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Abstract

The alignment of vision-language representations endows current Vision-Language
Models (VLMs) with strong multi-modal reasoning capabilities. However, the
interpretability of the alignment component remains uninvestigated due to the
difficulty in mapping the semantics of multi-modal representations into a unified
concept set. To address this problem, we propose VL-SAE, a sparse autoencoder
that encodes vision-language representations into its hidden activations. Each neu-
ron in its hidden layer correlates to a concept represented by semantically similar
images and texts, thereby interpreting these representations with a unified concept
set. To establish the neuron-concept correlation, we encourage semantically similar
representations to exhibit consistent neuron activations during self-supervised train-
ing. First, to measure the semantic similarity of multi-modal representations, we
perform their alignment in an explicit form based on cosine similarity. Second, we
construct the VL-SAE with a distance-based encoder and two modality-specific de-
coders to ensure the activation consistency of semantically similar representations.
Experiments across multiple VLMs (e.g., CLIP, LLaVA) demonstrate the superior
capability of VL-SAE in interpreting and enhancing the vision-language alignment.
For interpretation, the alignment between vision and language representations can
be understood by comparing their semantics with concepts. For enhancement, the
alignment can be strengthened by aligning vision-language representations at the
concept level, contributing to performance improvements in downstream tasks,
including zero-shot image classification and hallucination elimination. Codes are
available at https://github.com/ssfgunner/VL-SAE.

1 Introduction

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in multi-modal under-
standing and reasoning, largely attributed to the various training objectives [20, 39] and architec-
tures [53, 25, 62, 61] that effectively align the semantics of vision and language representations. This
alignment mechanism serves as a core component of VLMs, enabling them to make predictions by
integrating information from both modalities [39, 32, 56, 25, 51, 15]. Nevertheless, current compre-
hension of the alignment mechanism remains insufficient [11, 46, 36, 2]. This limited comprehension
hinders our ability to analyze and address the misalignment cases, such as hallucinations [31, 24, 19].
To tackle this challenge, existing methods interpret representations of VLMs by mapping their seman-
tics to concepts. However, these methods either solely focus on the vision [30, 2] or the language [36]
representations, as shown in Figure 1(a). It remains an open problem to interpret the vision-language
alignment, which requires not only understanding the representation semantics but also comparing
the semantics of both modalities in an interpretable manner [46].
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Figure 1: (a) Current interpretation methods are designed for single-modal representations. (b) Using
current methods for each modality leads to a mismatch in the concept sets, hindering the interpretation
of the vision-language alignment. (c) We propose the VL-SAE to interpret the alignment mechanism
by mapping the representation semantics of both modalities into a unified concept set.

A straightforward approach to address this problem is to apply existing methods [44, 7] to map
the representation semantics of each modality to concepts separately. With these concepts, we
can compare the semantics of vision and language representations for interpreting their alignment
mechanism. However, current methods struggle to conduct this comparison with concepts, as they
cannot effectively map the semantics of vision and language representations into a unified concept
set. These methods acquire the concept set in a pre-defined [22, 44, 2] or learnable [33, 7, 30]
manner. Pre-defined methods rely on manually constructed concept sets, which often fail to capture
the full spectrum of representation semantics [44, 59] and suffer from limited scalability due to
the need to collect labeled samples for each concept [22]. Learnable methods employ the hidden
activations of a pre-trained sparse autoencoder (SAE) to acquire the concept set, where each hidden
neuron correlates to a concept and is defined by the samples that most strongly activate it. The
neuron-concept correlation is established via end-to-end learning under self-supervision, eliminating
the need for concept-specific annotations [7, 30]. Nevertheless, the end-to-end learning introduces
uncontrollability into the concept set. Due to the uncontrollability, applying two separate SAEs to vi-
sion and language representations respectively causes the concept mismatch, i.e., neurons at the same
location of different SAEs being correlated with different concepts, as illustrated in Figure 1(b). As a
result, semantically similar vision and language representations can exhibit inconsistent activations
under concept mismatch, hindering the comparisons of representation semantics with SAE.

As the concept mismatch stems from applying separate SAEs to different modalities, using a shared
SAE for both modalities seems to be a promising solution. By encouraging semantically similar
representations to exhibit consistent activations during self-supervised training, the hidden layer
neurons can be co-activated by semantically similar images and texts as shown in Figure 1(c), thereby
mitigating the concept mismatch. Unfortunately, current SAEs designed for single-modal scenarios
fail to achieve this objective for two primary reasons. (i) In contrast to single-modal representations
that use the inner product for measuring semantic similarity, multi-modal representations of different
VLMs exhibit varying alignment strategies [32, 25, 41], which complicates the measurement of
their semantic similarity. (ii) Multi-modal representations exhibit modality-specific distributions [47],
making it difficult to ensure the activation consistency of semantically similar representations.

In this paper, we propose the VL-SAE, an SAE architecture equipped with an auxiliary autoencoder,
to mitigate the concept mismatch. We perform the representation alignment in an explicit form
with the auxiliary autoencoder to measure their semantic similarity and then employ VL-SAE to
constrain the activation consistency among semantically similar representations. Specifically, (i) for
the alignment strategy, we propose an auxiliary autoencoder that maps the original representations
to its intermediate representations. The autoencoder is optimized via contrastive loss [41] to ensure
that vision-language representations with higher semantic similarity exhibit greater cosine similarity
between their intermediate representations. (ii) For the architecture of VL-SAE, we propose an
encoder that activates neurons based on the Euclidean distance between normalized representations
and neuron weights. This metric satisfies the triangle inequality and is related to the cosine similarity,
which correlates with semantic similarity rather than distributional information. These properties
ensure that only semantically similar representations can be close to the same weights and activate
corresponding neurons. Additionally, we propose separate decoders to capture the distributional
information of each modality for representation reconstruction, thereby preventing the encoder from
embedding modality-specific information into neuron activations that leads to concept mismatch.



In experiments, we construct VL-SAE on multiple VLMs, including Contrastive VLMs (CVLMs) [41]
that achieve alignment via retrieval tasks and Large VLMs (LVLMs) [32, 1] that rely on question
answering tasks. Evaluations of the proposed VL-SAE and current architectures [7, 13] demonstrate
that VL-SAE possesses superior ability for mapping the semantics of vision and language represen-
tations into a unified concept set. Subsequently, we utilize VL-SAE to interpret and enhance the
vision-language alignment mechanism of VLMs. For interpretation, we explain the model predic-
tion by visualizing the activated concepts of vision and language representations during inference.
For enhancement, we propose two strategies to improve the performance of CVLM in zero-shot
image classification [23, 55, 16] and LVLM in hallucination elimination [28] by enhancing the
vision-language alignment at the concept level. The contributions of our work are as follows:

* We propose the VL-SAE, a model to interpret the alignment mechanism of VLMs by
mapping the semantics of vision-language representations into a unified concept set.

