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ABSTRACT

One important challenge in evaluating the robustness of vision models is to con-
trol individual nuisance factors independently. While some simple synthetic cor-
ruptions are commonly applied to existing models, they do not fully capture all
realistic distribution shifts of real-world images. Moreover, existing generative
robustness benchmarks only perform manipulations on individual nuisance shifts
in one step. We demonstrate the importance of gradual and continuous nuisance
shifts, as they allow evaluating the sensitivity and failure points of vision models.
In particular, we introduce CNS-Bench, a Continuous Nuisance Shift Benchmark
for image classifier robustness. CNS-Bench allows generating a wide range of
individual nuisance shifts in continuous severities by applying LoRA adapters
to diffusion models. After accounting for unrealistic generated images through
an improved filtering mechanism for such samples, we perform a comprehensive
large-scale study to evaluate the robustness of classifiers under various nuisance
shifts. Through carefully-designed comparisons and analyses, we find that model
rankings can change for varying shifts and shift scales, which is not captured
when averaging the performance over all severities. Additionally, evaluating the
model performance on a continuous scale allows the identification of model fail-
ure points, providing a more nuanced understanding of model robustness. Overall,
our work demonstrated the advantage of using generative models for benchmark-
ing robustness across diverse and continuous real-world nuisance shifts in a con-
trolled and scalable manner.

1 INTRODUCTION

Machine learning models are typically validated and tested on fixed datasets under the assumption of
independent and identically distributed samples. This, however, does not fully cover the true capa-
bilities and potential vulnerabilities of models when deployed in dynamic real-world environments.
The robustness in out-of-distribution (OOD) scenarios is important and decision-makers might need
to know how models perform under various distribution shifts and severity levels in safety-critical
scenarios. Therefore, it is crucial to continue building richer and more systematic benchmarks.

In the past few years, various benchmarks have been proposed to evaluate the robustness of computer
vision models. One line of benchmarks manually collects data with nuisance shifts (Zhao et al.,
2022; Hendrycks et al., 2021a; Wang et al., 2019; Geirhos et al., 2022; Barbu et al., 2019; Idrissi
et al., 2022; Hendrycks et al., 2021b; Recht et al., 2019). Yet, such approaches are not scalable and
often include only a small variety of nuisance shifts.

On the other hand, synthetic datasets offer opportunities to evaluate deep neural networks since
various instances of an object class with specified context and nuisance shifts can be generated.
While rendering pipelines allow precise control of several variables and are applied for bench-
marking (Bordes et al., 2024; Shu et al., 2020; Kar et al., 2022; Li et al., 2023c), some nuisance
shifts such as weather variations (e.g., snow) are very hard to perform using traditional pipelines.
While Hendrycks & Dietterich (2018) report accuracy drops for various types and levels of synthetic
corruptions, they lack relevant real-world nuisance shifts.

Recent developments in diffusion models have enabled the application of generative models for
training (He et al., 2022b; Fan et al., 2024) and benchmarking vision models (Mofayezi &
Medghalchi, 2023; Metzen et al., 2023; Vendrow et al., 2023; Zhang et al., 2024). However, all
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Figure 1: Benchmarking under continuous nuisance shifts. We evaluate the robustness of dif-
ferent models under gradually increasing nuisance shifts. This allows identifying the failure point
(highlighted in red) of a model.

previous approaches define categorical or binary nuisance shifts by considering the existence or ab-
sence of a shift, which contradicts their continuous realization in real-world scenarios. For example,
as shown in Fig. 1, the snow level in an environment can range from light snowfall to objects fully
covered with snow. While one model might fail at all snow levels, a different model might only fail
when the object is heavily occluded. In most real-world applications, it is important to know the
expected performance at specific nuisance shift levels, rather than just a global accuracy drop. For
instance, an autonomous driving company may need to determine the fog density at which system
performance falls below a critical threshold. Evaluating such failure points to probe the sensitivity
of models requires realizing continuous shifts.

To overcome this shortcoming, we establish a Continuous Nuisance Shift Benchmark for model
robustness, dubbed as CNS-Bench. Specifically, we apply LoRA (Hu et al., 2021) adapters to
diffusion models to perform a continuous variation of specified nuisance shifts, and use them to
benchmark a variety of classifiers along the following axes: (i) architecture, (ii) number of param-
eters, (iii) pre-training paradigm and data. In contrast to previous works conducting analysis on
binary or categorical shifts, our study advocates multiple scales of shifts. We caveat that model
rankings can change when considering several scales. It is also essential to consider failure points,
i.e., the shift severity at which a model fails. Thus, measuring robustness as a spectrum instead
of aggregating it into a single average metric allows a more comprehensive understanding of OOD
robustness (Drenkow et al., 2021; Hendrycks et al., 2021a). With our benchmark, we evaluate more
than 40 classifiers and demonstrate that a rigorously-designed generative benchmark allows system-
atically studying the robustness behaviors of vision models in a controlled and scalable manner.

One essential requirement when using synthetic images for benchmarking is to ensure that the con-
sidered images correspond to the class distribution. Manually checking the quality of images to
find those not aligned with the desired condition is still a common practice (Zhang et al., 2024).
However, it has difficulty in scaling up the analysis (Hastie et al., 2009; Angelopoulos et al., 2023).
Some approaches have been proposed for automatic filtering, but no standard datasets are available
to evaluate filtering strategies. With this in mind, we also provide a dataset with manually annotated
out-of-class (OOC) images. We show that our proposed filtering mechanism outperforms previous
strategies in removing such problematic samples.

In summary, our work makes the following contributions: 1) We propose CNS-Bench to benchmark
vision models under continuous nuisance shifts. We publish a dataset with 14 diverse and realistic
nuisance shifts that represent various style and weather variations at five severity levels. In addition,
we also provide trained LoRA sliders for all shifts that can be used to compute shift levels in a fully
continuous manner. 2) We collect an annotated dataset to benchmark OOC filtering strategies and
propose a novel filtering mechanism that achieves higher filter accuracies than previous methods.
3) We evaluate the robustness of more than 40 classifiers along different axes and reveal multiple
valuable findings, underlining the importance of considering continuous shift severities of real-world
nuisance shifts.
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2 RELATED WORK

Robustness. When referring to robustness, we consider the relative accuracy drop of a classifier
w.r.t. interventions that alter images from a base distribution, building upon the formalism introduced
in Drenkow et al. (2021). While the averaged accuracy drops provide an aggregated measure of
the robustness, we consider the robustness w.r.t. specific nuisance shifts that can be modeled as
causal interventions on the environment, the appearance, the object, or the renderer. We define such
continuous interventions on metric scale.

Benchmarking robustness. Early approaches for benchmarking the performance and gener-
alizability of models use fixed datasets, assuming independent and identically distributed sam-
ples (Deng, 2012; Deng et al., 2009; Lin et al., 2014). However, this lacks scalability and fails to
capture the performance in real-world applications facing OOD scenarios. To tackle this challenge, a
line of research involves manually collecting data with nuisance shifts (Zhao et al., 2022; Hendrycks
et al., 2021a; Wang et al., 2019; Geirhos et al., 2022; Barbu et al., 2019; Idrissi et al., 2022;
Hendrycks et al., 2021b; Recht et al., 2019). However, these methods are often time-consuming
and labor-intensive since they require data crawling and human annotations. Moreover, they usu-
ally capture only a subset of nuisance shifts that models may encounter in the real world and it is
challenging to ensure the disentanglement of these annotated nuisances.

Another line of research uses synthetic data for benchmarking, which offers the ability to generate
a large and diverse range of nuisance shifts with precise control (Hendrycks & Dietterich, 2018;
Bordes et al., 2024; Shu et al., 2020; Kar et al., 2022). However, these works are limited to nuisances
that can be easily modelled (e.g., lighting, fog, occlusions) or restricted to what can be expressed in
rendering pipelines. Recent developments in diffusion models shed light on creating realistic and
diverse synthetic benchmark datasets (Mofayezi & Medghalchi, 2023; Metzen et al., 2023; Vendrow
et al., 2023; Zhang et al., 2024) with realistic data and more possibilities to control nuisances (e.g.,
text-guided corruptions, counterfactual). In our work, we propose a framework to benchmark vision
models w.r.t. nuisance shifts under multiple severity levels. To address the need to remove OOC
images from generative models, which are essential for benchmarking applications, we additionally
propose a novel strategy to remove such samples from the dataset.

3 CONTINUOUS NUISANCE SHIFT BENCHMARK

In this section, we present how CNS-Bench is created. We first discuss the strategy to replicate
the in-domain distribution in Section 3.1. We then present our methodology to perform continuous
shifts to evaluate the model’s sensitivity to various nuisance factors in Section 3.2. Finally, we detail
our filtering dataset and the selected filtering strategy in Section 3.3.

3.1 REPLICATING THE IMAGENET DISTRIBUTION

We aim to evaluate a model’s robustness to specific nuisance shifts that alter the base ImageNet
(Deng et al., 2009) distribution p(XIN|c), conditioned on an ImageNet class c. However, as pointed
out by Vendrow et al. (2023), the distribution of Stable Diffusion (SD) (Rombach et al., 2022) gen-
erated images p(XSD|c) differs from the ImageNet distribution, significantly lowering classification
accuracies. To generate images that are more similar to the ImageNet images, we apply textual inver-
sion (Gal et al., 2023) to learn new “words” in the embeddings space of a text encoder that capture
the ImageNet-specific class concepts. Specifically, these text embeddings are optimized by mini-
mizing the noise prediction error of diffusion models ||ϵ− ϵψ(·, fψ(c)||2 with the text encoder fψ(·)
and parameters ψ for all diffusion time steps. We call this distribution IN*: p(X|c) = p(XIN*|c).

