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Abstract

Dense regression is a widely used approach in
computer vision for tasks such as image super-
resolution, enhancement, depth estimation, etc.
However, the high cost of annotation and label-
ing makes it challenging to achieve accurate re-
sults. We propose incorporating active learning
into dense regression models to address this prob-
lem. Active learning allows models to select the
most informative samples for labeling, reducing
the overall annotation cost while improving per-
formance. Despite its potential, active learning has
not been widely explored in high-dimensional com-
puter vision regression tasks like super-resolution.
We address this research gap and propose a new
framework called USIM-DAL that leverages the
statistical properties of colour images to learn in-
formative priors using probabilistic deep neural
networks that model the heteroscedastic predic-
tive distribution allowing uncertainty quantifica-
tion. Moreover, the aleatoric uncertainty from the
network serves as a proxy for error that is used
for active learning. Our experiments on a wide va-
riety of datasets spanning applications in natural
images (visual genome, BSD100), medical imag-
ing (histopathology slides), and remote sensing
(satellite images) demonstrate the efficacy of the
newly proposed USIM-DAL and superiority over
several dense regression active learning methods.

1 INTRODUCTION
The paradigm of dense prediction is very important in com-
puter vision, given that pixel-level regression tasks like
super-resolution, restoration, depth estimation etc., help in
holistic scene understanding. A common example of a pixel-
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level (i.e., dense) regression task is Image super-resolution
(SR) is the process of recovering high-resolution (HR) im-
ages from their low-resolution (LR) versions. It is an impor-
tant class of image processing techniques in computer vision,
deep learning, and image processing and offers a wide range
of real-world applications, such as medical imaging [Li et al.,
2021], satellite imaging [Verpoorter et al., 2014], surveil-
lance [Caner et al., 2003] and security [Gohshi, 2015], and
remote sensing [Yang et al., 2015a], to name a few. The
well-performing techniques for super-resolution often rely
on deep learning-based methods that are trained in a super-
vised fashion, requiring high-resolution data as groundtruth.
However, the acquisition of high-resolution imaging data
(to be served as labels) for many real-world applications
may be infeasible. Consider the example of histopathology
microscopy from medical imaging, where the typical digital
microscope takes significantly longer to acquire the high-
resolution scans (i.e., at high magnification) image of the
slide than low-magnification [Aeffner et al., 2018, Hamilton
et al., 2014]. Moreover, the acquired high-resolution scans
also have a significantly larger memory footprint leading to
an increase in storage resources [Bertram and Klopfleisch,
2017]. Similarly, acquiring high spatial resolution images
from satellites for remote sensing requires expensive sen-
sors and hardware and has significantly higher operating
costs [Cornebise et al., 2018, 2022]. In such scenarios, gen-
erating a large volume of training samples is infeasible.

As a remedy, concepts like zero-shot SR or single-
image SR have been proposed. Nevertheless, zero-shot
SR still requires ample supervision from the test image
patches [Shocher et al., 2018] to learn the transferrable
model for novel scenarios with divergent distributions [Soh
et al., 2020], and the performance of the single-image SR
models is still affected by the lack of sufficient labeled
data [Lim et al., 2017]. Notwithstanding these discussions,
there are situations where there are restrictions on deal-
ing with training samples within a pre-defined budget. For
example, in histopathology microscopy, the constraint on
available resources may allow high-resolution acquisition
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Figure 1: The proposed framework USIM-DAL. (Left-to-right) We train a probabilistic deep network for a dense regression
task (e.g., super-resolution) on synthetic samples obtained from statistical image models as described in Section 3. The
pre-trained model is used to identify the high-uncertainty samples from the domain-specific unlabeled set. Top-K highly
uncertain samples are chosen for labeling on which the pre-trained network is further fine-tuned.

for only a limited number of patients/microscopy slides.
One of the viable solutions in this regard is to select a subset
of highly representative training samples from the available
training set while respecting the budget and deploying them
to train the SR model. This corresponds to the notion of
active learning for subset selection. However, selecting the
subset is challenging considering the fact that we need a
quantitative measurement for the eligibility of a given train-
ing LR-HR pair to be selected. Many works have explored
different query functions to select a subset to label from a
larger dataset [Beluch et al., 2018, Gorriz et al., 2017, Roy
and McCallum, 2001]. However, most of them have been
applied to classification or low-dimensional regression prob-
lems [Jain and Grauman, 2016], and there still exists a gap
on how to address this for dense regression tasks (e.g., super-
resolution). Active learning technique to label those points
for which the current model is least certain has been studied
well in the context of classification [Yang et al., 2015b].
While there are recent advances in uncertainty estimation
using neural networks for dense regression [Kendall and
Gal, 2017, Upadhyay et al., 2022], it is yet to be studied if
they can be leveraged in active learning for dense regression.