* We apply VL-SAE on multiple widely-used VLMs and demonstrate the superior quality of
the concept set learned by VL-SAE in experiments.

* We show that VL-SAE can be employed to interpret the model prediction by visualizing the
activated concepts, enhancing the performance of CVLMs on zero-shot image classification,
and eliminating the hallucinations of LVLMs.

2 Related Work

Vision-Language Models. To handle the vision-language reasoning tasks, researchers have devel-
oped multiple VLMs [39, 32, 1, 41, 56, 51, 15] by effectively aligning their vision and language
representations. According to the pre-training tasks, these models can be categorized into Contrastive
VLMs (CVLMs) [10, 41] that utilize retrieval tasks and Large VLMs (LVLMs) [32, 1, 56, 51, 15]
that incorporate Large Language Models (LLMs) [52] for pre-training with question answering tasks.
For CVLMs, current models include a vision encoder and a text encoder, applied with contrastive
training strategies that encourage semantically similar representations to achieve high inner product
values [10]. For LVLMs, existing methods compose the model with a vision encoder, an LLM, and
a light-weight connector that maps the output of the vision encoder to input tokens of the LLM.
Vision-language representations are implicitly aligned through pre-training with question answering
tasks [53, 1]. Despite the various architectures and pre-training paradigms of VLMs, our proposed
VL-SAE can interpret and enhance the alignment mechanism of their vision-language representations.

Representation Interpretation. Revealing the semantics of representations stands as one of the
primary challenges tackled by interpretable machine learning [38]. Previous methods [22, 58, 60,
441 pre-define a concept set and then collect corresponding samples to derive concept vectors in
the representation space. The representations are projected onto these vectors for interpretation.
These methods are costly due to the requirements for constructing concept sets and collecting
relevant samples [22]. Moreover, these methods encounter challenges in modifying model behavior
by adjusting corresponding interpretations, as it is difficult to map these interpretations back to
the original representations [44]. Recently, Sparse Autoencoder (SAE) [7, 30, 13, 26] has been
recognized as an effective method to interpret representations and modify model behaviors through
self-supervised learning. Despite achieving advanced performance, current SAEs remain unsuitable
for vision-language representations due to the inconsistency between the learned concept sets of both
modalities. To address this problem, we propose the VL-SAE with a distance-based encoder and two
modality-specific decoders to interpret vision-language representations with a unified concept set.

Understanding the Internal Mechanism of VLMs. There has been an increasing interest in
investigating the internal mechanisms of VLMs through the lens of multi-modality [8]. Neuron-based
methods [14, 42, 35] reveal the existence of multi-modal neurons that translate vision information to
corresponding information in text modality. These neurons are located through important scores like
gradient [42] and metrics leveraging architecture information [35]. Representation-based methods
attempt to interpret the semantics of vision-language representations with concepts. For CVLMs,
SpLiCE [2] and TEXTSPAN [12] disentangle the vision representations of CLIP [39] to texts. For
LVLMs, Parekh et al. [36] decompose the token representations to vision-language concepts. SAE-
V [33] leverages a sparse autoencoder to token representations for efficient data sampling. Our method
falls within the representation-based category. In contrast to existing methods that solely focus on



the vision or language representations, our VL-SAE investigates the alignment of vision-language
representations by separately mapping their semantics into a unified concept set.

3 Methodology

We first introduce the architecture of current VLMs [39, 32, 1] and SAE [7, 30] (Section 3.1). Then,
we perform the VLM alignment in an explicit form (Section 3.2). Finally, we propose the VL-SAE to
map the semantics of vision-language representations into a unified concept set (Section 3.3).

3.1 Preliminaries

Contrastive Vision Language Models (CVLMs). Existing CVLMs [39, 41] typically consist of a
vision encoder and a language encoder. Given an input image and text, these encoders independently
compute their respective representations. The semantic similarity between the image and text is then
estimated through the cosine similarity between their corresponding representations. By collecting a
large number of image-text pairs, CVLMs achieve the vision-language alignment by maximizing the
representation similarity between semantically similar image-text pairs.

Large Vision Language Models (LVLMs). A general LVLM architecture [32, 25, 1] includes
a vision encoder, an LLM, and a connector. An input image is first encoded through the vision
encoder and then transformed into image tokens via the connector. Subsequently, these image tokens
are concatenated with text tokens and provided as input to the LLM for text generation. With the
image-text pairs, the vision-language representations of LVLMs are aligned by pre-training the model
to generate textual answers for the text question related to the image content.

To conduct a uniform analysis of both types of models, we utilize the outputs of the vision and
language encoders in CVLM for analysis. For LVLM, representations of the image and text tokens in
the LLM’s hidden layer are averaged across the token axis for analysis. For convenience, we utilize
X,,X; € R? to uniformly represent the vision-language representations of CVLM and LVLM.

Sparse Autoencoder (SAE). SAE is an autoencoder with sparsity constraints on its hidden activations.
Given an input x € R%, SAE first transforms it to hidden activations h € R” using an encoder
E : R4 — R", and then maps it back to the representation space via a decoder D : R" — R,

% = D(h) = D(0(E(x)), ()

where o : R" — R" denotes the sparsification function. SAE is trained with the reconstruction loss
||% — x||% in a self-supervised manner. For sparsity constraints, previous methods usually select ReLU
as the sparsification function ¢ and integrate the /; norm of h into the loss function [7]. Recently,
researchers have found that directly adopting the top-k operation as the sparsification function not
only eliminates the need for an additional loss term but also demonstrates superior scalability [13, 44].

