) to N=1 increases performance
from 57.3% to 64.6% on AIME24, with further rounds (N=2,3) pushing AIME24 up to 66.5%; by
contrast, Naive SFT yields only modest improvements over DS-Distill-Qwen. In the 32B
setting, Double-Checker starts with a higher performance even at N=0 (77.7% on AIME24 vs.
72.1%) and achieves 79.8% on AIME24 by N=1, after which performance saturates (79.6%—79.8%
on AIME24). This suggests that the 32B model acquires self-critique more rapidly than the 7B
model. Additionally, incorporating self-critical data during SFT proves beneficial for enhancing
direct inference ability as well (N = 0 vs. "naive SFT").

These results confirm the strong positive impact of self-critique. Even a single refinement round
(N=1) consistently brings notable accuracy gains over baselines, and multiple rounds can yield
further improvements—particularly at smaller scales (7B). In contrast, Wang et al.| (2025) shows
even decreased performance of N = 1 over N = 0 (direct inference). By explicitly learning to
critique and update its reasoning, Double—Checker effectively bridges the gap between “long
chain-of-thought generation” and “iterative self-improvement”, resulting in strong reasoning power.

5.2 ABLATION STUDY OF TRAINING DATA

To isolate the contributions of different training data components, we ablate whether (i) we include
the original direct-inference data (Dp;ect), (i1) we use a naive SFT approach without critique data,
and (iii) we exclude Qwen3-annotated examples in our curated dataset, (iv) we further collect training
examples that are correctly solved after two rounds of self-critique. Table [2]reports the results on
multiple math and reasoning benchmarks.

Excluding Direct Inference Data (exclude Dpirect). Removing the original direct-inference ex-
amples (Round 0 data) degrades average accuracy to 54.2%. This decline underscores the importance
of retaining a portion of direct inference data in the training mix to preserve the model’s overall
reasoning capability. We believe this occurs because training exclusively on Dg;1ique causes the
model to lose its ability to perform direct reasoning at N = 0.

Effect of removal of Qwen3 Data (w.o. Qwen3). Removing Qwen3-generated critical examples
reduces performance from 61.5% to 61.1% on average. Although not as large a drop as excluding



Under review as a conference paper at ICLR 2026

direct data, this shows that Qwen3 training instances further enrich the critique set and boost final
performance. We believe that scaling up the critical data could yield further performance gains.

Additional Round-2 critique training data (+ data (N = 2). Adding additional examples that
are correctly solved after two rounds of critique during training yields no further improvements. We
hypothesize that this is due to the limited sample size (< 400) added, which may be insufficient to
influence the training process significantly. Despite the comparable final performance, incorporating
round-2 critique data helps alleviate the non-monotonic improvement from N = 1to N = 3 observed
in Figure [3 (left). More specifically, on AIME24, incorporating N = 2 data yields a monotonically
increasing performance across rounds, with scores of 57.1% — 62.3% — 64.0% — 66.7%.

Overall, these results confirm that our curated critique dataset, especially when combined with the
original direct-inference examples and auxiliary data from Qwen3, plays a pivotal role in achieving
the best performance. In other words, the model benefits from both (i) Conventional long CoT data
for maintaining its direct inference ability (/N = 0) and (ii) explicit self-critique examples for learning
to iteratively refine its solutions. (iii) potentially more diverse critical data.

AIME 18000 GPQA

24874 17238
16000

20000 21746 14000 Pt e e s e e s e

25000

18192 12000 { ggg0 12872

a
1500013547 § 10000

Tokens
Toke

8000

10000 6000

4000

5000 3353 3128 2000 1614

[ 1 2 3 0 1 2 3
Round Number Round Number

-@- Average Tokens Cumulative Tokens ~ — - DS-Qwen-7B Baseline
Figure 4: Token usage for AIME24 (left) and GPQA (right). Blue solid line: the per-round average
token count, orange dashed line: the cumulative token count over all rounds; green dash-dotted line:
the average token consumption for "naive SFT" baseline without iterative refinement.

5.3 ANALYSIS OF RESPONSE LENGTH

The token usage for different rounds of Double-Checker-DS-7B for AIME24 and GPQA is
shown in Fig. E[ We run up to three refinement rounds (n = 0, 1, 2, 3) with Double-Checker. We
then record both average and cumulative generated tokens used for the full conversation, including
thoughts, critiques, and summaries. We also provide the inference time analysis in App.[D.2}

On AIME24, the average tokens per round drops sharply: from 13.5k atn = Oto 4.6k atn = 1, and
continues decreasing across subsequent rounds (3.6k at n = 2, 3.1k at n = 3). A similar pattern
holds for GPQA, where the initial 10.9k tokens at n = 0 is reduced to roughly 2-3k in the later
rounds. Meanwhile, cumulative tokens grows steadily with each additional round: for instance, it
rises from 13.5k to 24.9k on AIME24 by n = 3, and from 10.9k to 17.2k on GPQA. Nevertheless,
each new round adds far fewer tokens than the first round. Notably, on GPQA, the total tokens spent
in our Double-Checker at N = 2 is even smaller than "naive SFT".