3.2 CONTINUOUS NUISANCE SHIFTS FOR BENCHMARKING

To evaluate the robustness of vision models w.r.t. continuous nuisance shifts, the following char-
acteristics are desirable: (i) The severity of the considered shift can be controlled, allowing the
estimation of the shift scale where a considered model fails. (ii) Realizing a nuisance shift should
not come along with variations that might alter the class identity. (iii) The variations should be
subtle, allowing a fine-grained analysis also for specific images.
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Figure 2: Qualitative examples for prompt-based and LoRA-based shifts with out-of-class sam-
ples. On the left, we present two images in a different a) style and b) weather condition generated
from a text prompt a) “fox in cartoon style” and b) “birdhouse in heavy snow”, respectively. On the
right, we show the gradual variation performed by our LoRA sliders. a) Unlike the prompt-based
shift, our LoRA sliders successfully generated images showing a gradual shift. b) Our LoRA sliders
sometimes result in out-of-class (OOC) samples for higher scales, as depicted with the orange box.

Realizing continuous nuisance shifts. A natural way to perform synthetic nuisance shifts
are methods based on text prompts (Metzen et al., 2023; Liu et al., 2023; Vendrow et al.,
2023). They follow the two prompt (2P) templates: “A picture of a <class>” and
“A picture of a <class> in <shift>”. However, this approach does not allow the
gradual increase of a nuisance for a given image. In addition, the generated shifts largely vary for
different seeds and classes when applying the prompt addition “in <shift>”—for some seeds,
the generated shift is more prominent, while for others, it is barely visible. Additionally, the seman-
tic structure of the generated image can be significantly changed.

We leverage LoRA (Hu et al., 2021) adapters that represent low-rank matrices added to the original
weight matrices to perform continuous shifts. Such adapters are trained to characterize the effect of
a considered nuisance shift. Gandikota et al. (2023) propose a strategy to learn concept sliders using
LoRA adapters that allow a continuous modulation of the considered concept, which is achieved by
learning low-rank matrices that increase the expression of a specific attribute when applied to a class
concept c. The low-rank parameters θLoRA modify the original model parameters θ to θ∗ = θ + s ·
θLoRA with scale s are trained to capture a concept of interest c+: Pθ∗(X|c)← Pθ(X|c)·Pθ(X|c+)η ,
where η refers to weighting factor that is fixed during training. Following Gandikota et al. (2023), we
optimize with the MSE objective (Sohl-Dickstein et al., 2015) using the Tweedie’s formula (Efron,
2011) and the reparametrization trick (Ho et al., 2020) by formulating the scores as a denoising
prediction ϵ(X, c, t) with the diffusion timestep t: MSE(ϵθ∗(X, c, t); ϵθ(X, c, t) + ϵθ(X, c+, t)).
We model the class concept c and the nuisance concept c+ by two text embeddings “<class>”
and “<class> in <shift>”. Different to (Gandikota et al., 2023), we specifically use class
concepts c that are acquired from the IN* distribution. After training, the learned LoRA adapters
capture the direction between the two language concepts, i.e., they characterize attributes of the
concept of interest c+. Weighting their effect using the scale s modulates the effect of the applied
shift. Gandikota et al. (2023) stated that the LoRA adapters generalize to other concepts and images.
We found that learning class-specific LoRA sliders produces higher-quality shifts. This choice also
allows capturing the class-specific characteristics and confounders of the considered shifts that occur
in the real world. Hence, we train separate LoRA adapters for each ImageNet class and shift. As
qualitatively shown in Fig. 2, applying these learned directions enables gradual nuisance shifts. We
show examples of more shifts in Fig. 33 and Fig. 34.

Following Mokady et al. (2023); Gandikota et al. (2023), we evaluate the shift severity
based on the CLIP similarity of the generated image to the text prompt describing the
shift, i.e., “A picture in <shift>”. Similarly, we also compute the CLIP (Radford
et al., 2021) similarity to the class prompt “A picture of a <class>”. To mea-
sure the performed shift, we compute the CLIP shift difference by ∆CLIPshift (Ik, I0) =
cos (CLIPimg (Ik) ,CLIPtext (“in {shift}”)) − cos (CLIPimg (I0) ,CLIPtext (“in {shift}”)) for the
generated image with scale 0 and scale k, and similarly for the class similarity.
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Figure 3: Average ∆ CLIP evalu-
ation for the snow shift. Our slid-
ers perform a gradual shift, while a
naive application (2P) only allows
binary shifts.

In contrast to simply applying a second text prompt (2P) to
perform a binary shift, our LoRA adapters allow performing a
variety of shift scales, as measured by the CLIP shift difference
(Section 3.2). This allows gradual shifts (Fig. 2).

Activating the LoRA adapter at different time steps throughout
the diffusion process will modulate the effect of the adapter
on the generation process (Meng et al., 2021). If the LoRA
adapter is active for all noise steps, it will significantly in-
fluence the semantic structure and the appearance of the gen-
erated image, while deactivating the adapter for earlier time
steps will keep the semantic structure. Since we aim to per-
form more fine-grained edits that do not heavily change the
semantic structure, we deactivate the LoRA adapter for early
steps. This allows applying edits where the semantic structure
remains similar but the appearance changes (e.g. Fig. 2a).

Since our sliders do not explicitly exclude confounding variables, the applied shifts may also affect
confounders inherently present due to biases in the training data. For example, as shown in Fig. 34c,
using the in dust slider unintentionally removes half of the people, and in Fig. 33c, the background
no longer represents a forest. Consequently, failures in our subsequent analysis cannot always be
solely attributed to the nuisance concept itself.

Failure point concept. We define a failure point s = min{S ∈ R|f(X(S)) ̸= c} as the smallest
shift scale where a classifier f(X(s)) fails to correctly classify an image X(s) with a class c and a
scale s of a considered shift. The failure point distribution captures the ratio of failed samples for
the considered scales. We estimate this distribution in our work with a histogram, where the number
of elements in one bin Ik is computed by H(Ik) =

∑N
n=1 1Ik(sn) with the indicator function 1(·)

and the scale of the n-th element of the set of images with N images. We compute and report the
ratio of failure points for each scale s, dividing H(Ik) by the number of considered images N .

3.3 FILTERING DATASET AND STRATEGY

To evaluate filtering strategies for removing out-of-class (OOC) samples, we collect a manually
labeled dataset. This section presents this dataset and the selected filtering strategy.

Filtering of OOC samples. Current diffusion models allow the generation of diverse and realistic
images x ∼ p(X|z) that are conditioned on z = [c, si], which involves the considered ImageNet
class c ∈ N | 1 ≤ c ≤ 1000 and the variable si ∈ R corresponding to the severity of a considered
nuisance shift i. However, due to their probabilistic formulation, the generated sample might deviate
from the condition z. For benchmarking applications, we are particularly concerned about gener-
ated samples deviating from the original class c, i.e., the considered class cannot be characterized
anymore (c.f., Fig. 2). We call such samples “OOC” samples (Metzen et al., 2023). Evaluating the
sensitivity to specific nuisance shifts requires removing the OOC samples generated by the shift’s
application. Therefore, we collect a dataset of generated images to evaluate the sliding process and
strategies to automatically remove OOC samples.

Dataset for evaluating OOC filtering strategies. To evaluate various OOC filtering strategies, we
manually label a dataset consisting of 18k generated images with two shifts, five scales, and 100
random ImageNet classes. We select snow as one weather variation and cartoon as one style shift to
represent two rather different nuisance shifts. Before manually labeling the dataset, we remove easy
samples that have a high CLIP text alignment and are classified correctly by multiple classifiers.
Then, all hard images are labeled by two human annotators, where each annotator can choose from
the following labels: “class”, “partial class properties”, and “not class”. More details on the labeling
strategy and the dataset statistics are provided in Appendix A.6.

OOC filtering strategy. A filter serves its purpose if it removes all OOC samples, corresponding to a
high true positive rate (TPR), while not removing too many in-class samples, corresponding to a low
false positive rate (FPR). Instead of simply applying a CLIP threshold as in Vendrow et al. (2023),
we consider a combinatorial selection approach, which requires two out of four filters to be active.
For the first and the second filter, we consider text alignment to “A picture of a <class>”

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
scale

0.0

0.1

0.2

0.3

ac
cu

ra
cy

 d
ro

p
Ours:
OOD:

fog
fog

rain
rain

snow
snow

0.5 1.0 1.5 2.0 2.5 3.0
scale

0.1

0.2

0.3

FP
 r

at
io

s

fog
rain
snow

Figure 4: Accuracy drops and failure point ratios of a ResNet-50 classifier on OOD-CV and our
benchmark. Left: Accuracy drops on OOD-CV and various scales of our benchmark (in the value
range [0,1]). Horizontal lines show the average score for each weather nuisance of the OOD-CV test
dataset, while our benchmark allows identfying the performance drop at various shift scales. Right:
Distribution of failure points. Our continuous nuisance shifts allow identifying the scales that result
in a failure and models fail earlier for fog, potentially due to heavier occlusions than snow and rain.

and “A picture of a <class> in <shift>”, respectively, computed via CLIP. For the
third and fourth filter, we measure the cosine similarity to the starting images using the CLIP image
encoder and the class tokens of DINOv2 (Oquab et al., 2023), respectively. We select the filtering
threshold for each filter such that 90% of the labeled OOC samples are removed. Note that none of
these filters are trained on ImageNet data.

