

000 001 002 003 004 005 DUAL-OBJECTIVE REINFORCEMENT LEARNING WITH 006 NOVEL HAMILTON-JACOBI-BELLMAN FORMULATIONS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023

Paper under double-blind review

024 ABSTRACT 025

026 Hard constraints in reinforcement learning (RL) often degrade policy performance.
027 Lagrangian methods offer a way to blend objectives with constraints, but require
028 intricate reward engineering and parameter tuning. In this work, we extend recent
029 advances that connect Hamilton-Jacobi (HJ) equations with RL to propose two
030 novel value functions for dual-objective satisfaction. Namely, we address: 1) the
031 **Reach-Always-Avoid** (RAA) problem – of achieving distinct reward and penalty
032 thresholds – and 2) the **Reach-Reach** (RR) problem – of achieving thresholds of
033 two distinct rewards. In contrast with temporal logic approaches, which typically
034 involve representing an automaton, we derive explicit, tractable Bellman forms
035 in this context via decomposition. Specifically, we prove that the RAA and RR
036 problems may be rewritten as compositions of previously studied HJ-RL problems.
037 We leverage our analysis to propose a variation of Proximal Policy Optimization
038 (**DOHJ-PPO**), and demonstrate that it produces distinct behaviors from previous
039 approaches, out-competing a number of baselines in success, safety and speed
040 across a range of tasks for safe-arrival and multi-target achievement.

041 1 INTRODUCTION 042

043 The development of special Bellman equations from the Hamilton-Jacobi (HJ) perspective of dynamic
044 programming (DP) has illustrated a novel route to safety and target-achievement in reinforcement
045 learning (RL) Fisac et al. (2019); Hsu et al. (2021). In comparison with the canonical RL discounted-
046 sum cost and corresponding additive DP update, these equations, namely the Safety Bellman Equation
047 (SBE) and Reach-Avoid Bellman Equation (RABE), propagate the minimum (worst) penalty and
048 maximum (best) reward, yielding a value function defined by the outlying performance of a trajectory.
049 In mission-critical applications, where avoiding failure is a necessary condition, these equations have
050 proved invaluable in the field of safe control Mitchell et al. (2005); Ames et al. (2016). By focusing
051 on extremal values rather than discounted sums, the HJ-RL equations induce behaviors that act with
052 respect to the best or worst outcomes in time-optimal fashions, performing far more safely than
053 Lagrangian methods Ganai et al. (2023); So et al. (2024). Accordingly, these updates yield policies
054 with significantly improved performance in target-achievement and obstacle-avoidance tasks over
055 long horizons Yu et al. (2022a;b), relevant to fundamental and practical problems in many domains.

056 In this work, we advance the existing HJ-RL formulations by generalizing them to compositional
057 problems. To date, the HJ-RL Bellman equations are limited to three operations: Reach (R), wherein
058 the agent seeks to reach a goal (achieve a reward threshold), Avoid (A), wherein the agent seeks
059 to avoid an obstacle (avoid a penalty threshold), and Reach-Avoid (RA), where the agent reaches
060 a goal while avoiding obstacles on the way. In this light, we extend the HJ-RL Bellman equations
061 to two complementary problems concerned with dual-satisfaction, namely the **Reach-Reach** (RR)
062 problem for reaching two goals and the **Reach-Always-Avoid** (RAA) problem for continuing to
063 avoid hazards after reaching a goal, demonstrated in Figure 1. We prove that the RAA and RR have a
064 fundamental structure such that their Bellman equations may be decomposed into combinations of
065 SBEs and RABEs. From this theory, we devise **DOHJ-PPO**, a novel algorithm for learning the RAA
066 and RR values which bootstraps concurrently solved decompositions for coupling on-policy PPO
067 roll-outs. Notably, this allows one to automatically learn to satisfy dual-objective tasks, for example,
068 in the RAA, the F16 learns to fly into the desired airspace without crashing afterward (Figure 1, top
069 middle-left), and in the RR case, the Hopper learns to jump into a target without diving so it may
070 then achieve the second target (Figure 1, bottom left). The RAA and RR problems are distinct from
071 both standard sum-of-reward values and the simpler HJ-RL formulations, providing new perspectives
072 and performant tools for constrained decision-making.

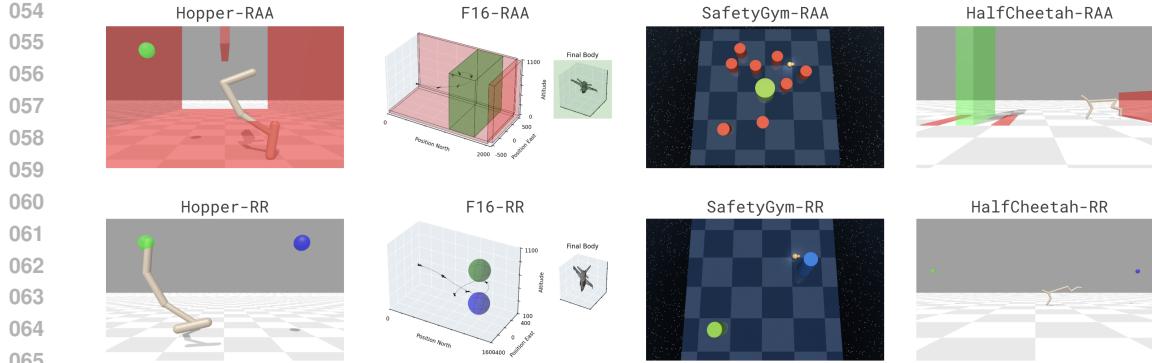


Figure 1: **Depiction of the Reach-Always-Avoid (RAA) and Reach-Reach (RR) Tasks.** In the RAA tasks, the zero-level set of the rewards (goals) and penalties (obstacles) are depicted in green and red respectively, while in the RR problem, the zero-level set of the two rewards (two goals) are depicted in green and blue. The RAA value is defined by the minimum of the minimum penalty and maximum reward, inducing the agents to enter the goals at some time without ever entering the obstacles. The RR value is defined by the minimum of the two maximum rewards, inducing the agents to enter both goals at some time.

Our contributions include:

1. We introduce novel value functions corresponding to the RAA and RR problems.
2. We prove that these value functions and their optimal policies can be decomposed into reach, avoid, and reach-avoid value functions (Theorems 1 and 2).
3. We demonstrate the nature of the RAA and RR values and their optimal policies in a simple grid-world example with deep Q -learning (DQN) (Figure 2).
4. We propose **DOHJ-PPO** to solve these value functions, which bootstraps concurrently solved decompositions for effectively coupling the on-policy rollouts (Section 7.2).
5. In continuous control tasks, we showcase that with *little to no* tuning, **DOHJ-PPO** is more successful, safer and faster than Lagrangian and existing HJ-RL baselines (Figure 4).

2 RELATED WORKS

This work involves aspects of safety (e.g. hazard avoidance), liveness (e.g. goal reaching), and balancing competing objectives. We summarize the relevant related works here.

Constrained and Multi-Objective RL. Constrained Markov decision processes (CMDPs) maximize the expected sum of discounted rewards subject to an expected sum of discounted costs, or an instantaneous safety violation function remaining below a set threshold Altman (2021); Achiam et al. (2017a); Wachi and Sui (2020). CMDPs are an effective way to incorporate state constraints into RL problems, and the efficient and accurate solution of the underlying optimization problem has been extensively researched, first by Lagrangian methods and later by an array of more sophisticated techniques Stooke et al. (2020); Li et al. (2024); Chen et al. (2021); Miryoosefi and Jin (2021); Yang et al. (2020). Multi-objective RL is an approach to designing policies that obtain *Pareto-optimal* expected sums of discounted *vector-valued* rewards Wiering et al. (2014); Van and Nowé (2014); Cai et al. (2023), including by deep- Q and other deep learning techniques Mossalam et al. (2016); Abels et al. (2019); Yang et al. (2019). By contrast, this work explicitly balances rewards and penalties in a way that does not require specifying a Lagrange multiplier or similar hyperparameter. Moreover, our work treats goal-reaching and hazard-avoidance as hard constraints, and the learned value function has a direct interpretation in terms of the constraint satisfaction.

Goal-Conditioned RL (GCRL). GCRL simultaneously learns optimal policies for a range of different (but typically related) tasks Liu et al. (2022); Plappert et al. (2018); Ren et al. (2019); Ma et al. (2022); Campero et al. (2020); Trott et al. (2019); Eysenbach et al. (2022); Ma et al. (2022); Campero et al. (2020). In GCRL, states are augmented with information on the current goal. While these goals are in their simplest form mostly independent, some work extends GCRL to more sophisticated composite tasks Chane-Sane et al. (2021). Our work primarily focuses on composing specific learned tasks rather than learning general tasks simultaneously.

108 **Linear Temporal Logic (LTL), Automatic State Augmentation, Automatons, and Generalized**
 109 **Objective Functions, .** Many works have been explored that merge LTL and RL, canonically focused
 110 on Non-Markovian Reward Decision Processes (NMRDPs) Bacchus et al. (1996). Here, the reward
 111 gained at each time step may depend on the previous state history. Many of these works convert these
 112 NMRDPs to MDPs via state augmentation Bacchus et al. (1997); Thiebaut et al. (2006); Camacho
 113 et al. (2021); Icarte et al. (2018); Camacho et al. (2019). Often the augmented states are taken
 114 to be products between an ordinary state and an automaton state, where the automaton is used to
 115 determine "where" in the LTL specification an agent currently is. Other works using RL for LTL tasks
 116 involve MDP verification Brázil et al. (2014), hybrid systems theory Cohen et al. (2023), GCRL
 117 with complex LTL tasks Qiu et al. (2023), almost-sure objective satisfaction Sadigh et al. (2014),
 118 incorporating (un)timed specifications Hamilton et al. (2022), and using truncated LTL Li et al.
 119 (2017). While the problems we attempt to solve (e.g. reaching multiple goals) can be thought of as
 120 specific instantiations of LTL specifications, our approach to solving these problems is fundamentally
 121 different from those in this line of work. Our state augmentation and subsequent decomposition of the
 122 problem are performed in a specific manner to leverage new HJ-based methods on the subproblems.
 123 Through our specific choice of state augmentation, we still prove that we can achieve an optimal
 124 policy in theory (and approximately so in practice) despite the non-NMRDP setup. There is also
 125 significant literature on generalized objective functions in RL Wang et al. (2020); Cui and Yu (2023);
 126 Tang et al. (2025), but these works are either not able to or are not tailored to simultaneously handle
 127 multiple rewards/penalties in the context of safe optimal control, which is where our decompositional
 128 approach becomes useful. On the other hand, works that do try to handle multiple rewards and
 129 penalties (including by decomposition) still use discounted-sum-of-rewards objectives van Seijen
 et al. (2017); Pitis (2023); Lin et al. (2020).

130 **Hamilton-Jacobi (HJ) Methods.** HJ is a dynamic programming-based framework for solving reach,
 131 avoid, and reach-avoid tasks Mitchell et al. (2005); Fisac et al. (2015). The value functions used in
 132 HJ have the advantage of directly specifying desired behavior, so that a positive value corresponds
 133 to task achievement and a negative value corresponds to task failure. Recent works use RL to find
 134 corresponding optimal policies by leveraging the unconventional Bellman updates associated with
 135 these value functions So et al. (2024); Hsu et al. (2021); Fisac et al. (2019). We build on these works
 136 by extending these advancements to more complex tasks, superficially mirroring the progression from
 137 MDPs to NMRDPs in the LTL-RL literature. Additional works merge HJ and RL, but do not concern
 138 themselves with such composite tasks Ganai et al. (2023); Yu et al. (2022a); Zhu et al. (2024).

139 3 PROBLEM DEFINITION

140 Consider a Markov decision process (MDP) $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, f \rangle$ consisting of finite state and action
 141 spaces \mathcal{S} and \mathcal{A} , and *unknown* discrete dynamics f that define the deterministic transition $s_{t+1} =$
 142 $f(s_t, a_t)$. Let an agent interact with the MDP by selecting an action with policy $\pi : \mathcal{S} \rightarrow \mathcal{A}$ to yield
 143 a state trajectory s_t^π , i.e. $s_{t+1}^\pi = f(s_t^\pi, \pi(s_t^\pi))$.

144 In this work, we consider the **Reach-Always-Avoid** (RAA) and **Reach-Reach** (RR) problems, which
 145 both involve the composition of two objectives, which are each specified in terms of the best reward
 146 and worst penalty encountered over time. In the RAA problem, let $r, p : \mathcal{S} \rightarrow \mathbb{R}$ represent a reward
 147 to be maximized and a penalty to be minimized. We will let $q = -p$ for mathematical convenience,
 148 but for conceptual ease we recommend the reader think of trying to minimize the largest-over-time
 149 penalty p rather than maximize the smallest-over-time q . In the RR problem, let $r_1, r_2 : \mathcal{S} \rightarrow \mathbb{R}$ be
 150 two distinct rewards to be maximized. The agent's overall objective is to maximize the *worst-case*
 151 outcome between the best-over-time reward and worst-over-time penalty (in RAA) and the two
 152 best-over-time rewards (in RR), i.e.

$$(RAA) \left\{ \begin{array}{ll} \text{maximize (w.r.t. } \pi) & \min \left\{ \max_t r(s_t^\pi), \min_t q(s_t^\pi) \right\} \\ \text{s.t.} & s_{t+1}^\pi = f(s_t^\pi, \pi(s_t^\pi)), \\ & s_0^\pi = s, \end{array} \right.$$

$$(RR) \left\{ \begin{array}{ll} \text{maximize (w.r.t. } \pi) & \min \left\{ \max_t r_1(s_t^\pi), \max_t r_2(s_t^\pi) \right\} \\ \text{s.t.} & s_{t+1}^\pi = f(s_t^\pi, \pi(s_t^\pi)), \\ & s_0^\pi = s. \end{array} \right.$$

161 As the names suggest, these optimization problems are inspired by — but not limited to — tasks
 involving goal reaching and hazard avoidance. More specifically, the RAA problem is motivated by a

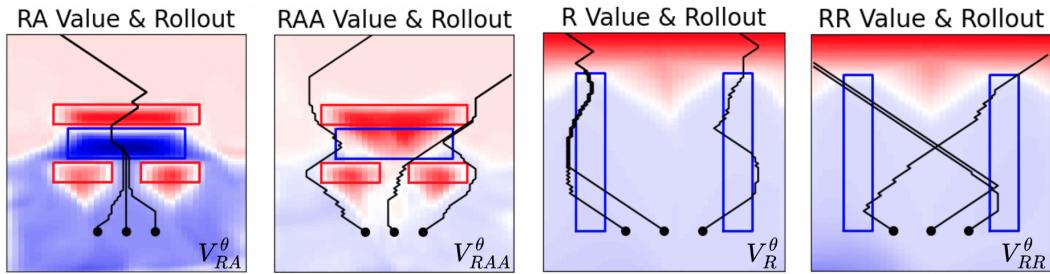


Figure 2: **DQN Grid-World Demonstration of the RAA & RR Problems.** We compare our novel formulations with previous HJ-RL formulations (RA & R) in a simple grid-world problem with DQN. The zero-level sets of q (hazards) are highlighted in red, those of r (goals) in blue, and trajectories in black (starting at the dot). In both models, the agents actions are limited to {left, right, straight} and the system flows upwards over time.

task in which an agent wishes to both reach a goal \mathcal{G} and perennially avoid a hazard \mathcal{H} (even after it reaches the goal). The RR problem is motivated by a task in which an agent wishes to reach two goals, \mathcal{G}_1 and \mathcal{G}_2 , in either order. While these problems are thematically distinct, they are mathematically complementary (differing by a single max/min operation), and hence we tackle them together.

The values for any policy in these problems then take the forms V_{RAA}^π and V_{RR}^π ,

$$V_{\text{RAA}}^\pi(s) = \min \left\{ \max_t r(s_t^\pi), \min_t q(s_t^\pi) \right\} \quad \text{and} \quad V_{\text{RR}}^\pi(s) = \min \left\{ \max_t r_1(s_t^\pi), \max_t r_2(s_t^\pi) \right\}.$$

One may observe that these values are fundamentally different from the infinite-sum value commonly employed in RL Sutton and Barto (2018), and do not accrue over the trajectory but, rather, are determined by certain points. Moreover, while each return considers two objectives, these objectives are combined in worst-case fashion to ensure *dual-satisfaction*. Although many of the works discussed in the previous section approach related tasks (e.g. goal reaching and hazard avoidance) via traditional sum-of-discounted-rewards formulations, these novel value functions have a more direct interpretation in the following sense: if r is positive (only) within \mathcal{G} and q is positive (only) inside \mathcal{H} , $V_{\text{RAA}}^\pi(s)$ will be positive if and only if the RAA task will be accomplished by the policy π . Similarly if r_1 and r_2 are positive within \mathcal{G}_1 and \mathcal{G}_2 , respectively, $V_{\text{RR}}^\pi(s)$ will be positive if and only if the RR task will be accomplished by the policy π .

4 REACHABILITY AND AVOIDABILITY IN RL

The reach V_R^π , avoid V_A^π , and reach-avoid V_{RA}^π values, respectively defined by

$$V_R^\pi(s) = \max_t r(s_t^\pi), \quad V_A^\pi(s) = \min_t q(s_t^\pi), \quad V_{\text{RA}}^\pi(s) = \max_t \min_{\tau \leq t} \left\{ r(s_\tau^\pi), \min_{\tau \leq t} q(s_\tau^\pi) \right\},$$

have been previously studied Fisac et al. (2019) leading to the derivation of special Bellman equations. To put these value functions in context, assume the goal \mathcal{G} is the set of states for which $r(s)$ is positive and the hazard \mathcal{H} is the set of states for which $q(s)$ is non-positive. See Figure 2 for a simple grid-world demonstration comparing the RAA and RR values with the previously existing RA and R values. Then V_R^π , V_A^π , and V_{RA}^π are positive if and only if π causes the agent to eventually reach \mathcal{G} , to always avoid \mathcal{H} , and to reach \mathcal{G} without hitting \mathcal{H} prior to the reach time, respectively. The Reach-Avoid Bellman Equation (RABE), for example, takes the form Hsu et al. (2021)

$$V_{\text{RA}}^*(s) = \min \left\{ \max \left\{ \max_{a \in \mathcal{A}} V_{\text{RA}}^*(f(s, a)), r(s) \right\}, q(s) \right\},$$

and is associated with optimal policy $\pi_{\text{RA}}^*(s)$ (without the need for state augmentation, see the appendix). This formulation does not naturally induce a contraction, but may be discounted to induce contraction by defining $V_{\text{RA}}^\gamma(z)$ implicitly via

$$V_{\text{RA}}^\gamma(s) = (1 - \gamma) \min\{r(s), q(s)\} + \gamma \min \left\{ \max \left\{ \max_{a \in \mathcal{A}} V_{\text{RA}}^\gamma(f(s, a)), r(s) \right\}, q(s) \right\},$$

for each $\gamma \in [0, 1)$. A fundamental result (Proposition 3 in Hsu et al. (2021)) is that

$$\lim_{\gamma \rightarrow 1} V_{\text{RA}}^\gamma(s) = V_{\text{RA}}(s).$$

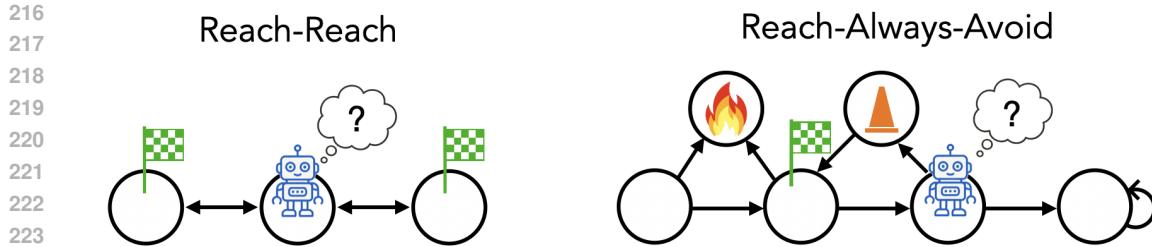


Figure 3: **Examples where a Non-Augmented Policy is Flawed.** In both MDPs, consider an agent with no memory. (Left) For a deterministic policy based on the current state, the agent can only achieve one target (RR), as this policy must associate the middle state with either of the two possible actions. (Right) The RAA case is slightly more complex. Assume the robot will make sure to avoid the fire at all costs (which is easily done from the current state). It would also prefer to not encounter the cone hazard, but will do so if needed to achieve the target. From its current state the robot cannot determine whether to pursue the target by crossing the cone or move to the right. The correct decision depends on state history, specifically on whether the robot has already reached the target state or not (e.g. imagine the initial state is on the target state).