3.2 Explicit Representation Alignment

To ensure the activation consistency among semantically similar vision-language representations for
alleviating the concept mismatch, a prerequisite is measuring the semantic similarity of representations
from both modalities. For semantic similarity measurement, more semantically similar vision-
language representations have higher cosine similarity in CVLMs [39, 41], which is explicitly
constrained via the pre-training objective. However, it is difficult to measure the semantic similarity
of LVLM representations [32, 1] due to their implicit alignment mechanism [47]. To address this
problem, we propose employing an auxiliary autoencoder to convert the implicit alignment mechanism
into an explicit alignment mechanism. Specifically, given an image-text pair, we input them into
the VLM to extract representations (x,, x;). The autoencoder transforms these representations into
intermediate representations x¢, x{ € R? via encoders {F,,, F; } and then maps them back into the
original representations %,,, X; € R? via decoders {D,,, D;},

%y = Dy(x3) = Dy(Ey(%0)), %1 = Di(x]) = Di(Ei(x)). @)
With the contrastive loss InfoNCE [39] and the reconstruction loss, the intermediate representations

of image-text pairs can be aligned in cosine similarity while preserving the information of the original
representations (details of InfoNCE are provided in Appendix A),

L(xy,%;) = InfoNCE(x{, X7, X5, x] ) + ||%, — X, |15 + 1% — x1|3, 3)

v



where x{,x;” denote the intermediate representations of negative samples with dissimilar seman-
tics from the given image-text pair. With this autoencoder, we can transform implicitly aligned
representations into explicitly aligned intermediate representations, enabling the measurement of
semantic similarity between vision and language representations. Note that this component is only
utilized for LVLMs with the implicit alignment mechanism. For CVLMs with the explicit alignment
mechanism, we directly use their original representations x§, = X,,Xx] = x; for interpretation.

3.3 Interpreting Vision-Language Representations with a Unified Concept Set

Based on explicitly aligned represen-
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where cos(x€, w;) denotes the cosine similarity of x° and w;. Since the distance g is a variant of
the Euclidean distance, it naturally satisfies the triangle inequality. This indicates that the difference
in distance values between the weight vector w; and vision-language representations x¢,, Xj cannot
exceed the distance between the two representations,

|g(X2aWi)7g(Xleawi)| Sg(xienxle)' (5)

The proposed metric exhibits a negative correlation with cosine similarity, suggesting that as the
cosine similarity of vision-language representation increases, the upper bound of the difference in
their activations decreases accordingly. We utilize the negative value of g as the activation value,
thereby ensuring the positive correlation between the activation value and cosine similarity.

E*(x°)[i] =2 — g(x°,w;) =2 — /2 — 2cos(x°, w;), 6)

where E*(x*)[4] denotes the i-th value of E*(x®) € R". We introduce a constant 2 to ensure the non-
negativity of the activation values. For the sparsification function o, we employ the top-k function (i.e.,
retaining top-k largest values while setting others to zero) considering its strong scalability [13, 45],

h = TopK(E*(x°)). (7

The number of activated neurons k serves as a hyper-parameter. This distance-based encoder bounds
the activation discrepancy of semantically similar representations through the triangle inequality,
promoting each neuron to be co-activated by semantically similar images and texts.



Decoder. Despite bounding the activation discrepancy of vision-language representations through the
distance-based encoder, it remains insufficient for interpreting representations from distinct distribu-
tions. This is because the decoder reconstructs representations solely based on hidden activations.
Reconstructing vision-language representations with the same decoder leads to the incorporation of
distributional information into the hidden activations during training, thereby reducing the activation
consistency of vision-language representations that have similar semantics.

To map the hidden activations into representations of distinct distributions, we propose employing
separate decoders for each modality. Given the activations h,,,h; € R" of vision and language
representations x, Xy € R<, two modality-specific decoders DS, D7 are utilized to transform these
activations back to their original representations, respectively,

X, = Dj(hy), & = Dy (hy). ®)
VL-SAE is trained through the reconstruction loss of visual-language representations,
L5, x7) = [I1%5 = x3 13 + [IX] — x{I5. ©)

With the separate decoders for storing distributional information, VL-SAE can encode semantically
similar vision-language representations to consistent concept activations as interpretations, and then
map these activations back to representations of distinct distributions.

4 Experiments

In experiments, we first provide the implementation details for constructing VL-SAE based on VLM
representations in Section 4.1. Next, we evaluate the concepts learned by VL-SAE in Section 4.2.
Finally, we integrate VL-SAE into the inference process of pre-trained VLMs to interpret and enhance
their vision-language alignment mechanisms in Section 4.3.

4.1 Implementation Details for VL-SAE Construction.

VLM Selection. To demonstrate the broad applicability of the proposed VL-SAE, we build it
upon multiple representative VLMs, including CVLMs (OpenCLIP [41] with ViT-B/32, ViT-B/16,
ViT-L/14, ViT-H/14) pre-trained with retrieval tasks, and LVLMs (LLaVA1.5 [32], Qwen-VL [1])
pre-trained with question answering tasks. For CVLMs, VL-SAE is constructed using the output
from both their vision and language encoders. For LVLMs, VL-SAE is constructed using the output
features of the LLM hidden layers (the 29-th layer of LLaVA1.5 and the 26-th layer of Qwen-VL).

Datasets. We fed the CC3M dataset [43] containing 3 million image-text pairs into the VLM to
extract the corresponding vision-language representations. These representations are randomly
divided into training and test sets at a ratio of 4:1.

Training Strategies. For LVLMs [32, 1], we first train the auxiliary autoencoder for 50 epochs to
perform the explicit representation alignment. The training process is configured with a batch size of
2048, a weight decay of 0.01, and a learning rate of Se-5. Then, the VL-SAE is trained for 10 epochs
based on the intermediate representations of the autoencoder with a batch size of 512 and a learning
rate of le-4. For CVLMs [41], we adopt the same strategy as the LVLMs but omit the training of the
auxiliary autoencoder because CVLM representations are naturally aligned through cosine similarity.

4.2 Evaluating the Quality of VL-SAE Concept Set

Quantitative Evaluation. For the concept set, we evaluate (i) whether each neuron is activated
by semantically similar images and texts, and (ii) whether diverse semantic concepts are learned
across different neurons. These two aspects are quantitatively assessed using the CLIP score [39].
Specifically, we first gather the maximally activating images and texts for each neuron of the VL-
SAE’s hidden layer to describe its semantics. Then, the CLIP score is employed to quantify the
semantic similarity between images and texts within the same neuron (Intra-Similarity) and across
different neurons (Inter-Similarity). The Intra-Similarity evaluates the semantic consistency of images
and texts within each concept, while the Inter-Similarity assesses the semantic diversity across the
concept set. Detailed descriptions of both metrics are presented in Appendix A.1.