In summary, our contributions are as follows: (i) We show
how statistical image models can help alleviate the need for
a large volume of high-resolution imaging data. (ii) We show
that probabilistic deep networks, along with the statistical
image models, can be used to learn informative prior about
niche domain datasets that may allow limited access to high-
resolution data. (iii) Our probabilistic deep network trained
with the statistical image models allows us to estimate the
uncertainty for the sample in a niche domain that can be
leveraged for active learning as illustrated in Figure 1.

2 RELATED WORK

Active Learning. These are a set of techniques that in-
volve selecting a minimal data subset to be annotated, repre-
senting the entire dataset, and providing maximum perfor-

mance gains. Querying strategies for active learning can be
broadly categorized into three categories: heterogeneity-
based, performance-based, and representativeness-based
models. Uncertainty sampling [Beluch et al., 2018, Gorriz
et al., 2017, Wang et al., 2016, Roy and McCallum, 2001,
Ebrahimi et al., 2019], a type of heterogeneity-based model,
is a standard active learning strategy where the learner aims
to label those samples which have the most uncertain la-
belings. Non-Bayesian approaches[Brinker, 2003, Wang
and Ye, 2015] dealing with entropy, distance from deci-
sion boundary, etc., also exist but are not scalable for deep
learning Sener and Savarese [2017]. Representation-based
methods that aim at increasing the diversity in a batch[Jain
and Grauman, 2016] have also been studied. However, most
of these works have been studied in the context of classi-
fication or low-dimensional regression problems, and the
literature on dense regression is still sparse.

Statistical Image models. The n × n RGB images oc-
cupy the space of R3n2

. However, the structured images oc-
cupy a small region in that space. The statistical properties
of the samples in this small structured space can be lever-
aged to generate synthetic data that have similar statistics
to real-world structured images. For instance, the observa-
tion that natural images follow a power law with respect
to the magnitude of their Fourier Transform (FT) formed
the basis for Wiener image denoising[Simoncelli, 2005],
Dead Leaves models [Lee et al., 2001] and fractals as image
models [Redies et al., 2008, Kataoka et al., 2020]. Similarly,
works like [Field, 1987, Simoncelli, 2005, Kretzmer, 1952]
showed that outputs of zero mean wavelets to natural images
are sparse and follow a generalized Laplacian distribution.
Works like [Heeger and Bergen, 1995, Portilla and Simon-
celli, 2000] showed statistical models capable of producing
realistic-looking textures. The recent work [Baradad Jurjo
et al., 2021] takes this research a step closer to realistic im-
age generation by learning from procedural noise processes
and using the generated samples for pre-training the neural
networks. However, it is only applied to classification.



Super-resolution. This consists of CNN-based methods
to enhance the resolution of the image [Ledig et al., 2017,
Wang et al., 2018, Upadhyay and Awate, 2019b,a]. Atten-
tion mechanism has proven to be ubiquitous, with [Woo
et al., 2018] introducing channel and spatial attention mod-
ules for adaptive feature refinement. Transformers-based
endeavors such as [Liang et al., 2021], achieve state-of-the-
art results using multi-head self-attention for SR. [Saharia
et al., 2022] uses a probabilistic diffusion model and per-
forms SR through an iterative denoising process. Works
like [Shocher et al., 2018, Bose et al., 2022] use internal
and external recurrence of information to get superior SR
performance during inference. However, these works do
not consider the problem of super-resolution in the active
learning context, leaving a gap in the literature.

Uncertainty Estimation. Quantifying uncertainty in ma-
chine learning models is crucial for safety-critical applica-
tions [Nair et al., 2020, Sudarshan et al., 2021, Upadhyay
et al., 2021b,c,a]. Uncertainty can be broadly categorized
into two classes: (i) Epistemic uncertainty (i.e., uncertainty
in model weights [Blundell et al., 2015, Daxberger et al.,
2021, Graves, 2011, Kendall and Gal, 2017]). (ii) Aleatoric
uncertainty (i.e., noise inherent in the observations) [Bae
et al., 2021, Wang et al., 2019]. The dense predictive uncer-
tainty may be considered as a proxy for error and can be
used for active learning purposes [Laves et al., 2020].