These prior value functions and corresponding Bellman equations have proven powerful for these simple reach/avoid/reach-avoid problem formulations. In this work, we generalize the aforementioned results to the broader class involving V_{RAA} (assure no penalty after the reward threshold is achieved) and V_{RR} (achieve multiple rewards optimally). Through this generalization, we are able to train an agent to accomplish more complex tasks with noteworthy performance.

5 THE NEED FOR AUGMENTING STATES WITH HISTORICAL INFORMATION

We here discuss a small but important detail regarding the problem formulation. The value functions we introduce may appear similar to the simpler HJ-RL value functions discussed in the previous section; however, in these new formulations the goal of choosing a policy $\pi : \mathcal{S} \rightarrow \mathcal{A}$ is inherently flawed without state augmentation. In considering multiple objectives over an infinite horizon, situations arise in which the optimal action depends on more than the current state, but rather the **history** the trajectory. This complication is not unique to our problem formulation, but also occurs for NMDPs (see the Related Works section). To those unfamiliar with NMDPs, this at first may seem like a paradox as the MDP is by definition Markov, but the problem occurs not due to the state-transition dynamics but the nature of the reward. An example clarifying the issue is shown in Figure 3.

To allow the agent to use relevant aspects of its history, we will henceforth consider an augmentation of the MDP with auxiliary variables. A theoretical result in the next section states that this choice of augmentation is sufficient in that no additional information will be able to improve performance under the optimal policy. Note that the state augmentation is needed because of the use of HJR-style optimization objectives (rather than discounted sum-of-rewards). The point of the state augmentation is not to make the rewards and penalties Markovian (indeed, they are already Markovian as they are deterministic functions of the current state).

5.1 AUGMENTATION OF THE RAA PROBLEM

We consider an augmentation of the MDP defined by $\overline{\mathcal{M}} = \langle \overline{\mathcal{S}}, \mathcal{A}, f \rangle$ consisting of augmented states $\overline{\mathcal{S}} = \mathcal{S} \times \mathcal{Y} \times \mathcal{Z}$ and the same actions \mathcal{A} . For any initial state s , let the augmented states be initialized as $y = r(s)$ and $z = q(s)$, and let the transition of $\overline{\mathcal{M}}$ be defined by

$$s_{t+1}^{\bar{\pi}} = f(s_t^{\bar{\pi}}, \bar{\pi}(s_t^{\bar{\pi}}, y_t^{\bar{\pi}}, z_t^{\bar{\pi}})); \quad y_{t+1}^{\bar{\pi}} = \max \{r(s_{t+1}^{\bar{\pi}}), y_t^{\bar{\pi}}\}; \quad z_{t+1}^{\bar{\pi}} = \min \{q(s_{t+1}^{\bar{\pi}}), z_t^{\bar{\pi}}\},$$

such that y_t and z_t track the best reward and worst penalty up to any point. Hence, the policy for $\overline{\mathcal{M}}$ given by $\bar{\pi} : \overline{\mathcal{S}} \rightarrow \mathcal{A}$ may now consider information regarding the history of the trajectory.

By definition, the RAA value for $\overline{\mathcal{M}}$,

$$V_{\text{RAA}}^{\bar{\pi}}(s) = \min \left\{ \max_t r(s_t^{\bar{\pi}}), \min_t q(s_t^{\bar{\pi}}) \right\},$$

is equivalent to that of \mathcal{M} except that it allows for a policy $\bar{\pi}$ which has access to historical information. We seek to find $\bar{\pi}$ that maximizes this value.

270 5.2 AUGMENTATION OF THE RR PROBLEM
271272 For the Reach-Reach problem, we augment the system similarly, except that z_t is updated using a
273 max operation instead of a min:

274 $s_{t+1}^{\bar{\pi}} = f(s_t^{\bar{\pi}}, \bar{\pi}(s_t^{\bar{\pi}}, y_t^{\bar{\pi}}, z_t^{\bar{\pi}})) ; \quad y_{t+1}^{\bar{\pi}} = \max \{r_1(s_{t+1}^{\bar{\pi}}), y_t^{\bar{\pi}}\} ; \quad z_{t+1}^{\bar{\pi}} = \max \{r_2(s_{t+1}^{\bar{\pi}}), z_t^{\bar{\pi}}\} .$
275

276 Again, by definition,

277 $V_{\text{RR}}^{\bar{\pi}}(s) = \min \left\{ \max_t r_1(s_t^{\bar{\pi}}), \max_t r_2(s_t^{\bar{\pi}}) \right\} .$
278

279 The RR problem is again to find an augmented policy $\bar{\pi}$ which maximizes this value.280 6 OPTIMAL POLICIES FOR RAA AND RR BY VALUE DECOMPOSITION
281282 We now discuss our first theoretical contributions. We refer the reader to the appendix for the proofs
283 of the theorems.
284285 6.1 DECOMPOSITION OF RAA INTO AVOID AND REACH-AVOID PROBLEMS
286287 Our main theoretical result for the RAA problem shows that we can solve this problem by first solving
288 the avoid problem corresponding to the penalty $q(s)$ to obtain the optimal value function $V_A^*(s)$ and
289 then solving a reach-avoid problem with the negated penalty function $q(s)$ and a modified reward
290 function $r_{\text{RAA}}(s)$.291 **Theorem 1.** For all initial states $s \in \mathcal{S}$,

292
$$\max_{\bar{\pi}} V_{\text{RAA}}^{\bar{\pi}}(s) = \max_{\pi} \max_t \min \left\{ r_{\text{RAA}}(s_t^{\pi}), \min_{\tau \leq t} q(s_{\tau}^{\pi}) \right\} , \quad (1)$$

293

294 where $r_{\text{RAA}}(s) := \min \{r(s), V_A^*(s)\}$, with

295
$$V_A^*(s) := \max_{\pi} \min_t q(s_t^{\pi}) .$$

296

297 This decomposition is significant, as methods customized to solving avoid and reach-avoid problems
298 were recently explored in Fisac et al. (2019); Hsu et al. (2021); So et al. (2024); So and Fan (2023),
299 allowing us to effectively solve the optimization problem defining $V_A^*(s)$ as well as the optimization
300 problem that defines the right-hand-side of 1.301 **Corollary 1.** The value function $V_{\text{RAA}}^*(s) := \max_{\bar{\pi}} V_{\text{RAA}}^{\bar{\pi}}(s)$ satisfies the Bellman equation

302
$$V_{\text{RAA}}^*(s) = \min \left\{ \max \left\{ \max_{a \in \mathcal{A}} V_{\text{RAA}}^*(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\} .$$

303

304 Readers familiar with temporal logic (TL) may be interested in how these decompositions relate
305 to decompositions of predicates in TL. We discuss the distinction between these two classes of
306 decompositions in Sec. L of the Appendix, and how the TL predicate algebra is insufficient for safe
307 optimal control.
308309 6.2 DECOMPOSITION OF THE RR PROBLEM INTO THREE REACH PROBLEMS
310311 Our main result for the RR problem shows that we can solve this problem by first solving two reach
312 problems corresponding to the rewards $r_1(s)$ and $r_2(s)$ to obtain reach value functions $V_{\text{R1}}^*(s)$ and
313 $V_{\text{R2}}^*(s)$, respectively. We then solve a third reach problem with a modified reward $r_{\text{RR}}(s)$.
314315 **Theorem 2.** For all initial states $s \in \mathcal{S}$,

316
$$\max_{\bar{\pi}} V_{\text{RR}}^{\bar{\pi}}(s) = \max_{\pi} \max_t r_{\text{RR}}(s_t^{\pi}) , \quad (2)$$

317

318 where $r_{\text{RR}}(s) := \max \{\min \{r_1(s), V_{\text{R1}}^*(s)\}, \min \{r_2(s), V_{\text{R2}}^*(s)\}\}$, with

319
$$V_{\text{R1}}^*(s) := \max_{\pi} \max_t r_1(s_t^{\pi}), \quad V_{\text{R2}}^*(s) := \max_{\pi} \max_t r_2(s_t^{\pi}) .$$

320

321 **Corollary 2.** The value function $V_{\text{RR}}^*(s) := \max_{\bar{\pi}} V_{\text{RR}}^{\bar{\pi}}(s)$ satisfies the Bellman equation

322
$$V_{\text{RR}}^*(s) = \max \left\{ \max_{a \in \mathcal{A}} V_{\text{RR}}^*(f(s, a)), r_{\text{RR}}(s) \right\} .$$

323

324 6.3 OPTIMALITY OF THE AUGMENTED PROBLEMS
325

326 We previously motivated the choice to consider an augmented MDP $\overline{\mathcal{M}}$ over the original MDP
327 in the context of the RAA and RR problems. In this section, we justify our particular choice of
328 augmentation. Indeed, the following theoretical result shows that further augmenting the states with
329 additional historical information cannot improve performance under the optimal policy.

330 **Theorem 3.** *Let $s \in \mathcal{S}$. Then*

$$332 \quad \max_{\pi} V_{\text{RAA}}^{\pi}(s) \leq \max_{\bar{\pi}} V_{\text{RAA}}^{\bar{\pi}}(s) = \max_{a_0, a_1, \dots} \min \left\{ \max_t r(s_t), \min_t q(s_t) \right\},$$

334 and

$$335 \quad \max_{\pi} V_{\text{RR}}^{\pi}(s) \leq \max_{\bar{\pi}} V_{\text{RR}}^{\bar{\pi}}(s) = \max_{a_0, a_1, \dots} \min \left\{ \max_t r_1(s_t), \max_t r_2(s_t) \right\}$$

337 where $s_{t+1} = f(s_t, a_t)$ and $s_0 = s$.

339 The terms on the right of the lines above reflect the best possible sequence of actions to solve the
340 RAA or RR problem, and the theorem states that the optimal augmented policy achieves that value,
341 represented by the middle terms. This value will generally be less than or equal to the outcome from
342 using a non-augmented policy, represented by the terms on the left.

344 7 DOHJ-PPO: SOLVING RAA AND RR WITH RL
345

346 In the previous sections, we demonstrated that the RAA and RR problems can be solved through
347 decomposition of the values into formulations amenable to existing RL methods. However, we make
348 a few assumptions in the derivation that would limit performance and generalization, namely, the
349 determinism of the values as well as access to the decomposed values (by solving them beforehand).
350 In this section, we propose relaxations to the RR and RAA theory and devise a custom variant of
351 Proximal Policy Optimization, **DOHJ-PPO**, to solve this broader class of problems, and demonstrate
352 its performance.

354 7.1 STOCHASTIC REACH-AVOID BELLMAN EQUATION
355

356 It is well known that the most performative RL methods allow for stochastic learning. In So et al.
357 (2024), the Stochastic Reachability Bellman Equation (SRBE) is described for Reach problems
358 and used to design a specialized PPO algorithm. We first generalize this notion to a Stochastic
359 Reach-Avoid Bellman Equation (SRABE). Using Theorems 1 and 2, the SRBE and SRABE offer the
360 necessary tools for designing a PPO variant for solving the RR and RAA problems.

361 By analogy to the SRBE, the SRABE is given by

$$363 \quad \tilde{V}_{\text{RAA}}^{\pi}(s) = \mathbb{E}_{a \sim \pi} \left[\min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^{\pi}(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\} \right]. \quad (\text{SRABE})$$

365 More rigorously, we actually consider the discounted SRABE, which is contractive, and the corre-
366 sponding quality function below in the limit $\gamma \rightarrow 1^-$ (as in Hsu et al. (2021)),

$$368 \quad \tilde{V}_{\text{RAA}}^{\gamma, \pi}(s) = (1 - \gamma) \min \{r_{\text{RAA}}(s), q(s)\} + \gamma \mathbb{E}_{a \sim \pi} \left[\min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^{\gamma, \pi}(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\} \right].$$

$$370 \quad \tilde{Q}_{\text{RAA}}^{\gamma, \pi}(s, a) = (1 - \gamma) \min \{r_{\text{RAA}}(s), q(s)\} + \gamma \min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^{\gamma, \pi}(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\}.$$

372 Theoretically speaking, the use of the SRABE is justified by Theorem 4 in the Appendix. With this
373 action-value function we then follow So et al. to derive the corresponding policy gradient result
374 with an augmented version of the dynamics; for details, see Prop. X in the Appendix. The PPO
375 advantage function is then given by $\tilde{A}_{\text{RAA}}^{\pi} = \tilde{Q}_{\text{RAA}} - \tilde{V}_{\text{RAA}}$ Schulman et al. (2017). Although, this
376 approximation may be poor in highly noisy settings, we show this approach yields conservative
377 estimates of the value with stochastic policies (Appendix sec. D), and validate it empirically with
stochastic dynamics in Sec. 8.3.

378
379

7.2 ALGORITHM

380
381

We introduce **DOHJ-PPO** for solving the RAA and RR problems, which integrates the SRABE and SRBE via three minimal modifications to PPO Schulman et al. (2017) (see appendix for more).

382

Additional actor and critics are introduced to represent the decomposed objectives. Per Theorems 1 and 2, one may know that the RAA and RR values are given by a composition of the simpler R, A and RA values. Therefore, we learn these decompositions with their own networks and integrate them into the composed actor and critic training, namely via the GAE and target with the special RAA and RR reward functions in Theorems 1 and 2.

387

The composed actor and critic are learned concurrently to the decomposed actor and critics by bootstrapping the current values Rather than learning the decomposed and composed representations sequentially, DOHJ-PPO bootstraps to learn them simultaneously. Namely, at each iteration, we rollout trajectories for composed and decomposed updates with each actor. In the update of the composed representation specifically, the decomposed values are inferred from the current decomposed critic(s) along the composed trajectories. This design choice allows us to couple the on-policy learning of PPO in the following way.

394

Trajectories for training the decomposed actor and critic(s) are initialized with states sampled from the composed trajectories, which we refer to as *coupled resets*. While it is possible to estimate the decomposed objectives independently—i.e., prior to solving the composed task—this approach might lead to inaccurate or irrelevant value estimates in on-policy settings. For example, in the RAA problem, the avoid decomposition will solely prioritize avoiding penalties and, hence, might converge to an optimal strategy within a reward-irrelevant region, misaligned with the overall task.

400

401

8 EXPERIMENTS

402

403

8.1 DQN DEMONSTRATION

404

We begin by demonstrating the utility of our theoretical results (Theorems 1 and 2) through a simple 2D grid-world experiment using DQN (Figure 2). In this environment, the agent can move left, right, or remain stationary, while drifting upward at a constant rate. Throughout, reward regions are shown in blue and penalty regions in red. On the left, we compare the optimal value functions learned under the classic Reach-Avoid (RA) formulation with those from the Reach-Always-Avoid (RAA) setting. In the RA scenario, trajectories successfully avoid the obstacle but may terminate in regions from which future collisions are inevitable, as there is no incentive to consider what happens after reaching the minimum reward threshold. In contrast, under the RAA formulation, where the objective involves maximizing cumulative reward while accounting for future penalties (as per Theorem 1), the agent learns to reach the target while remaining in safe regions thereafter. On the right, we consider a similar environment without obstacles but with two distinct targets. Here, the Reach-Reach (RR) formulation induces trajectories that visit both targets, unlike simple reach tasks in which the agent halts after reaching a single goal. These qualitative results highlight the behavioral distinctions induced by the RAA and RR objectives compared to their simpler counterparts. Additional algorithmic and experimental details are provided in the Appendix.

419

420

8.2 CONTINUOUS CONTROL TASKS WITH **DOHJ-PPO**

421

To evaluate the method under more complex and less structured conditions, we extend our analysis to continuous control settings. Specifically, we consider RAA and RR tasks in the Hopper, F16, SafetyGym, and HalfCheetah environments, depicted in Figure 1. In the RAA tasks, the penalty function generally characterizes regions of states where the agent (or its body parts) is intended to avoid, while the reward characterizes regions of states where the agent is intended to reach.

427

428

429

430

431

As baselines, we compare **DOHJ-PPO** against a variety of classes of RL algorithms. We include several augmented Lagrangian methods which transform constraints (either for reaching both or always avoiding) into mixed objectives, such as Constrained PPO (CPPO) Achiam et al. (2017b), PPO-LAG Ray et al. (2019), P2BPO Dey et al. (2024), and LOGBAR Zhang et al. (2024). Additionally, we include three HJ-RL baselines designed for the previous R and RA problems, RESPO Ganai et al. (2023), RCPPO So et al. (2024) and RA Hsu et al. (2021). Lastly, we also include a few methods

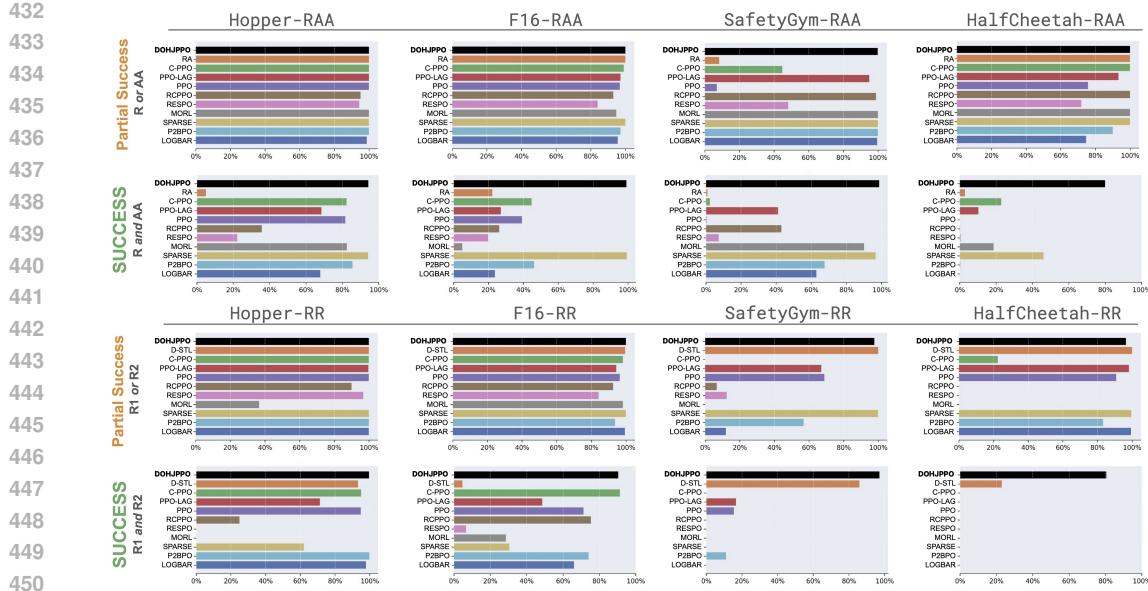


Figure 4: **Success (→) and Partial Success (→) in RAA and RR Tasks for DOHJ-PPO and Baselines.** We evaluate **DOHJ-PPO** in black against baselines over 1,000 trajectories in the Hopper, F16, SafetyGym and HalfCheetah environments. In the first and third row, the **Partial Success** percentage of each algorithm is given, defined by the number of trajectories to achieve one objective (reaching or always-avoiding in the RAA, reaching either in the RR). In the second and fourth rows, **SUCCESS** percentage is given, defined by the number of trajectories to achieve both objectives. Most baselines achieve partial success, however, few achieve total success as the environment becomes more difficult, underscoring the difficulty of balancing objectives in RL.

based on approaches in STL/LTL-RL and MORL, including a decomposed STL (D-STL) PPO, a sparse-reward STL PPO (SPARSE) and a MORL-based PPO. All algorithms are trained on random initial conditions and then evaluated on new random initial conditions within distribution. To quantify performance of the dual-objective tasks, we measure (1) the percent of trajectories which achieve at least both tasks successfully, (2) the percent of trajectories which achieve at least one of the tasks (dubbed partial success), and (3) the mean steps in each trajectory until success.