Interestingly, the tokens spent on the direct inference of our Double-Checker is fewer than those
of "naive SFT" baseline, indicating that incorporating critical data for SFT could also reduce the
token consumption at N = 0. While allowing more rounds naturally increases the total token count,
each round’s contribution is substantially smaller than that of the direct long-CoT baseline. Hence,
there is a clear trade-off between improved accuracy (via multiple critique/refine steps) and total
token usage. In practice, we find that even a single or two rounds of refinement often suffice to boost
correctness without incurring a prohibitive increase in cumulative tokens.

5.4 FURTHER ANALYSIS

Additional Results of Qwen3-4B. To validate our findings beyond the DeepSeek series, we conduct
additional experiments using Qwen3—-4B. We evaluate Double-Checker and, as before, isolate
the effect of the critique component. The results are reported in Table 3] The observations are
consistent with our previous findings. Since Qwen3-4B is already well-distilled, further SFT on



Under review as a conference paper at ICLR 2026

Table 3: The effect of Critique on Qwen3-4B.
Dataset | Initial Model Naive SFT N=0 N=1 N=2 N=3

AIME24 74.4 71.3 70.6 756 762 785
AIME25 64.9 62.1 61.5 675 687 683

Table 4: Pass@1 vs Pass@N for DS—7B.

Benchmark initial model + ThinkTwice naive SFT Double-Checker
AIME24, pass@1 56.7 58.7 57.1 66.4
AIME24, pass@N 83.3 83.3 86.7 90.0
AIME25, pass@1 43.7 429 43.3 48.1
AIME2S5, pass@N 66.7 66.7 63.3 70.0

a small dataset slightly degrades performance on AIME24/25. In contrast, Double-Checker
surpasses the initial model already at N = 1, and its performance further improves with more rounds
of “critique-and-refine”. More specifically, compared to the initial model, Double-Checker
achieves gains of 4.1% on AIME24 and 3.4% on AIME2S.

Pass@1 vs. pass@N. To characterize the model’s performance ceiling better, we also report pass@ 16
on AIME24/25 in Table E[ For ThinkTwice, pass@N remains identical to that of the initial model,
indicating that without SFT, ThinkTwice primarily improves performance via reranking rather than
expanding the underlying performance boundary. In contrast, Double-Checker improves both
pass@1 and pass@N, suggesting that it not only enhances top-1 accuracy but also pushes the
performance boundary. Moreover, higher pass@N is beneficial for the exploration of subsequent RL.

Reliability of Critique. To quantify the reliability of the critiques, we report the critique error
rate for the first round in which the model declares its solution to be correct, but the final an-
swer is still wrong. On AIME24, this rate is 13.7% for Double—-Checker-7B and 4.5% for
Double-Checker-32B. This is consistent with the trends in Figure [3] suggesting that larger
models acquire effective self-critique capabilities more quickly and therefore require fewer iterations
in practice. We also provide a case in Figure [[T] where the critique fails to identify the main error
because it relies on an incorrect assumption. Furthermore, for problems that remain unsolved after N
= 3, we find that the critiques seldom identify the primary error, which, in turn, leads to inadequate
refinement suggestions.

6 CONCLUSION

We have presented Double—-Checker, aframework that explicitly enforces LLMs to critique and re-
fine their previous solutions for self-improvement. Our approach integrates generating reflection-like
reasoning and actively correcting potential errors through iterative self-critique. Experimental results
on multiple mathematical and multidisciplinary benchmarks demonstrate that Double—-Checker
consistently improves accuracy over comparable baselines, often by large margins. Furthermore, we
emphasize the pivotal role of self-critique during inference in enhancing the reasoning capabilities
of long-CoT LLMs. Double—-Checker demonstrates the value of equipping LLMs with a struc-
tured critique space and training them to reflect and refine their outputs, facilitating more reliable
self-improvement for complex reasoning tasks. A possible future direction is to use reinforcement
learning to train multi-round critique based on the current Double-Checker framework.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide a detailed procedure of our Double-Checker in Section[3]
and present all training and evaluation setups in Section 4.1} and .2 and Appendix [B] All evalua-
tion datasets, the original source of the training set as well as the evaluated baselines used in our
experiments, are publicly available and properly referenced (see Appendix [C.I]and [B). Our codes
and datasets will be released upon acceptance for reproducibility.