For comparison, we consider two baselines using current SAE architectures (i) SAE-D, which
employs distinct SAEs for vision and language representations, and (ii) SAE-S, which uses a single
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Figure 3: Quantitative evaluation of the learned concept set. We compare the VL-SAE with other
methods on the consistency between vision and language semantics within the same neuron (Intra-
Similarity) and the semantic diversity across different neurons (Inter-Similarity) on multiple VLMs.
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Figure 4: Qualitative comparisons among concepts of SAE-D, SAE-S and the proposed VL-SAE. All
SAE:s are trained with the vision-language representations of LLaVA 1.5.

SAE shared by both modalities. As shown in Figure 3, VL-SAE exhibits higher intra-similarity and
lower inter-similarity compared to these methods, consistently across various VLMs and different
numbers of activated concepts. This suggests that the concepts learned by VL-SAE possess more
consistent vision-language semantics and richer semantic diversity than current methods.

Qualitative Evaluation. We provide qualitative comparisons among SAE-D, SAE-S, and our VL-
SAE in Figure 4. SAE-D, which employs separate SAEs for each modality, can extract concepts
with consistent semantics within the same modality but encounters the concept mismatch issue as
illustrated in Figure 1(b). SAE-S, which utilizes a shared SAE for both modalities, demonstrates a
less significant concept mismatch compared to SAE-D. However, semantic inconsistencies still exist,
such as the conflation of the semantics of "wire" and "summary tutorials" under a single concept. In
contrast, the concepts in VL-SAE consist of samples with consistently aligned semantics.

4.3 Interpreting and Enhancing the Vision-Language Alignment

With the VL-SAE that correlates the semantics of vision and language representations with a unified
concept set, we can interpret and enhance the vision-language alignment mechanism in CVLMs and
LVLMs by comparing the semantics of both modalities using the concept set.

Interpreting Vision-Language Alignment of CVLMs. Given an image-text pair, we separately map
the corresponding vision and language representations into the unified concept set through VL-SAE.
Figure 5 depicts several examples by visualizing the concepts activated by representations for each
modality and the aligned concepts that are co-activated by both modalities. We observe that (i) single-
modal representations can activate concepts with irrelevant semantics (e.g., the representations of a
motorcycle image activate the concept of a car). This phenomenon reveals the mismatch between
representation similarity and semantic similarity in single-modal samples, which arises due to
contrastive learning’s inability to effectively model the relationships among representations within
the same modality. (ii) The aligned concepts exhibit strong semantic similarity to both the given
image and text, suggesting that the irrelevant concepts activated by a single-modal representation are
not simultaneously activated by representations of the other modality.
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Enhancing Vision-Language Alignment of CVLMs. According to the above interpretations,
mapping vision-language representations to a unified concept set enables filtering out the irrelevant
concepts activated by single-modal representations. Inspired by this, we enhance the vision-language
alignment of CVLMs by aligning their multi-modal representations in concepts. Specifically, for an
input image x,, and text x;, their semantic similarity depends not only on the cosine similarities of
their representations X,,, X;, but also on the cosine similarities of their concept activations h,,, h;.

y = cos(Xy, X;) + accos(hy, hy), (10)

where «. is a task-specific hyperparameter that controls the proportion of concept-based predictions.
We enhance the alignment mechanism of multiple CVLMs and conduct evaluations across various
zero-shot image classification datasets [55, 23, 39, 5, 16, 34,3, 17,9, 37, 48, 6, 57]. As Table 1 shows,
mapping multi-modal representations to a unified concept set for predictions achieves consistent
performance improvement across different models and datasets.

Interpreting Vision-Language Alignment of LVLMs. For LVLMs, we interpret their alignment
mechanism by visualizing the concepts activated by the vision and language representations during
the text generation process. As Figure 6 shows, given the input image of a kitchen including
ovens and stoves, the generated text exhibits object hallucinations of the microwave and refrigerator.
By analyzing the activated concepts, we observe that the semantics of both vision and language
representations are correlated with the kitchen scene but emphasize different objects. Specifically, the
vision representation focuses on ovens and stoves, whereas the language representation is associated
with microwaves and refrigerators, which correspond to the hallucinated objects. This phenomenon
indicates that the object information in the vision representation is inadequately transferred into the
language representation, resulting in hallucinations in the generated text.

Enhancing Vision-Language Alignment of LVLMs. As the hallucinations of LVLMs are correlated
to the misalignment between vision and language representations, we leverage VL-SAE to mitigate
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Figure 6: Interpreting the vision-language alignment of LLaVA1.5 with VL-SAE. Given an input
image and the text generated by LVLMs, we visualize the concepts activated by corresponding
vision and language representations. The hallucination concept activated by language representations
facilitates a deeper understanding of object hallucinations in the text.

Table 2: Experimental results on POPE for hallucination elimination.
LLaVALl.5 | Qwen-VL

Setting | Decoding |
| | Accuracy Precision Recall F1 Score | Accuracy Precision Recall F1 Score

Regular 82.93 92.01 7213  80.87 85.20 95.99 7347 83.23
Random VCD 85.53 93.68  76.20  84.04 86.33 96.11 75.73  84.71
VL-SAE | 87.07 97.28 76.27 85.50 86.47 9715 75.13  84.74

Regular 81.13 8796 7213  79.27 83.80 9447 7180  81.59
Popular VCD 83.63 89.51 7620 8231 85.73 9430 76.10 8421
VL-SAE | 85.87 9439 7627  84.37 85.97 96.15 7493  84.22

Regular 78.67 83.03 72.07 77.16 82.33 89.88  72.87  80.49
Adversarial |  VCD 81.10 8447 7620  80.13 83.77 90.03 7593 82.39
VL-SAE | 83.60 89.44 76.20 82.29 86.10 97.29 7426  84.23

hallucinations by enhancing the vision-language alignment at the concept level. Specifically, with
the vision and language representations x,, X;, we obtain a refined language representation X; by
aligning its concept activation h; with vision concept activation h,, through VL-SAE,

X = (1 - Oél)Xl + OllDl(Dls(hl + ﬁhv)) (11

The modified language representation X; is utilized to mitigate hallucinations through contrastive
decoding [24]. More implementation details are provided in Appendix A. Table 2 shows the perfor-
mance comparisons on the POPE [28] benchmark. As a method for representation interpretation,
VL-SAE surpasses the VCD [24] that specializes in hallucination elimination. The effectiveness of
VL-SAE further highlights the potential of representation interpretation methods to improve model
performance on downstream tasks by enhancing the vision-language alignment.