3 METHOD
We first formulate the problem in Section 3.1, and present
preliminaries on active learning, statistical image models,
and uncertainty estimation in Section 3.2. In Section 3.3,
we describe the construction of USIM-DAL that learns a
prior via statistical image modeling, which is later used to
select the most informative samples from the unlabeled set
for labeling and further improving the model.

3.1 PROBLEM FORMULATION

Let DU = {xi}Ni=1 be the unlabeled set of input images
from domain X (i.e., xi ∈ X∀i). We consider the task
where images (x) are to be mapped to another set of dense
continuous labels (y, e.g., other images, such that yi ∈
Y∀i). We want to learn a mapping Ψ for the same, i.e.,
Ψ : X → Y. However, we want to learn it under the
constraint that we do not have sufficient budget to “label”
all the N samples in DU (i.e., acquire all the corresponding
y), but we do have a budget to label a significantly smaller
subset of DU with K << N samples, say DK

U . This is a real-
world constraint, as discussed in Section 2. In this work, we
focus on the problem of super-resolution where the domain
Y consists of high-resolution images (corresponding to the
low-resolution images in domain X).

We tackle the problem of choosing the set of K << N

samples (DK
U ) that are highly representative of the entire

unlabeled training set DU , such that the learned mapping Ψ
on unseen data from a similar domain performs well.

3.2 PRELIMINARIES

Active Learning. As discussed above, given a set of N
unlabeled images DU , we want to choose a set of K << N
samples (DK

U ) that are highly representative of the entire
unlabeled training set DU . This is the problem of active
learning, which consists of query strategies that maps the
entire unlabeled set DU to its subset. That is, the query strat-
egy (constrained to choose K samples and parameterized
by ϕ) is given by, QK,ϕ : DU → DK

U . Many works explore
designing the query strategy QK,ϕ [Beluch et al., 2018, Gor-
riz et al., 2017, Wang et al., 2016]. However, they seldom
attempt to design such a strategy for dense regression.

Figure 2: Samples generated from Statistical Image Models
(combination of Spectrum + WMM + Color histogram).

Statistical Image Models (SIM). As discussed
in [Baradad Jurjo et al., 2021], the statistical properties of
RGB images can be exploited to generate synthetic images
that can serve as an excellent pre-training learning signal.
The generative model (based on statistical properties of
RGB images) is described as G(·; θG) : z → x where z is
a stochastic latent variable and x is an image. The image
generation is modelled as a hierarchical process in which,
first, the parameters of a model are sampled. Then the
image is sampled given these parameters and stochastic
noise. Previous works [Baradad Jurjo et al., 2021] highlight
the following statistical models. (i) Spectrum: based on
the magnitude of the Fourier transform (FT). The FT
of many natural images follows a power law, i.e., 1

|f |α ,
where |f | is the magnitude of frequency f , and α is a
constant close to 1. For generative models, the sampled
images are constrained to be random noise images that
have FT magnitude following 1

|fx|a+|fy|b with a and b
being two random numbers uniformly sampled as detailed
in [Baradad Jurjo et al., 2021]. (ii) Wavelet-marginal
model (WMM): Generates the texture by modeling their
histograms of wavelet coefficient as discussed in [Simon-
celli, 2005, Kretzmer, 1952]. (iii) Color histograms: As
discussed in [Baradad Jurjo et al., 2021], this generative



model follows the color distribution of the dead-leaves
model [Baradad Jurjo et al., 2021]. Combining all these
different models allows for capturing colour distributions,
spectral components, and wavelet distributions that mimic
those typical for natural images. Figure 2 shows examples
of generated samples from such models.