10



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study is conducted in full accordance with the ICLR Code of Ethics. All datasets and models
employed are publicly accessible and have been extensively used in prior research. The work does
not involve human or animal subjects, and no personally identifiable or sensitive data were handled.

REFERENCES

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan Daniel Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. In Pluralistic Alignment Workshop at NeurIPS 2024.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
what doesn’t. arXiv preprint arXiv:2503.16219, 2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025.

Edward A Feigenbaum and Julian Feldman. Computers and thought. 1963.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hasan Abed Al Kader Hammoud, Hani Itani, and Bernard Ghanem. Beyond the last answer: Your
reasoning trace uncovers more than you think. arXiv preprint arXiv:2504.20708, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyuman-
shan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cognitive
reasoning for superintelligent ai. Advances in Neural Information Processing Systems, 37:19209—
19253, 2024.

11



Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Yansi Li, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Qiuzhi Liu, Rui Wang, Zhuosheng Zhang,
Zhaopeng Tu, Haitao Mi, et al. Dancing with critiques: Enhancing 1lm reasoning with stepwise
natural language self-critique. arXiv preprint arXiv:2503.17363, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksan-
dra Faust, Clement Farabet, and Shane Legg. Levels of agi for operationalizing progress on the
path to agi. arXiv preprint arXiv:2311.02462, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael
Choi, Anish Agrawal, Arnav Chopra, et al. Humanity’s last exam. ArXiv preprint, abs/2501.14249,
2025. URLhttps://arxiv.org/abs/2501.142409.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng Liu,
Fei Huang, Tianyu Liu, Bowen Yu, et al. Self-evolving critique abilities in large language models.
In Second Conference on Language Modeling.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3, April 2025. URL https://gwenlm.github.io/blog/qwen3/.

12


https://arxiv.org/abs/2501.14249
https://qwenlm.github.io/blog/qwen3/

Under review as a conference paper at ICLR 2026

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yunjie Ji, Yiping Peng, Han Zhao, and
Xiangang Li. Think twice: Enhancing 1lm reasoning by scaling multi-round test-time thinking.
arXiv preprint arXiv:2503.19855, 2025.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. ArXiv preprint, abs/2407.13690, 2024. URL
https://arxiv.org/abs/2407.13690.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426-9439, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task language
understanding benchmark. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024b.

Yubo Wang, Xiang Yue, and Wenhu Chen. Critique fine-tuning: Learning to critique is more effective
than learning to imitate. arXiv preprint arXiv:2501.17703, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfdflbafO0f7b3labcad-Abstract-Conference.html.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu, Lingpeng Kong, et al. Teaching language models
to critique via reinforcement learning. arXiv preprint arXiv:2502.03492, 2025.

Xin Xu, Shizhe Diao, Can Yang, and Yang Wang. Can we verify step by step for incorrect answer
detection? arXiv preprint arXiv:2402.10528, 2024a.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
longer math word problems better? ArXiv preprint, abs/2405.14804, 2024b. URL https:
//arxiv.org/abs/2405.14804.

Xin Xu, Jiaxin Zhang, Tianhao Chen, Zitong Chao, Jishan Hu, and Can Yang. Ugmathbench:
A diverse and dynamic benchmark for undergraduate-level mathematical reasoning with large
language models. arXiv preprint arXiv:2501.13766, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models.
2503.06692, 2025. URL https://arxiv.org/abs/2503.06692.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

13


https://arxiv.org/abs/2407.13690
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2503.06692

Under review as a conference paper at ICLR 2026

Wenkai Yang, Jingwen Chen, Yankai Lin, and Ji-Rong Wen. Deepcritic: Deliberate critique with
large language models. arXiv preprint arXiv:2505.00662, 2025.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025a.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immediate evalu-
ation framework for advanced mathematical reasoning. https://github.com/GAIR-NLP/
AIME-Preview, 2025b. GitHub repository.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. ArXiv preprint, abs/2309.12284, 2023. URL https:
//arxiv.org/abs/2309.12284.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint arXiv:2412.01981,
2024.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework. arXiv preprint arXiv:2305.03268, 2023.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han, Debing
Zhang, and Le Sun. Critic-cot: Boosting the reasoning abilities of large language model via
chain-of-thought critic. In Findings of the Association for Computational Linguistics: ACL 2025,
pp- 1768-1806, 2025.