4 EXPERIMENTS

In this section, we discuss our benchmark results. First, we compare our bechmarking strategy
with the OOD-CV benchmark. Then, we perform a large-scale analysis by evaluating more than 40
ImageNet classifiers on CNS-Bench.

4.1 COMPARING CONTINUOUS SHIFTS WITH OOD-CV DATASET

Zhao et al. (2022; 2024) introduce OOD-CV to measure out-of-distribution (OOD) robustness, a
benchmark dataset that includes OOD examples of ten object categories for five different individual
nuisance factors (e.g., weather) on real data. OOD-CV is the only real-world dataset that provides
accurate labels of various individual weather shifts. This allows comparing our generated images
with real-world weather realizations of the considered shifts. We use our trained LoRA adapters
to create a benchmark for the OOD-CV classes and scales up to 3.0 to directly compare with the
original manually labeled dataset. We refer to the supplementary for exemplary images of both
benchmarks and CLIP alignments to the considered shifts.

First, we train a ResNet-50 classifier on the training set of the OOD-CV benchmark. Then, we
evaluate the performance on our data and the OOD-CV benchmark. Fig. 4 presents the results for
each nuisance independently. The accuracies remain more or less constant with an accuracy around
95% up to a nuisance scale of 1.5. From a nuisance scale of 2.0, the accuracy starts dropping, with
the nuisance of fog having the biggest impact. This could be explained by the fact that fog can lead to
severe occlusion, while rain and snow can be considered as corruption factors. We hypothesize that
the partially bigger drop for the OOD-CV benchmark is due to a major limitation of its dataset: The
nuisances are not completely disentangled, and part of the accuracy drop originates from various
other factors (e.g., image quality, image size, and noise). In contrast, our benchmark allows for
fine-grained control of nuisances with multiple shift levels, leading to a more complete and scalable
analysis of the model’s performance.

4.2 EVALUATED MODELS AND EXPERIMENTAL SETUP

We use our large-scale benchmark to evaluate the models along the following axes:
(i) Architecture. To compare architectures with a comparable number of parameters, we consider
both CNN and ViT architectures with different training recipes: ResNet-152 (He et al., 2016), ViT-
B/16 (Dosovitskiy et al., 2020), DeiT-B/16 (Touvron et al., 2021), DeiT-3-B/16 (Touvron et al.,
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Figure 5: Classification accuracy drops on the labeled and filtered datasets. The accuracy drop
curves of ResNet-50 and DINOv2 classifiers on the filtered and the labeled dataset are comparable,
demonstrating the effectiveness of our automatic filtering strategy. The ratio of misclassified images
is given in the value range [0,1]. We provide results for more classifiers in Fig. 8.

2022), and ConvNeXt-B (Liu et al., 2022). All models are trained in a supervised manner.
(ii) Model size. For ViT, we consider the small, medium, base, large, and huge variants of DeiT-3.
For CNN, we consider the ResNet variants: 18, 34, 50, 101, and 152.
(iii) Pre-training paradigm and data. We evaluate a set of models with the same backbone but dif-
ferent pre-training strategies. The following models are pre-trained on IN1k with a self-supervised
objective: MAE (He et al., 2022a), DINOv1 (Caron et al., 2021), and MoCov3 (Chen et al., 2021).
To study the impact of more data during training, we compare their performance to a supervised
model that is trained only on ImageNet-1k and a supervised model that is pre-trained on ImageNet-
21k. All Transformer-based models use ViT-B/16 as the backbone. Furthermore, we evaluate an
ImageNet-trained diffusion classifier (Li et al., 2023b) on a smaller subset due to its heavy compu-
tational cost.

Metrics. We typically report the average accuracy drops, i.e., the ratio of failed images, averaged
over the images of one shift or all shifts in the value range [0, 1]. In Table 1, we report the mean rela-
tive corruption error (rCE) as introduced by Hendrycks & Dietterich (2018). It is defined by the av-
erage over all relative corruption errors CEshift =

(∑
sE

f
shift,s − E

f
shift,0

)
/
(∑

sE
alex
shift,s − Ealex

shift,0

)
with the average error E for scale s, model f , and a specific shift.

Slider details. As pointed out in Section 3.1, we use textual inversions to replicate the ImageNet
distribution. To evaluate the relevance of this approach, we generate 200 images of 100 randomly
selected ImageNet classes using standard SD2.0 and SD2.0 with the textual inversions of IN*. To
illustrate the distribution gap, we compute the accuracies for ResNet-50 (DeiT). They achieve an
accuracy of 68.2% (71.6%) for the SD distribution and 74.1% (79.1%) for the IN* distribution,
which equals accuracy drops of 6% (8%) for both classifiers. This is significantly closer to the
performance on the original ImageNet distribution. We perform all the following experiments using
the IN* distribution. We use SD2.0 and we activate the LoRA adapters with the selected scale for
the last 75% of the noise steps.

Due to the computational complexity, we perform sliding for 100 classes. To get an estimate of
the robustness on the full scale of ImageNet, we classify based on 1000 classes using off-the-shelf
classifiers without applying classifier masking, as done by Hendrycks et al. (2021a). We ablate how
the number of classes influences the robustness evaluations in Appendix A.5.2.

The selection of the shifts is mainly inspired by ImageNet-R Hendrycks et al. (2021a) (8 shifts)
and the OOD-CV dataset Zhao et al. (2022) (6 shifts) to consider a diverse set of nuisance shifts
that modulate the appearance and style or the background and occlusion. Specifically, we consider
the following 14 shifts: cartoon style, plush toy style, pencil sketch style, painting style, design of
sculpture, graffiti style, video game renditions style, style of a tattoo, heavy snow, heavy rain, heavy
fog, heavy smog, heavy dust, and heavy sandstorm.

Filtering details. Our OOC filtering mechanism reaches a TPR of 87.9% and an FPR of 12.0% with
an accuracy of 88.0%, while the naive CLIP-based thresholding reaches a TPR of 89.9% and an FPR
of 35.7% with an accuracy of 65.1%. We plot the classification accuracy of DINOv2-R and ResNet-
50 for the labeled and the filtered versions in Fig. 5. We observe comparable accuracy drops on
both the manually-labeled and the filtered datasets. To further support the realism of our generated
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Table 1: rCE along the model axes. We choose the average relative corruption error Hendrycks
& Dietterich (2018) as a single metric to measure the performance of a model on our benchmark
(lower is better). We provide results for all models in Table 2.

Architecture Size Pre-Training

ConvNext 0.686 DeiT3-S 0.747 DINOv1-IN1k 0.636
DeiT3 0.610 DeiT3-M 0.758 MAE-IN1k 0.732
DeiT 0.746 DeiT3-B 0.610 MoCov3-IN1k 0.669
RN152 0.790 DeiT3-L 0.574 SUP-IN1k 0.926
ViT 0.926 DeiT3-H 0.583 SUP-IN21k-1k 0.722
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(a) Accuracy drops averaged over the whole benchmark. Architecture (left): We show models with the same
training data and similar parameter counts. The selection of the architecture influences the accuracy drop.
Model size (center): We show DeiT3 with various numbers of parameters. Increasing the model capacity results
in lower accuracy drops. Pre-training paradigm and data (right): We show different pre-training paradigms:
supervised, self-supervised (MAE, DINO, MoCo), and more data (IN21k), all using ViT-B/16. We present
results for all shifts in Fig. 9.
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(b) Accuracy drops for three selected shifts. Models exhibit varying performance changes depending on the
considered shifts. For snow and painting shifts, the ranking of the models changes. In contrast, the cartoon
style shift results in a consistent model ranking. However, the OOD performance on cartoon-shifted images is
drastically worse than the other shifts.
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(c) Ratio of failure points per scale for various models and shifts. The distribution allows inferring at which
scales various models fail most often. Different models fail at varying stages depending on the considered
shifts. While the number of failure points gradually increases for the snow shift, most failure points occur
around scale 1.5 for the cartoon style shift. We present results for all shifts in Fig. 10.

Figure 6: Evaluation of accuracy drops and failure points. We plot the averaged accuracy drops
and failure points of selected models and provide the results of all evaluated models in Appendix A.2.

images, we fine-tune ResNet-50 with our data and show more than 10% gains on ImageNet-R (see
Appendix A.3).
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Figure 7: Relation between ID and OOD accuracy. We report the slope of the linear fit between
ID and OOD accuracy using 16 supervised ImageNet-trained models for all evaluated shifts. The
relation varies for different shifts and scales between 0.5 and 2.5.

4.3 ANALYSIS AND FINDINGS

In this subsection, we discuss the main findings on our benchmark. Following Hendrycks et al.
(2021a), we report the accuracy drops for 5 scales averaged over 14 diverse shifts as a measure
of robustness in Fig. 6a. Table 1 compares models using the average relative corruption errors as
proposed by Hendrycks & Dietterich (2018). We also provide results for three exemplary shifts
in Fig. 6b. In addition, we report the distribution of failure points in Fig. 6c. We provide more
evaluations in Appendix A.2.