Empirically, we find that our method performs at the top-level, achieving first or second place among all tasks and environments (Figure 4). In fact, as the multi-target (RR) or safe-achievement (RAA) tasks become more complex (e.g. the HalfCheetah), our algorithm increasingly dominates the 10 state-of-the-art baselines. Note, that almost all algorithms can achieve partial success at a high rate in each dual-objective task, highlighting the difficulty of mixed or competing objectives, particularly with discounted-sum rewards. Moreover, DOHJ-PPO is the sole performant algorithm in both RAA and RR tasks, displaying the fastest achievement times across tasks (see appendix).

These results underscore the challenging nature of composing multiple satisfaction objectives using traditional baselines with discounted-sum rewards. In contrast, DOHJ-PPO provides a direct and robust solution to handling these complex tasks, with *little to no* tuning. Our algorithm enjoys these benefits because of the structure of the novel Bellman updates, which propagate the extreme (maximum and minimum) values as opposed to the short-term average (discounted-sum) values.

8.3 COMPARISON IN STOCHASTIC DYNAMICS

To design an algorithm robust to randomness, **DOHJ-PPO** employs the SRBE and SRABE discussed in Sec. 7.1 in place of their analogous deterministic forms. This choice equates to an approximation of the decompositional results (Thms. 1 and 2) that interchanges the extrema and expectation operators. The empirical results in Fig. 4 justify this approximation with stochastic policies, however, this noise is introduced for exploration and ultimately attenuated in training. To interrogate the behavior of DOHJ-PPO with stochastic dynamics, we inject affine Gaussian noise into the evolution of the HalfCheetah dynamics for both RAA and RR tasks. Note, only the velocities and angular velocities of the agent are perturbed to protect contact physics. We compare our algorithm against the top three

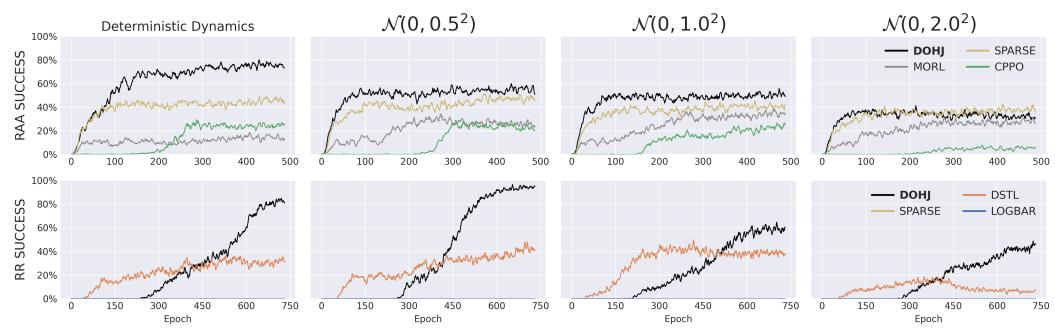


Figure 5: **Success (\uparrow) in the HalfCheetah RAA and RR Tasks with Increasingly Stochastic Dynamics.** We plot the learning trajectories of DOHJ-PPO in black and the top baselines for the HalfCheetah environment with an affine Gaussian noise added to the dynamics. Task achievement (success) is given by the percentage of 256 trajectories that either reach the target and always-avoid the obstacles or reach both targets (corresponding to $V_{RAA} > 0$ and $V_{RR} > 0$). Each column corresponds to a different scale of noise – null, low (0.5), moderate (1.) and high (2.) – which is added to the velocities and angular velocities of the HalfCheetah dynamics. In the RAA task, DOHJ-PPO outperforms all baselines up to the highest noise settings where all algorithms perform equivalently poorly. In the RR task, DOHJ-PPO outperforms all algorithms significantly. In summary, this ablation demonstrates the robustness of DOHJ-PPO to certain stochasticity in the dynamics and the validity of the SRBE and SRABE approximations.

baselines in each task along a scale of standard deviations of low (0.5), moderate (1.) and high (2.) quantity, plotting the maximum learning curve over three seeds in Fig. 5.

In this ablation, we find that the proposed approach, using the novel Bellman equations with stochastic relaxations, offers a significant performance improvement even in the face of significant noise. In the RAA task, DOHJ-PPO dominates the top performing baselines with a 8%-22% peak-performance gap between it and the second best algorithm (and is the fastest to peak-performance) for moderate noise levels, beyond which all algorithms perform equally poorly. In the RR case, we find an even starker result, with all but one experiment demonstrating a $>30\%$ improvement in peak-performance even in the high-noise regimes, with an exception of the moderate noise case where DOHJ-PPO still performs $>15\%$ than the best baseline, DSTL. Interestingly, DOHJ-PPO is the slower than DSTL to peak performance, but performs twice as well at best in three of the four settings. These results demonstrate that despite certain highly-noisy dynamics DOHJ-PPO is competitive at worst and optimal in majority. See Appendix Sec. D for further analysis and discussion of the usage of the SRBE and SRABE approximations.

9 CONCLUSIONS

In this work, we introduced two novel Bellman formulations for new problems (RAA and RR) which generalize those considered in several recent publications. We derive decomposition results to break them into simpler Bellman equations, which can then be composed to obtain the corresponding value functions and optimal policies. We use these results to design DOHJ-PPO, which shows to be the most performant and balanced algorithm in safe-arrival and multi-target achievement. DOHJ-PPO employs the stochastic relaxations of the simpler Bellman equations (the SRBE and SRABE), for which we offer rigorous justification and empirical validation in the case of stochastic policies. As expectation and extrema operations do not commute, more work is needed to provide guarantees under stochastic dynamics. Nonetheless, we demonstrate through an artificial ablation that DOHJ-PPO can be successful in the face of certain dynamic randomness. With regard to more complex objectives, it appears one might employ our results to iteratively decompose layered objectives corresponding to temporal logic specifications into a graph of Bellman values. However, doing so would require deriving generalized decomposition principles for nontrivial compositions of logical operations. Moreover, a practical algorithm for solving the decomposed graph of values might benefit from a more efficient representation, mechanisms to guarantee convergence, and heuristics to improve sampling efficiency, but we leave this to future work. By solving the RAA and RR values, this work provides a road-map to extend complex Bellman formulations, via decomposing higher-level problems into lower-level ones, establishing a foundation for nuanced tasks in real-world environments and safe RL.

540 REFERENCES
541

- 542 Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights
543 in multi-objective deep reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
544 editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of
545 *Proceedings of Machine Learning Research*, pages 11–20. PMLR, 2019.
- 546 Joshua Achiam, David Held, Aviv Tamar, and P Abbeel. Constrained policy optimization. *ICML*,
547 abs/1705.10528:22–31, 30 May 2017a.
- 548 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
549 *International conference on machine learning*, pages 22–31. PMLR, 2017b.
- 550 Eitan Altman. *Constrained Markov decision processes: Stochastic modeling*. Routledge, Boca Raton,
551 13 December 2021.
- 552 Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
553 quadratic programs for safety critical systems. *IEEE Transactions on Automatic Control*, 62(8):
554 3861–3876, 2016.
- 555 F Bacchus, Craig Boutilier, and Adam J Grove. Rewarding behaviors. In *Proceedings of the National*
556 *Conference on Artificial Intelligence.*, pages 1160–1167. cs.toronto.edu, 4 August 1996.
- 557 Fahiem Bacchus, Craig Boutilier, and Adam Grove. Structured solution methods for non-Markovian
558 decision processes. In *AAAI/IAAI*, pages 112–117, 1997.
- 559 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
560 Wojciech Zaremba. Openai gym, 2016. URL <https://arxiv.org/abs/1606.01540>.
- 561 Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojtěch Forejt, Jan Křetínský, Marta
562 Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision processes
563 using learning algorithms. *arXiv [cs.LO]*, 10 February 2014.
- 564 Xin-Qiang Cai, Pushi Zhang, Li Zhao, Jiang Bian, Masashi Sugiyama, and Ashley Llorens. Dis-
565 tributional Pareto-optimal multi-objective reinforcement learning. *Neural Inf Process Syst*, 36:
566 15593–15613, 2023.
- 567 Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
568 LTL and beyond: Formal languages for reward function specification in reinforcement learning. In
569 *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, pages
570 6065–6073, California, 1 August 2019. International Joint Conferences on Artificial Intelligence
571 Organization.
- 572 Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila McIlraith. Non-Markovian rewards expressed
573 in LTL: Guiding search via reward shaping. *Proceedings of the International Symposium on*
574 *Combinatorial Search*, 8(1):159–160, 1 September 2021.
- 575 Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel, and
576 Edward Grefenstette. Learning with AMIGo: Adversarially motivated intrinsic goals. *arXiv*
577 [*cs.LG*], 22 June 2020.
- 578 Elliot Chane-Sane, C Schmid, and I Laptev. Goal-conditioned reinforcement learning with imagined
579 subgoals. *ICML*, abs/2107.00541:1430–1440, 1 July 2021.
- 580 Yi Chen, Jing Dong, and Zhaoran Wang. A primal-dual approach to constrained Markov decision
581 processes. *arXiv [math.OC]*, 26 January 2021.
- 582 Max H Cohen, Zachary Serlin, Kevin Leahy, and Calin Belta. Temporal logic guided safe model-
583 based reinforcement learning: A hybrid systems approach. *Nonlinear Anal. Hybrid Syst.*, 47
584 (101295):101295, February 2023.
- 585 Wei Cui and Wei Yu. Reinforcement learning with non-cumulative objective. *IEEE Transactions on*
586 *Machine Learning in Communications and Networking*, 1:124–137, 2023. doi: 10.1109/TMLCN.
587 2023.3285543.

- 594 Sumanta Dey, Pallab Dasgupta, and Soumyajit Dey. P2bpo: Permeable penalty barrier-based
 595 policy optimization for safe rl. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 596 volume 38, pages 21029–21036, 2024.
- 597 Benjamin Eysenbach, Tianjun Zhang, R Salakhutdinov, and S Levine. Contrastive learning as
 598 goal-conditioned reinforcement learning. *Neural Inf Process Syst*, abs/2206.07568:35603–35620,
 600 15 June 2022.
- 601 Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sastry. Reach-avoid problems with time-
 602 varying dynamics, targets and constraints. In *Hybrid Systems: Computation and Control*. ACM,
 603 2015.
- 604 Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridging
 605 hamilton-jacobi safety analysis and reinforcement learning. In *2019 International Conference on*
 606 *Robotics and Automation (ICRA)*, pages 8550–8556. IEEE, 2019.
- 608 Milan Ganai, Chiaki Hirayama, Ya-Chien Chang, and Sicun Gao. Learning stabilization control from
 609 observations by learning lyapunov-like proxy models. *2023 IEEE International Conference on*
 610 *Robotics and Automation (ICRA)*, 2023.
- 611 Nathaniel Hamilton, Preston K Robinette, and Taylor T Johnson. Training agents to satisfy timed and
 612 untimed signal temporal logic specifications with reinforcement learning. In *Software Engineering*
 613 and *Formal Methods*, Lecture notes in computer science, pages 190–206. Springer International
 614 Publishing, Cham, 2022.
- 616 Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J. Tomlin, and Jaime F. Fisac. Safety and liveness
 617 guarantees through reach-avoid reinforcement learning. In *Proceedings of Robotics: Science and*
 618 *Systems*, Held Virtually, July 2021. doi: 10.15607/RSS.2021.XVII.077.
- 619 Rodrigo Toro Icarte, Toryn Q Klassen, R Valenzano, and Sheila A McIlraith. Using reward machines
 620 for high-level task specification and decomposition in reinforcement learning. *ICML*, 80:2112–
 621 2121, 3 July 2018.
- 623 Tianjiao Li, Ziwei Guan, Shaofeng Zou, Tengyu Xu, Yingbin Liang, and Guanghui Lan. Faster
 624 algorithm and sharper analysis for constrained Markov decision process. *Oper. Res. Lett.*, 54
 625 (107107):107107, May 2024.
- 626 Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards.
 627 In *2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages
 628 3834–3839. IEEE, September 2017.
- 630 Zichuan Lin, Derek Yang, Li Zhao, Tao Qin, Guangwen Yang, and Tie-Yan Liu. Rd'2: Reward
 631 decomposition with representation decomposition. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
 632 Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages
 633 11298–11308. Curran Associates, Inc., 2020.
- 634 Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems
 635 and solutions. *arXiv [cs.AI]*, 20 January 2022.
- 636 Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned rein-
 637 forcement learning via f-advantage regression. In S Koyejo, S Mohamed, A Agarwal, D Belgrave,
 638 K Cho, and A Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages
 639 310–323. Curran Associates, Inc., 2022.
- 641 Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learning.
 642 *ICML*, abs/2107.05216:15666–15698, 12 July 2021.
- 643 Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent hamilton-jacobi
 644 formulation of reachable sets for continuous dynamic games. *IEEE Transactions on automatic*
 645 *control*, 50(7):947–957, 2005.
- 647 Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
 648 deep reinforcement learning. *arXiv [cs.AI]*, 9 October 2016.

- 648 Silviu Pitis. Consistent aggregation of objectives with diverse time preferences requires non-
 649 markovian rewards. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 650 2023.
- 651
- 652 Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
 653 Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
 654 Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request for
 655 research. *arXiv [cs.LG]*, 26 February 2018.
- 656
- 657 Wenjie Qiu, Wensen Mao, and He Zhu. Instructing goal-conditioned reinforcement learning agents
 658 with temporal logic objectives. *Neural Inf Process Syst*, 36:39147–39175, 2023.
- 659
- 660 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
 661 learning. *arXiv preprint arXiv:1910.01708*, 7(1):2, 2019.
- 662
- 663 Zhizhou Ren, Kefan Dong, Yuanshuo Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight
 664 goal generation. *Neural Inf Process Syst*, 32:13464–13474, 1 June 2019.
- 665
- 666 Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and Sanjit A Seshia. A learning based
 667 approach to control synthesis of Markov decision processes for linear temporal logic specifications.
 668 In *53rd IEEE Conference on Decision and Control*, pages 1091–1096. IEEE, December 2014.
- 669
- 670 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 671 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.
- 672
- 673 Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
 674 reinforcement learning. *arXiv [cs.RO]*, 23 May 2023.
- 675
- 676 Oswin So, Cheng Ge, and Chuchu Fan. Solving minimum-cost reach avoid using reinforcement
 677 learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 678 2024. URL <https://openreview.net/forum?id=jzngdJQ21Y>.
- 679
- 680 Adam Stooke, Joshua Achiam, and P Abbeel. Responsive safety in reinforcement learning by PID
 681 lagrangian methods. *ICML*, 119:9133–9143, 8 July 2020.
- 682
- 683 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. A Bradford
 684 Book, Cambridge, MA, USA, 2018. ISBN 0262039249.
- 685
- 686 Yuting Tang, Yivan Zhang, Johannes Ackermann, Yu-Jie Zhang, Soichiro Nishimori, and Masashi
 687 Sugiyama. Recursive reward aggregation. In *Reinforcement Learning Conference*, 2025.
- 688
- 689 S Thiebaut, C Gretton, J Slaney, D Price, and F Kabanza. Decision-theoretic planning with non-
 690 Markovian rewards. *J. Artif. Intell. Res.*, 25:17–74, 29 January 2006.
- 691
- 692 Alexander R Trott, Stephan Zheng, Caiming Xiong, and R Socher. Keeping your distance: Solving
 693 sparse reward tasks using self-balancing shaped rewards. *Neural Inf Process Syst*, abs/1911.01417,
 694 4 November 2019.
- 695
- 696 Moffaert K Van and A Nowé. Multi-objective reinforcement learning using sets of Pareto dominating
 697 policies. *The Journal of Machine Learning Research*, 15(1):3483–3512, 2014.
- 698
- 699 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 700 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
- 701
- 702 Harm van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey Tsang.
 703 Hybrid reward architecture for reinforcement learning. In *Proceedings of the 31st International
 704 Conference on Neural Information Processing Systems*, NIPS’17, page 5398–5408, Red Hook, NY,
 705 USA, 2017. Curran Associates Inc. ISBN 9781510860964.
- 706
- 707 Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained Markov decision processes.
 708 *ICML*, 119:9797–9806, 12 July 2020.

- 702 Ruosong Wang, Peilin Zhong, Simon S Du, Russ R Salakhutdinov, and Lin Yang. Planning with
 703 general objective functions: Going beyond total rewards. In H. Larochelle, M. Ranzato, R. Hadsell,
 704 M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33,
 705 pages 14486–14497. Curran Associates, Inc., 2020.
- 706 Marco A Wiering, Maikel Withagen, and Madalina M Drugan. Model-based multi-objective reinforce-
 707 ment learning. In *2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement*
 708 *Learning (ADPRL)*, pages 1–6. IEEE, December 2014.
- 709 R Yang, X Sun, and K Narasimhan. A generalized algorithm for multi-objective reinforcement
 710 learning and policy adaptation. In *Advances in Neural Information Processing Systems*. proceed-
 711 ings.neurips.cc, 2019.
- 712 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
 713 constrained policy optimization. *arXiv [cs.LG]*, 7 October 2020.
- 714 Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
 715 learning. In *International Conference on Machine Learning*, pages 25636–25655. PMLR, 2022a.
- 716 Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Jingliang Duan, and Jianyu
 717 Chen. Safe model-based reinforcement learning with an uncertainty-aware reachability certificate.
 718 *arXiv preprint arXiv:2210.07553*, 2022b.
- 719 Baohe Zhang, Yuan Zhang, Lilli Frison, Thomas Brox, and Joschka Bödecker. Constrained reinforce-
 720 ment learning with smoothed log barrier function. *arXiv preprint arXiv:2403.14508*, 2024.
- 721 Kai Zhu, Fengbo Lan, Wenbo Zhao, and Tao Zhang. Safe multi-agent reinforcement learning via
 722 approximate hamilton-jacobi reachability. *J. Intell. Robot. Syst.*, 111(1), 30 December 2024.
- 723

724 10 ETHICS STATEMENT

725 This project was conducted and completed on entirely responsible and ethical grounds, and meets the
 726 highest standard of the ICLR Code of Ethics. We believe the rigor, investigation and communication
 727 not only upholds scientific ideals whilst avoiding societal harm, but advances machine learning for
 728 the betterment of all society, namely by improving learning to be more performant with much less
 729 hyper-tuning, and thus better for the planet and human race. Moreover, the work fundamentally
 730 improves the safety and reliability of reinforcement learning, and thus greatly improves a society in
 731 which machine learning is heavily integrated. Above all, the work is honest, noting limitations and
 732 caveats, while depicting the strengths we believe make this work invaluable for the field.