A DETAILED SETTINGS OF DOUBLE—-CHECKER

A.1 SETTING OF META-EXPERIMENTS

For the experiment in Sec. [3.1] we use the following probe to induce self-critique ability, which is
adapted from|Wang et al.[(2025)). The evaluation setting on AIME24 aligns with our main experiments

(see App.[B3).

To evaluate whether the long CoT LLMs can generate informative critiques using the probe, we
examine whether their generated content attempts to assess the correctness of their prior solution. If
they do not engage in this answer judgment, we consider the critique to be informative.

The Critique Probe

Please critique each reasoning step of your previous solution to this problem and explain whether
your solution is correct or not.

In your critique, you must verify whether any of your previous reasoning steps contain logical or
computational errors and suggest ways to correct them if any errors are found.

After critiquing your solution, you must conclude your judgment with *Conclusion: right/wrong
[END]’.

If your conclusion is ’right’, stop generating. If your conclusion is *wrong’, improve your previous

solution based on your critique, and present the final answer in| ANSWER |.

Critique:

Figure 5: The Probe of Our Experiment in Sec.

A.2 THE CRITIQUE SPACE

Our critique consists of three components: 1) an analysis of the summary, 2) actionable improvement
suggestions, 3) an answer correctness judgment (correct/incorrect).

We showcase one such example in Fig. [6]

14


https://github.com/GAIR-NLP/AIME-Preview
https://github.com/GAIR-NLP/AIME-Preview
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284

Under review as a conference paper at ICLR 2026

The Design of Critque Space

<critique>

Analysis:

The initial approach incorrectly assumes that "exactly two" and "exactly three" categories can be
directly summed with those numbers to derive the count of residents owning all four items. This
overlooks the distinction between "exactly two" (and "exactly three") and the inclusion of the
universal set (candy hearts). The problem requires applying inclusion-exclusion principles to
account for overlaps among the four items, not just summing those who own exactly two or three.
The solution conflates the total population with direct arithmetic of exclusive categories, leading
to an invalid conclusion.

Improvement suggestions:

1. Re-examine the definitions of "exactly two" and "exactly three" in the context of a universal set
(candy hearts), recognizing that these groups inherently include ownership of the universal item.
2. Use inclusion-exclusion formulas to model overlaps between the four categories systematically.
3. Differentiate between residents owning all four items and those owning subsets (e.g., two
specific items plus candy hearts).

4. Set up equations based on known totals (e.g., total residents, counts for each item) to solve for
unknown overlaps.

Overall judgment:
Incorrect
</critique>

Figure 6: An Example of the Critique.

A.3 CRITIQUE GENERATION

To ensure the quality of critiques, we employ different prompts for correct and incorrect Ay (see
Sec.[3:2.1). The prompts are given in Fig.[7]and[§]

Prompt for Generating Critiques of Incorrect Answers

You are tasked with analyzing your last solution to a problem and providing constructive feedback
based on previous solutions. Do NOT provide direct solutions.

You have already know your last solution to the problem is incorrect.

Important: Do NOT mention something like ''you have already know your last solution is
incorrect" in your feedback.

Structure your response using the following format (without <format> tags):

<format>

Analysis:

{ Analysis}

Improvement suggestions:
{Suggestions}

Overall judgment:
{Incorrect}
</format>

Figure 7: The Prompt for Generating Critiques of Incorrect Answers.

15



Under review as a conference paper at ICLR 2026

Prompt for Generating Critiques of Correct Answers

You are tasked with analyzing your last solution to a problem and providing constructive feedback
based on previous solutions. Do NOT provide direct solutions.

You have already know your last solution to the problem is correct.

Important: Do NOT mention something like ''you have already know your last solution is
correct' in your feedback.

Structure your response using the following format (without <format> tags):

<format>

Analysis:

{Analysis}

Improvement suggestions:
{Suggestions}

Overall judgment:
{Correct}
</format>

Figure 8: The Prompt for Generating Critiques of Correct Answers.

A.4 DISTILLATION DETAILS

After the data curation stage, training examples are categorized into two formats: (Q, Sp, C1) for
correct answers Ag and (@, So, C1,T1,.51) for incorrect answers. For simplicity, instances with
(Q, So, C1) are padded to (Q, So, C1, T}, S7) using a predefined template (see Fig.[9). Here, T{ and
S are negligible compared to the original reasoning Tj and summary Sy. During inference (as
described in Alg.[I), if a critique C,, predicts correctness, T;, and .S,, can be disregarded since the
extracted answer A,, from .S,, will match S,,_1.

Padding Template

Ty:

<think>

From my last analysis, I have already got the right answer.
</think>

/S
Sl .
<summary>

My previous solution is correct. Therefore, the answer is | ANSW ER |.