Uncertainty Estimation. Various works [Lakshmi-
narayanan et al., 2016, Kendall and Gal, 2017] have pro-
posed different methods to model the uncertainty estimates
in the predictions made by DNNs for different tasks. In-
terestingly recent works [Kendall and Gal, 2017, Upad-
hyay et al., 2022] have shown that for many real-world
vision applications, modeling the aleatoric uncertainty al-
lows for capturing erroneous predictions that may happen
with out-of-distribution samples. To estimate the uncer-
tainty for the regression tasks using deep network (say
Ψ(·; ζ) : X → Y), the model must capture the output
distribution PY |X . This is often done by estimating PY |X
with a parametric distribution and learning the parameters
of the said distribution using the deep network, which is
then used to maximize the likelihood function. That is, for
an input xi, the model produces a set of parameters rep-
resenting the output given by, {ŷi, ν̂i . . . ρ̂i} := Ψ(xi; ζ),
that characterizes the distribution PY |X(y; {ŷi, ν̂i . . . ρ̂i}),
such that yi ∼ PY |X(y; {ŷi, ν̂i . . . ρ̂i}). The likelihood
L (ζ;D) :=

∏N
i=1 PY |X(yi; {ŷi, ν̂i . . . ρ̂i}) is then maxi-

mized to estimate the optimal parameters of the network.
Typically, the parameterized distribution is chosen to be het-
eroscedastic Gaussian distribution, in which case Ψ(·; ζ) is
designed to predict the mean and variance of the Gaussian
distribution, i.e., {ŷi, σ̂

2
i } := Ψ(xi; ζ). The optimization

problem becomes,

ζ∗ = argmin
ζ

N∑
i=1

|ŷi − yi|2

2σ̂2
i

+
log(σ̂2

i )

2
(1)

With Uncertainty(ŷi) = σ̂2
i . An important observation from

Equation 1 is that, ignoring the dependence through ζ, the
solution to Equation 1 decouples estimation of ŷi and σ̂i.
That is, for minimizing with respect to ŷi we need,

∂
(∑N

i=1
|ŷi−yi|2

2σ̂2
i

+
log(σ̂2

i )
2

)
∂ŷi

= 0 (2)

∂2
(∑N

i=1
|ŷi−yi|2

2σ̂2
i

+
log(σ̂2

i )
2

)
∂ŷ2

i

> 0 (3)

Equation 2 & 3 lead to ŷi = yi ∀i. Similarly for minimizing
with respect to σ̂i we need,

∂
(∑N

i=1
|ŷi−yi|2

2σ̂2
i

+
log(σ̂2

i )
2

)
∂σ̂i

= 0 (4)

∂2
(∑N

i=1
|ŷi−yi|2

2σ̂2
i

+
log(σ̂2

i )
2

)
∂σ̂2

i

> 0 (5)

Equation 4 & 5 lead to σ̂2
i = |ŷi − yi|2 ∀i. That is, the esti-

mation σ̂2
i should perfectly reflect the squared error. There-

fore, a higher σ̂2
i indicates higher error. We leverage this

observation to design our dense active learning framework
as described in Section 3.3.

3.3 CONSTRUCTING USIM-DAL

To tackle the problem mentioned in Section 3.1 (i.e., choos-
ing a small subset), we leverage the fact that even before
training the model with the labelled set, we can train a model
based on the samples that we get from statistical image
model as described above, which can then be used to make
inference on the unlabeled domain-specific dataset identi-
fying the high-uncertainty samples. The high-uncertainty
samples can then be labelled and used to fine-tune the model.

We constraint the generative process for statistical image
models as, Similar to [Baradad Jurjo et al., 2021], we treat
image generation as a hierarchical process in which first the
parameters of a model, θG, are sampled. Then the image is
sampled given these parameters and stochastic noise, i.e.,

θG ∼ prior(θG) and z ∼ prior(z) (6)
x = G(z; θG) (7)

In particular, for super-resolution, we create a large (syn-
thetic) labelled dataset using the samples from the statistical
image models, say DSL = {(low(xs,i),xs,i)}Mi=1. Where
xs,i are generated samples from statistical image model
and low(·), is the 4× down-sampling operation. We then
train the network Ψ(·; ζ) on DSL using Equation 1, leading
to the optimal parameter ζ∗SL, as shown in Figure 1. The
trained model Ψ(·; ζ∗SL) is then run in inference mode on
all the samples of the unlabeled set DU and gather the top
uncertain samples for labeling, that is,

{ŷi, σ̂i} := Ψ(xi; ζ
∗
SL) ∀xi ∈ DU (8)

DK
U := {xj}∀j ∈ topK

(
{⟨σ̂i⟩}Ni=1

)
(9)

Where, ⟨·⟩ represents the mean operation, and
topK

(
{⟨σ̂i⟩}Ni=1

)
returns the indices of “top-K” most

uncertain samples (i.e., mean uncertainty is high). We
then acquire the labels for the samples in DK

U , giving us,
DK

UL = {(xj ,yj)}. As discussed in Section 3.2, the input
samples in DK

UL serve as a proxy to the set of K samples
that would have the highest error between the prediction
made by the model Ψ(·; ζ∗SL) and the ground truth. That
leads to better fine-tuning. The model Ψ(·; ζ∗SL) is then
fine-tuned on DK

UL via Equation 1, leading to the final state
of the model Ψ(·; ζ∗KL) (shown in Figure 1) that can be
used for inferring on the new sample.