4.4 Ablation Studies & Visualizations

Effects of the VL-SAE Architecture. The ablation studies of the proposed components are provided
in Table 3. First, replacing the standard encoder with the cosine-based encoder (+Cosine-based
Encoder), which activates hidden neurons based on cosine similarity, can improve the quality of
learned concepts, as vision-language representations are explicitly aligned through cosine similarity.

Moreover, replacing the co- Table 3: Ablation studies of the proposed architecture.
sine similarity with the dis- | OpenCLIP-VITH/14 | LLaVALS
tance proposed in Equation 4
can improve the concept
quality (+Distance-based En-

[Intra-Sim. (1) Inter-Sim. (})|Intra-Sim. (1) Inter-Sim. ({)
Standard SAE ‘ 0.1890 0.1688 ‘ 0.2086 0.1902

EP] +Auxiliary Autoencoder - - 0.2092 0.1908
coder). This is because the o 0 A pncoder 0.1891 0.1518 0.2103 0.1902
distance satisfies the triangle | pigance-based Encoder |  0.2016 0.1357 0.2216 0.1842
inequality, enabling each hid-  +Modality-specific Decoder| ~ 0.2134 0.1149 0.2257 0.1828
den neuron to be activated -Auxiliary Autoencoder - - 0.2084 0.2034

by more semantically similar
visual-language representations. Additionally, the improvement achieved by adopting modality-



Table 4: Concept quality of VL-SAE pre-trained with ~ Table 5: Ablation studies of the sparsifi-

different proportions of the CC3M dataset. cation method in VL-SAE.

Data Percentage 10% 30% 50% 70% 100% Method  Intra-Similarity (1)  Inter-Similarity (])
Intra-Similarity (1) 0.2029  0.2129 0.2196 0.2222  0.2299 L1 0.2142 0.1809
Inter-Similarity () 0.1597 0.1306  0.126  0.1256  0.1220 Top-K 0.2442 0.1373
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Figure 7: Qualitative evaluation of the learned concept set. We provide the maximally activating
images and texts for several concepts of VL-SAE trained with the representations of LLaVA 1.5.

specific decoders stems from mitigating the adverse influence of distributional discrepancies in
multi-modal representations on the encoder. Furthermore, directly training the VL-SAE with orig-
inal representations of LVLMs (-Auxiliary Autoencoder) causes the failure of other components,
highlighting the necessity of transforming the alignment mechanism to an explicit form.

Effects of the Dataset Volume. In Table 4, we train VL-SAE models with different proportions of the
CC3M dataset and report their Intra-Similarity and Inter-Similarity. As the volume of data increases,
the Intra-Similarity (0.2029—0.2299) and Inter-Similarity (0.1597—0.1220) of the concepts learned
by VL-SAE improve accordingly. This suggests that VL-SAE can learn higher-quality concepts by
leveraging larger amounts of data in a self-supervised manner.

Effects of the Sparsification Method. In Table 5, we compare the performance of utilizing Top-
k [45, 44] and L1 loss [7] for sparsification. The coefficient of L1 loss is set to le-4. We find
that employing Top-K sparsification yields superior concept quality compared to L1 loss, as the
latter lacks precise control over the number of activated hidden neurons. This limitation hinders its
ability to effectively balance sparsity in neuron activation with the self-supervised representation
reconstruction loss. Our results are consistent with previous studies [13], which also indicate that
Top-K sparsification is a more effective and scalable approach.

Visualizations of Concepts Learned by VL-SAE. In Figure 7, we visualize the learned concepts of
VL-SAE, which are represented by their maximally activating images and texts. The images and texts
of the same concept exhibit highly similar semantics, demonstrating that VL-SAE can effectively
alleviate the concept mismatch. Additionally, VL-SAE obtains concepts with abstract semantics
rather than focusing exclusively on semantics related to visual appearance. For example, concept
5478 is style-agnostic and activated by both natural and cartoon images, which depict humans lying
on a beach. Concept 7301 is color-agnostic and activated by images of happy new year posters.

5 Conclusion

In this work, we map the semantics of vision-language representations into a unified concept set
with VL-SAE, which is trained by encouraging the consistency of its hidden activations among
semantically similar representations under self-supervision. To measure the semantic similarity
of multi-modal representations, we perform their alignment in an explicit form that correlates the
semantic similarity with cosine similarity. To ensure the activation consistency among semantically
similar representations, we propose the VL-SAE architecture, including a distance-based encoder and
two modality-specific decoders. Experimental results demonstrate the superior ability of VL-SAE
to interpret and enhance the alignment mechanism of VLMs. For future work, we will apply the
proposed method to more VLMs and investigate its capabilities in additional tasks such as model
unlearning and continuous learning. For limitations discussion, please refer to Appendix C.4.
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Figure A8: Activation count of each concept in VL-SAE constructed for LLaVA1.5 [32].

Table A6: The o value of OpenCLIP with varying model sizes in zero-shot image classification tasks.

DTD
Eurosat
SST2
STL10

£ | Caltech101
Cifar10
£ | Country211

& | Cifar100

ViT-B/32 0.6 01 02 01 05 04 10 01 03 01 02
ViT-B/16 | 06 05 03 01 01 01 01 05 05 10 01 02 01 02
ViT-L/14 | 06 04 03 03 01 03 02 01 02 10 01 01 09 0.1
ViT-H/14 | 04 08 06 01 03 07 01 09 05 10 01 05 02 0.1

A More Implementation Details

A.1 Details of the VL-SAE Construction and Evaluation

For the InfoNCE loss utilized in Section 3.2, given an image-text pair (x$,x{) and other N with inter-
mediate representations {(x{ ;,Xf ), .., (X{ y,X{ »)} Which denote the (x{~,x; ™) in Equation 3,
the InfoNCE loss can be represented by

c0s(Oxe xe) cos(exg x€)
exp(——1) ) exp(——1)
—log
N c05(0xg ¢ ) N cos(Oxe | x¢)

> iy eXp(———) > im1 exp(———)
(A12)
where 7 denotes the temperature hyperparameter, which is set to 0.07. The InfoNCE loss is computed
for image-text pairs within the same batch and aggregated to train the auxiliary autoencoder.

v

InfoNCE(x{,x{, x5 ,x; ) = —log

For the construction of the VL-SAE and auxiliary autoencoder, all the modules except for the distance-
based encoder are implemented with a linear layer. We set the hidden ratio to 8 in both CVLMs
and LVLMs, indicating that the number of neurons in the hidden layer is 8 times the representation
dimension. Unless otherwise specified, the number of activated neurons for each representation is set
to 256 for all CVLMs and LVLMs. For the quantitative evaluation of the concept set, we randomly
select several concepts from the autoencoder to compute their intra-similarity and inter-similarity. We
calculate these metrics through five random trials, and the average value is adopted to be presented in
Figure 3. The impact of the number of concepts used for evaluation is shown in Table A7. The metrics
showed no significant differences when more than 100 concepts are used. Since the evaluation needs
to be repeated multiple times, we select 100 concepts in each iteration for efficient evaluation.