</summary>

Figure 9: The Padding Template of Training Examples, where ANSWER is Aj.

B DETAILED EXPERIMENTAL SETUP

B.1 TRAINING DATA

This appendix outlines the filtering criteria applied to our candidate question pool, focusing on two
primary principles: difficulty and answer verifiability. We detail the filtering pipeline for each dataset
source as follows:

S1.1 Dataset The dataset comprises 1,000 high-quality questions together with their ground-truth
answers sourced from multiple domains, with the reasoning trajectory annotated by DeepSeek—-R1.
However, some questions with open-ended answers can not be reliably evaluated using a rule-based

16



Under review as a conference paper at ICLR 2026

evaluation framework. After the removal of these unverifiable instances, we retain 861 questions with
both validated answers and corresponding DeepSeek-R1 annotated reasoning trajectories. We will
also use this subset as our D g cc.

DeepMath-103K It contains 103K math problems, each annotated with two reasoning paths
generated by DeepSeek—-R1. We retain only 0.6K questions where the DeepSeek—-R1-annotated
reasoning paths are judged to be incorrect compared to ground truth answers by a rule-based evaluation
method. We bypass the initial generation stage of Double—-Checker and instead initialize the
reasoning process directly from the DeepSeek—-R1-annotated reasoning paths.

OpenRS & ORZ-Math-Hard The OpenRS dataset contains 7,000 mathematical reasoning prob-
lems, and ORZ-Math-Hard comprises 13,000 challenging math problems. Neither dataset provides
DeepSeek—R1-annotated reasoning trajectories. To filter simple questions, we generate four re-
sponses per question using DeepSeek-R1-Distill-Qwen-7B with temperature 0.6 and retain
only those questions where at least two responses are incorrect. For the remaining questions, we
generate four responses using DeepSeek-R1-Distill-Qwen-32B with temperature 0.6 and
retain only those with at least two incorrect responses. This yields 2.3K difficult problems from
OpenRS and 4.4K from ORZ-Math-Hard.

To balance the distribution of correct and incorrect initial summaries (Sg), we also exclude cor-
rectly solved questions from DeepMath-103K, OpenRS, and ORZ-Math-Hard based on their initial
generation by DeepSeek—R1.

Computational Costs for Data Construction The total computational cost of our data construction
pipeline consists of two parts: data filtering and critique data generation. For data filtering, S1.1
and DeepMath-103K are processed using only rule-based evaluation, which does not require GPU
resources. For OpenRS and ORZ-Math-Hard (20K problems in total), we first use DeepSeek-
R1-Distill-Qwen-7B to generate 4 responses per prompt, resulting in approximately 20K*4#*32K
(2.56 x 107) generated tokens. We then filter out about half of the prompts, leaving 10K problems
to be processed by DeepSeek-R1-Distill-Qwen-32B, again with 4 responses per prompt, yielding
roughly 10K*4%32K (1.28 x 10”) tokens. In other words, for data filtering, we generate approximately
2.56 x 10? tokens with the 7B model and 1.28 x 10° tokens with the 32B model. For critique data
generation, the average length of examples in our final training set is about 5.6K tokens (1,730
examples). For estimation, our candidate pool contains roughly 8K problems, and for each problem,
we generate an initial solution, a critique, and a refined solution. This corresponds to approximately
5.6K*8K*3 (1.34 x 109) tokens. For reference, DeepMath-103K (He et al., |2025)) consumes around
103K * 32K * 3 = 9.8 x 10° using DeepSeek-R1-671B.

About Data Quality Our questions are sourced from well-known open-source math training sets
(e.g., S1.1, DeepMath-103K), which already apply their own quality control. We further improve
quality by filtering out unverifiable questions using rule-based methods. In Section[3.2.1] we implicitly
describe several strategies for controlling the quality of our training data. For the refinement step,
we discard incorrectly solved questions, ensuring that the final answers (after one refinement step)
in our training set are all correct. For critique generation, we provide the correct/incorrect signal
to the critique generator to encourage accurate and faithful critiques. We also remove examples
whose formats are misaligned with our target schema (as illustrated in Figure[6). For the “overall
judgment” field, we implement scripts to ensure consistency between the overall judgment and the
actual correctness label. In summary, our data curation process imposes strict quality control on the
questions, solutions, and critiques.