733 11 REPRODUCIBILITY STATEMENT

734 All theorems, algorithms and parameters for this work are totally explained in this paper (partially in
 735 the appendix) in what the authors believe to be a clear and understandable form. All theorems have
 736 been proven in detail, including all necessary lemmas, propositions and references in a manner the
 737 authors believe is intelligible. The algorithm proposed in the work is explained clearly in the main
 738 text and written line-by-line in the appendix, along with all hyper-parameters for each environment.
 739 The code for this work has been inherited from another group with security clearance and we are
 740 awaiting their response to publicize it, but will do so as soon as possible as we are committed to fair
 741 and open resources without bias or discrimination.

756
757

Appendix

758

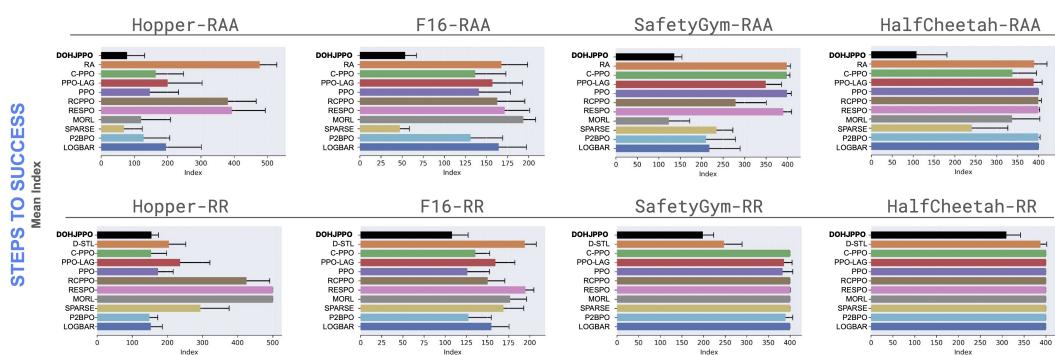
Contents

761 α Achievement Speed Results from DOHJ-PPO Experiments	15
762	
763 A Proof of RAA Main Theorem	16
764	
765 B Proof of RR Main Theorem	24
766	
767 C Proof of Optimality Theorem	29
768	
769 D The SRABE and its Policy Gradient	29
770	
771 E The DOHJ-PPO Algorithm	31
772	
773 F DDQN Demonstration	33
774	
775 G Baselines	34
776	
777 H Details of RAA & RR Experiments: Hopper	35
778	
779 I Details of RAA & RR Experiments: F16	36
780	
781 J Details of RAA & RR Experiments: SafetyGym	37
782	
783 K Details of RAA & RR Experiments: HalfCheetah	37
784	
785 L Contrast with decompositions in Temporal Logic	38
786	
787 M Broader Impacts	41
788	
789 N Acknowledgments	41
790	
791	
792	
793	
794	

787

ACHIEVEMENT SPEED RESULTS FROM DOHJ-PPO EXPERIMENTS

790 Here we present additional results for RAA and RR problems solved with **DOHJ-PPO**. In both
 791 settings, DOHJ-PPO out-performs or matches the best of baselines with less tuning and faster arrival.
 792 Notably as the difficulty of the problem increases the gap increases significantly with DOHJ-PPO
 793 remaining the sole algorithm that can achieve the task in reasonable time and in both RAA and RR
 794 categories.



807 **Figure 6: Steps to Success (←) in RAA and RR Tasks for DOHJ-PPO and Baselines** For the same 1000
 808 trajectories in Figure 4, we quantify here the number of steps until achievement of both tasks: reaching without
 809 crash afterward in the RAA, reaching both goal in the RR. DOHJ-PPO is not only competitive but consistently
 achieves the dual-objective problems in the fewest number of steps.

810 PROOF NOTATION
811812 Throughout the theoretical sections of this supplement, we use the following notation.
813814 We let $\mathbb{N} = \{0, 1, \dots\}$ be the set of whole numbers.
815816 We let \mathbb{A} be the set of maps from \mathbb{N} to \mathcal{A} . In other words, \mathbb{A} is the set of sequences of actions the
817 agent can choose. Given $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{A}$, and $\tau \in \mathbb{N}$, we let $[\mathbf{a}_1, \mathbf{a}_2]_\tau$ be the element of \mathbb{A} for which
818

819
$$[\mathbf{a}_1, \mathbf{a}_2]_\tau(t) = \begin{cases} \mathbf{a}_1(t) & t < \tau, \\ \mathbf{a}_2(t - \tau) & t \geq \tau. \end{cases}$$

820 Similarly, given $a \in \mathcal{A}$ and $\mathbf{a} \in \mathbb{A}$, we let $[a, \mathbf{a}]$ be the element of \mathbb{A} for which
821

822
$$[a, \mathbf{a}](t) = \begin{cases} a & t = 0, \\ \mathbf{a}(t - 1) & t \geq 1. \end{cases}$$

823 Additionally, given $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$, we let $\mathbf{a}|_\tau$ be the element of \mathbb{A} for which
824

825
$$\mathbf{a}|_\tau(t) = \mathbf{a}(t + \tau) \quad \forall t \in \mathbb{N}.$$

826 The $[\cdot, \cdot]_\tau$ operation corresponds to concatenating two action sequences (using only the 0th to $(\tau - 1)$ st
827 elements of the first sequence), the $[\cdot, \cdot]$ operation corresponds to prepending an action to an action
828 sequence, and the $\cdot|_\tau$ operation corresponds to removing the 0th to $(\tau - 1)$ st elements of an action
829 sequence.830 We let Π be the set of policies $\pi : \mathcal{S} \rightarrow \mathcal{A}$. Given $s \in \mathcal{S}$ and $\pi \in \Pi$, we let $\xi_s^\pi : \mathbb{N} \rightarrow \mathcal{S}$ be the
831 solution of the evolution equation

832
$$\xi_s^\pi(t + 1) = f(\xi_s^\pi(t), \pi(\xi_s^\pi(t)))$$

833 for which $\xi_s^\pi(0) = s$. In other words, $\xi_s^\pi(\cdot)$ is the state trajectory over time when the agent begins at
834 state s and follows policy π .
835836 We will also “overload” this trajectory notation for signals rather than policies: given $\mathbf{a} \in \mathbb{A}$, we let
837 $\xi_s^\mathbf{a} : \mathbb{N} \rightarrow \mathcal{S}$ be the solution of the evolution equation

838
$$\xi_s^\mathbf{a}(t + 1) = f(\xi_s^\mathbf{a}(t), \mathbf{a}(t))$$

839 for which $\xi_s^\mathbf{a}(0) = s$. In other words, $\xi_s^\mathbf{a}(\cdot)$ is the state trajectory over time when the agent begins at
840 state s and follows action sequence \mathbf{a} .
841842 A PROOF OF RAA MAIN THEOREM
843844 We first define the value functions, $V_A^*, \tilde{V}_{RA}^*, V_{RAA}^* : \mathcal{S} \rightarrow \mathbb{R}$ by
845

846
$$V_A^*(s) = \max_{\pi \in \Pi} \min_{\tau \in \mathbb{N}} q(\xi_s^\pi(\tau)),$$

847
$$\tilde{V}_{RA}^*(s) = \max_{\pi \in \Pi} \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^\pi(\tau)), \min_{\kappa \leq \tau} q(\xi_s^\pi(\kappa)) \right\},$$

849
$$V_{RAA}^*(s) = \max_{\pi \in \Pi} \min \left\{ \max_{\tau \in \mathbb{N}} r(\xi_s^\pi(\tau)), \min_{\kappa \in \mathbb{N}} q(\xi_s^\pi(\kappa)) \right\},$$

850 where r_{RAA} is as in Theorem 1.
851852 We next define the value functions, $v_A^*, \tilde{v}_{RA}^*, v_{RAA}^* : \mathcal{S} \rightarrow \mathbb{R}$, which maximize over action sequences
853 rather than policies:
854

855
$$v_A^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \min_{\tau \in \mathbb{N}} q(\xi_s^\mathbf{a}(\tau)),$$

857
$$\tilde{v}_{RA}^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^\mathbf{a}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^\mathbf{a}(\kappa)) \right\},$$

859
$$v_{RAA}^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \min \left\{ \max_{\tau \in \mathbb{N}} r(\xi_s^\mathbf{a}(\tau)), \min_{\kappa \in \mathbb{N}} q(\xi_s^\mathbf{a}(\kappa)) \right\},$$

860 Observe that for each $s \in \mathcal{S}$,
861

862
$$v_A^*(s) \geq V_A^*(s), \quad \tilde{v}_{RA}^*(s) \geq \tilde{V}_{RA}^*(s), \quad v_{RAA}^*(s) \geq V_{RAA}^*(s).$$

863 We now prove a series of lemmas that will be useful in the proof of the main theorem.
864

864 **Lemma 1.** *There is a $\pi \in \Pi$ such that*

$$865 \quad v_A^*(s) = \min_{\tau \in \mathbb{N}} q(\xi_s^\pi(\tau))$$

866 *for all $s \in \mathcal{S}$.*

867 *Proof.* Choose $\pi \in \Pi$ such that

$$871 \quad \pi(s) \in \arg \max_{a \in \mathcal{A}} v_A^*(f(s, a)) \quad \forall s \in \mathcal{S}.$$

873 Fix $s \in \mathcal{S}$. Note that for each $\tau \in \mathbb{N}$,

$$\begin{aligned} 874 \quad v_A^*(\xi_s^\pi(\tau + 1)) &= v_A^*(f(\xi_s^\pi(\tau), \pi(\xi_s^\pi(\tau)))) \\ 875 \quad &= \max_{a \in \mathcal{A}} v_A^*(f(\xi_s^\pi(\tau), a)) \\ 876 \quad &= \max_{a \in \mathcal{A}} \max_{\mathbf{a} \in \mathbb{A}} \min_{\kappa \in \mathbb{N}} q\left(\xi_{f(\xi_s^\pi(\tau), a)}^{\mathbf{a}}(\kappa)\right) \\ 877 \quad &= \max_{a \in \mathcal{A}} \max_{\mathbf{a} \in \mathbb{A}} \min_{\kappa \in \mathbb{N}} q\left(\xi_{\xi_s^\pi(\tau)}^{[a, \mathbf{a}]}(\kappa + 1)\right) \\ 878 \quad &= \max_{\mathbf{a} \in \mathbb{A}} \min_{\kappa \in \mathbb{N}} q\left(\xi_{\xi_s^\pi(\tau)}^{\mathbf{a}}(\kappa + 1)\right) \\ 879 \quad &\geq \max_{\mathbf{a} \in \mathbb{A}} \min_{\kappa \in \mathbb{N}} q\left(\xi_{\xi_s^\pi(\tau)}^{\mathbf{a}}(\kappa)\right) \\ 880 \quad &\geq v_A^*(\xi_s^\pi(\tau)). \end{aligned}$$

881 It follows by induction that $v_A^*(\xi_s^\pi(\tau)) \geq v_A^*(\xi_s^\pi(0))$ for all $\tau \in \mathbb{N}$, so that

$$882 \quad v_A^*(s) \geq \min_{\tau \in \mathbb{N}} q(\xi_s^\pi(\tau)) \geq \min_{\tau \in \mathbb{N}} v_A^*(\xi_s^\pi(\tau)) = v_A^*(\xi_s^\pi(0)) = v_A^*(s).$$

883 \square

884 **Corollary 3.** *For all $s \in \mathcal{S}$, we have $V_A^*(s) = v_A^*(s)$.*

885 **Lemma 2.** *There is a $\pi \in \Pi$ such that*

$$886 \quad \tilde{v}_{RA}^*(s) = \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^\pi(\tau)), \min_{\kappa \leq \tau} q(\xi_s^\pi(\kappa)) \right\}$$

887 *for all $s \in \mathcal{S}$.*

888 *Proof.* First, let us note that in this proof we will use the standard conventions that

$$889 \quad \max \emptyset = -\infty \quad \text{and} \quad \min \emptyset = +\infty.$$

890 We next introduce some notation. First, for convenience, we set $v^* = \tilde{v}_{RA}^*$ and $V^* = \tilde{V}_{RA}^*$. Given
891 $s \in \mathcal{S}$ and $\mathbf{a} \in \mathbb{A}$, we write

$$892 \quad v^{\mathbf{a}}(s) = \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}.$$

893 Similarly, given $s \in \mathcal{S}$ and $\pi \in \Pi$, we write

$$894 \quad V^\pi(s) = \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^\pi(\tau)), \min_{\kappa \leq \tau} q(\xi_s^\pi(\kappa)) \right\}.$$

895 Then

$$896 \quad V^*(s) = \max_{\pi \in \Pi} \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^\pi(\tau)), \min_{\kappa \leq \tau} q(\xi_s^\pi(\kappa)) \right\} = \max_{\pi \in \Pi} V^\pi(s),$$

897 and

$$898 \quad v^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \min \left\{ r_{RAA}(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\} = \max_{\mathbf{a} \in \mathbb{A}} v^{\mathbf{a}}(s).$$

899 It is immediate that $v^*(s) \geq V^*(s)$ for each $s \in \mathcal{S}$, so it suffices to show the reverse inequality.
900 Toward this end, it suffices to show that there is a $\pi \in \Pi$ for which $V^\pi(s) = v^*(s)$ for each $s \in \mathcal{S}$.
901 Indeed, in this case, $V^*(s) \geq V^\pi(s) = v^*(s)$.

We now construct the desired policy π . Let $\alpha_0 = +\infty$, $S_0 = \emptyset$, and $v_0^* : \mathcal{S} \rightarrow \mathbb{R} \cup \{-\infty\}$, $s \mapsto -\infty$. We recursively define $\alpha_t \in \mathbb{R}$, $S_t \subseteq \mathcal{S}$, and $v_t^* : \mathcal{S} \rightarrow \mathbb{R} \cup \{-\infty\}$ for $t = 1, 2, \dots$ by

$$\alpha_{t+1} = \max_{s \in \mathcal{S} \setminus S_t} \min \left\{ \max \left\{ r_{\text{RAA}}(s), \max_{a \in \mathcal{A}} v_t^*(f(s, a)) \right\}, q(s) \right\}, \quad (3)$$

$$S_{t+1} = S_t \cup \left\{ s \in \mathcal{S} \setminus S_t \mid \min \left\{ \max \left\{ r_{\text{RAA}}(s), \max_{a \in \mathcal{A}} v_t^*(f(s, a)) \right\}, q(s) \right\} = \alpha_{t+1} \right\}, \quad (4)$$

$$v_{t+1}^*(s) = \begin{cases} v_t^*(s) & s \in S_t, \\ \alpha_{t+1} & s \in S_{t+1} \setminus S_t, \\ -\infty & s \in \mathcal{S} \setminus S_{t+1}. \end{cases} \quad (5)$$

From (4) it follows that

$$S_0 \subseteq S_1 \subseteq S_2 \subseteq \dots, \quad (6)$$

which together with (3) shows that

$$\alpha_0 \geq \alpha_1 \geq \alpha_2 \geq \dots. \quad (7)$$

Also, whenever $\mathcal{S} \setminus S_t$ is non-empty, the set being appended to S_t in (4) is non-empty so

$$\bigcup_{t=0}^{\infty} S_t = \mathcal{S}. \quad (8)$$

For each $s \in \mathcal{S}$, let $\sigma(s)$ be the smallest $t \in \mathbb{N}$ for which $s \in S_t$. We choose the policy $\pi \in \Pi$ of interest by insisting

$$\pi(s) \in \arg \max_{a \in \mathcal{A}} v_{\sigma(s)-1}^*(f(s, a)) \quad \forall s \in \mathcal{S}. \quad (9)$$

In the remainder of the proof, we show that $V^\pi(s) = v^*(s)$ for each $s \in \mathcal{S}$ by induction. Let $n \in \mathbb{N}$ and suppose the following induction assumptions hold:

$$V^\pi(s) = v^*(s) = v_n^*(s) \geq \alpha_n \quad \forall s \in S_n, \quad (10)$$

$$v^*(s') \leq \alpha_n \quad \forall s' \in \mathcal{S} \setminus S_n. \quad (11)$$

Note that the above hold trivially when $n = 0$ since $S_0 = \emptyset$ and $\alpha_0 = +\infty$. Fix some particular $y \in S_{n+1}$ and some $z \in \mathcal{S} \setminus S_{n+1}$. We must show that

$$V^\pi(y) = v^*(y) = v_{n+1}^*(y) \geq \alpha_{n+1}, \quad (12)$$

$$v^*(z) \leq \alpha_{n+1}. \quad (13)$$

In this case, induction then shows that $V^\pi(s) = v^*(s)$ for all $s \in \bigcup_{t=0}^{\infty} S_t$. Since this union is equal to \mathcal{S} by (8), the desired result then follows.

To show (12)-(13), we first demonstrate the following three claims.

1. Let $x \in \mathcal{S}$ and $w \in \mathcal{A}$ be such that $f(x, w) \in S_n$ and $q(x) \geq \alpha_{n+1}$. We claim $x \in S_{n+1}$.

We can assume $x \notin S_n$, for otherwise the claim follows immediately from (6). Since $f(x, w) \in S_n$, we have $v_n^*(f(x, w)) \geq \alpha_n$ by (10). Thus

$$\begin{aligned} \alpha_{n+1} &\geq \min \left\{ \max \left\{ r_{\text{RAA}}(x), \max_{a \in \mathcal{A}} v_n^*(f(x, a)) \right\}, q(x) \right\} \\ &\geq \min \{ \max \{ r_{\text{RAA}}(x), \alpha_n \}, \alpha_{n+1} \} \\ &= \alpha_{n+1}, \end{aligned}$$

where the first inequality follows from (3), and the equality follows from (7). Thus

$$\alpha_{n+1} = \min \left\{ \max \left\{ r_{\text{RAA}}(x), \max_{a \in \mathcal{A}} v_n^*(f(x, a)) \right\}, q(x) \right\},$$

so the claim follows from (4).