For the evaluation metrics in Figure 3, for the i-th neuron, we first obtain its maximally activating
images and texts. Then, these images and texts are transformed into representations with a pre-trained
OpenCLIP-ViT-H/14 [41]. The averaged image and text representations x , x! are utilized to compute
the Inter-Similarity and Inter-Similarity metrics. The Inter-Similarity is computed as the average
cosine similarity between the image and text representations within the same neuron.

h
SiMintra = % > " cos(by: xi)- (A13)
=1
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Table A7: Impact of the number of concepts on the evaluation metrics based on OpenCLIP-ViT-B-16.
Concept Num. 100 200 300 400 500

Intra Similarity (SAE-S)  0.2200 0.2257 0.2281 0.2245 0.2247
Intra Similarity (VL-SAE) 0.2445 0.2508 0.2489 0.2476 0.2469

Inter Similarity (SAE-S)  0.1347 0.1293 0.1300 0.1306 0.1308
Inter Similarity (VL-SAE) 0.1230 0.1214 0.1182 0.1181 0.1195

Table A8: Number of concepts within different SAEs.
Method  Hidden Neuron  Dead Neuron Concept Num.

SAE-D 32768 (4096 x8) 54 32714
SAE-S 32768 (4096 x8) 46 32722
VL-SAE 32768 (4096x8) 15 32753

For the Inter-Similarity, it is computed as the average cosine similarity between the image and text
representations within the different neurons.

o h
. 1
Siminter = m Z Z cos(&xi,x{). (A14)

i=1 j#i

For the resource requirements, the VL-SAE models for different VLMs [41, 32, 1] are all trained
using a single NVIDIA GeForce RTX 4090 GPU. For CVLM [41], full-precision training is employed
to ensure optimal performance and stability. For LVLM [32, 1], half-precision (FP16) training is
utilized to effectively reduce resource requirements while maintaining model efficiency.

A.2 Number of Concepts in VL-SAE

In Table A8, we provide the number of concepts in different SAE architectures based on LLaVA 1.5
with 4096 feature dimensions. The number of concepts is upper bounded by the number of hidden
neurons in SAEs. Moreover, the number of concepts is influenced by the training process and SAE
architectures. This stems from the inevitable existence of dead neurons in SAEs [13], which are never
activated. The results show that VL-SAE learns more concepts compared to existing methods.

A.3 Details of Interpreting Representations with VL-SAE.

We observe that a subset of concepts in VL-SAE are activated at high frequencies, as Figure A8
shown, i.e., almost all samples activate these concepts. This frequent activation makes it challenging
for these concepts to be associated with specific semantics, as shown in Tale A9. Consequently, in
the interpretation process, we divide the target representation’s neuron activation by the average
activation value of each neuron, thereby mitigating the impact of these high-frequency concepts on
the interpretation.

Table A9: The concepts of VL-SAE relevant to a kitchen image with and without re-weighting. All
concepts are shown in text form. The concept corresponding to the high-frequency neuron is denoted
by (¥), which exhibits irrelevant semantics with the input kitchen image.

Before re-weighting After re-weighting
toast popping out of a toaster toast popping out of a toaster
hard rock artist performs (*) burning on a gas stove in the kitchen

burning on a gas stove in the kitchen cans in a refrigerator in a restaurant
cans in a refrigerator in a restaurant  this is a gas stove with electric ovens
this is a gas stove with electric ovens  gas fueled rings on a domestic cooker
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Figure A9: More concepts learned by VL-SAE. We provide the maximally activating images and
texts for several concepts of VL-SAE trained for LLaVAL.S.

A.4 Details of the Zero-shot Image Classification Task

Considering the varying degrees of alignment between the concept set of VL-SAE and
the target categories of the downstream task, we experiment with multiple values of a €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and select the one that performs best. The selected val-
ues are presented in Table A6. We observed that models of varying sizes tended to select different
« values, whereas for certain datasets like MNIST and Pets, the optimal alpha values remained
consistent across different models. Moreover, we observe that the optimal alpha values for some
datasets, such as CIFAR-10 and Caltech101, are significantly higher than those for other datasets.
This discrepancy stems from the strong correlation between their target categories and the dataset
utilized to train the VL-SAE model.

A.5 Details of the Hallucination Elimination Task

With the modified representation X; in Equation 11, we adopt the contrastive decoding strategy [24]
to mitigate the hallucination in LVLMs. Specifically, with the representations of vision and language
tokens x,; € RM*? x;, € RVM*?  the model generates two distinct output distributions: (i) one
conditioned on the original representations; and (ii) the other conditioned on the original vision
representations and the language representations with their mean value across the token dimension
replaced by X;.

Kye[i] = xpe[i] — %1 + %y, (A15)

where x;;[i] € R? denotes the representation of the i-th text token, x; € R? denotes the language
representations averaged across the token dimension. Then, a new contrastive probability distribution
is computed by exploiting the differences between the two initially obtained distributions. The new
contrastive distribution is formulated as

Pcd(y | th,Xlt75<lt) = softmax[(l - Cch) logitg(y | th>xlt) + Qg logitg(y | th>5(lt)]~ (A16)

Larger a.q4 values indicate a stronger amplification of differences between the two distributions.
Moreover, we also utilize the adaptive plausibility constraints [27] that conduct contrastive decoding
contingent upon the confidence level (.4 associated with the output distribution with original repre-
sentations. In practice, we set a4 and S.4 to 0.6 and 0.8, respectively. Additionally, the values of «
and ( in Equation 11 are determined to be 0.7 and 0.9, respectively.
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Regular:

The image features a smiley face drawn on the inside shiny surface of a
black part, either including a metal or a plastic part. There is a gap, or a
spotlight, between the metal or plastic part and it appears to be sitting over
N | a motor. The face looks out of place in such an environment, adding a playful
touch to the scene.