USIM-DAL models the aleatoric uncertainties in the pre-
diction. Still, it is crucial to note that it leverages the Sta-
tistical Image Modeling (SIM)-based synthetic images for
pertaining and learning important priors for color images
that broadly capture different niche domains such as medical



Figure 3: Output of the pre-trained probabilistic deep network (which is trained using synthetic images sampled from
statistical image models) on samples from unseen natural image datasets. (a) LR input, (b) HR groundtruth, (c) Predicted
output, SR, from the network, (d) Predicted uncertainty from the network, (e) Error between SR and groundtruth.

images, satellite images, etc. Therefore, the initial model,
capable of estimating the aleatoric uncertainty (trained on
SIM-based synthetic images), can reasonably capture the
uncertainty as a proxy for reconstruction error for domain-
specific images that are not necessarily out-of-distribution
images. Moreover, picking samples with high reconstruction
errors for subsequent fine-tuning of the model yields better
performance on similar highly erroneous cases, iteratively
improving the model. Furthermore, in high-dimensional re-
gression cases, the aleatoric and epistemic uncertainty often
influence each other and are not independent Kendall and
Gal [2017], Upadhyay et al. [2022], Zhang et al. [2019].

4 EXPERIMENTS AND RESULTS
We provide an overview of the experiments performed and
the results obtained. In Section 4.1, we describe the task and
various methods used for comparison. Section 4.3 analyzes
the performance of various dense active learning algorithms
for super-resolution and shows that our proposed method
USIM-DAL can help greatly improve the performance when
constrained with a limited budget.

4.1 TASKS, DATASETS, AND METHODS

We present the results of all our experiments on the super-
resolution task. We demonstrate our proposed framework
using a probabilistic SRGAN (which is the adaptation of
SRGAN [Ledig et al., 2017] that estimates pixel-wise un-
certainty as described in [Kendall and Gal, 2017]) model.
We evaluate the performance of various models on a
wide variety of domains like (i) Natural Images (with
Set5, Set14, BSD100, and Visual Genome dataset [Ledig
et al., 2017, Martin et al., 2001, Krishna et al., 2017]).
(ii) Satellite Images (with PatternNet dataset [Zhou et al.,
2018]). (ii) Histopathology Medical Images (with Came-

lyon dataset [Litjens et al., 2018]). The evaluation protocol
is designed to constraint all the training domain datasets to
be restricted by a small fixed number of images (also called
training budget). We used different training budgets of 500,
1000, 2000, 3000 and 5000 images for natural and satellite
domains. For both natural and satellite images, the input
image resolution was set to 64× 64. For natural images the
training dataset was obtained from Visual Genome (separate
from the test-set). Similarly, for the histopathology medical
images, the input image resolution was set to 32× 32 and
we used training budgets of 4000, 8000, 12000, and 16000.

We compare the super-resolution performance in terms of
metrics MSE, MAE, PSNR, and SSIM [Wang et al., 2004]
for the following methods on respective test sets: (i) SRGAN
model trained from scratch with a randomly chosen subset
satisfying the training budget from the entire training data
(called Random). (ii) SRGAN model trained from scratch
on a large synthetically generated dataset via statistical im-
age modeling (as described in Section 3.2). This model is
called SIM. (iii) SRGAN model trained from scratch on a
large synthetically generated dataset via statistical image
modeling and then fine-tuned on a randomly chosen sub-
set satisfying the training budget from the entire training
data, called SIM+Random. (iv) SRGAN model trained from
scratch on a large synthetically generated dataset via statisti-
cal image modeling and then fine-tuned on a subset chosen
using uncertainty estimates, satisfying the training budget
from the entire training data, called USIM-DAL.