Considering multiple scales of a shift allows a more nuanced analysis of OOD robustness. We
present the accuracy drops for multiple scales and classifiers along the architecture axis in Fig. 6b.
The results indicate that the model rankings measured by the accuracy drop change for different
scales and shifts. For example, while the rankings remain consistent for the cartoon style (right) for
all scales, the model rankings change significantly for the painting style shift: Here, ViT outperforms
the other models on a lower scale but performs worse on large shift scales. Varying rankings also
occur for other shifts (see Fig. 9 in the supplementary). To validate the observation of changed model
rankings, we also evaluate multiple corruption levels of an examplary ImageNet-C corruption and
show the results in Fig. 23 in the supplementary. We conclude from this observation that the average
accuracy drop and the accuracy drops at specific nuisance scales do not always indicate the same
model behavior, which provides experimental evidence for the need for a multi-scale robustness
benchmarking dataset and adequate metrics.

Model failure points differ across different types of shifts. A failure point captures at which
scale a model fails for the first time. Comparing the failure point distribution of various models
largely differs for different shift types, as shown in Fig. 6c. We provide more results in Fig. 10 in
the supplementary. Weather shifts, such as snow, typically correspond to slight appearance changes
and mainly add a disturbance factor or occlusions to the image. Therefore, the failure rate increases
gradually compared to some style shifts, for which models tend to fail more abruptly at a specific
scale, as, e.g., for the cartoon style at scale s = 1.5. An exemplary explanation for the abrupt shift
for the cartoon shift might be the wrong classification of a class as the ImageNet class comic book.

The relation between ID and OOD accuracy depends on the considered nuisance factor and
its scale. Miller et al. (2021) formalize the positive correlation between ID and OOD accuracy—
classifiers tend to have a better OOD accuracy if they perform better on the training data (“Accuracy-
on-the-line” phenomenon). To analyze the linear relation between ID and OOD accuracy for our
benchmark, we compute the slope of the linear fit between ID and OOD accuracies of 16 ImageNet-
trained models. Miller et al. (2021) have already shown that the slope varies for different datasets. In
Fig. 7, we further observe that not only the considered shift but also its severity influence the slope
of the linear fit. Refer to Appendix A.2.3 for the test statistics. We believe using our benchmark to
investigate this relation more extensively is an interesting direction for future work.

Transformers with modern training recipes outperform modern CNNs across all shift sever-
ities. We present the average accuracy drops of various models with the same training data and a
comparable number of parameters in Fig. 6a (left). DeiT3 consistently achieves the highest robust-
ness on our benchmark, increasing the gap towards DeiT and ViT for stronger shifts. Interestingly,
ResNet-152 is more robust than the standard ViT variant, but ConvNeXt outperforms the ResNet-
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152 architecture. A modern CNN (ConvNext) outperforms vision transformers (ViT,DeiT) of the
same size but it is less robust than a transformer with modern training recipes (DeiT3), despite
having a higher ID accuracy. This observation is in line with the performance on ImageNet-R. How-
ever, our benchmark shows that the gap between ConvNext and DeiT3 does not increase for stronger
shifts. We can observe that this behavior is not consistent for all shifts. Consider, e.g., the failure
point distribution in Fig. 6c (Painting Style), where DeiT3 has a gradually increasing failure point
rate, while ConvNext depicts a sharp increase for scale s = 1.5.

Self-supervised pre-training improves the OOD robustness. To study the impact of the pre-
training paradigm, we compare different learning objectives with the same ViT-B backbone and the
same training data in Fig. 6a (right). We consider both the supervised and self-supervised (MAE,
DINOv1, and MoCov3) paradigms. Using a self-supervised objective for pre-training followed
by a fine-tuning protocol results in a better robustness for the same training data and model size.
Considering the rCE metric in Table 1, the fine-tuned DINOv1 model achieves the best performance.

Diffusion classifiers are less robust than discriminative models. In addition, we also compare the
robustness of an ImageNet-trained diffusion classifier (Li et al., 2023b) on our benchmark. Due to
the heavy computational cost, we evaluate the accuracy drop of the DiT-based diffusion classifier for
1k images on a subset of our dataset (around 12k images) for the snow and the cartoon style shift.
We apply the L1 loss computation strategy as proposed by Li et al. (2023b) since it results in the best
performance. We compute the average accuracy drops as 0.106 / 0.07 / 0.05 for DiT / supervised
ViT / MAE. Comparing on the smaller dataset with discriminative models, the diffusion classifier
demonstrates a lower robustness on the evaluated shifts than the compared discriminative models
despite having substantially more parameters. The gap is increasing for larger severity levels.

More training data improves the robustness. In Fig. 6a (right), we observe that more training data
benefits OOD robustness for all scales. For example, compared with the supervised model trained
on IN1k, pre-training on IN21k positively impacts the OOD robustness for all scales. This might be
explained by the fact that the tested distribution is less OOD for the model (Miller et al., 2021).

In summary, we show that benchmarking with generative continuous shifts allows systematically
studying the model robustness via easily scalable synthetic data. Our study underscores that con-
sidering multiple-scale nuisance shifts provides a more nuanced view of the model robustness, as
the performance drops can vary across different nuisance shifts and scales. Besides, the relation
between ID and OOD accuracy not only depends on the considered nuisance factor but also on its
severity. Therefore, instead of aggregating the robustness evaluation into a single metric, we mo-
tivate the community to report the accuracy with different shift scales and the failure points for a
more comprehensive understanding of model robustness.

5 CONCLUSION

The key advantage of using generative models for benchmarking is the ability to perform diverse
nuisance shifts in a controlled and scalable way. This work filled a gap in generative benchmarking
by introducing CNS-Bench, an evaluation method that performs diverse, realistic, fine-grained, and
continuous nuisance shifts at multiple scales. We further added a new dimension for benchmarking
robustness by introducing the concept of failure points. Our systematic evaluation of classifiers
revealed new insights along three axes (architecture, number of parameters, pre-training paradigm
and data) and demonstrated the importance of continuous shifts in assessing the model robustness.
Furthermore, we studied the necessity of removing out-of-class samples when benchmarking with
diffusion-generated images. Limitations and Future Work. While our approach allows for diverse
continuous nuisance shifts, it does not eliminate all confounders, meaning failures cannot always
be solely attributed to the targeted nuisance concept. This highlights an inherent challenge for
generative benchmarking approaches, and future advances in generative models could help mitigate
these confounding factors. Additionally, while we have carefully addressed this issue in our work,
we acknowledge that using generated images can lead to biases arising from the real vs. synthetic
distribution shift.

We hope this benchmark can encourage the community to continue working on more high-quality
generative benchmarks and to adopt generated images as an additional source for systematically
evaluating the robustness of vision models.
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6 REPRODUCIBILITY STATEMENT

All steps of our benchmarking pipeline are reproducible: We provide our datasets and implemen-
tation as part of the supplementary material, which includes code to reproduce training of LoRA
adapters, generation of images, filtering, and evaluation of all classifiers. We also include all evalu-
ated classification results for all images of the dataset in the shared code. All classifiers are evaluated
in a standardized way using the easyrobust (Mao et al., 2022) framework.

The supplementary material contains more details about the implementation, the computation of
metrics, the labeling, and the filtering strategies.

We also refer to our datasheet in Appendix B.
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A APPENDIX

This appendix provides supplementary information that is not elaborated in our main paper: We will
discuss more details about the benchmarking dataset, the filtering, and image generation strategy.
Additionally, we will provide more results. We refer to GoogleDrive 1 folder for the benchmarking
dataset, the filtering dataset, and the code to reproduce training, generation, filtering, and bench-
marking.

A.1 BENCHMARK DETAILS

This section provides more details about the benchmarking dataset. We first discuss the presented
metrics. We then provide examples of the dataset and its distribution.

A.1.1 ACCESS TO BENCHMARKING DATASET

The dataset contains 192, 168 images in total, with 32, 028 images per scale. We share all images on
Google Drive in the folder CNS dataset. Additionally, we add the anonymized metadata, including
the annotations, as a JSON file. We will publish the data on our own servers upon submission.
Currently, data is accessible via Google Drive and can be downloaded by running the following
commands:

# Install gdown package
pip install gdown

# Download image files from Google Drive (22GB)
gdown https://drive.google.com/uc?id=1GYQb1dHu26mcklnMHtiySjZpigu-CmqN
# Download annotations from Google Drive
gdown https://drive.google.com/uc?id=1q4aS6oCdZx3jry6y92i3ZgoyNmHXZeN9

# Unzip the downloaded file
unzip benchmark.zip

A.1.2 LIST OF SHIFTS AND EXAMPLE IMAGES

The results are averaged over the following 14 shifts: cartoon style, plush toy style, pencil
sketch style, painting style, design of sculpture, graffiti style, video game renditions style, style
of a tattoo, heavy snow, heavy rain, heavy fog, heavy smog, heavy dust, and heavy sand-
storm (see examples in Fig. 33 and Fig. 34). We train the sliders using the prompt template
“A picture of a {class} in {shift}”.

A.2 MORE RESULTS

A.2.1 LABELED DATASET

Fig. 8 presents more classifier results on the labeled dataset.

A.2.2 LARGE BENCHMARK

We provide a table of accuracies and accuracy drops for all evaluated models and scales and the
average accuracy and accuracy drop in Table 3. As discussed in the main paper, we also provide
the accuracy drops for the ResNet family in Fig. 12. Similar to the observations in Table 3, larger
models result in a lower accuracy drop in average. Fig. 9 provides a more nuanced view on the
model performances accross various architectures on all shifts. We provide functionality to load the
classification results for all images of the dataset in the shared code. All results are computed in a
standardized way using the easyrobust (Mao et al., 2022) framework.