B.2 TRAINING DETAILS

We train the DeepSeek-R1-Distill-Qwen—-7B and DeepSeek-R1-Distill-Qwen—-32B
our curated training set Dy, using full-parameter fine-tuning. The 7B model is trained on either
8xH800 GPUs or 8xH20 GPUs, while the 32B model is trained on either 8xH800 GPUs or 32xH20
GPUs. The training process employs DeepSpeed ZeRO optimization (Rajbhandari et al., [2020) (stage

17



Under review as a conference paper at ICLR 2026

2 for 7B, and stage 3 for 32B) for efficient memory utilization and FlashAttention2 (Dao, |2023) for
accelerated training. Following|Ye et al.| (2025a)), we set the maximum sequence length to 16,384
tokens and use a batch size of 32, with a learning rate of 5 x 1075, Training times are approximately
0.7 hours per epoch for the 7B model on 8xH20 GPUs and 1.1 hours per epoch for the 32B model on
8xH800 GPUs.

B.3 EVALUATION DETAILS

We evaluate our models on six benchmarks covering diverse reasoning tasks. For mathematical
reasoning, we use:

* AIME24/AIME2S: Extremely difficult math competition problems, each dataset contains
only 30 examples.

* MATHS500 (Lightman et al.,|2023)): A high school level math problems, the subset of 500
problems is from the original test set of MATH (Hendrycks et al., [2021).

* OlympiadBench (He et al.| [2024): A benchmark of Olympiad-level problems requiring
advanced problem-solving skills. We only include the math subset for our evaluation.

For multidisciplinary reasoning, we use GPQA (Rein et al.|[2024), which covers questions spanning
biology, physics, and other domains.

Following |Ye et al.|(2025a), we adopt an unbiased pass@ 1 metric for datasets with limited test
examples (AIME24 and AIME2S5), generating 16 samples with decoding temperature 0.6. For other
benchmarks, we generate 4 samples per problem to report pass@ 1. For baseline models, we use the
top-p parameter suggested in their original papers, while for our models, we fix top-p = 1.0. Inference
is accelerated using vVLLM (Kwon et al.| 2023)), with a maximum sequence length of 32,768 tokens.

C RESULTS CLARIFICATION

C.1 RESULTS SOURCE

As described in Section .2] most of the results for open-source LLMs presented in Table [T] are
reproduced through our own experiments. However, for LLMs that require API access (e.g.,
OpenAI-0l1-1217), we have cited the results from their official technical reports or other sources
due to budget constraints. Similarly, the results for InftyThink (Yan et al., [2025)) are sourced from
their paper, as their code and models are not publicly accessible.

The sources of these results are detailed as follows:

* Results of InftyThink are from their paper (Yan et al., [2025).

* The results of OpenAI-ol-Preview on AIME24, MATH500 Hendrycks et al.| (2021]),
AMC23, GPQA (Rein et al.,[2024), and OlympiadBench-Math (He et al.,[2024) are from
LIMO (Ye et al.,|20254a).

¢ The results of OpenAI-o0l-mini, OpenAI-01-1217, DeepSeek—-R1 on AIME24,
MATHS500, and GPQA are from DeepSeek-R1 report (Guo et al., 2025).

¢ The result of OpenATI-ol-mini on UGMathBench is from UGMathBench (Xu et al.,
2025)).

* The results of OpenAI-ol-Preview, OpenAI-ol-mini, and DeepSeek-R1 on
AIME2S5 are from (Ye et al., [2025b).

For the Self-Refine baseline, we follow a similar setting to the GSM8K dataset in Madaan et al.
(2024), where the model is prompted with “There is an error in the solution above. To find the error,
go through the semantically complete solution and check if everything looks good.” after the initial
generation.

18



Under review as a conference paper at ICLR 2026

D MORE RESULTS

D.1 ABOUT GENERALIZABILITY

To evaluate the generalizability of our Double—-Checker, we report additional results for the
7B model on LiveCodeBench (Jain et al., |2024) and the Business and Law subsets from MMLU-
Pro (Wang et al[2024b)). As shown in Table@ Double-Checker achieves performance improve-
ments on LiveCodeBench, Business, and Law, despite not being trained on any coding-specific
or social science examples. We believe that applying Double-Checker to training data from a
broader and more diverse range of domains would further enhance its generalizability to previously
unseen tasks. In particular, the data curation pipeline and training paradigm of Double-Checker
are directly transferable to other domains.

Table 5: Performance comparison across different benchmarks.

Model GPQA LiveCodeBench Business Law
DeepSeek-R1-Distill-7B (Our initial model) 354 38.4 61.1 14.3
DeepSeek-R1-Distill-7B naive SFT 28.7 38.5 61.7 14.9
Double-Checker-7B 40.4 394 64.3 17.2

D.2 ADDITIONAL COMPUTATIONAL COSTS ANALYSIS

We provide additional details on computational costs in this appendix. Table[6|summarizes the total
number of input tokens per round, including both the problem statement () and the previous summary
Sn_1. Our design discards intermediate reasoning content, retaining only summaries for subsequent
rounds, which minimizes input size relative to output size. For N = 0, the input consists solely of @,
while for N > 1, the input comprises ) + Sy_1. As shown, input tokens are negligible compared to
output tokens.