4.2 DENSE ACTIVE LEARNING VIA
UNCERTAINTY ESTIMATION

Our method proposes to utilize a probabilistic network that
is learned from synthetic images sampled from statistical
image models (i.e., Ψ(·; ζ∗SL) mentioned in Section 3.3).



Figure 4: Distribution of mean uncertainty for samples in
Statistical Image Noise, PatternNet (satellite), Camelyon
(medical), Visual Genome (natural) datasets.

Figure 3 shows the output of probabilistic SRGAN trained
on synthetic images evaluated on samples from natural im-
ages. We observe that (i) The predicted super-resolved im-
ages (Figure 3-(c)) are still reasonable. (ii) The uncertainty
estimates (Figure 3-(d)) still resemble the structures from
the images and are a reasonable proxy to the error maps
(Figure 3-(e)) between the predictions and the ground truth,
even though the model has never seen the natural images.

We use the predicted uncertainty from this model to identify
the samples from the real-world domain that would lead to
high errors. Figure 4 shows the distribution of mean uncer-
tainty values for samples in (i) Statistical Noise (ii) Natural
(ii) Satellite (iii) Medical image datasets. We notice that
the model trained on synthetic images leads to a gaussian
distribution for the mean uncertainty values on the synthetic
image datasets. We obtain similar distributions for other
datasets from different domains. This further emphasizes
that uncertainty estimates obtained from Ψ(·; ζ∗SL) can be
used as a proxy to identify the highly uncertain (therefore
erroneous) samples from different domains (i.e., the samples
close to the right tail of the distributions).

4.3 USIM-DAL FOR SUPER-RESOLUTION

Table 1 shows the performance of different methods on mul-
tiple natural image datasets, including Set5, Set14, BSD100,
and Visual Genome (VG). We observe that with the smallest
training budget of 500 images, USIM-DAL performs the
best with a PSNR/MAE of 25.174/0.035 (Table 1 shows the
results with a scaling factor for better accommodation) com-
pared to SIM+Random with PSNR/MAE of 25/0.039 and
SIM with PSNR/MAE of 24.8/0.037. We also notice that
at this budget, choosing the random subset of the training

Figure 5: Evaluation of various methods on histopathology
medical domain (i.e., Camelyon dataset) and satellite imag-
ing domain (i.e., PatternNet dataset) at various fine-tuning
budgets. The yellow curve is the SIM baseline. The red
curve is the SIM model fine-tuned with random samples
(i.e., SIM+Random). The blue curve is the SIM model fine-
tuned with the highest uncertain samples (i.e., USIM-DAL).

dataset to train the model from scratch performs the worst
with PSNR/MAE of 23.36/0.043. As the budget increases
(left to right in Tabel 1), the performances of all the methods
also improve. However, a similar trend is observed where the
USIM-DAL performs better than SIM+Random, SIM, and
Random. We observe a similar trend for other natural image
datasets. This allows us to make the following observations:
(i) Using a synthetic training image dataset (sampled from
the statistical image model, discussed in Section 3.2) leads
to better performance than using a small random subset of
training images from the original domain (i.e., SIM better
than Random). (ii) Using the above synthetic training image
dataset to train a model and later fine-tuning it with domain-
specific samples lead to further improvements (i.e., both
USIM-DAL and SIM+Random better than SIM). (iii) With a
limited budget, fine-tuning a model (pre-trained on synthetic



D Methods

Budgets (Number of images)

500 1000 2000 3000 5000

MSE︸ ︷︷ ︸
×103

/ MAE︸ ︷︷ ︸
×102

/ PSNR︸ ︷︷ ︸
×100

/ SSIM︸ ︷︷ ︸
×102

MSE︸ ︷︷ ︸
×103

/ MAE︸ ︷︷ ︸
×102

/ PSNR︸ ︷︷ ︸
×100

/ SSIM︸ ︷︷ ︸
×102

MSE︸ ︷︷ ︸
×103

/ MAE︸ ︷︷ ︸
×102

/ PSNR︸ ︷︷ ︸
×100

/ SSIM︸ ︷︷ ︸
×102

MSE︸ ︷︷ ︸
×103

/ MAE︸ ︷︷ ︸
×102

/ PSNR︸ ︷︷ ︸
×100

/ SSIM︸ ︷︷ ︸
×102

MSE︸ ︷︷ ︸
×103

/ MAE︸ ︷︷ ︸
×102

/ PSNR︸ ︷︷ ︸
×100

/ SSIM︸ ︷︷ ︸
×102

Se
t5

Random 4.129 / 3.854 / 24.784 / 7.232 3.898 / 3.720 / 24.957 / 7.319 3.660 / 3.588 / 25.271 / 7.422 3.586 / 3.529 / 25.334 / 7.465 3.500 / 3.420 / 25.514 / 7.539