- 972 2. Let $x \in S_{n+1} \setminus S_n$ and $w \in \mathcal{A}$ be such that $f(x, w) \in S_n$. We claim that
 973
 974

$$V^\pi(x) = v^*(x) = \alpha_{n+1}. \quad (14)$$

975 To show this claim, we will make use of the dynamic programming principle
 976
 977

$$v^{\mathbf{a}}(s) = \min \left\{ \max \left\{ r_{\text{RAA}}(s), v^{\mathbf{a}|_1}(f(s, \mathbf{a}(0))) \right\}, q(s) \right\}, \quad \forall s \in \mathcal{S}, \mathbf{a} \in \mathbb{A},$$

978 from which it follows that
 979
 980

$$V^\pi(s) = \min \left\{ \max \left\{ r_{\text{RAA}}(s), V^\pi(f(s, \pi(s))) \right\}, q(s) \right\}, \quad \forall s \in \mathcal{S}, \quad (15)$$

981 and
 982

$$v^*(s) = \min \left\{ \max \left\{ r_{\text{RAA}}(s), \max_{a \in \mathcal{A}} v^*(f(s, a)) \right\}, q(s) \right\}, \quad \forall s \in \mathcal{S}. \quad (16)$$

983 Since $x \in S_{n+1} \setminus S_n$, then $\sigma(x) = n + 1$ by definition of σ , so $\pi(x) \in \arg \max_{a \in \mathcal{A}} v_n^*(f(x, a))$ by (9). Thus
 984
 985

$$v_n^*(f(x, \pi(x))) = \max_{a \in \mathcal{A}} v_n^*(f(x, a)). \quad (17)$$

986 But then
 987

$$v_n^*(f(x, \pi(x))) \geq v_n^*(f(x, w)) \geq \alpha_n \geq \alpha_{n+1} > -\infty,$$

988 where the second inequality comes from (10), the third comes from (7), and the final
 989 inequality comes from (3) ($\mathcal{S} \setminus S_n$ is non-empty because $x \in \mathcal{S} \setminus S_n$). Thus $f(x, \pi(x)) \in S_n$
 990 by (5). It then follows from (10) that
 991
 992

$$V^\pi(f(x, \pi(x))) = v^*(f(x, \pi(x))) = v_n^*(f(x, \pi(x))). \quad (18)$$

993 Now, observe that for all $s \in S_n$ and $s' \in \mathcal{S} \setminus S_n$,
 994
 995

$$v^*(s) = v_n^*(s) \geq \alpha_n \geq v^*(s') \geq -\infty = v_n^*(s'), \quad (19)$$

996 where the first equality and inequality are from (10), the second inequality is from (11),
 997 and the final equality is from (5). Moreover, $f(x, a) \in S_n$ for at least one a (in particular
 998 $a = w$). Letting $\mathcal{A}' = \{a \in \mathcal{A} \mid f(x, a) \in S_n\}$, it follows from (19) that
 999
 1000

$$\max_{a \in \mathcal{A}} v^*(f(x, a)) = \max_{a \in \mathcal{A}'} v^*(f(x, a)) = \max_{a \in \mathcal{A}'} v_n^*(f(x, a)) = \max_{a \in \mathcal{A}} v_n^*(f(x, a)). \quad (20)$$

1001 From (17)-(20) we have
 1002
 1003

$$V^\pi(f(x, \pi(x))) = \max_{a \in \mathcal{A}} v^*(f(x, a)) = \max_{a \in \mathcal{A}} v_n^*(f(x, a)). \quad (21)$$

1004 Now observe that
 1005
 1006

$$\begin{aligned} V^\pi(x) &= \min \left\{ \max \left\{ r_{\text{RAA}}(x), V^\pi(f(x, \pi(x))) \right\}, q(x) \right\}, \\ v^*(x) &= \min \left\{ \max \left\{ r_{\text{RAA}}(x), \max_{a \in \mathcal{A}} v^*(f(x, a)) \right\}, q(x) \right\}, \\ \alpha_{n+1} &= \min \left\{ \max \left\{ r_{\text{RAA}}(x), \max_{a \in \mathcal{A}} v_n^*(f(x, a)) \right\}, q(x) \right\}, \end{aligned}$$

1007 where the first equation is from (15), the second is from (16), and the third is from (4). But
 1008 then (14) follows from the above equations together with (21).
 1009
 1010

- 1011 3. Let $x \in \mathcal{S} \setminus S_n$. We claim that $v^*(x) \leq \alpha_{n+1}$. Suppose otherwise. Then we can choose
 1012 $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$ such that
 1013
 1014

$$\min \left\{ r_{\text{RAA}}(\xi_x^{\mathbf{a}}(\tau)), \min_{\kappa \leq \tau} q(\xi_x^{\mathbf{a}}(\kappa)) \right\} > \alpha_{n+1}. \quad (22)$$

1015 It follows that $\xi_x^{\mathbf{a}}(\tau) \in S_n$, for otherwise
 1016
 1017

$$\alpha_{n+1} \geq \min \{r_{\text{RAA}}(\xi_x^{\mathbf{a}}(\tau)), q(\xi_x^{\mathbf{a}}(\tau))\}$$

1026 by (3), creating a contradiction.
 1027
 1028 So $x \notin S_n$ and $\xi_x^{\mathbf{a}}(\tau) \in S_n$, indicating that there is some $\theta \in \{0, \dots, \tau - 1\}$ such that
 1029 $\xi_x^{\mathbf{a}}(\theta) \notin S_n$ and $f(\xi_x^{\mathbf{a}}(\theta), \mathbf{a}(\theta)) = \xi_x^{\mathbf{a}}(\theta + 1) \in S_n$. Moreover, $q(\xi_x^{\mathbf{a}}(\theta)) > \alpha_{n+1}$ by (22).
 1030 It follows from claim 1 that $\xi_x^{\mathbf{a}}(\theta) \in S_{n+1}$.

1031 But then it follows from claim 2 that $v^*(\xi_x^{\mathbf{a}}(\theta)) = \alpha_{n+1}$. However,

$$\begin{aligned} 1033 \quad v^*(\xi_x^{\mathbf{a}}(\theta)) &\geq \min \left\{ r_{\text{RAA}} \left(\xi_x^{\mathbf{a}}(\theta) (\tau - \theta) \right), \min_{\kappa \leq \tau - \theta} q \left(\xi_x^{\mathbf{a}}(\theta) (\kappa) \right) \right\} \\ 1034 \\ 1035 \quad &= \min \left\{ r_{\text{RAA}} (\xi_x^{\mathbf{a}}(\tau - \theta + \theta)), \min_{\kappa \leq \tau - \theta} q (\xi_x^{\mathbf{a}}(\kappa + \theta)) \right\} \\ 1036 \\ 1037 \quad &= \min \left\{ r_{\text{RAA}} (\xi_x^{\mathbf{a}}(\tau)), \min_{\kappa \in \{\theta, \theta+1, \dots, \tau\}} q (\xi_x^{\mathbf{a}}(\kappa)) \right\} \\ 1038 \\ 1039 \quad &> \alpha_{n+1}, \end{aligned}$$

1040 giving the desired contradiction.
 1041
 1042

1043 Having established these claims, we return to proving (12) and (13) hold. In fact, (13) follows
 1044 immediately from claim 3, so we actually only need to show (12).
 1045

1046 If $y \in S_n$, then from (5) and (10), we have that $V^\pi(y) = v^*(y) = v_n^*(y) = v_{n+1}^*(y)$, and from (7)
 1047 and (10), we also have that $v_n^*(y) \geq \alpha_n \geq \alpha_{n+1}$. Together these establish (12) when $y \in S_n$.
 1048

1049 So suppose $y \in S_{n+1} \setminus S_n$. First, observe that $v_{n+1}^*(y) = \alpha_{n+1}$ by (5). There are now two
 1050 possibilities. If there is some $a \in \mathcal{A}$ for which $f(y, a) \in S_n$, then (12) follows from claim 2. If
 1051 instead, $f(y, a) \notin S_n$ for each $a \in \mathcal{A}$, then $\max_{a \in \mathcal{A}} v_n^*(f(y, a)) = -\infty$ by (5) (or if $n = 0$ by
 1052 definition of v_0^*). Thus $\alpha_{n+1} = \min \{r_{\text{RAA}}(y), q(y)\}$ by (4), so

$$1053 \quad v^*(y) \geq V^\pi(y) \geq \min \{r_{\text{RAA}}(y), q(y)\} = \alpha_{n+1} \geq v^*(y),$$

1054 where the final inequality follows from claim 3. This completes the proof. \square
 1055

1056
 1057 **Corollary 4.** For all $s \in \mathcal{S}$, we have $\tilde{V}_{\text{RA}}^*(s) = \tilde{v}_{\text{RA}}^*(s)$.
 1058

1059 **Lemma 3.** Let $F : \mathbb{A} \times \mathbb{N} \rightarrow \mathbb{R}$. Then

$$1060 \quad \sup_{\mathbf{a} \in \mathbb{A}} \sup_{\tau \in \mathbb{N}} \sup_{\mathbf{a}' \in \mathbb{A}'} F([\mathbf{a}, \mathbf{a}']_\tau, \tau) = \sup_{\mathbf{a} \in \mathbb{A}} \sup_{\tau \in \mathbb{N}} F(\mathbf{a}, \tau). \quad (23)$$

1063 *Proof.* We proceed by showing both inequalities corresponding to (23) hold.
 1064

1065
 1066 (\geq) Given any $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$, we have $\sup_{\mathbf{a}' \in \mathbb{A}'} F([\mathbf{a}, \mathbf{a}']_\tau, \tau) \geq F(\mathbf{a}, \tau)$. Taking the
 1067 suprema over $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$ on both sides of this inequality gives the desired result.
 1068

1069 (\leq) Given any $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$, we have

$$1070 \quad \sup_{\mathbf{a}' \in \mathbb{A}'} F([\mathbf{a}, \mathbf{a}']_\tau, \tau) \leq \sup_{\mathbf{a}'' \in \mathbb{A}} F(\mathbf{a}'', \tau),$$

1071 so that the result follows from taking the suprema over $\mathbf{a} \in \mathbb{A}$ and $\tau \in \mathbb{N}$ on both sides of
 1072 this inequality.
 1073
 1074 \square

1075
 1076 **Lemma 4.** For each $s \in \mathcal{S}$,

$$1077 \quad v_{\text{RAA}}^*(s) = \tilde{v}_{\text{RA}}^*(s).$$

1080 *Proof.* For each $s \in \mathcal{S}$, we have

$$1082 \tilde{v}_{\text{RA}}^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \min \left\{ r_{\text{RAA}}(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\} \quad (24)$$

$$1084 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ r(\xi_s^{\mathbf{a}}(\tau)), v_{\text{A}}^*(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\} \quad (25)$$

$$1087 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ r(\xi_s^{\mathbf{a}}(\tau)), \max_{\mathbf{a}' \in \mathbb{A}} \min_{\kappa' \in \mathbb{N}} q\left(\xi_{\xi_s^{\mathbf{a}}(\tau)}^{\mathbf{a}'}(\kappa')\right), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}$$

$$1089 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ r(\xi_s^{\mathbf{a}}(\tau)), \max_{\mathbf{a}' \in \mathbb{A}} \min_{\kappa' \in \mathbb{N}} q\left(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \kappa')\right), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}$$

$$1092 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \min \left\{ r(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa' \in \mathbb{N}} q\left(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \kappa')\right), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}$$

$$1094 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \min \left\{ r\left(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau)\right), \min_{\kappa' \in \mathbb{N}} q\left(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \kappa')\right), \min_{\kappa \leq \tau} q\left(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\kappa)\right) \right\} \quad (26)$$

$$1097 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ r(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa' \in \mathbb{N}} q(\xi_s^{\mathbf{a}}(\tau + \kappa')), \min_{\kappa \leq \tau} q(\xi_s^{\mathbf{a}}(\kappa)) \right\} \quad (27)$$

$$1100 = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ r(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \in \mathbb{N}} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}$$

$$1102 = \max_{\mathbf{a} \in \mathbb{A}} \left\{ \max_{\tau \in \mathbb{N}} r(\xi_s^{\mathbf{a}}(\tau)), \min_{\kappa \in \mathbb{N}} q(\xi_s^{\mathbf{a}}(\kappa)) \right\}$$

$$1104 = v_{\text{RAA}}^*(s),$$

1105 where the equality between (24) and (25) follows from Corollary 3, and where the equality between
1106 (26) and (27) follows from Lemma 3. \square

1108 Before the next lemma, we need to introduce two last pieces of notation. First, we let $\bar{\Pi}$ be the set of
1109 augmented policies $\bar{\pi} : \mathcal{S} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathcal{A}$, where

$$1110 \quad \mathcal{Y} = \{r(s) \mid s \in \mathcal{S}\} \quad \text{and} \quad \mathcal{Z} = \{q(s) \mid s \in \mathcal{S}\}.$$

1112 Next, given $s \in \mathcal{S}$, $y \in \mathcal{Y}$, $z \in \mathcal{Z}$, and $\bar{\pi} \in \bar{\Pi}$, we let $\bar{\xi}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{S}$, $\bar{\eta}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{Y}$, and $\bar{\zeta}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{Z}$, be
1113 the solution of the evolution
1114

$$1115 \quad \begin{aligned} \bar{\xi}_s^{\bar{\pi}}(t+1) &= f\left(\bar{\xi}_s^{\bar{\pi}}(t), \bar{\pi}\left(\bar{\xi}_s^{\bar{\pi}}(t), \bar{\eta}_s^{\bar{\pi}}(t), \bar{\zeta}_s^{\bar{\pi}}(t)\right)\right), \\ 1116 \quad \bar{\eta}_s^{\bar{\pi}}(t+1) &= \max\left\{r\left(\bar{\xi}_s^{\bar{\pi}}(t+1)\right), \bar{\eta}_s^{\bar{\pi}}(t)\right\}, \\ 1117 \quad \bar{\zeta}_s^{\bar{\pi}}(t+1) &= \min\left\{q\left(\bar{\xi}_s^{\bar{\pi}}(t+1)\right), \bar{\zeta}_s^{\bar{\pi}}(t)\right\}, \end{aligned}$$

1119 for which $\bar{\xi}_s^{\bar{\pi}}(0) = s$, $\bar{\eta}_s^{\bar{\pi}}(0) = r(s)$, and $\bar{\zeta}_s^{\bar{\pi}}(0) = q(s)$.

1120 **Lemma 5.** *There is a $\bar{\pi} \in \bar{\Pi}$ such that*

$$1122 \quad v_{\text{RAA}}^*(s) = \min \left\{ \max_{\tau \in \mathbb{N}} r\left(\bar{\xi}_s^{\bar{\pi}}(\tau)\right), \min_{\tau \in \mathbb{N}} q\left(\bar{\xi}_s^{\bar{\pi}}(\tau)\right) \right\} \quad (28)$$

1124 for all $s \in \mathcal{S}$.

1126 *Proof.* By Lemmas 1 and 2 together with Corollary 3, we can choose $\pi, \theta \in \Pi$ such that

$$1128 \quad \tilde{v}_{\text{RA}}^*(s) = \max_{\tau \in \mathbb{N}} \min \left\{ r(\xi_s^{\pi}(\tau)), v_{\text{A}}^*(\xi_s^{\pi}(\tau)), \min_{\kappa \leq \tau} q(\xi_s^{\pi}(\kappa)) \right\} \quad \forall s \in \mathcal{S},$$

$$1130 \quad v_{\text{A}}^*(s) = \min_{\tau \in \mathbb{N}} q(\xi_s^{\theta}(\tau)) \quad \forall s \in \mathcal{S}.$$

1132 We introduce some useful notation we will use throughout the rest of the proof. For each $s \in \mathcal{S}$, let
1133 $[s]^+ = f(s, \pi(s))$, $[y]_s^+ = \max\{y, r([s]^+)\}$, $[z]_s^+ = \min\{z, q([s]^+)\}$.

1134 We define an augmented policy $\bar{\pi} \in \overline{\Pi}$ by
1135

$$1136 \bar{\pi}(s, y, z) = \begin{cases} \pi(s) & \min\{[y]_s^+, [z]_s^+, v_A^*([s]^+)\} \geq \min\{y, z, v_A^*(s)\}, \\ 1137 \theta(s) & \text{otherwise.} \end{cases}$$

1138

1139 Now fix some $s \in \mathcal{S}$. For all $t \in \mathbb{N}$, set $\bar{x}_t = \xi_s^{\bar{\pi}}(t)$, $\bar{y}_t = \bar{\eta}_s^{\bar{\pi}}(t) = \max_{\tau \leq t} r(\bar{x}_\tau)$, and $\bar{z}_t = \zeta_s^{\bar{\pi}}(t) = 1140 \min_{\tau \leq t} q(\bar{x}_\tau)$, and also set $x_t^\circ = \xi_s^\pi(t)$, $y_t^\circ = \max_{\tau \leq t} r(x_\tau^\circ)$, and $z_t^\circ = \min_{\tau \leq t} q(x_\tau^\circ)$.
1141

1142 First, assume that t is such that $\min\{[\bar{y}_t]_{\bar{x}_t}^+, [\bar{z}_t]_{\bar{x}_t}^+, v_A^*([\bar{x}_t]^+)\} < \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\}$. In this case,
1143 $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \theta(\bar{x}_t)$, so that

$$1144 \min\{\bar{z}_t, v_A^*(\bar{x}_t)\} = \min\{\bar{z}_{t+1}, v_A^*(\bar{x}_{t+1})\}$$

1145 by our choice of θ . Since \bar{y}_t is non-decreasing in t , thus have
1146

$$1147 \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\} \leq \min\{\bar{y}_{t+1}, \bar{z}_{t+1}, v_A^*(\bar{x}_{t+1})\}.$$

1148 Next, assume that t is such that $\min\{[\bar{y}_t]_{\bar{x}_t}^+, [\bar{z}_t]_{\bar{x}_t}^+, v_A^*([\bar{x}_t]^+)\} \geq \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\}$. In this case,
1149 we have that $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \pi(\bar{x}_t)$, so
1150

$$1151 \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\} \leq \min\{[\bar{y}_t]_{\bar{x}_t}^+, [\bar{z}_t]_{\bar{x}_t}^+, v_A^*([\bar{x}_t]^+)\} = \min\{\bar{y}_{t+1}, \bar{z}_{t+1}, v_A^*(\bar{x}_{t+1})\}.$$

1153 It thus follows from these two cases that $\min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\}$ is non-decreasing in t . Let
1154

$$1155 T = \min \{t \in \mathbb{N} \mid \min\{[\bar{y}_t]_{\bar{x}_t}^+, [\bar{z}_t]_{\bar{x}_t}^+, v_A^*([\bar{x}_t]^+)\} < \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\}\}.$$

1156 There are again two cases:
1157

1158 ($T < \infty$) In this case, $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \pi(\bar{x}_t)$ for $t < T$. Then $\bar{x}_t = x_t^\circ$, $\bar{y}_t = y_t^\circ$, and $\bar{z}_t = z_t^\circ$ for all
1159 $t \leq T$. It follows that $[\bar{x}_t]^+ = x_{t+1}^\circ$, $[\bar{y}_t]_{\bar{x}_t}^+ = y_{t+1}^\circ$, and $[\bar{z}_t]_{\bar{x}_t}^+ = z_{t+1}^\circ$ for all $t \leq T$. Thus
1160 by definition of T ,

$$1161 \min \{y_{t+1}^\circ, z_{t+1}^\circ, v_A^*(x_{t+1}^\circ)\} \geq \min \{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\} \quad \forall t < T.$$

1162 and

$$1164 \min \{y_{T+1}^\circ, z_{T+1}^\circ, v_A^*(x_{T+1}^\circ)\} < \min \{y_T^\circ, z_T^\circ, v_A^*(x_T^\circ)\}.$$

1165 But since y_t° is non-decreasing and $\min\{z_t^\circ, v_A^*(x_t^\circ)\}$ is non-increasing in t , it follows that
1166 $\min\{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\}$ must achieve its maximal value at the smallest t for which it strictly
1167 decreases from t to $t+1$, i.e.

$$1168 \begin{aligned} \min \{\bar{y}_T, \bar{z}_T, v_A^*(\bar{x}_T)\} &= \min \{y_T^\circ, z_T^\circ, v_A^*(x_T^\circ)\} \\ 1169 &= \max_{t \in \mathbb{N}} \min \{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\} \\ 1170 &\geq \max_{t \in \mathbb{N}} \min \{r(x_t^\circ), z_t^\circ, v_A^*(x_t^\circ)\} \\ 1171 &= \tilde{v}_{\text{RA}}^*(s). \end{aligned}$$