The accuracies for the diffusion classifier are depicted in Fig. 21. Similar to the discussion in the
paper, the results showcase that the generative classifier is less robust than a supervised classifier.

1https://drive.google.com/drive/folders/1twcuMLBSvy_lIRYhssiwivBv9eKsA_
ul?usp=sharing
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Figure 8: Classification accuracy on the labeled dataset for snow and cartoon shifts. The ac-
curacy drops on the labeled dataset showcase that various classifiers have varying sensitivities on
different shifts.
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Figure 9: Accuracy drops of various architectures for all shifts. We present the accuracy drops
for all shifts in our benchmark. The performance gaps vary for different shifts and scales.

We use the DiT-based diffusion classifier trained on ImageNet-1k using the available framework (Li
et al., 2023a) and the default hyper-parameters with a resolution of 256. Due to high computational
costs, we compute the results for 100 classes, four scales, for the snow and cartoon style shift, and
for at most 20 seeds per class, scale, and shift.

A.2.3 STATISTICS OF ACCURACY-ON-THE-LINE COMPUTATION

Fig. 17 provides the p-values of the linear regression corresponding to the presented results in Fig. 7.

A.3 FINE-TUNING WITH SYNTHETIC DATA

We fine-tune a ResNet-50 classifier using our synthetic data. We compare the original ImageNet-
trained model to a model fine-tuned using 50% synthetic data and 50% ImageNet training data. As
shown in Table 5, the fine-tuned model leads to improved performance on the shifted real-world
dataset, without a significant decline on the original ImageNet dataset.
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Figure 10: Failure point distributions for all shifts. We present the failure point distributions for
all shifts in our benchmark. The failure point distributions vary for different shifts, quantifying the
different ways the shifts influence model performance.

A.4 ACCURACY DROPS ON IMAGENET-C

To provide more evidence that the model rankings change for different scales, we consider 7 levels
of contrast as a deterministic example corruption from ImageNet-C, based on the implementation of
Hendrycks & Dietterich (2018). We present the accuracy drops for all corruption levels in Fig. 23.
A global averaged metric fails to capture such variations.

A.5 IMPLEMENTATION DETAILS

In this section, we provide more implementation details about the dataset generation process.

A.5.1 IMPLEMENTATION DETAILS FOR IMAGE GENERATION

We use the standard diffusers (von Platen et al., 2022) pipeline for Stable Diffusion 2.0, the DDIM
(Song et al., 2021) sampler with 100 steps and a guidance scale of 7.5, seeds ranging from 1 to 50.

A.5.2 ABLATION OF IMAGE GENERATION

We ablate how the number of classes influences the robustness evaluations in Fig. 25. For a more
efficient computation, we use the UniPCMultistepScheduler sampler with 20 steps (Zhao
et al., 2023). In addition to 100 sliders for 14 shifts, we also publish the sliders for all 1000 ImageNet
classes for the shifts snow and cartoon.
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Figure 11: Failure point distributions for all shifts. We present the failure point distributions for
all shifts in our benchmark along the model size axis of DeiT3. The failure point distributions vary
for different shifts.
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Figure 12: Robustness evaluation for ResNet model family. We compute the accuracy drops for
all scales when varying the model size for a set of ResNet models. Larger models result in a better
OOD robustness.

A.5.3 TEXT-BASED CONTINUOUS SHIFT

A naive approach for realizing continuous shifts involves computing the difference between two cor-
responding CLIP embeddings. We explored this strategy following the implementation of Baumann
et al. (2024), but we did not achieve robust nuisance shifts for the variety of classes we considered
and we present some examples in Fig. 26. We achieve reasonable results for some classes (e.g.,
upper row). However, we observe the following issues arising from this strategy: (1) The semantic
structures clearly change, which involves other factors of variation. This does not allow the compu-
tation of a failure point along one sliding trajectory. (2) depicted in middle row: For some classes,
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Figure 13: Accuracy drops with confidence intervals. The accuracy drops are depicted for the
three evaluation axes averaged over all shifts including the confidence interval of the accuracy com-
putation.
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Figure 14: Accuracy drops with confidence intervals. The accuracy drops are depicted for the
three shifts along the model axes including the one-sigma confidence interval of the accuracy com-
putation. The results show that some ranking changes are statistically stable.
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Figure 15: Delta CLIP score with confidence. The ∆ CLIP score is plotted for various scales and
averaged over all shifts including the standard deviation. The deviations are high. However, the can
be attributed to the fact the range of the shift alignments varies for different shift types.
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Figure 16: Example of an incorrect CLIP alignment measure. The CLIP alignment is applied as
a measure to quantify the strength of the applied nuisance shift. However, this metric is not always
correctly capturing the shift. Images with increasing slider scales and painting shift are represented.
However, the alignment to the prompt “a picture in painting style” drops, as the ∆ CLIP difference
to the first image depicted as the image titles demonstrates.
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Table 2: mCE and mean rCE. We present the mean corruption error and the mean relative corrup-
tion error for all evaluated models.

Model CE rCE

alexnet 1.000 1.000
clip resnet101 0.532 0.563
clip resnet50 0.715 0.587
clip vit base patch16 224 0.420 0.230
clip vit base patch32 224 0.487 0.591
clip vit large patch14 224 0.445 0.228
clip vit large patch14 336 0.419 0.274
convnext base.fb in1k 0.359 0.686
convnext large.fb in1k 0.354 0.672
convnext small.fb in1k 0.353 0.609
convnext tiny.fb in1k 0.393 0.809
convnextv2 base.fcmae ft in1k 0.322 0.680
convnextv2 huge.fcmae ft in1k 0.283 0.553
convnextv2 large.fcmae ft in1k 0.297 0.568
deit3 base patch16 224.fb in1k 0.396 0.610
deit3 huge patch14 224.fb in1k 0.353 0.583
deit3 large patch16 224.fb in1k 0.382 0.574
deit3 medium patch16 224.fb in1k 0.387 0.758
deit3 small patch16 224.fb in1k 0.400 0.747
deit base patch16 224.fb in1k 0.437 0.746
dino vit base patch16 0.504 0.851
dinov1 vit base patch16 0.381 0.636
dinov2 vit base patch14 0.350 0.524
dinov2 vit base patch14 reg 0.311 0.456
dinov2 vit giant patch14 0.321 0.431
dinov2 vit giant patch14 reg 0.311 0.426
dinov2 vit large patch14 0.298 0.349
dinov2 vit large patch14 reg 0.296 0.370
dinov2 vit small patch14 0.351 0.639
dinov2 vit small patch14 reg 0.330 0.627
mae vit base patch16 0.386 0.732
mae vit huge patch14 0.303 0.542
mae vit large patch16 0.328 0.571
mocov3 vit base patch16 0.379 0.669
resnet101.a1 in1k 0.491 0.842
resnet152.a1 in1k 0.498 0.790
resnet18.a1 in1k 0.493 0.954
resnet34.a1 in1k 0.440 0.843
resnet50.a1 in1k 0.485 0.945
vit base patch16 224.augreg in1k 0.569 0.926
vit base patch16 224.augreg in21k ft in1k 0.460 0.722
vit base patch16 clip 224.openai ft in1k 0.282 0.482
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Figure 17: p-values of the linear regressions corresponding to the plot in Fig. 7: The p-value is
smaller than 0.05 for most scales and shifts, providing evidence for the statistical significance of our
statements.

the naive approach is very unstable, resulting in OOD samples that do not represent realistic images.
We did not reach significantly better results when applying a delayed sampling technique for the
delta embedding. (3) depicted in the bottom row: Applying the delta in text-embedding space does
not always result in a consistent increase of the considered shift.

A.5.4 EVALUATION OF THE APPLIED SLIDER SHIFT

We evaluate whether our sliders always increase the shift, as measured by the ∆ CLIP score. For
this purpose, we compute the ∆ CLIP score scores when increasing the slider scale by 0.5. Here,
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Table 3: Accuracy evaluations. We present the accuracies and accuracy drops of all evaluated
classifiers.