Additionally, Table[7|reports the average total inference time for Double-Checker on AIME24,
using a single H20 GPU. The inference time per response for the “Naive SFT baseline” is 9.42
seconds, whereas Double-Checker achieves cumulative averages between 7.78 seconds (N = 0)
and 9.47 seconds (N = 1). These results demonstrate that the added rounds do not significantly
increase computational cost.

E THE LLM USAGE DECLARATION

In this work, in addition to fine-tuning using LLMs, we also leverage them for data collection.
Specifically, we employ DeepSeek-R1 and Qwen3-235B to annotate our data according to our
predefined format in Section 3] Furthermore, we use GPT-5 to refine and polish our writing.

F LIMITATION AND BROADER IMPACT

Limitations. While Double-Checker demonstrates significant gains in long-CoT reasoning, it
does rely on a specialized LLM for initial critical solution generation and on well-defined correctness
signals for critique. We have primarily evaluated Double-Checker on mathematical problems
with clear ground-truth labels; extending it to more open-ended or partially supervised domains
remains an interesting direction for future research. Additionally, our current implementation uses
the model’ own critique and a fixed iteration limit /V for stopping. Investigating more adaptive
or confidence-based stopping criteria could further enhance the robustness and flexibility of our
approach. Furthermore, investigating the role of self-critique for reinforcement learning could also be
a promising direction. Although we have analyzed the quality of our critiques in Appendix there
may still be additional sources of bias that were not explicitly considered during data curation.

Broader Impact. By incorporating explicit self-critique, Double-Checker offers a pathway to
more transparent and responsible Al potentially reducing hallucinations and improving explainability
in applications such as education, research, and automated reasoning systems.

19



Under review as a conference paper at ICLR 2026

Table 6: Total number of input tokens (including problem and previous summary) per round.

N=0 N=1 N=2 N=3
avg. input tokens | 450 970 740 700
input structure Q Q+Sy Q+S51 Q+5;

Table 7: The Average Inference time for Double-Checker on AIME24 using one H20 GPU.

N=0 N=1

avg time for this round | 7.78
avg cumulative time | 7.78

N=2 N=3
1.69 149 095
947 1096 11.92

G CASE STUDY

In this appendix, we present one case in Figure [T0]illustrating that Double-Checker can effec-
tively perform consistency checks on solutions to GPQA problems, and another case in Figure

demonstrating a typical failure mode of the critique.

20



Under review as a conference paper at ICLR 2026

Case Study on GPQA

Question: Astronomers are currently observing a star with a radius equal to that of the Sun.
One hemisphere of the star is covered in dark spots with a filling factor of 20%. The star has an
effective temperature (Teff) of 6000K, and the spots exhibit a temperature difference of 1000K. As
only one hemisphere is spotty, photometric time-series observations will reveal periodic variations
in brightness due to rotational modulation. Interestingly, this situation can closely resemble the
presence of an exoplanet. To produce the same amplitude signal in the star’s light curve (if the
star was not covered by spots!), what should be the radius of a hypothetical exoplanet relative to
the radius of the host star (i.e., Rpl/Rstar)?

A. 032B. 0.11 C. 0.39D. 0.07

Initial Answer Summary: To determine the radius ratio of a hypothetical exoplanet that would
produce photometric time-series variations analogous to the spotted star’s light variation, we
analyze the temperature and area contributions of both the star’s spotted regions and the planet’s
disk.

Key Analysis: ... [skip due to the page limit]

Conclusion:

The problem’s phrasing creates ambiguity in interpreting the “filling factor” of 20%. If it refers
to 10% of the total stellar surface area (not just one hemisphere), the required radius ratio is
~ 0.32, which matches option A. However, if the filling factor refers to 20% of the total stellar
surface area, the required radius ratio is ~ 0.51, which does not match any option. Given the
provided choices, the most consistent interpretation is that the filling factor refers to 10% of the
total stellar surface area, and the correct answer is:

ANSWER: C
Critique:

Analysis: The solution correctly identifies the key components of the problem, including the
star’s luminosity variation due to spots and the planet’s impact on brightness. However, the
critical error lies in the comparison of amplitude terms. The star’s light variation is proportional
to the difference in luminosity between the spotted and unspotted hemispheres, while the planet’s
effect depends on the fraction of the star’s disk it covers. The mistake occurs in equating the
absolute values of the two amplitudes without properly accounting for the relative contributions
of the spotted regions (40% coverage) and the correct scaling of the planet’s fractional area. The
derivation incorrectly assumes the planet’s flux replacement without properly normalizing the
star’s total luminosity, leading to an unphysical result. Additionally, the problem’s phrasing about
“periodic variations in brightness” may imply a more subtle comparison, such as matching the
fractional amplitude relative to the star’s total flux rather than absolute luminosity differences.
Improvement suggestions: 1. Re-express the star’s light variation as a fractional change relative
to its total luminosity, ensuring the planet’s amplitude is also expressed as a comparable fractional
change. 2. Carefully distinguish between absolute luminosity differences (used for the star) and
fractional flux contributions (for the planet), avoiding direct equating of absolute values without
proper normalization. 3. Verify the physical plausibility of the derived radius ratio and adjust
assumptions if intermediate steps yield impossible results (e.g., Rp1/ R« > 1), which indicates a
flaw in the setup.

Overall judgment: Incorrect

Refinement: The problem involves determining the radius of a hypothetical exoplanet that would
produce photometric time-series variations mimicking the spotted star’s light curve. The star
has a radius equal to the Sun’s, an effective temperature of 6000 K, and a 20% filling factor of
spotted regions. The spots are cooler by 1000 K (5000 K), and the variations arise from rotational
modulation. The key is to compare the luminosity variation caused by the spots with the expected
variation from the planet.

Key Steps: [Skip due to page limit]

Recalculations: [Skip due to page limit]

Conclusion: The ambiguity in the filling factor’s interpretation led to conflicting results. The
most plausible resolution is that the 20% refers to one hemisphere, not the total surface area. This
resolves the discrepancy and aligns the calculations with the provided options. The correct answer
is:

ANSWER: A

Figure 10: Case Study on GPQA.
21



Under review as a conference paper at ICLR 2026

Ilustration of Critique Failure

Question: Let ABCDFE be a convex pentagon with AB = 14, BC' =7,CD =24, DE = 13,
EA =26,and /B = ZE = 60°. For each point X in the plane, define f(X) = AX + BX +
CX + DX + EX. The least possible value of f(X) can be expressed as m + n,/p, where m
and n are positive integers and p is not divisible by the square of any prime. Find m + n + p.
Critique:

Analysis:

The problem involves finding the minimal value of the sum of distances from a point X to all five
vertices of a convex pentagon with given side lengths and two specified angles. The key insight is
to leverage geometric transformations, specifically reflections, to “unfold” the pentagon into a
plane where the minimal sum corresponds to a straight-line distance between two strategically
chosen points.

However, the exact configuration of reflections and the selection of these points require careful
consideration of the given angles and side lengths. The error likely stems from an incorrect choice
of reflection points or an incomplete analysis of how the reflections interact with the given angles
and side lengths, leading to an underestimation of the minimal sum.

Improvement suggestions:

1. Verify reflection strategy: Ensure that reflections are applied appropriately to both triangles at
vertices B and E, maintaining the 60° angles. This involves constructing reflections that align the
pentagon’s structure into a continuous path.

2. Path continuity check: After reflections, confirm that the constructed path from A to A’ (the
reflected point) passes through all original vertices and that the total distance corresponds to the
sum of all side lengths. This validates the reflection’s effectiveness.

3. Angle consistency: Double-check that the 60° angles at B and E are preserved in the reflected
configuration, as this directly affects the straight-line distance calculation.

4. Coordinate geometry validation: Use coordinate geometry to place the pentagon in a coordinate
system, compute reflections, and verify the straight-line distance between the reflected start and
end points. This provides a concrete check against abstract geometric reasoning.

Overall judgment: Incorrect.

Figure 11: Illustration of Critique Failure. In this specific case, the critique rests on a faulty
foundational assumption and therefore misdiagnoses the nature of the original error.

22



	Introduction
	Related Work
	Method
	Aha Moment Does Not Equate to Effective Self-Critique
	Double-Checker Framework
	Training Process
	Inference Pipeline


	Experiments and Results
	Training Setup
	Evaluation Setup
	Main Results

	Analysis
	The Effect of Self-Critique
	Ablation Study of Training Data
	Analysis of Response Length
	Further analysis

	Conclusion
	Detailed Settings of Double-Checker
	Setting of Meta-Experiments
	The Critique Space
	Critique Generation
	Distillation Details

	Detailed Experimental Setup
	Training Data
	Training Details
	Evaluation Details

	Results Clarification
	Results Source

	More Results
	About Generalizability
	Additional Computational Costs Analysis

	The LLM Usage Declaration
	Limitation and Broader Impact
	Case Study