1174 where the final equality follows from our choice of π . Since $\min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\}$ is non-
1175 decreasing in t , then

$$1177 \min\{\bar{y}_t, \bar{z}_t\} \geq \min\{\bar{y}_t, \bar{z}_t, v_A^*(\bar{x}_t)\} \geq \min\{\bar{y}_T, \bar{z}_T, v_A^*(\bar{x}_T)\} = \tilde{v}_{\text{RA}}^*(s) \quad \forall t \geq T.$$

1178 Thus

$$1180 v_{\text{RAA}}^*(s) \geq \min \left\{ \max_{t \in \mathbb{N}} r(\bar{x}_t), \min_{t \in \mathbb{N}} q(\bar{x}_t) \right\} = \lim_{t \rightarrow \infty} \min\{\bar{y}_t, \bar{z}_t\} \geq \tilde{v}_{\text{RA}}^*(s) = v_{\text{RAA}}^*(s),$$

1182 where the final equality follows from Lemma (4). Thus the proof is complete in this case.
1183

1184 ($T = \infty$) In this case, $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \pi(\bar{x}_t)$ for all $t \in \mathbb{N}$. Then $\bar{x}_t = x_t^\circ$, $\bar{y}_t = y_t^\circ$, and $\bar{z}_t = z_t^\circ$ for
1185 all $t \in \mathbb{N}$. Also $[\bar{x}_t]^+ = x_{t+1}^\circ$, $[\bar{y}_t]_{\bar{x}_t}^+ = y_{t+1}^\circ$, and $[\bar{z}_t]_{\bar{x}_t}^+ = z_{t+1}^\circ$ for all $t \in \mathbb{N}$. Thus by
1186 definition of T ,

$$1187 \min \{y_{t+1}^\circ, z_{t+1}^\circ, v_A^*(x_{t+1}^\circ)\} \geq \min \{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\} \quad \forall t \in \mathbb{N}.$$

1188 Let $T' \in \arg \max_{t \in \mathbb{N}} \min \{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\}$. Then
1189
$$\begin{aligned} \min \{\bar{y}_{T'}, \bar{z}_{T'}, v_A^*(\bar{x}_{T'})\} &= \min \{y_{T'}^\circ, z_{T'}^\circ, v_A^*(x_{T'}^\circ)\} \\ 1190 &= \max_{t \in \mathbb{N}} \min \{y_t^\circ, z_t^\circ, v_A^*(x_t^\circ)\} \\ 1191 &\geq \max_{t \in \mathbb{N}} \min \{r(x_t^\circ), z_t^\circ, v_A^*(x_t^\circ)\} \\ 1192 &= \tilde{v}_{RA}^*(s). \end{aligned}$$

1193 The rest of the proof follows the same as the previous case with T replaced by T' .
1194

□

1195 **Corollary 5.** For all $s \in \mathcal{S}$, we have $V_{RAA}^*(s) = v_{RAA}^*(s)$.
1196

1197 *Proof of Theorem 1.* Theorem 1 is now a direct consequence of the previous corollary together with
1198 Corollary 4 and Lemma 4. □
1199

1200 A.1 A DIRECT DERIVATION OF THE RAA BELLMAN EQUATION

1201 Here, we offer a direct derivation for the RAA Bellman equation. Note, this derivation does not
1202 guarantee that the resulting Bellman equation is unique, and is just for intuition for the rigor above.

1203
$$\begin{aligned} v_{RAA}^*(s) &:= \max_{a_0, a_1, \dots} \min \left\{ \max_{\tau \in \{0, 1, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)), \min_{\kappa \in \{0, 1, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\} \\ 1204 &= \min \left\{ q(s), \max_{a_0, a_1, \dots} \min \left\{ \max_{\tau \in \{0, 1, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)), \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\} \right\} \\ 1205 &= \min \left\{ q(s), \max_{a_0, a_1, \dots} \min \left\{ \max \left\{ r(s), \max_{\tau \in \{1, 2, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)) \right\}, \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\} \right\}, \end{aligned} \quad (29)$$

1206 where $\mathbf{x}_s^{a_0, a_1, \dots}$ is the system trajectory starting from state s under the sequence of actions a_0, a_1, \dots .
1207 Using the identity $\min \{\max \{a, b\}, c\} = \max \{\min \{a, c\}, \min \{b, c\}\}$,

1208
$$\begin{aligned} v_{RAA}^*(s) &= \min \left\{ q(s), \max_{a_0, a_1, \dots} \max \left\{ \min \left\{ r(s), \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \right. \right. \\ 1209 &\quad \left. \left. \min \left\{ \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)), \max_{\tau \in \{1, 2, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)) \right\} \right\} \right\} \\ 1210 &= \min \left\{ q(s), \max \left\{ \min \left\{ r(s), \max_{a_0, a_1, \dots} \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \right. \right. \\ 1211 &\quad \left. \left. \max_{a_0, a_1, \dots} \min \left\{ \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)), \max_{\tau \in \{1, 2, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)) \right\} \right\} \right\} \\ 1212 &= \min \left\{ q(s), \max \left\{ \min \left\{ r(s), \max_{a_0, a_1, \dots} \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \right. \right. \\ 1213 &\quad \left. \left. \max_{a_0, a_1, \dots} \min \left\{ \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)), \max_{\tau \in \{1, 2, \dots\}} r(\mathbf{x}_s^{a_0, a_1, \dots}(\tau)) \right\} \right\} \right\} \\ 1214 &= \min \left\{ q(s), \max \left\{ \min \left\{ r(s), \max_{a_0, a_1, \dots} \min_{\kappa \in \{1, 2, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \max_a v_{RAA}^*(f(s, a)) \right\} \right\} \\ 1215 &= \min \left\{ q(s), \max \left\{ \min \left\{ q(s), r(s), \max_{a_0, a_1, \dots} \min_{\kappa \in \{0, 1, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \max_a v_{RAA}^*(f(s, a)) \right\} \right\} \\ 1216 &= \min \left\{ q(s), \max \left\{ \min \left\{ r(s), \max_{a_0, a_1, \dots} \min_{\kappa \in \{0, 1, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa)) \right\}, \max_a v_{RAA}^*(f(s, a)) \right\} \right\}, \end{aligned}$$

1217 where in the penultimate step we used the identity $\min \{a, \max \{b, c\}\} = \min \{a, \max \{\min \{a, b\}, c\}\}$. Noticing that $v_A^*(s) = \max_{a_0, a_1, \dots} \min_{\kappa \in \{0, 1, \dots\}} q(\mathbf{x}_s^{a_0, a_1, \dots}(\kappa))$, we
1218 have

1219
$$v_{RAA}^*(s) = \min \left\{ q(s), \max \left\{ \min \{r(s), v_A^*(s)\}, \max_a v_{RAA}^*(f(s, a)) \right\} \right\}. \quad (30)$$

1220 This completes the derivation of the RAA Bellman equation.

1221 Lastly, we may note that if define $\tilde{r}(s) := \min \{r(s), v_A^*(s)\}$, the above becomes the RA Bellman
1222 equation,

1223
$$v_{RAA}^*(s) = \min \left\{ q(s), \max \left\{ \tilde{r}(s), \max_a v_{RAA}^*(f(s, a)) \right\} \right\}. \quad (31)$$

1242 **B PROOF OF RR MAIN THEOREM**
 1243

1244 We first define the value functions, $V_{R1}^*, V_{R2}^*, \tilde{V}_R^*, V_{RR}^* : \mathcal{S} \rightarrow \mathbb{R}$ by
 1245

$$\begin{aligned} V_{R1}^*(s) &= \max_{\pi \in \Pi} \max_{\tau \in \mathbb{N}} r_1(\xi_s^\pi(\tau)), \\ V_{R2}^*(s) &= \max_{\pi \in \Pi} \max_{\tau \in \mathbb{N}} r_2(\xi_s^\pi(\tau)), \\ \tilde{V}_R^*(s) &= \max_{\pi \in \Pi} \max_{\tau \in \mathbb{N}} r_{RR}(\xi_s^\pi(\tau)), \\ V_{RR}^*(s) &= \max_{\pi \in \Pi} \min \left\{ \max_{\tau \in \mathbb{N}} r_1(\xi_s^\pi(\tau)), \max_{\tau \in \mathbb{N}} r_2(\xi_s^\pi(\tau)) \right\}. \end{aligned}$$

1254 We next define the value functions, $v_{R1}^*, v_{R2}^*, \tilde{v}_R^*, v_{RR}^* : \mathcal{S} \rightarrow \mathbb{R}$, which maximize over action sequences
 1255 rather than policies:
 1256

$$\begin{aligned} v_{R1}^*(s) &= \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\mathbf{a}}(\tau)), \\ v_{R2}^*(s) &= \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} r_2(\xi_s^{\mathbf{a}}(\tau)), \\ \tilde{v}_R^*(s) &= \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} r_{RR}(\xi_s^{\mathbf{a}}(\tau)), \\ v_{RR}^*(s) &= \max_{\mathbf{a} \in \mathbb{A}} \min \left\{ \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau \in \mathbb{N}} r_2(\xi_s^{\mathbf{a}}(\tau)) \right\}, \end{aligned}$$

1264 where r_{RR} is as in Theorem 2. Observe that for each $s \in \mathcal{S}$,
 1265

$$1266 \quad v_{R1}^*(s) \geq V_{R1}^*(s), \quad v_{R2}^*(s) \geq V_{R2}^*(s), \quad \tilde{v}_R^*(s) \geq \tilde{V}_R^*(s), \quad v_{RR}^*(s) \geq V_{RR}^*(s).$$

1268 We now prove a series of lemmas that will be useful in the proof of the main theorem.
 1269

1270 **Lemma 6.** *There are $\pi_1, \pi_2 \in \Pi$ such that*

$$1271 \quad v_{R1}^*(s) = \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\pi_1}(\tau)) \text{ and } v_{R2}^*(s) = \max_{\tau \in \mathbb{N}} r_2(\xi_s^{\pi_2}(\tau))$$

1273 for all $s \in \mathcal{S}$.
 1274

1275 *Proof.* We will just prove the result for $v_{R1}^*(s)$ since the other result follows identically. For each
 1276 $s \in \mathcal{S}$, let τ_s be the smallest element of \mathbb{N} for which
 1277

$$1278 \quad \max_{\mathbf{a} \in \mathbb{A}} r_1(\xi_s^{\mathbf{a}}(\tau_s)) = v_{R1}^*(s).$$

1280 Moreover, for each $s \in \mathcal{S}$, let \mathbf{a}_s be such that
 1281

$$1282 \quad r_1(\xi_s^{\mathbf{a}_s}(\tau_s)) = v_{R1}^*(s).$$

1283 Let $\pi_1 \in \Pi$ be given by $\pi_1(s) = \mathbf{a}_s(0)$. It suffices to show that
 1284

$$1285 \quad r_1(\xi_s^{\pi_1}(\tau_s)) = v_{R1}^*(s) \tag{32}$$

1286 for all $s \in \mathcal{S}$, for in this case, we have
 1287

$$1288 \quad v_{R1}^*(s) \geq \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\pi_1}(\tau)) \geq r_1(\xi_s^{\pi_1}(\tau_s)) = v_{R1}^*(s) \quad \forall s \in \mathcal{S}.$$

1290 We show (32) holds for each $s \in \mathcal{S}$ by induction on τ_s . First, suppose that $s \in \mathcal{S}$ is such that $\tau_s = 0$.
 1291 Then

$$1292 \quad r_1(\xi_s^{\pi_1}(\tau_s)) = r_1(s) = r_1(\xi_s^{\mathbf{a}_s}(\tau_s)) = v_{R1}^*(s).$$

1294 For the induction step, let $n \in \mathbb{N}$ and suppose that
 1295

$$r_1(\xi_s^{\pi_1}(\tau_s)) = v_{R1}^*(s) \quad \forall s \in \mathcal{S} \text{ such that } \tau_s \leq n.$$

1296 Now fix some $x \in \mathcal{S}$ such that $\tau_x = n + 1$. Notice that
 1297

$$\begin{aligned} v_{\text{RI}}^*(x) &\geq v_{\text{RI}}^*(f(x, \pi_1(x))) \\ &\geq \max_{\mathbf{a} \in \mathbb{A}} r_1(\xi_{f(x, \pi_1(x))}^{\mathbf{a}}(n)) \\ &\geq r_1(\xi_{f(x, \pi_1(x))}^{\mathbf{a}_x|_1}(n)) \\ &= r_1(\xi_x^{[\pi_1(x), \mathbf{a}_x|_1]}(n + 1)) \\ &= r_1(\xi_x^{\mathbf{a}_x}(\tau_x)) \\ &= v_{\text{RI}}^*(x), \end{aligned}$$

1307 so that $v_{\text{RI}}^*(f(x, \pi_1(x))) = v_{\text{RI}}^*(x)$ and $\tau_{f(x, \pi_1(x))} \leq n$. It suffices to show
 1308

$$\tau_{f(x, \pi_1(x))} = n, \quad (33)$$

1310 for then, by the induction assumption, we have
 1311

$$r_1(\xi_x^{\pi_1}(\tau_x)) = r_1(\xi_{f(x, \pi_1(x))}^{\pi_1}(n)) = v_{\text{RI}}^*(f(x, \pi_1(x))) = v_{\text{RI}}^*(x).$$

1314 To show (33), assume instead that
 1315

$$\tau_{f(x, \pi_1(x))} < n.$$

1316 But
 1317

$$\begin{aligned} v_{\text{RI}}^*(x) &\geq \max_{\mathbf{a} \in \mathbb{A}} r_1(\xi_x^{\mathbf{a}}(\tau_{f(x, \pi_1(x))} + 1)) \\ &\geq r_1(\xi_x^{[\pi_1(x), \mathbf{a}_{f(x, \pi_1(x))}]}(\tau_{f(x, \pi_1(x))} + 1)) \\ &= r_1(\xi_{f(x, \pi_1(x))}^{\mathbf{a}_{f(x, \pi_1(x))}}(\tau_{f(x, \pi_1(x))})) \\ &= v_{\text{RI}}^*(f(x, \pi_1(x))) \\ &= v_{\text{RI}}^*(x), \end{aligned}$$

1326 so that
 1327

$$v_{\text{RI}}^*(x) = \max_{\mathbf{a} \in \mathbb{A}} r_1(\xi_x^{\mathbf{a}}(\tau_{f(x, \pi_1(x))} + 1))$$

1328 and thus
 1329

$$\tau_x \leq \tau_{f(x, \pi_1(x))} + 1 < n + 1,$$

1330 giving our desired contradiction. \square

1331 **Corollary 6.** For all $s \in \mathcal{S}$, we have $V_{\text{RI}}^*(s) = v_{\text{RI}}^*(s)$ and $V_{\text{R2}}^*(s) = v_{\text{R2}}^*(s)$.
 1332

1333 **Lemma 7.** There is a $\pi \in \Pi$ such that
 1334

$$\tilde{v}_{\text{R}}^*(s) = \max_{\tau \in \mathbb{N}} r_{\text{RR}}(\xi_s^{\pi}(\tau)).$$

1335 for all $s \in \mathcal{S}$.
 1336

1337 *Proof.* This lemma follows by precisely the same proof as the previous lemma, with r_1 , v_{RI}^* , and π_1
 1338 replaced with r_{RR} , \tilde{v}_{R}^* , and π respectively. \square

1339 **Corollary 7.** For all $s \in \mathcal{S}$, we have $\tilde{V}_{\text{R}}^*(s) = \tilde{v}_{\text{R}}^*(s)$.
 1340

1341 **Lemma 8.** Let $\zeta_1 : \mathbb{N} \rightarrow \mathbb{R}$ and $\zeta_2 : \mathbb{N} \rightarrow \mathbb{R}$. Then
 1342

$$\begin{aligned} \sup_{\tau \in \mathbb{N}} \max \left\{ \min \left\{ \zeta_1(\tau), \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau + \tau') \right\}, \min \left\{ \sup_{\tau' \in \mathbb{N}} \zeta_1(\tau + \tau'), \zeta_2(\tau) \right\} \right\} \\ = \min \left\{ \sup_{\tau \in \mathbb{N}} \zeta_1(\tau), \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) \right\}. \end{aligned}$$

1343 *Proof.* We proceed by showing both inequalities corresponding to the above equality hold.
 1344

1350 (<) Observe that

$$\begin{aligned}
& \sup_{\tau \in \mathbb{N}} \max \left\{ \min \left\{ \zeta_1(\tau), \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau + \tau') \right\}, \min \left\{ \sup_{\tau' \in \mathbb{N}} \zeta_1(\tau + \tau'), \zeta_2(\tau) \right\} \right\} \\
& \leq \max \left\{ \min \left\{ \sup_{\tau \in \mathbb{N}} \zeta_1(\tau), \sup_{\tau \in \mathbb{N}} \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau + \tau') \right\}, \min \left\{ \sup_{\tau \in \mathbb{N}} \sup_{\tau' \in \mathbb{N}} \zeta_1(\tau + \tau'), \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) \right\} \right\} \\
& = \min \left\{ \sup_{\tau \in \mathbb{N}} \zeta_1(\tau), \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) \right\}
\end{aligned}$$

(\geq) Fix $\varepsilon > 0$. Choose $\tau_1, \tau_2 \in \mathbb{N}$ such that $\zeta_1(\tau_1) \geq \sup_{\tau \in \mathbb{N}} \zeta_1(\tau) - \varepsilon$ and $\zeta_2(\tau_2) \geq \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) - \varepsilon$. Without loss of generality, we can assume $\tau_1 \leq \tau_2$. Then

$$\begin{aligned}
& \sup_{\tau \in \mathbb{N}} \max \left\{ \min \left\{ \zeta_1(\tau), \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau + \tau') \right\}, \min \left\{ \sup_{\tau' \in \mathbb{N}} \zeta_1(\tau + \tau'), \zeta_2(\tau) \right\} \right\} \\
& \geq \sup_{\tau \in \mathbb{N}} \min \left\{ \zeta_1(\tau), \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau + \tau') \right\} \\
& \geq \min \left\{ \zeta_1(\tau_1), \sup_{\tau' \in \mathbb{N}} \zeta_2(\tau_1 + \tau') \right\} \\
& \geq \min \{ \zeta_1(\tau_1), \zeta_2(\tau_2) \} \\
& \geq \min \left\{ \sup_{\tau \in \mathbb{N}} \zeta_1(\tau) - \varepsilon, \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) - \varepsilon \right\} \\
& = \min \left\{ \sup_{\tau \in \mathbb{N}} \zeta_1(\tau), \sup_{\tau \in \mathbb{N}} \zeta_2(\tau) \right\} - \varepsilon.
\end{aligned}$$

But since $\varepsilon > 0$ was arbitrary, the desired inequality follows.