Shift Scale
Accuracy Accuracy Drop

model 0 0.5 1 1.5 2 2.5 avg 1 1.5 2 2.5 avg
clip resnet50 0.81 0.81 0.8 0.78 0.74 0.67 0.77 0.01 0.03 0.07 0.14 0.04
clip resnet101 0.86 0.86 0.85 0.83 0.81 0.74 0.82 0.01 0.03 0.06 0.12 0.04
clip vit base patch16 224 0.87 0.88 0.88 0.87 0.86 0.81 0.86 -0.00 0.01 0.02 0.06 0.02
clip vit base patch32 224 0.87 0.87 0.86 0.85 0.83 0.77 0.84 0.01 0.02 0.04 0.1 0.03
clip vit large patch14 224 0.87 0.87 0.87 0.86 0.85 0.82 0.86 -0.00 0.01 0.02 0.05 0.01
clip vit large patch14 336 0.88 0.88 0.88 0.87 0.86 0.83 0.87 0.00 0.01 0.02 0.05 0.01
convnext tiny.fb in1k 0.92 0.92 0.91 0.88 0.84 0.77 0.87 0.01 0.04 0.08 0.15 0.05
convnext small.fb in1k 0.92 0.93 0.92 0.89 0.86 0.8 0.89 0.01 0.03 0.07 0.13 0.04
convnext base.fb in1k 0.93 0.93 0.92 0.89 0.85 0.79 0.89 0.01 0.03 0.07 0.13 0.04
convnext large.fb in1k 0.93 0.92 0.92 0.89 0.86 0.8 0.89 0.01 0.04 0.07 0.12 0.04
convnextv2 base.fcmae ft in1k 0.93 0.93 0.92 0.9 0.87 0.82 0.9 0.01 0.04 0.07 0.12 0.04
convnextv2 large.fcmae ft in1k 0.94 0.93 0.93 0.91 0.88 0.84 0.91 0.01 0.03 0.05 0.1 0.03
convnextv2 huge.fcmae ft in1k 0.94 0.93 0.93 0.91 0.89 0.84 0.91 0.01 0.03 0.05 0.09 0.03
deit3 small patch16 224.fb in1k 0.92 0.92 0.91 0.88 0.84 0.77 0.87 0.01 0.04 0.08 0.15 0.05
deit3 base patch16 224.fb in1k 0.91 0.91 0.9 0.88 0.84 0.79 0.87 0.01 0.03 0.07 0.12 0.04
deit3 medium patch16 224.fb in1k 0.92 0.92 0.91 0.88 0.84 0.78 0.88 0.01 0.04 0.08 0.14 0.05
deit3 large patch16 224.fb in1k 0.91 0.91 0.9 0.88 0.85 0.8 0.88 0.01 0.03 0.06 0.12 0.04
deit3 huge patch14 224.fb in1k 0.92 0.92 0.91 0.89 0.86 0.81 0.89 0.01 0.03 0.06 0.11 0.04
deit base patch16 224.fb in1k 0.9 0.9 0.89 0.87 0.83 0.76 0.86 0.01 0.04 0.08 0.15 0.05
dino lp vit base patch16 0.9 0.9 0.89 0.85 0.8 0.71 0.84 0.01 0.05 0.1 0.19 0.06
dinov1 ft vit base patch16 0.91 0.91 0.90 0.88 0.84 0.84 0.87 0.01 0.03 0.07 0.04 asd
dinov2 vit small patch14 0.92 0.92 0.91 0.89 0.86 0.81 0.89 0.01 0.03 0.06 0.11 0.04
dinov2 vit small patch14 reg 0.93 0.93 0.92 0.9 0.87 0.81 0.89 0.01 0.03 0.06 0.11 0.04
dinov2 vit base patch14 0.91 0.91 0.91 0.89 0.87 0.82 0.89 0.00 0.02 0.04 0.09 0.02
dinov2 vit base patch14 reg 0.92 0.92 0.92 0.9 0.88 0.84 0.9 0.00 0.02 0.04 0.08 0.02
dinov2 vit large patch14 0.92 0.92 0.92 0.91 0.89 0.86 0.9 0.00 0.01 0.03 0.06 0.02
dinov2 vit large patch14 reg 0.92 0.92 0.91 0.91 0.89 0.86 0.9 0.00 0.01 0.03 0.06 0.02
dinov2 vit giant patch14 0.91 0.91 0.91 0.9 0.88 0.84 0.89 0.00 0.01 0.04 0.07 0.02
dinov2 vit giant patch14 reg 0.92 0.92 0.91 0.9 0.88 0.85 0.9 0.00 0.01 0.03 0.07 0.02
mae vit base patch16 0.92 0.92 0.91 0.88 0.84 0.78 0.88 0.01 0.04 0.08 0.14 0.05
mae vit huge patch14 0.93 0.93 0.92 0.9 0.88 0.84 0.9 0.01 0.03 0.05 0.1 0.03
mae vit large patch16 0.93 0.92 0.92 0.9 0.87 0.83 0.9 0.01 0.03 0.05 0.1 0.03
mocov3 vit base patch16 0.92 0.92 0.91 0.88 0.85 0.79 0.88 0.01 0.03 0.07 0.13 0.04
resnet18.a1 in1k 0.9 0.9 0.88 0.85 0.8 0.72 0.84 0.02 0.05 0.1 0.19 0.06
resnet34.a1 in1k 0.91 0.91 0.9 0.86 0.82 0.75 0.86 0.01 0.05 0.09 0.17 0.05
resnet50.a1 in1k 0.91 0.9 0.89 0.85 0.8 0.72 0.85 0.02 0.06 0.11 0.18 0.06
resnet101.a1 in1k 0.9 0.9 0.88 0.85 0.8 0.73 0.84 0.02 0.05 0.1 0.17 0.06
resnet152.a1 in1k 0.89 0.89 0.88 0.85 0.8 0.73 0.84 0.01 0.04 0.09 0.16 0.05
vit base patch16 224.augreg in1k 0.87 0.87 0.86 0.82 0.77 0.69 0.81 0.01 0.05 0.1 0.18 0.06
vit base patch16 224.augreg in21k ft in1k 0.9 0.9 0.89 0.86 0.82 0.75 0.85 0.01 0.04 0.08 0.15 0.05
vit base patch16 clip 224.openai ft in1k 0.93 0.93 0.92 0.91 0.89 0.86 0.91 0.01 0.02 0.04 0.08 0.03
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Figure 18: We report the linear correlation coefficients between ID and OOD accuracy using 16
supervised ImageNet-trained models for all evaluated shifts. The relation varies for different shifts
and scales between 0.5 and 2.5.

the CLIP shift alignment increases for 73% of all cases for scales s > 0 and averaged over all shifts,
demonstrating that increasing the slider weight results in a stronger severity of the desired shift.

A.5.5 IMPLEMENTATION DETAILS FOR BENCHMARKING

We provide the code for training the LoRA adapters and for performing the sliding. For benchmark-
ing all vision models, we integrate our new benchmark and additional models in the easyrobust (Mao
et al., 2022) framework. We provide all classification results for all images of the dataset together
with the code and the data in the supplementary material.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.725 0.750 0.775 0.800 0.825 0.850
ID accuracy

0.91

0.92

0.93

0.94

0.95

O
O

D
 a

cc
ur

ac
y

Graffiti @ scale=0.0

(a) Fit for no applied shift.
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(b) Fit for a graffiti shift with scale 2.5.

Figure 19: Linear fits of the ID and OOD accuracies. We plot example linear fits of ID and OOD
accuracies for the graffiti style. It can be observed that the slope increases for a larger scale.
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Figure 20: Accuracy gains of models along the architecture axis. We plot the accuracy gains
averaged over all shifts after correcting for the effect of the ID-OOD accuracy slope. These gains
are computed by substracting the effect of the linear fit (consider Fig. 19 for an example) from the
OOD accuracies. After that correction, ConvNext performs better than DeiT3.

A.5.6 DETAILS ABOUT THE USED COMPUTE

We used the internal cluster consisting of NVIDIA A40, A100, and RTX 8000 GPUs for running
most of the experiments. Small-scale experiments are conducted on workstations equipped with
RTX 3090. Training one LoRA adapter requires 1 to 2 hours depending on the used GPU, generating
the images for one shift and class with 50 seeds and 6 scales requires 10 to 20 minutes. Thus, the
training of the 1400 LoRA adapters took around 2000 GPU hours and the generation of the images
around 350 GPU hours. Benchmarking all models using easyrobust required around 1000 GPU
hours. The experiments to perform classification using the diffusion-classifier required around 4000
GPU hours.

A.6 LABELING

In this section, we provide more details about the labeling dataset and strategy.

A.6.1 DETAILS ON THE CREATION OF THE LABELED DATASET

To select a filter for detecting OOC samples, we collected a dataset for manual labeling: We pursue
the following strategy: (i) In the first stage, 24k images are generated for 20 seeds, 5 LoRA scales,
and 2 shifts per class for 100 random ImageNet classes in total. We select two very different shifts:
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Table 4: ImageNet validation accuracies and parameter count. One the left, we plot model
accuracies on the ImageNet validation dataset for all evaluated classifiers. On the right, we present
the parameter counts for the used architectures.

Model IN/val

clip resnet101 58.00
clip resnet50 55.00
clip vit base patch16 224 67.70
clip vit base patch32 224 62.60
clip vit large patch14 224 75.00
clip vit large patch14 336 76.30
convnext base.fb in1k 83.80
convnext large.fb in1k 84.30
convnext small.fb in1k 83.10
convnext tiny.fb in1k 82.10
convnextv2 base.fcmae ft in1k 84.90
convnextv2 huge.fcmae ft in1k 86.20
convnextv2 large.fcmae ft in1k 85.80
deit3 base patch16 224.fb in1k 83.70
deit3 huge patch14 224.fb in1k 85.10
deit3 large patch16 224.fb in1k 84.60
deit3 medium patch16 224.fb in1k 82.90
deit3 small patch16 224.fb in1k 81.30
deit base patch16 224.fb in1k 81.80
dino lp vit base patch16 78.10
dino v1 vit base patch16 82.49
dinov2 vit base patch14 84.50
dinov2 vit base patch14 reg 84.60
dinov2 vit giant patch14 86.60
dinov2 vit giant patch14 reg 87.10
dinov2 vit large patch14 86.40
dinov2 vit large patch14 reg 86.70
dinov2 vit small patch14 81.40
dinov2 vit small patch14 reg 80.90
mae vit base patch16 83.70
mae vit huge patch14 86.90
mae vit large patch16 86.00
mocov3 vit base patch16 83.20
resnet101.a1 in1k 81.30
resnet152.a1 in1k 81.70
resnet18.a1 in1k 71.50
resnet34.a1 in1k 76.40
resnet50.a1 in1k 80.20
vit base patch16 224.augreg in1k 76.80
vit base patch16 224.augreg in21k ft in1k 77.70
vit base patch16 clip 224.openai ft in1k 85.20

Model Number of parameters (in million)

convnext tiny 29
convnext small 50
convnext base 89
convnext large 198
convnextv2 base 89
convnextv2 huge 660
convnextv2 large 198
deit3 small 22
deit3 medium 39
deit3 base 87
deit3 huge 632
deit3 large 304
deit base 87
vit base 87
vit huge 632
vit large 307
resnet18 12
resnet34 22
resnet50 26
resnet101 45
resnet152 60
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(a) Accuracies for heavy snow shift.
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(b) Accuracies for cartoon style shift.