SIM 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541

SIM + Random 2.976 / 3.139 / 26.283 / 7.839 2.958 / 3.099 / 26.377 / 7.872 2.941 / 3.081 / 26.435 / 7.896 2.934 / 3.088 / 26.436 / 7.910 2.912 / 3.056 / 26.546 / 7.935

USIM-DAL 2.926 / 3.088 / 26.484 / 7.869 2.884 / 3.069 / 26.550 / 7.894 2.848 / 3.027 / 26.619 / 7.931 2.843 / 3.029 / 26.644 / 7.944 2.831 / 3.025 / 26.699 / 7.943

Se
t1

4

Random 6.254 / 4.750 / 22.535 / 6.333 6.111 / 4.669 / 22.576 / 6.382 5.942 / 4.564 / 22.701 / 6.468 5.862 / 4.539 / 22.616 / 6.488 5.800 / 4.450 / 22.886 / 5.594

SIM 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383

SIM + Random 4.488 / 3.907 / 23.748 / 7.016 4.485 / 3.871 / 23.787 / 7.082 4.444 / 3.828 / 24.106 / 7.159 4.426 / 3.828 / 24.162 / 7.179 4.396 / 3.798 / 24.090 / 7.198

USIM-DAL 4.376 / 3.836 / 23.810 / 6.984 4.366 / 3.816 / 23.818 / 7.000 4.331 / 3.767 / 24.288 / 7.177 4.317 / 3.749 / 24.422 / 7.208 4.292 / 3.728 / 24.553 / 7.227

B
SD

10
0

Random 4.857 / 4.338 / 23.357 / 6.072 4.778 / 4.294 / 23.427 / 6.098 4.670 / 4.226 / 23.583 / 6.160 4.630 / 4.207 / 23.598 / 6.187 4.600 / 4.160 / 23.703 / 6.214

SIM 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713

SIM + Random 3.362 / 3.578 / 25.007 / 6.786 3.352 / 3.559 / 25.043 / 6.794 3.328 / 3.539 / 25.092 / 6.812 3.323 / 3.540 / 25.085 / 6.816 3.305 / 3.519 / 25.137 / 6.834

USIM-DAL 3.299 / 3.520 / 25.174 / 6.826 3.293 / 3.520 / 25.191 / 6.830 3.282 / 3.504 / 25.207 / 6.838 3.277 / 3.496 / 25.212 / 6.844 3.262 / 3.486 / 25.263 / 6.854

V
is

ua
lG

en
om

e

Random 4.442 / 3.946 / 23.935 / 6.853 4.346 / 3.892 / 24.033 / 6.889 4.231 / 3.818 / 24.200 / 6.954 4.182 / 3.797 / 24.216 / 6.983 4.120 / 3.718 / 24.353 / 7.032

SIM 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826

SIM + Random 4.038 / 3.721 / 24.396 / 7.036 4.026 / 3.690 / 24.423 / 7.056 3.993 / 3.663 / 24.496 / 7.088 3.977 / 3.661 / 24.515 / 7.101 3.943 / 3.631 / 24.563 / 7.126

USIM-DAL 3.966 / 3.668 / 24.543 / 7.056 3.949 / 3.657 / 24.570 / 7.069 3.925 / 3.623 / 24.624 / 7.109 3.908 / 3.608 / 24.656 / 7.126 3.880 / 3.593 / 24.721 / 7.143

Table 1: Evaluating different methods on natural image datasets ( Set5, Set14, BSD100, Visual Genome) using MSE, MAE,
PSNR, SSIM. Lower MSE/MAE is better. Higher PSNR/SSIM is better. “D”: Datasets. Best results are in bold.

training image dataset) using high-uncertainty samples from
the training set (as decided by the USIM-DAL) is better
than using the random samples from the training set (i.e.,
USIM-DAL better than SIM+Random).