With VL-SAE:

The image features a close-up view of a black object, possibly a wheel or a
piece of machinery, with a sticker on it. The sticker has a picture of a
smiling face and the words "Fender Blender" written below it. The face
appears to be a cartoon-like character, adding a playful touch to the object.

Regular:

The image shows a gray bird perched on top of a metal fence. The bird is
the main focus of the scene, and it appears to be looking carefully at
something in the distance. Near the bird, there is another bird sitting
farther down the fence. The entire scene conveys a close-up shot of the
birds on the fence.

With VL-SAE:

The image shows a small bird perched on top of a metal fence. The bird is
standing on the fence, looking at the camera. The fence is made of metal
bars, and the bird is positioned in the middle of the fence. The fence is
composed of several metal bars, creating a stricter and more secure barrier.
The scene captures the bird's curiosity and its interaction with the fence.

Figure A10: Ilustration of generated captions by different decoding methods with LLaVA 1.5 as the
backbone model. Hallucinated content is highlighted in purple.

Table A10: Human evaluation of concepts learned by different SAEs.
Method  OpenCLIP-ViT/H LLaVA 1.5

SAE-D 0.6 0.1
SAE-S 335 35.8
VL-SAE 65.9 64.1

B More Experimental Results

B.1 Human Evaluation

We randomly select 100 concepts from SAE-D, SAE-S, and VL-SAE, respectively, and invite 10
participants to evaluate these concepts. For each iteration, participants are required to evaluate the
quality of three given concepts and select the one with the highest quality. The method corresponding
to the selected concept is awarded one point. The concept quality of these methods is measured by
the average score assigned by all participants. As Table A10 shows, concepts learned by VL-SAE
possess higher quality than those learned by other methods. This comparison further highlights the
effectiveness of our proposed VL-SAE.

B.2 More Results for Hallucination Elimination

Beyond the “Yes-or-No” discriminative evaluations on the POPE datasets, we evaluate the VL-SAE
on open-ended caption generation using the CHAIR benchmark [40]. We randomly select 500
samples from CHAIR for evaluation and calculate the average of the results obtained from five
independent trials. The results in Table A11 show the superior performance of VL-SAE over the
compared methods. Specifically, VL-SAE reduces object hallucinations in generated captions, as
evidenced by lower CHAIR g and CHAIR; scores. In addition, VL-SAE enhances the detail of the
generated captions, as indicated by higher Recall scores.
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Table A11: Results on the subset of CHAIR.
Model Decoding CHAIRg () CHAIR; (J) Recall () Avg. Len
g g

Regular 53.4 17.6 72.3 103.2
LLaVAL.5 VCD 55.0 16.3 76.0 102.5
VL-SAE 47.8 13.3 76.3 100.7
Regular 44.6 16.1 60.7 97.2
Qwen-VL VCD 42.6 13.9 60.0 94.1
VL-SAE 39.6 10.7 63.3 94.0

Table A12: Training cost of VL-SAE based on representations of OpenCLIP.
Base Model  ViT-B/16  ViT-L/14  ViT-H/14

FLOPs 0.03G 0.06G 0.10G
Training Time 132s 228s 446s

B.3 Resource Requirements of VL-SAE

Training Costs. Table A12 presents the training cost of VL-SAE. First, as the model size increases,
the dimensionality of its learned representations grows, leading to higher computational demands for
training VL-SAE. Second, despite this scaling trend, the overall training cost of VL-SAE remains
remarkably low. For instance, when compared to LoRA [18], a widely adopted method known
for its computational efficiency, training VL-SAE on OpenCLIP-ViT-B/16 representations incurs
significantly fewer FLOPs (0.03G v.s. 1.91G). This minimal computational overhead stems from the
small parameter volume in VL-SAE, which is approximately equivalent to that of two linear layers.

Inference Cost. Table A13 shows the parameters and computation cost of VL-SAE. For inference
speed, we present the influences of VL-SAE in Table A14. The results indicate that VL-SAE has
a negligible impact. This is because VL-SAE comprises only two linear layers with significantly
smaller parameters than pre-trained VLMs.

B.4 Additional Ablation Studies

Selection of Hyperparameter a.. We first provide accuracy comparisons under three settings:
baseline (o, = 0), task-agnostic (. = 0.1), and task-specific (. determined by tasks). The results
are shown in Table A15. First, the task-agnostic scheme performs better than the baseline (72.4%
v.s. 72.2% on ViT-L, and 77.2% v.s. 76.9% on ViT-H). This indicates that o« does not need to
be task-specific for performance improvement and can generalize across tasks. However, these
tasks originate from different domains and exhibit distinct preferences for hyperparameters [29], as
evidenced by the best performance of the task-specific scheme. If the objective is to achieve optimal
performance, the « values of each task should be determined individually, To determine the v value
of each task, we conduct experiments with multiple values @ € [0, 1] at intervals of 0.1 and select the
one that performs the best. Note that the cost of conducting multiple experiments is very low. For
instance, when using the Food-101 dataset, each experiment on a single NVIDIA 4090 GPU takes
only approximately 90 seconds.

Selection of Hyperparameter «;. For the hyperparameter oy in Equation 11, We conduct experiments
by selecting values at intervals of 0.1 within the range of [0.5 — 0.9], and the one with the best
performance is selected. We report the performance under different values in Table A16. The highest
performance across different settings is achieved at a; = 0.7.

Table A13: Additional parameter and computation cost of VL-SAE.

Model Total Param. VL-SAE Param. ‘ Total FLOPs  VL-SAE FLOPs
LLaVA-1.5 7529M 467M 14.03G 0.875G
OpenCLIP-ViT-H 1011M 25M 3.15G 0.034G
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Table A14: Throughput (sample/s) of the original models and those equipped with VL-SAE.
Method OpenCLIP-ViT-B  OpenCLIP-ViT-L  OpenCLIP-ViT-H LLaVA 1.5

Original 935.32 213.62 99.45 11.34
+VL-SAE 935.13 213.42 99.29 10.69

Table A15: Ablation of hyperparameter «. in Equation 10.