Figure 21: Comparison of DiT classifier. We report the OOD accuracies for two shifts for the DiT
classifier (Li et al., 2023b) and discriminative classifiers. All models were trained on ImageNet-1k
and are evaluated on the same subset of our benchmark. The diffusion classifier performs worse
than the discriminative models.

One shift corresponds to a natural variation (snow), and the second shift corresponds to a style shift
(cartoon style). (ii) We aim to find OOC samples that arise due to the application of the LoRA
adapters. Therefore, we remove all images generated with a seed that results in a generated image
that has a low CLIP text-alignment or is not classified classified correctly as the corresponding class
even without the application of LoRA adapters. After removing such images, the labeling dataset
consists of around 18k images. (iii) To reduce the labeling effort, we filter out all easy samples
that (1) are correctly classified by DINOv2-ViT-L (Caron et al., 2021; Oquab et al., 2023) with a
linear fine-tuned head and (2) one out of three classifiers (ResNet-50, DeiT-B/16, or ViT-B/16). (3)
Additionally, the text alignment needs to be sufficiently high. (iv) Each hard image is labeled by
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Table 5: ImageNet-R performance after fine-tuning on our benchmark data.ImageNet-R accu-
racy of the original ResNet-50 without fine-tuning and our model, fine-tuned on our benchmark.

Evaluation Dataset wo/ fine-tuning w/ fine-tuning

IN/val 80.15 78.11
IN/R 27.34 37.57
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Figure 22: Accuracy drops for three ImageNet-C corruptions and various architectures. The
model rankings change for different corruptions, underlining the importance of the selection of the
corruption types or nuisance shifts for benchmarking the OOD robustness. Additionally, it can also
be observed that the accuracy drops at varying rates for different shifts.
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Figure 23: Accuracy drops for contrast corruption. We report the accuracy drops for seven
severities of the contrast corruption, as defined in (Hendrycks & Dietterich, 2018). The model
rankings change for different scales.

two human annotators. To increase the dataset quality, we include soft labels if the image partially
includes some characteristics of the class. So, each annotator can choose from the labels ‘class’,
‘partial class properties’, and ‘not class’. An image is defined as an out-of-class sample if at least
one annotator considers the image as an OOC. For the remaining samples, an image is considered
IC (in-class) if at least one annotator labeled the image a clear sample of the corresponding class

For the pre-filtering strategy (ii) and for the selection of easy samples (iii), we compute
text-alignment using CLIP score and we remove all samples that have a CLIP similarity
sCLIP-text-alignment > 24, which approximately includes 90% of all ImageNet validation images
(Vendrow et al., 2023). We use the implementation in torchmetrics with VIT-B/16. After removing
the easy samples in step (iii), 2.7k images remain for labeling. We use the VIA annotation tool
(Dutta & Zisserman, 2019; Dutta et al., 2016) to create the annotations. Each image is labeled by
two humans. In total, 14 graduate students are involved in the labeling process. For all participants,
we ensure sufficient motivation and they receive detailed instructions on how to perform the labeling
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Figure 24: ImageNet-R examples. Example images of one class where the shape and perspective
significantly change.
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(a) Accuracy over various scales.
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Figure 25: Ablation of the number of ImageNet classes. We compare the accuracies and failure
points averaged over the selected 100 classes and all 1000 ImageNet classes for two shifts (snow and
cartoon style). We report the results with ResNet-50. The results indicate that the initial accuracy
estimate is overestimated but the accuracy drops averaged over the two shifts are in line.

(the full set of instructions is provided in Fig. 32). We provide the filtering statistics in Table 6. An
example screenshot of the labeling tool is visualized in Fig. 27.

A.6.2 LABELING DATASET

We provide the images for labeling in the provided URL as well. There, we include all images and
metadata that allow inferring the class of each image and the tag, whether it is labeled automatically
or by a human. The statistics of the labeling dataset are shown in Fig. 28.

A.7 USER STUDY

We perform a user study on the final dataset using the same tooling as for the human labeling
discussed in Appendix A.6 (iv). The user study includes 300 randomly sampled images and it is
checked by two different individuals. In total, the user study involved seven people with different
professions. 3 samples of our benchmark were considered as out-of-class samples, resulting in a
ratio of 1% of failure cases with a margin of error of 0.5% for a one-sigma confidence level.

A.8 APPLICATIONS OF TRAINED SLIDERS

We can combing various sliders by simply adding the corresponding LoRA adapters. We show an
example application in Fig. 29.
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Figure 26: Examples for text-based continuous shift. The gradual increase can be successful.
However, we observe that it fails for some classes (middle row) and is not consistently increasing
(bottom row).

Table 6: Statistics of filtering process. We report the number of samples after various filtering
stages. The stages are numbered according to the description in the main paper.

Scale Stage (i) Stage (ii) Stage (iii) Stage (iv)

0 4000 2966 2966 2966
0.5 4000 2966 2929 2955
1 4000 2966 2813 2906
1.5 4000 2966 2479 2740
2 4000 2966 2143 2498
2.5 4000 2966 1729 2110

A.9 OOD-CV DETAILS

The Out-of-Distribution Benchmark for Robustness (OOD-CV) dataset includes real-world OOD
examples of 10 object categories varying in terms of 5 nuisance factors: pose, shape, context, texture,
and weather.

Generation of images for synthetic OOD-CV We generate the images for the synthetic OOD-
CV dataset using a larger number of noise steps (85%) and more scale (between 0 and 3) since the
classes occur more often in the dataset for training CLIP and Stable Diffusion. We use SD2.0 and
not the dataset interfaces provided by Vendrow et al. (2023) since the class differences are less subtle
and the samples of OOD-CV originate from two different datasets.

Training subset The OOD-CV benchmark provides a training subset of 8627 images. We train
different state-of-the-art classifiers (i.e., ResNet-50 (He et al., 2016), ViT-B/16 (Dosovitskiy et al.,
2020), and DINO-v2-ViT (Oquab et al., 2023)) for classification. We finetune each baseline during
50 epochs with an early stopping set to 5 epochs. In order to make baselines more robust, we apply
standard data augmentation such as scale, rotation, and flipping during training. The training subset
is composed of images originating from different datasets, notably ImageNet (Deng et al., 2009)
and Pascal-VOC (Everingham et al., 2010). It is important to notice that the distribution of these
two subsets is slightly different, with a higher data quality for the ImageNet subset and a lower
quality for the latter subset (more noise, smaller objects, different image sizes). We visualize a few
examples of the training data in Fig. 31.

Test subset annotations In the test subset provided in the benchmark dataset, only the
coarse individual nuisance factors (e.g., weather, texture) are provided. In our setup, we
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Figure 27: Screenshot of labeling tool. We plot a screenshot of an example image as it appeared
during our labeling.
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(a) For the human labeling dataset.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

scale

0

1000

2000

3000

N

in class
partly class
not class

(b) For the complete filtering dataset.

Figure 28: Statistics of labeling dataset. We report the number of in-class, partially in-class, and
out-of-class samples.

are interested in studying more fine-grained nuisance shifts, notably rain, snow, or fog.
Hence, we had to assign some fine-grained annotation to all images containing weather nui-
sance shifts. Hence, we assign a fine-grained annotation by computing the CLIP similar-
ity to the following texts: “a picture of a {class} in {shift}”, where class
is the ground truth class and shift the nuisance shift candidate rain, snow, or fog and
“a picture of a {class} without snow nor fog nor rain”. By applying a
softmax on the similarity scores with the previous texts, we can assign the fine-grained nuisance
shift rain, snow, fog or unknown for each image. We show more statistics in Table 7. By checking
the results visually, we observe that all fine-grained nuisance shifts align with human perception and
have a tendency towards classifying samples as unknown as soon as there is a small doubt. Note that
by applying the same strategies to our generated data, we obtain an accuracy close to 100%.

Nearest neighbor images of OOD-CV and CNS-Bench. To illustrate the realism of our gener-
ated image, we compute the nearest neighbours using cosine similarity with CLIP image embedding
and we plot it in Fig. 30.
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Figure 29: Combination of Sliders. We exemplarily show that sliders can be combined. Here, a
snow slider (vertical axis) and a cartoon slider (horizontal axis) are linearly added for three scales.

Figure 30: Closest synthetic samples to two example OOD-CV images. We find the top-5 nearest
neighbours using cosine similarity with CLIP image embedding.

Table 7: OOD-CV Statistics. We report the number of images and accuracies for the weather
subset.

Shift #images Accuracy

Snow 273 70.3
Fog 24 62.5
Rain 74 66.2
Unknown 129 66.7
Total 500 68.4
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(a) Train, ImageNet. (b) Train, ImageNet. (c) Train, ImageNet. (d) Train, ImageNet.

(e) Train, Pascal-VOC. (f) Train, Pascal-VOC. (g) Train, Pascal-VOC. (h) Train, Pascal-VOC.

(i) Test, snow shift. (j) Test, snow shift. (k) Test, snow shift. (l) Test, rain shift.