Lemma 9. *For each $s \in S$,*

$$\tilde{v}_R^*(s) = v_{RR}^*(s).$$

1404 *Proof.* For each $s \in \mathcal{S}$,

$$1406 \quad \tilde{v}_R^*(s) = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} r_{RR}(\xi_s^{\mathbf{a}}(\tau)) \quad (34)$$

$$1407 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \{ \min \{ r_1(\xi_s^{\mathbf{a}}(\tau)), v_{R2}^*(\xi_s^{\mathbf{a}}(\tau)) \}, \min \{ v_{R1}^*(\xi_s^{\mathbf{a}}(\tau)), r_2(\xi_s^{\mathbf{a}}(\tau)) \} \} \quad (35)$$

$$1409 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\mathbf{a}' \in \mathbb{A}} \max_{\tau' \in \mathbb{N}} r_2(\xi_{\xi_s^{\mathbf{a}}(\tau)}^{\mathbf{a}'}(\tau')) \right\}, \right.$$

$$1410 \quad \left. \min \left\{ \max_{\mathbf{a}' \in \mathbb{A}} \max_{\tau' \in \mathbb{N}} r_1(\xi_{\xi_s^{\mathbf{a}}(\tau)}^{\mathbf{a}'}(\tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\}$$

$$1411 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\mathbf{a}' \in \mathbb{A}} \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1412 \quad \left. \min \left\{ \max_{\mathbf{a}' \in \mathbb{A}} \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\}$$

$$1413 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1414 \quad \left. \min \left\{ \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\}$$

$$1415 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \max_{\mathbf{a}'' \in \mathbb{A}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1416 \quad \left. \min \left\{ \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\}$$

$$1417 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \max_{\mathbf{a}'' \in \mathbb{A}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1418 \quad \left. \min \left\{ \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\} \quad (36)$$

$$1419 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1420 \quad \left. \min \left\{ \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\}$$

$$1421 \quad = \max_{\mathbf{a} \in \mathbb{A}} \max_{\tau \in \mathbb{N}} \max_{\mathbf{a}' \in \mathbb{A}} \max_{\mathbf{a}'' \in \mathbb{A}} \left\{ \min \left\{ r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau' \in \mathbb{N}} r_2(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')) \right\}, \right.$$

$$1422 \quad \left. \min \left\{ \max_{\tau' \in \mathbb{N}} r_1(\xi_s^{[\mathbf{a}, \mathbf{a}']\tau}(\tau + \tau')), r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \right\} \quad (37)$$

$$1423 \quad = \max_{\mathbf{a} \in \mathbb{A}} \min \left\{ \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\mathbf{a}}(\tau)), \max_{\tau \in \mathbb{N}} r_2(\xi_s^{\mathbf{a}}(\tau)) \right\} \quad (38)$$

$$1424 \quad = v_{RR}^*(s),$$

1425 where the equality between 34 and 35 follows from Corollary 6, the equality between 36 and 37
1426 follows from Lemma 3, and the equality between 37 and 38 follows from Lemma 8. \square

1427 Before the next lemma, we need to introduce two last pieces of notation. First, we let $\bar{\Pi}$ be the set of
1428 augmented policies $\bar{\pi} : \mathcal{S} \times \mathcal{Y} \times \mathcal{Z} \rightarrow \mathcal{A}$, as in the previous section, but where
1429

$$1430 \quad \mathcal{Y} = \{r_1(s) \mid s \in \mathcal{S}\} \quad \text{and} \quad \mathcal{Z} = \{r_2(s) \mid s \in \mathcal{S}\}.$$

1431 Next, given $s \in \mathcal{S}$, $y \in \mathcal{Y}$, $z \in \mathcal{Z}$, and $\bar{\pi} \in \bar{\Pi}$, we let $\bar{\xi}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{S}$, $\bar{\eta}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{Y}$, and $\bar{\zeta}_s^{\bar{\pi}} : \mathbb{N} \rightarrow \mathcal{Z}$, be
1432 the solution of the evolution

$$1433 \quad \bar{\xi}_s^{\bar{\pi}}(t+1) = f(\bar{\xi}_s^{\bar{\pi}}(t), \bar{\pi}(\bar{\xi}_s^{\bar{\pi}}(t), \bar{\eta}_s^{\bar{\pi}}(t), \bar{\zeta}_s^{\bar{\pi}}(t))),$$

$$1434 \quad \bar{\eta}_s^{\bar{\pi}}(t+1) = \max \{r_1(\bar{\xi}_s^{\bar{\pi}}(t+1)), \bar{\eta}_s^{\bar{\pi}}(t)\},$$

$$1435 \quad \bar{\zeta}_s^{\bar{\pi}}(t+1) = \max \{r_2(\bar{\xi}_s^{\bar{\pi}}(t+1)), \bar{\zeta}_s^{\bar{\pi}}(t)\},$$

1436 for which $\bar{\xi}_s^{\bar{\pi}}(0) = s$, $\bar{\eta}_s^{\bar{\pi}}(0) = r_1(s)$, and $\bar{\zeta}_s^{\bar{\pi}}(0) = r_2(s)$.

1437 **Lemma 10.** *There is a $\bar{\pi} \in \bar{\Pi}$ such that*

$$1438 \quad v_{RR}^*(s) = \min \left\{ \max_{\tau \in \mathbb{N}} r_1(\bar{\xi}_s^{\bar{\pi}}(\tau)), \max_{\tau \in \mathbb{N}} r_2(\bar{\xi}_s^{\bar{\pi}}(\tau)) \right\}$$

1439 for all $s \in \mathcal{S}$.

1458 *Proof.* By Lemmas 6 and 7 together with Corollary 6, we can choose $\pi, \theta_1, \theta_2 \in \Pi$ such that
 1459

$$1460 \quad v_{R1}^*(s) = \max_{\tau \in \mathbb{N}} r_1(\xi_s^{\theta_1}(\tau)) \quad \forall s \in \mathcal{S},$$

$$1461 \quad v_{R2}^*(s) = \max_{\tau \in \mathbb{N}} r_2(\xi_s^{\theta_2}(\tau)) \quad \forall s \in \mathcal{S},$$

$$1463 \quad \tilde{v}_R^*(s) = \max_{\tau \in \mathbb{N}} \max \{ \min \{ r_1(\xi_s^\pi(\tau)), v_{R2}^*(\xi_s^\pi(\tau)) \}, \min \{ r_2(\xi_s^\pi(\tau)), v_{R1}^*(\xi_s^\pi(\tau)) \} \} \quad \forall s \in \mathcal{S}.$$

1465 Define $\bar{\pi} \in \bar{\Pi}$ by

$$1466 \quad \bar{\pi}(s, y, z) = \begin{cases} \pi(s) & \max\{y, z\} < \tilde{v}_R^*(s) \\ \theta_1(s) & \max\{y, z\} \geq \tilde{v}_R^*(s) \text{ and } y \leq z, \\ \theta_2(s) & \max\{y, z\} \geq \tilde{v}_R^*(s) \text{ and } y > z. \end{cases}$$

1470 Now fix some $s \in \mathcal{S}$. For all $t \in \mathbb{N}$, set $\bar{x}_t = \bar{\xi}_s^{\bar{\pi}}(t)$, $\bar{y}_t = \bar{\eta}_s^{\bar{\pi}}(t) = \max_{\tau \leq t} r_1(\bar{x}_\tau)$, and $\bar{z}_t = \bar{\zeta}_s^{\bar{\pi}}(t) =$
 1471 $\max_{\tau \leq t} r_2(\bar{x}_\tau)$, and also set $x_t^\circ = \xi_s^\pi(t)$. It suffices to show
 1472

$$1473 \quad v_{RR}^*(s) \leq \min \left\{ \max_{\tau \in \mathbb{N}} r_1(\bar{x}_\tau), \max_{\tau \in \mathbb{N}} r_2(\bar{x}_\tau) \right\}, \quad (39)$$

1475 since the reverse inequality is immediate. We proceed in three steps.
 1476

1477 1. We claim there exists a $t \in \mathbb{N}$ such that $\max \{ r_1(\bar{x}_t), r_2(\bar{x}_t) \} \geq \tilde{v}_R^*(\bar{x}_t)$.

1478 Suppose otherwise. Then $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \pi(\bar{x}_t)$ so that $\bar{x}_t = x_t^\circ$ for all $t \in \mathbb{N}$. Thus

$$\begin{aligned} 1479 \quad \max_{t \in \mathbb{N}} \max \{ r_1(\bar{x}_t), r_2(\bar{x}_t) \} &< \max_{t \in \mathbb{N}} \tilde{v}_R^*(\bar{x}_t) \\ 1480 \quad &= \tilde{v}_R^*(s) \\ 1481 \quad &= \max_{\tau \in \mathbb{N}} \max \{ \min \{ r_1(x_\tau^\circ), v_{R2}^*(x_\tau^\circ) \}, \min \{ r_2(x_\tau^\circ), v_{R1}^*(x_\tau^\circ) \} \} \\ 1482 \quad &= \max_{\tau \in \mathbb{N}} \max \{ \min \{ r_1(\bar{x}_\tau), v_{R2}^*(\bar{x}_\tau) \}, \min \{ r_2(\bar{x}_\tau), v_{R1}^*(\bar{x}_\tau) \} \} \\ 1483 \quad &\leq \max_{\tau \in \mathbb{N}} \max \{ r_1(\bar{x}_\tau), r_2(\bar{x}_\tau) \}, \end{aligned}$$

1488 providing the desired contradiction.
 1489

1490 2. Let T be the smallest element of \mathbb{N} for which

$$1491 \quad \max \{ r_1(\bar{x}_T), r_2(\bar{x}_T) \} \geq v_{R1}^*(\bar{x}_T),$$

1493 which must exist by the previous step, and let T' be the smallest element of \mathbb{N} for which

$$1494 \quad \max \{ \min \{ r_1(x_{T'}^\circ), v_{R2}^*(x_{T'}^\circ) \}, \min \{ r_2(x_{T'}^\circ), v_{R1}^*(x_{T'}^\circ) \} \} = \tilde{v}_R^*(s),$$

1496 which must exist by our choice of π . We claim $T' \geq T$.

1497 Suppose otherwise. Since $\bar{x}_t = x_t^\circ$ for all $t \leq T$, then in particular $\bar{x}_{T'} = x_{T'}^\circ$, so that
 1498

$$1499 \quad \max \{ \min \{ r_1(\bar{x}_{T'}), v_{R2}^*(\bar{x}_{T'}) \}, \min \{ r_2(\bar{x}_{T'}), v_{R1}^*(\bar{x}_{T'}) \} \} = \tilde{v}_R^*(s).$$

1500 But then

$$1501 \quad \max \{ r_1(\bar{x}_{T'}), r_2(\bar{x}_{T'}) \} \geq \tilde{v}_R^*(s) \geq \tilde{v}_R^*(\bar{x}_{T'}).$$

1503 By our choice of T , we then have $T \leq T'$, creating a contradiction.
 1504

1505 3. It follows from the previous step that

$$1507 \quad \tilde{v}_R^*(\bar{x}_T) = \tilde{v}_R^*(x_T^\circ) = \tilde{v}_R^*(s).$$

1508 By our choice of T , there are two cases: $r_1(\bar{x}_T) \geq \tilde{v}_R^*(\bar{x}_T)$ and $r_2(\bar{x}_T) \geq \tilde{v}_R^*(\bar{x}_T)$. We
 1509 assume the first case and prove the desired result, with case two following identically. To
 1510 reach a contradiction, assume
 1511

$$r_2(\bar{x}_t) < \tilde{v}_R^*(\bar{x}_T) \quad \forall t \in \mathbb{N}.$$

1512 But then $\bar{\pi}(\bar{x}_t, \bar{y}_t, \bar{z}_t) = \theta_2(\bar{x}_t)$ for all $t \geq T$, so $v_{R2}^*(\bar{x}_T) = \max_{t \geq T} r_2(\bar{x}_t) < \tilde{v}_R^*(\bar{x}_T) \leq$
 1513 $\tilde{v}_R^*(s)$. Thus $r_2(x_{T'}^\circ) \leq v_{R2}^*(x_{T'}^\circ) \leq v_{R2}^*(x_T^\circ) = v_{R2}^*(\bar{x}_T) < \tilde{v}_R^*(s)$. It follows that
 1514

$$1515 \max \{ \min \{ r_1(x_{T'}^\circ), v_{R2}^*(x_{T'}^\circ) \}, \min \{ r_2(x_{T'}^\circ), v_{R1}^*(x_{T'}^\circ) \} \} < \tilde{v}_R^*(s),$$

1516 contradicting our choice of T' .

1517 Thus $r_2(\bar{x}_t) \geq \tilde{v}_R^*(\bar{x}_T) = \tilde{v}_R^*(s)$ for some $t \in \mathbb{N}$ and also $r_1(\bar{x}_T) \geq \tilde{v}_R^*(\bar{x}_T) = \tilde{v}_R^*(s)$, so
 1518 that (39) must hold by Lemma 9. □
 1519

1520 □
 1521

1522 **Corollary 8.** For all $s \in \mathcal{S}$, we have $V_{RR}^*(s, r_1(s), r_2(s)) = v_{RR}^*(s)$.

1523 *Proof of Theorem 2.* The proof of this theorem immediately follows from the previous corollary
 1524 together with Corollary 7 and Lemma 9. □
 1525

1526 C PROOF OF OPTIMALITY THEOREM

1529 *Proof of Theorem 3.* The inequalities in both lines of the theorem follow from the fact that for each
 1530 $\pi \in \Pi$, we can define a corresponding augmented policy $\bar{\pi} \in \bar{\Pi}$ by

$$1531 \bar{\pi}(s, y, z) = \pi(s) \quad \forall s \in \mathcal{S}, y \in \mathcal{Y}, z \in \mathcal{Z},$$

1533 in which case $V_{RAA}^\pi(s) = V_{RAA}^{\bar{\pi}}(s)$ and $V_{RR}^\pi(s) = V_{RR}^{\bar{\pi}}(s)$ for each $s \in \mathcal{S}$. Note that in general, we
 1534 cannot define a corresponding policy for each augmented policy, so the reverse inequality does not
 1535 generally hold (see Figure 3 for intuition regarding this fact).

1536 The equalities in both lines of the theorem are simply restatements of Lemma 5 and Lemma 9. □
 1537

1538 D THE SRABE AND ITS POLICY GRADIENT

1540 We first justify the SRABE from a theoretical perspective. For each $\gamma \in (0, 1)$ and stochastic policy
 1541 $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ (with $\Delta(\mathcal{A})$ the probability simplex on \mathcal{A}), let $\tilde{V}_{RA}^{\gamma, \pi}, V_{RA}^{\gamma, *} : \mathcal{S} \rightarrow \mathbb{R}$ be the (unique)
 1542 solutions of the Bellman equations
 1543

$$1545 \tilde{V}_{RA}^{\gamma, \pi}(s) = (1 - \gamma) \min \{r(s), q(s)\} + \gamma \mathbb{E}_{a \sim \pi} \left[\min \left\{ \max \left\{ \tilde{V}_{RA}^{\gamma, \pi}(f(s, a)), r(s) \right\}, q(s) \right\} \right],$$

$$1547 V_{RA}^{\gamma, *}(s) = (1 - \gamma) \min \{r(s), q(s)\} + \gamma \left[\min \left\{ \max \left\{ \max_{a \in \mathcal{A}} V_{RA}^{\gamma, *}(f(s, a)), r(s) \right\}, q(s) \right\} \right],$$

1549 respectively, where $r : \mathcal{S} \rightarrow \mathbb{R}$ and $q : \mathcal{S} \rightarrow \mathbb{R}$. Note that the above Bellman equations are indeed
 1550 γ -contractive.
 1551

1552 **Theorem 4.** Let $\gamma \in (0, 1)$. Given any $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, we have

$$1553 \tilde{V}_{RA}^{\gamma, \pi} \leq V_{RA}^{\gamma, *}.$$

1554 Moreover, there exists a $\pi^* : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ such that

$$1556 \tilde{V}_{RA}^{\gamma, \pi^*} = V_{RA}^{\gamma, *}. \quad 1557$$

1558 *Proof.* Let $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$. Define the Bellman operators $B_\gamma^\pi, B_\gamma^* : \mathbb{R}^{\mathcal{S}} \rightarrow \mathbb{R}^{\mathcal{S}}$ (where $\mathbb{R}^{\mathcal{S}}$ is the set
 1559 of all maps $v : \mathcal{S} \rightarrow \mathbb{R}$) by

$$1560 B_\gamma^\pi[v](s) = (1 - \gamma) \min \{r(s), q(s)\} + \gamma \mathbb{E}_{a \sim \pi} [\min \{ \max \{v(f(s, a)), r(s)\}, q(s) \}],$$

$$1562 B_\gamma^*[v](s) = (1 - \gamma) \min \{r(s), q(s)\} + \gamma \left[\min \left\{ \max \left\{ \max_{a \in \mathcal{A}} v(f(s, a)), r(s) \right\}, q(s) \right\} \right],$$

1564 respectively. For each $v \in \mathbb{R}^{\mathcal{S}}$, we have $B_\gamma^\pi[v] \leq B_\gamma^*[v]$. Then $\tilde{V}_{RA}^{\gamma, \pi} = B_\gamma^\pi[\tilde{V}_{RA}^{\gamma, \pi}] \leq B_\gamma^*[\tilde{V}_{RA}^{\gamma, \pi}]$ and
 1565 $V_{RA}^{\gamma, *} = B_\gamma^*[V_{RA}^{\gamma, *}]$.