Method OpenCLIP-ViT-L  OpenCLIP-ViT-H
baseline (a. = 0) 72.2 76.9
task-agnostic (o, = 0.1) 72.4 77.2
task-specific (o determined by tasks) 72.9 77.8

CC3M training. In the training process of VL-SAE, the CC3M dataset is employed to integrate
VL-SAE as a general plug-in for VLMs, rather than to augment the intrinsic capabilities of these
VLMs. In our training strategies, the VLM parameters remain frozen without any adjustments. To
further evaluate the impact of CC3M dataset, we provide comparisons between the base model (CLIP-
ViT-B/16), the base model fine-tuned by CC3M, and the base model equipped with VL-SAE in
Table A17. The results show that fine-tuning does not lead to improved performance on downstream
tasks. This is because CC3M serves as a subset of the VLM pre-training dataset. It does not provide
the base model with any additional task-relevant information. The superior performance of VL-SAE
compared to the fine-tuning model indicates that the improvement stems from the mapping from
representations to concepts, rather than the incorporation of CC3M.

B.5 Additional Visualizations
B.5.1 Concepts Learned by VL-SAE

We provide more visualization of the concepts learned by VL-SAE in Figure A9. These results
highlight the superior capability of VL-SAE in acquiring a vision-language concept set with rich
semantics, such as natural landscapes, urban environments, human expressions, and maps.

B.5.2 Cases for Hallucination Elimination

We present qualitative examples of different decoding methods in Figure A10. Regular decoding [32]
often produces object hallucinations, especially in the latter part of the outputs. In contrast, utilizing
VL-SAE effectively mitigates the object hallucinations by enhancing the vision-language alignment
at the concept level during the decoding process.

B.5.3 Visualization of the Representations and Learnable Weights

Figure A1l illustrates the t-SNE [54] visualization for the vision-language representations of VLMs
and the learnable weights in the encoder of the VL-SAE. We observe that the majority of learnable
weights are positioned midway between vision and language representations, rather than being
skewed toward either modality. This position enables the corresponding neurons to exhibit consistent
activation values across different modalities, which helps map the vision-language representations
into a unified concept set.

Table A16: Ablation studies on the hyperparameter «; of Equation 11. All experiments are conducted
on POPE benchmark with LLaVA 1.5.

Setting 0.5 0.6 0.7 0.8 0.9
Random 8529 8532 8550 8541 85.31

Popular 84.09 84.15 8437 8423 84.12
Adversarial 81.92 82.10 8229 8195 81.93
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Table A17: Ablation studies on the impact of the CC3M dataset.

Method Base Model Base Model+Fine-tuning Base Model+VL-SAE
Mean Accuracy 69.8 69.7 70.4
OpenCLIP (ViT-L-14) OpenCLIP (ViT-H-14)
®  Vision Representation "?5359 ®  Vision Representation %Y

Language Representation ® Language Representation

Learnable Weights ®$, ©  Learnable Weights
e ®

Figure A11: Visualizations of the vision-language representations in the VLMs and the learnable
weights in the VL-SAE encoder. Experiments are conducted with t-SNE [54] for dimension reduction.

C Discussion

C.1 Criterion of Representation Selection in LVL.Ms

We extract the representations from the outputs of the 29-th layer in LLaVA 1.5 and the 26-th
layer in Qwen-VL. These layers are chosen because the representations in the top layers tend to
be more interpretable in terms of concepts [21]. Furthermore, at these layers, both vision and
language representations preserve their respective information effectively. As shown in Figure A12,
starting from the 27-th layer of Qwen-VL, the distributions of the two types of representations begin
to converge, leading to a potential loss of distinct visual information. This convergence hinders
the process of leveraging vision representations to constrain language representations for reducing
hallucinations.

LLaVA 1.5 layer-27 LLaVA 1.5 layer-28 LLaVA 1.5 layer-29
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Figure A12: Visualizations of the vision-language representations in different layers of VLMs.
Experiments are conducted with t-SNE [54] for dimension reduction.
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C.2 Metrics for Evaluating the Concept Set

For the quantitative evaluation of concept collections, we utilized CLIP similarity for automated
assessment in Figure 3 and Table 3. However, the numerical differences in CLIP similarity might
not entirely capture the improvements in concept quality achieved by VL-SAE relative to other
methods. This is because the numerical gap in CLIP similarity between semantically similar and
dissimilar image-text pairs can sometimes be minimal. Therefore, it is important to establish a more
comprehensive evaluation mechanism for SAEs based on multi-modal representations in the future.

C.3 Discussions with attribution-based methods

We discuss and compare VL-SAE, a concept-based approach, with attribution-based methods [63, 4]
for VLMs, enabling users to select the most appropriate method based on specific application scenar-
ios. Attribution-based methods generate a heatmap for each input sample to indicate the importance
of individual components of the input data (e.g., image pixels), whereas VL-SAE constructs a concept
set across varying samples to interpret the semantics of their hidden representations.

Based on their paradigms, we compare them in the perspective of intuitiveness, expressivity and
ability to improve model performance. (i) Intuitiveness. Compared with VL-SAE, attribution-based
methods offer a more intuitive interpretation, as they visualize attribution scores directly on input
images. (ii) Expressivity. Compared with attribution-based methods, VL-SAE exhibits stronger
expressivity as it reveals how the model understands the semantics of input data with concepts, rather
than simply providing numerical information to identify the important image regions. (iii) Ability to
improve model performance. In contrast to attribution-based methods that only serve as an observer
for model prediction, VL-SAE can act as an intervener to improve model performance by modifying
hidden representations during inference.

C.4 Limitation Discussion

Despite successfully correlating the semantics of vision-language representations with a unified con-
cept set, the VL-SAE encounters the same challenges as the SAE architectures for other models (e.g.,
LLMs), such as dead neurons [13], limited relational modeling, and the impact of high-frequency
neurons on interpretation results as shown in Figure A8. Additionally, the strategy of enhancing the
alignment mechanism with VL-SAE is simple and fails to fully unlock the potential of the unified
concept set. To address these limitations, we anticipate future work to design SAEs that encourage
the neurons to be uniformly activated, incorporate relational modeling [49, 50] among concepts, and
enable more effective integration into the prediction processes of VLMs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Appendix C.4
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Section 4.1, Appendix A and the codes in the supplementary.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25



Answer: [Yes]
Justification: Please refer to the codes in the supplementary.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper does not report error bars following the practice of previous
studies [7, 30].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. Because it just focuses on
the internel mechanism of pre-trained models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer to Section 4.1 and Appendix A.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Please refer to the codes in the supplementary.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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