We perform a similar set of experiments with other imag-
ing domains, namely, (i) Satellite imaging (using Pattern-
Net dataset) and (ii) Medical imaging (using Camelyon
histopathology dataset). We observe a similar (to natural
images) trend in these domains. Figure 5 shows the per-
formance (measured using PSNR) for different methods
on these two domains, with varying training budgets. For
satellite imaging, at the lowest training budget of 500 im-
ages, USIM-DAL with PSNR of 23.5 performs better than
SIM+Random with PSNR of 23.4 and SIM with a PSNR
of 23.2. We observe that as the training budget increases to
2000 images, USIM-DAL (with PSNR of 23.6) outperforms
SIM+Random (with PSNR of 23.35) with an even higher
margin. As we increase the training budget further, the
SIM+Random model starts performing similarly to USIM-
DAL. With a budget of 5000 samples, USIM-DAL has a

performance of 23.62, and SIM+Random has a performance
of 23.60. Given a domain with large (specific to datasets)
training budgets, the performance achieved from random
sampling and active learning strategies will converge.

Figure 6: Relative % boost in PSNR of USIM-DAL relative
to SIM+Random over SIM baseline (Equation 10) at optimal
budget for six datasets across three domains.



Figure 7: Qualitative results from different methods (performing 4× super-resolution) including (b) Random, (c) SIM,
(e) SIM+Random, (f) USIM-DAL on (i) BSD100, (ii) Visual Genome, (iii) PatternNet, and (iv) Camelyon datasets. (a) LR
input, and (d) HR groundtruth. Input resolution for BSD100, Visual Genome, and PatternNet is 64× 64, and for Camelyon
is 32× 32. (f) USIM-DAL produces the most visually appealing outputs.

For Camelyon dataset, we use the input image resolution
of 32×32. We observe that USIM-DAL performs the best
across all budgets when compared to SIM+Random and SIM.
We also note that high-frequency features that are typically
present in high-resolution scans (i.e., obtained at 20× or
40× magnification from the histopathology microscope)
make the super-resolution problem harder and require more
data to achieve good performance.

Figure 6 summarizes the performance gain (in terms of
PSNR) by using USIM-DAL (i.e., uncertainty-based ac-
tive learning strategy for dense regression) compared to
SIM+Random (i.e., no active learning, randomly choosing
a subset from real training domain), relative to SIM (i.e.,
no real samples used from the domain) at best performing
limited budgets. That is, the relative percentage boost in
performance is reported as:

(PSNRUSIM-DAL − PSNRSIM+Random) ∗ 100
PSNRSIM+Random − PSNRSIM

(10)

We note that USIM-DAL consistently performs better than
SIM+Random, with the relative percentage boost in PSNR

of 26.14% for Set5 to 142.69% for PatternNet. Figure 7
shows the qualitative outputs of different models on mul-
tiple datasets. On all the datasets, we notice that the out-
put obtained by USIM-DAL is better than the output of
SIM+Random that is better than SIM and Random.

5 DISCUSSION AND CONCLUSION

In this work, we presented a novel framework called USIM-
DAL that is designed to perform active learning for dense-
regression tasks, such as image super-resolution. Dense-
regression tasks, such as super-resolution, are an important
class of problem for which deep learning offers a wide range
of solutions applicable to medical imaging, security, and
remote sensing. However, most of these solutions often rely
on supervision signals derived from high-resolution images.
Due to the time-consuming acquisition of high-resolution
images or expensive sensors, hardware, and operational
costs involved, it is not always feasible to generate large
volumes of high-resolution imaging data. But in real-world
scenarios, a limited budget for acquiring high-resolution



data is often available. This calls for active learning that
chooses a subset from large unlabeled set to perform label-
ing to train the models. While multiple querying strategies
(in the context of active learning) exist for the classifica-
tion tasks, the same for dense regression tasks are seldom
discussed. Our work paves the way for using modern un-
certainty estimation techniques for active learning in dense
regression tasks. We show that a large synthetic dataset ac-
quired using statistical image models can be used to learn
informative priors for various domains, including natural
images, medical images, satellite images, and more. The
learned prior can then be used to choose the subset consist-
ing of high-uncertainty samples that can then be labeled
and used to fine-tune the prior further. Through extensive
experimentation, we show that our approach generalizes
well to a wide variety of domains, including medical and
satellite imaging. we show that active learning performed
by proposed querying strategy (i.e., USIM-DAL) leads to
gains of upto 140% / 53% with respect to a random selection
strategy (i.e., SIM+Random) relative to no dataset-specific
fine-tuning (i.e., SIM) on satellite/medical imaging.
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