Figure 31: OOD-CV example images. We illustrate a set of example images from the training and
the testing dataset of OOD-CV: (a-h) example from the training set, from ImageNet or Pascal-VOC.
(i-l) Some examples for weather nuisance shifts. In the training set, we observe that images from the
Pascal-VOC subset are usually of lower quality (e.g., cropping, occlusion, resolution) compared to
the ImageNet subset. In the test set, we see that that not fully disentangled (e.g., (j) is only partially
visible, (k) is partially occluded).
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Figure 32: Set of instructions for labeling. Instructions provided to the human annotators to per-
form the labeling of the out-of-class filtering dataset.
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(a) Style of a tattoo.

(b) Cartoon style.

(c) Style of a video game.

(d) Graffiti style.

(e) Painting style.

(f) Pencil sketch style.

(g) Plush toy style.

(h) Design of a sculpture.

Figure 33: Example sliding for various nuisance shifts. We visualize six generated images with
the corresponding scales as 0, 0.5, 1, 1.5, 2, and 2.5.
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(a) In heavy snow.

(b) In a sandstorm.

(c) In dust.

(d) In smog.

(e) In fog.

(f) In heavy rain.

Figure 34: Example sliding for various nuisance shifts. We visualize six generated images with
the corresponding scales as 0, 0.5, 1, 1.5, 2, and 2.5.
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B DATASHEET

In the following, we answer the questions as proposed in Gebru et al. (2021).

B.1 MOTIVATION

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.

The dataset was created to evaluate the robustness of state-of-the-art models to specific continuous
nuisance shifts. Current approaches are not scalable and often include only a small variety of nui-
sance shifts, which are not always relevant in the real world. More importantly, current benchmark
datasets define binary nuisance shifts by considering the existence or absence of that shift, which
may contradict their continuous realization in real-world scenarios.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

Until the acceptance of the paper, the specific details about the research group, their affiliations, and
the entities they represent will remain anonymous.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the
grantor and the grant name and number.

Until the acceptance of the paper, the specific details about funding will remain anonymous.

B.2 COMPOSITION

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)?

The dataset consists of synthetic images that were generated using Stable Diffusion.

How many instances are there in total (of each type, if appropriate)?

The dataset contains 192, 168 images in total, with 32, 028 for each of the six scales with 14 shifts.
Each shift has at least 5, 000 images and 100 classes.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample repre-
sentative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was
validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more
diverse range of instances because instances were withheld or unavailable).

The dataset contains the subset of images that were filtered using the selected filtering strategy.
Originally, 420, 000 images were generated.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

“Raw” synthetically generated data as described in the paper.

Is there a label or target associated with each instance? If so, please provide a description.

Yes, each image belongs to an ImageNet class and has a shift scale assigned to it.

Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally removed
information, but might include, e.g., redacted text.

No, for each instance, we give the class label, the scale of the shift, and the parameters used for
generating this image. However, the class label might be erroneous in rare cases where the generated
image corresponds to an out-of-class sample.
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Are relationships between individual instances made explicit (e.g., users with their tweets,
songs with their lyrics, nodes with edges)? If so, please describe how these relationships are made
explicit.

Yes, the relationships in terms of class, random seed for generation, shift, and scale of shift are
provided in the dataset.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.

We offer a benchmark dataset specifically intended for testing the robustness of classifiers. There-
fore, we recommend utilizing the entire dataset provided as the test dataset.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

We provided a dataset of generated images. While we apply a filtering strategy to reduce the number
of out-of-class and unrealistic samples, we cannot guarantee that all images of the dataset represent a
realistic and visually appealing realization of the considered class. We provide a statistical estimate
of the number of failure samples in the paper. The data might also include the redundancies that
underlie the image generation process of Stable Diffusion.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that
they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset
(i.e., including the external resources as they existed at the time the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated with the use of these external resources?

The dataset is fully self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor–patient confidentiality, data that includes the content of
individuals’ non-public communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

There is a small chance that our synthetically generated data can generate offensive images. How-
ever, we did not encounter any such sample during our extensive manual annotations.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these
subpopulations are identified and provide a description of their respective distributions within the dataset.

N/A.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from the dataset? If so, please describe how.

N/A.

Does the dataset contain data on individuals’ protected characteristics (e.g., age, gender, race,
religion, sexual orientation)? If so, please describe this data and how it was obtained.

N/A.

Does the dataset contain data on individuals’ criminal history or other behaviors that would
typically be considered sensitive or confidential? If so, please describe this data and how it was ob-
tained.

N/A.
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B.3 COLLECTION PROCESS

How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly in-
ferred/derived from other data (e.g., part-of-speech tags, model-based guesses)?

N/A.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mecha-
nisms or procedures validated?

We used Stable Diffusion 2.0 to generate all images. Images were generated using NVIDIA A100
and A40 GPUs.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The dataset was filtered using a combinatorial selection approach using the alignment scores of
DINOv2 and CLIP to the considered class.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?

The authors of the paper and other PhD students of the institute. They were not additionally paid for
the dataset collection process.

Over what timeframe was the data collected? Does this timeframe match the creation time-
frame of the data associated with the instances (e.g., recent crawl of old news articles)? If not,
please describe the timeframe in which the data associated with the instances was created.

The images were generated and processed over a timeframe of four weeks.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or other access
point to any supporting documentation.

No ethical concerns.

B.4 PREPROCESSING/CLEANING/LABELING

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remaining questions in this
section.

Yes, cleaning of the generated data was conducted. The generated images underwent filtering to
reduce the number of out-of-class samples using the proposed filtering mechanisms. Instances that
did not meet these criteria were removed from the dataset. For a detailed description of the filtering
process, please refer to the corresponding section in the paper.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.

The generated images remain in their original, unprocessed state and can be considered as “raw”
data. However, we have not provided all the images that were filtered out.

Is the software used to preprocess/clean/label the instances available? If so, please provide a link
or other access point.

Generating the images was performed using commonly available Python libraries. For annotating a
subset of the dataset for filtering purposes, we have used the VIA annotation tool (Dutta & Zisser-
man, 2019; Dutta et al., 2016).
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B.5 USES

Has the dataset been used for any tasks already? If so, please provide a description.

In our work, we demonstrate how this approach yields valuable insights into the robustness of state-
of-the-art models, particularly in the context of classification tasks.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

We will provide a link that includes all relevant papers or systems.

What (other) tasks could the dataset be used for?

Our work showcases the capability of our dataset to enhance control over data generation, which
is particularly evident through continuous shifts. However, its applicability extends beyond this
demonstration. The dataset can be effectively utilized in various generation tasks that necessitate
continuous parameter control. While we showcased its efficacy in providing insights for models
tackling classification tasks, it can seamlessly extend to evaluate the robustness of state-of-the-art
methods across diverse tasks such as segmentation, domain adaptation, and many others. This is
possible by combining our approach with other modes of conditioning Stable Diffusion. In addi-
tion, our data can also be used for fine-tuning, which we also demonstrated in the supplementary
material.

Is there anything about the composition of the dataset or the way it was collected and cleaned
that might impact future uses? For example, is there anything that might cause the dataset to
be used inappropriately or misinterpreted (e.g., accidentally incorporating biases, reinforcing
stereotypes)?

Our dataset was synthesized using a generative model. It, therefore, likely inherits any biases for
its generator. Similarly, filtering is performed by pre-trained models, which can indirectly also
contribute to biases.

Are there tasks for which the dataset should not be used? If so, please provide a description.

No, there are no tasks for which the dataset should not be used. Our dataset aims to enhance model
robustness and provide deeper insights during model evaluation. Therefore, we see no reason to
restrict its usage.

B.6 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

Yes, the dataset will be publicly available on the internet.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?

In the future, we will distribute the dataset as a tarball on our servers.

When will the dataset be distributed?

The dataset will be distributed upon acceptance of the manuscript. It is now available under the
provided anonymized link.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide
a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU.

CC-BY-4.0.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise
reproduce, any relevant licensing terms.
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No, there are no IP-based or other restrictions on the data associated with the instances imposed by
third parties.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise
reproduce, any supporting documentation.

We are not aware of any export controls or other regulatory restrictions that apply to the dataset or
to individual instances.

B.7 MAINTENANCE

Who is supporting/hosting/maintaining the dataset?

The dataset is supported by the authors and their associated research groups. The dataset is hosted
on our own servers.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The authors of this dataset will be reachable at their e-mail addresses: [undisclosed]. In addition,
we will add a contact form, which will be made available on the website.

Is there an erratum? If so, please provide a link or other access point.

If errors are found, an erratum will be added to the website.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, when, and how updates will be provided.

Yes, updates will be communicated via the website. The dataset will be versioned.

If the dataset relates to people, are there applicable limits on the retention of the data associ-
ated with the instances (e.g., were individuals in question told that their data would be retained
for a specific period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.

Our dataset does not relate to people.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how.

No, older versions of the dataset will not be supported if the dataset is updated. We do not plan to
extend or update the dataset. Any updates will be made solely to correct any hypothetical errors that
may be discovered.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be made publicly available?

Yes, we provide all the necessary tools and explanations to enable users to build continuous shifts
for their own specific applications. Our dataset serves as a foundation to illustrate how it can be used
to evaluate current state-of-the-art methods. However, we are happy to centralize and showcase all
related work on our GitHub page that benefits from our method of generating data.

B.8 AUTHOR STATEMENT OF RESPONSIBILITY

The authors confirm all responsibility in case of violation of rights and confirm the license associated
with the dataset and its images.
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