1566 Since B_γ^* is a contraction and also a monotonic operator ($B_\gamma^*[v] \leq B_\gamma^*[w]$ when $v \leq w$), it follows
 1567 from the comparison principle for Bellman operators that $\tilde{V}_{\text{RA}}^{\gamma, \pi} \leq V_{\text{RA}}^{\gamma, *}$.
 1568

1569 Now let $\pi^* : \mathcal{S} \rightarrow \mathcal{A}$ be such that $\pi^*(s)$ is supported on $\arg \max_{a \in \mathcal{A}} v(f(s, a))$. Then $\tilde{V}_{\text{RA}}^{\gamma, \pi^*} =$
 1570 $B_\gamma^{\pi^*}[\tilde{V}_{\text{RA}}^{\gamma, \pi^*}] = B_\gamma^*[\tilde{V}_{\text{RA}}^{\gamma, \pi^*}]$ and $V_{\text{RA}}^{\gamma, *} = B_\gamma^*[V_{\text{RA}}^{\gamma, *}]$, so that $\tilde{V}_{\text{RA}}^{\gamma, \pi^*} = V_{\text{RA}}^{\gamma, *}$. \square
 1571

1572

1573

1574 To understand the significance of the above theorem, recall that when solving RA problems (as is
 1575 needed during our solution of the RAA problem) we are interested in estimating $V_{\text{RA}}^{\gamma, *}$ in the limit
 1576 $\gamma \rightarrow 1^-$ (see Proposition 3 in Fisac et al. (2019)). The above theorem tells us that to obtain $V_{\text{RA}}^{\gamma, *}$ we
 1577 can search for a (possibly stochastic) policy π that maximizes $\tilde{V}_{\text{RA}}^{\gamma, \pi}$. Doing so allows us to use the
 1578 PPO adaptation described in the DOHJ-PPO algorithm for finding RA value functions. Analogous
 1579 results hold for the R and A subproblems.
 1580

1581

1582 D.1 POLICY GRADIENT

1583

1584 By analogy to the SRBE, the SRABE is given by
 1585

$$1586 \tilde{V}_{\text{RAA}}^\pi(s) = \mathbb{E}_{a \sim \pi} \left[\min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^\pi(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\} \right]. \quad (\text{SRABE})$$

1588

1589 The corresponding action-value function is
 1590

$$1591 \tilde{Q}_{\text{RAA}}^\pi(s, a) = \min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^\pi(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\}.$$

1593

1594 We define a modification of the dynamics f involving an absorbing state s_∞ as follows:
 1595

$$1596 f'(s, a) = \begin{cases} f(s, a) & q(f(s, a)) < \tilde{V}_{\text{RAA}}^\pi(s) < r_{\text{RAA}}(f(s, a)), \\ s_\infty & \text{otherwise.} \end{cases}$$

1598

1599 We then have the following proposition:
 1600

1601 **Proposition 1.** *For each $s \in \mathcal{S}$ and every $\theta \in \mathbb{R}^{n_p}$, we have*

$$1603 \nabla_\theta \tilde{V}_{\text{RAA}}^{\pi_\theta}(s) \propto \mathbb{E}_{s' \sim d'_\pi(s), a \sim \pi_\theta} \left[\tilde{Q}_{\text{RAA}}^{\pi_\theta}(s', a) \nabla_\theta \ln \pi_\theta(a|s') \right],$$

1605 where $d'_\pi(s)$ is the stationary distribution of the Markov Chain with transition function
 1606

$$1608 P(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) [f'(s, \pi(a|s)) = s'],$$

1610

1611 with the bracketed term equal to 1 if the proposition inside is true and 0 otherwise.
 1612

1613 Following Hsu et al. (2021), we then define the discounted value and action-value functions with
 1614 $\gamma \in [0, 1]$.
 1615

1616
 1617 *Proof of Proposition 1.* We here closely follow the proof of Theorem 3 in So et al. (2024), which
 1618 itself modifies the proofs of the Policy Gradient Theorems in Chapter 13.2 and 13.6 Sutton and Barto
 1619 (2018). We only make the minimal modifications required to adapt the PPO algorithm developed

1620 previously for the SRBE to on for the SRABE.
 1621

$$\begin{aligned}
 1622 \quad \nabla_\theta \tilde{V}_{\text{RAA}}^{\pi_\theta}(s) &= \nabla_\theta \left(\sum_{a \in \mathcal{A}} \pi_\theta(a|s) \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s, a) \right) \\
 1623 \\
 1624 \quad &= \sum_{a \in \mathcal{A}} \left(\nabla_\theta \pi_\theta(a|s) \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s, a) \right. \\
 1625 \quad &\quad \left. + \pi_\theta(a|s) \nabla_\theta \min \left\{ \max \left\{ \tilde{V}_{\text{RAA}}^{\pi_\theta}(f(s, a)), r_{\text{RAA}}(s) \right\}, q(s) \right\} \right) \\
 1626 \\
 1627 \quad &= \sum_{a \in \mathcal{A}} \left(\nabla_\theta \pi_\theta(a|s) \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s, a) \right. \\
 1628 \quad &\quad \left. + \pi_\theta(a|s) \left[q(s) < \tilde{V}_{\text{RAA}}(f(s, a)) < r_{\text{RAA}}(s) \right] \nabla_\theta \tilde{V}_{\text{RAA}}^{\pi_\theta}(f(s, a)) \right) \quad (40) \\
 1629 \\
 1630 \quad &= \sum_{s' \in \mathcal{S}} \left[\left(\sum_{k=0}^{\infty} \Pr(s \rightarrow s', k, \pi) \right) \sum_{a \in \mathcal{A}} \nabla_\theta \pi_\theta(a|s') \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s', a) \right] \quad (41) \\
 1631 \\
 1632 \quad &= \sum_{s' \in \mathcal{S}} \left[\left(\sum_{k=0}^{\infty} \Pr(s \rightarrow s', k, \pi) \right) \sum_{a \in \mathcal{A}} \pi_\theta(a|s') \frac{\nabla_\theta \pi_\theta(a|s')}{\pi_\theta(a|s')} \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s', a) \right] \\
 1633 \\
 1634 \quad &= \sum_{s' \in \mathcal{S}} \left[\left(\sum_{k=0}^{\infty} \Pr(s \rightarrow s', k, \pi) \right) \mathbb{E}_{a \sim \pi_\theta(s')} \left[\nabla_\theta \ln \pi_\theta(a|s') \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s', a) \right] \right] \\
 1635 \\
 1636 \quad &\propto \mathbb{E}_{s' \sim d'_\pi(s)} \mathbb{E}_{a \sim \pi_\theta(s')} \left[\nabla_\theta \ln \pi_\theta(a|s') \tilde{Q}_{\text{RAA}}^{\pi_\theta}(s', a) \right],
 \end{aligned}$$

1644 where the equality between (40) and (41) comes from rolling out the term $\nabla_\theta \tilde{V}_{\text{RAA}}^{\pi_\theta}(f(s, a))$ (see
 1645 Chapter 13.2 in Sutton and Barto (2018) for details), and where $\Pr(s \rightarrow s', k, \pi)$ is the probability
 1646 that under the policy π , the system is in state s' at time k given that it is in state s at time 0. \square
 1647

1648 Note, Proposition 1 is vital to updating the actor in Algorithm 1.
 1649

1650 E THE DOHJ-PPO ALGORITHM

1653 In this section, we outline the details of our Actor-Critic algorithm DOHJ-PPO beyond the details
 1654 given in Algorithm 1.

1655 In Algorithm 1, the Bellman update $B^\gamma[\tilde{Q}, \tilde{r}]$ differs for the RAA task and RR task, and the $B_i^\gamma[\tilde{Q}]$
 1656 differs between the reach, avoid, and reach-avoid tasks.
 1657

1658 E.1 THE SPECIAL BELLMAN UPDATES AND THE CORRESPONDING GAEs

1660 Akin to previous HJ-RL policy algorithms, namely RCPO Yu et al. (2022b), RESPO Ganai et al.
 1661 (2023) and RCPPO So et al. (2024), DOHJ-PPO fundamentally depends on the discounted HJ
 1662 Bellman updates Fisac et al. (2019). To solve the RAA and RR problems with the special rewards
 1663 defined in Theorems 1 & 2, DOHJ-PPO utilizes the Reach, Avoid and Reach-Avoid Bellman updates,
 1664 given by

$$B_R^\gamma[Q | r](s, a) = (1 - \gamma)r(s) + \gamma \max \{r(s), Q(s, a)\}, \quad (42)$$

$$B_A^\gamma[Q | q](s, a) = (1 - \gamma)q(s) + \gamma \min \{q(s), Q(s, a)\}, \quad (43)$$

$$B_{RA}^\gamma[Q | r, q](s, a) = (1 - \gamma) \min \{r(s), q(s)\} + \gamma \min \{q(s), \max \{r(s), Q(s, a)\}\}. \quad (44)$$

1670 To improve our algorithm, we incorporate the Generalized Advantage Estimate corresponding to
 1671 these Bellman equations in the updates of the Actors. As outlined in Section A of So et al. (2024), the
 1672 GAE may be defined with a reduction function corresponding to the appropriate Bellman function
 1673 which will be applied over a trajectory roll-out. We generalize the Reach GAE definition given in So
 et al. (2024) to propose a Reach-Avoid GAE (the Avoid GAE is simply the flip of the Reach GAE)

1674 **Algorithm 1** : DOHJ-PPO (Actor-Critic)

1675

1676 **Require:** Composed and Decomposed Actor parameters θ and θ_i , Composed and Decomposed

1677 Critic parameters ω and ω_i , GAE λ , learning rate β_k and discount factor γ . Let B^γ and B_i^γ

1678 represent the Bellman update and decomposed Bellman update for the users choice of problem

1679 (RR or RAA).

1680 1: Define *Composed* Actor and Critic \tilde{Q}

1681 2: Define *Decomposed* Actor(s) and Critic(s) \tilde{Q}_i

1682 3: **for** $k = 0, 1, \dots$ **do**

1683 4: **for** $t = 0$ to $T - 1$ **do**

1684 5: Sample trajectories for $\tau_t : \{\hat{s}_t, a_t, \hat{s}_{t+1}\}$

1685 6: Define $\tilde{\ell}(s_t)$ with Decomposed Critics $\tilde{Q}_i(s_t)$ (Theorems 1 & 2)

1686 7: **Composed Critic update:**

1687
$$\omega \leftarrow \omega - \beta_k \nabla_\omega \tilde{Q}(\tau_t) \cdot \left(\tilde{Q}(\tau_t) - B^\gamma[\tilde{Q}, \tilde{r}](\tau_t) \right)$$

1688 8: Compute Bellman-GAE A_{HJ}^λ with B^γ

1689 9: (Standard) update Composed Actor

1690 10: **Decomposed Critic update(s):**

1691
$$\omega \leftarrow \omega - \beta_k \nabla_\omega \tilde{Q}_i(\tau_t) \cdot \left(\tilde{Q}_i(\tau_t) - B_i^\gamma[\tilde{Q}_i](\tau_t) \right)$$

1692 11: Compute Bellman-GAE A_i^λ with B_i^γ

1693 12: (Standard) update Decomposed Actor(s)

1694 13: **end for**

1695 14: **end for**

1696 15: **return** parameter θ, ω

1700 as all will be used in DOHJ-PPO algorithm for either RAA or RR problems. Consider a reduction

1701 function $\phi_{RA}^{(n)} : \mathbb{R}^n \rightarrow \mathbb{R}$, defined by

$$\phi_{RA}^{(n)}(x_1, x_2, x_3, \dots, x_{2n+1}) = \phi_{RA}^{(1)}(x_1, x_2, \phi_{RA}^{(n-1)}(x_3, \dots, x_{2n+1})), \quad (45)$$

$$\phi_{RA}^{(1)}(x, y, z) = (1 - \gamma) \min\{x, y\} + \gamma \min\{y, \max\{x, z\}\}. \quad (46)$$

1702 The k -step Reach-Avoid Bellman advantage $A_{RA}^{\pi(k)}$ is then given by,

$$A_{RA}^{(k)}(s) = \phi_{RA}^{(n)} \left(r(s_t), q(s_t), \dots, r(s_{t+k-1}), q(s_{t+k-1}), V(s_{t+k}) \right) - V(s_{t+k}). \quad (47)$$

1703 We may then define the Reach-Avoid GAE A_{RA}^λ as the λ -weighted sum over the advantage functions

$$A_{RA}^\lambda(s) = \frac{1}{1 - \lambda} \sum_{k=1}^{\infty} \lambda^k A_{RA}^{(k)}(s) \quad (48)$$

1704 which may be approximated over any finite trajectory sample. See So et al. (2024) for further details.

1705 E.2 MODIFICATIONS FROM STANDARD PPO

1706 To address the RAA and RR problems, DOHJ-PPO introduces several key modifications to the

1707 standard PPO framework Schulman et al. (2017):

1708 **Additional actor and critic networks are introduced to represent the decomposed objectives.**

1709 Rather than learning the decomposed objectives separately from the composed objective, DOHJ-PPO

1710 optimizes all objectives simultaneously. This design choice is motivated by two primary factors:

1711 (i) simplicity and minor computational speed-up, and (ii) coupling between the decomposed and

1712 composed objectives during learning.

1713 **The decomposed trajectories are initialized using states sampled from the composed trajectory,**

1714 we refer to as *coupled resets*.

1728 While it is possible to estimate the decomposed objectives independently—i.e., prior to solving the
 1729 composed task—this approach might lead to inaccurate or irrelevant value estimates in on-policy
 1730 settings. For example, in the RAA problem, the decomposed objective may prioritize avoiding
 1731 penalties, while the composed task requires reaching a reward region without incurring penalties. In
 1732 such a case, a decomposed policy trained in isolation might converge to an optimal strategy within
 1733 a reward-irrelevant region, misaligned with the overall task. Empirically, we observe that omitting
 1734 coupled resets causes DOHJ-PPO to perform no better than standard baselines such as CPPO, whereas
 1735 their inclusion significantly improves performance.

1736 **The special RAA and RR rewards are defined using the decomposed critic values and updated
 1737 using their corresponding Bellman equations.**

1738 This procedure is directly derived from our theoretical results (Theorems 1 and 2), which establish
 1739 the validity of using modified rewards within the respective RA and R Bellman frameworks. These
 1740 rewards are used to compute the composed critic target as well as the actor’s GAE. In Algorithm 1,
 1741 this process is reflected in the critic and actor updates corresponding to the composed objective.

1742

1743 F DDQN DEMONSTRATION

1744

1745 As described in the paper, we demonstrate the novel RAA and RR problems in a 2D Q -learning
 1746 problem where the value function may be observed easily. We juxtapose these solitons with those
 1747 of the previously studied RA and R problems which consider more simple objectives. To solve all
 1748 values, we employ the standard Double-Deep Q learning approach (DDQN) Van Hasselt et al. (2016)
 1749 with only the special Bellman updates.

1750

1751 F.1 GRID-WORLD ENVIRONMENT

1752

1753 The environment is taken from Hsu et al. (2021) and consists of two dimensions, $s = (x, y)$, and
 1754 three actions, $a \in \{\text{left, straight, right}\}$, which allow the agent to maneuver through the space. The
 1755 deterministic dynamics of the environment are defined by constant upward flow such that,

$$1756 \quad f((x_i, y_i), a_i) = \begin{cases} (x_{i-1}, y_{i+1}) & a_i = \text{left} \\ (x_i, y_{i+1}) & a_i = \text{straight} \\ (x_{i+1}, y_{i+1}) & a_i = \text{right} \end{cases} \quad (49)$$

1761 and if the agent reaches the boundary of the space, defined by $x \geq |2|$, $y \leq -2$ and $y \geq 10$, the
 1762 trajectory is terminated. The 2D space is divided into 80×120 cells which the agent traverses
 1763 through.

1764 **In the RA and RAA experiments**, the reward function r is defined as the negative signed-distance
 1765 function to a box with dimensions $(x_c, y_c, w, h) = (0, 4.5, 2, 1.5)$, and thus is negative iff the agent is
 1766 outside of the box. The penalty function q is defined as the minimum of three (positive) signed distance
 1767 functions for boxes defined at $(x_c, y_c, w, h) = (\pm 0.75, 3, 1, 1)$ and $(x_c, y_c, w, h) = (0, 6, 2.5, 1)$,
 1768 and thus is positive iff the agent is outside of all boxes.

1769 **In the R and RR experiments**, one or two rewards are used. In the R experiment, the reward function
 1770 r is defined as the maximum of two negative signed-distance function of boxes with dimensions
 1771 $(x_c, y_c, w, h) = (\pm 1.25, 0, 0.5, 2)$, and thus is negative iff the agent is outside of both boxes. In the
 1772 RR experiment, the rewards r_1 and r_2 are defined as the negative signed distance functions of the
 1773 same two boxes independently, and thus are positive if the agent is in one box or the other respectively.

1774

1775 F.2 DDQN DETAILS

1776

1777 As per our theoretical results in Theorems 1 and 2, we may now perform DDQN to solve the RAA
 1778 and RR problems with solely the previously studied Bellman updates for the RA Hsu et al. (2021)
 1779 and R problems Fisac et al. (2019). We compare these solutions with those corresponding to the
 1780 RA and R problems *without* the special RAA and RR targets, and hence solve the previously posed
 1781 problems. For all experiments, we employ the same adapted algorithm as in Hsu et al. (2021), with
 no modification of the hyper-parameters given in Table 1.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
Table 1: Hyperparameters for DDQN Grid World

DDQN hyperparameters	Values
Network Architecture	MLP
Numbers of Hidden Layers	2
Units per Hidden Layer	100, 20
Hidden Layer Activation Function	tanh
Optimizer	Adam
Discount factor γ	0.9999
Learning rate	1e-3
Replay Buffer Size	1e5 transitions
Replay Batch Size	100
Train-Collect Interval	10
Max Updates	4e6

G BASELINES

In both RAA and RR problems, we employ Constrained PPO (CPPO) Achiam et al. (2017a) as the major baseline as it can handle secondary objectives which are reformulated as constraints. The algorithm was not designed to minimize its constraints necessarily but may do so in attempting to satisfy them. As a novel direction in RL, few algorithms have been designed to optimize max/min accumulated costs and thus CPPO serves as the best proxy. Below we also include a naively decomposed STL algorithm to offer some insight into direct approaches to optimizing the max/min accumulated reward.

G.1 CPPO BASELINES

Although CPPO formulations do not directly consider dual-objective optimization, the secondary objective in RAA (avoid penalty) or overall objective in RR (reach both rewards) may be transformed into constraints to be satisfied of a surrogate problem. For the RAA problem, this may be defined as

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_t^{\infty} \gamma^t \max_{t' \leq t} r(s_{t'}^{\pi}) \right] \quad \text{s.t.} \quad \min_t q(s_t^{\pi}) \geq 0. \quad (50)$$

For the RR problem, one might propose that the fairest comparison would be to formulate the surrogate problem in the same fashion, with achievement of both costs as a constraint, such that

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_t^{\infty} \gamma^t \min \left\{ \max_{t' \leq t} r_1(s_{t'}^{\pi}), \max_{t' \leq t} r_2(s_{t'}^{\pi}) \right\} \right] \quad \text{s.t.} \quad \min \left\{ \max_t r_1(s_t^{\pi}), \max_t r_2(s_t^{\pi}) \right\} \geq 0, \quad (51)$$

which we define as variant 1 (CPPO-v1). Empirically, however, we found this formulation to be the poorest by far, perhaps due to the abundance of the non-smooth combinations. We thus also compare with more naive formulations which relax the outer minimizations to summation in the reward

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_t^{\infty} \gamma^t \max_{t' \leq t} r_1(s_{t'}^{\pi}) + \max_{t' \leq t} r_2(s_{t'}^{\pi}) \right] \quad \text{s.t.} \quad \min \left\{ \max_t r_1(s_t^{\pi}), \max_t r_2(s_t^{\pi}) \right\} \geq 0, \quad (52)$$

which we define as variant 2 (CPPOv2), and additionally, in the constraint

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_t^{\infty} \gamma^t \max_{t' \leq t} r_1(s_{t'}^{\pi}) + \max_{t' \leq t} r_2(s_{t'}^{\pi}) \right] \quad \text{s.t.} \quad \max_t r_1(s_t^{\pi}) + \max_t r_2(s_t^{\pi}) \geq 0, \quad (53)$$

which we define as variant 3 (CPPOv3). This last approach, although naive and seemingly unfair, vastly outperforms the other variants in the RR problem.

G.2 STL BASELINES

In contrast with constrained optimization, one might also incorporate the STL methods, which in the current context simply decompose and optimize the independent objectives. For the RAA problem,

1836 the standard RA solution serves as a trivial STL baseline since we may attempt to continuously
 1837 attempt to reach the solution while avoiding the obstacle. In the RR case, we define a decomposed
 1838 STL baseline (DSTL) which naively solves both R problems, and selects the one with lower value to
 1839 achieve first.
 1840

1841 H DETAILS OF RAA & RR EXPERIMENTS: HOPPER

1842
 1843
 1844 Table 2: Hyperparameters for Hopper Learning

1845 Hyperparameters for DOHJ-PPO	1846 Values
1847 Network Architecture	1848 MLP
1849 Units per Hidden Layer	1850 256
1851 Numbers of Hidden Layers	1852 2
1853 Hidden Layer Activation Function	1854 tanh
1855 Entropy coefficient	1856 Linear Decay 1e-2 → 0
1857 Optimizer	1858 Adam
1859 Discount factor γ	1860 Linear Anneal 0.995 → 0.999
1861 GAE lambda parameter	1862 0.95
1863 Clip Ratio	1864 0.2
1865 Actor Learning rate	1866 Linear Decay 3e-4 → 0
1867 Reward/Cost Critic Learning rate	1868 Linear Decay 3e-4 → 0
1869 Number of Environments	1870 128
1871 Number of Steps	1872 400
1873 Total Timesteps (RAA)	1874 50M
1875 Total Timesteps (RR)	1876 50M
1877 Scan Steps	1878 4
1879 Update Epochs	1880 10
1881 Number of Minibatches	1882 32
Add'l Hyperparameters for CPPO	
K_P	1
K_I	1e-4
K_D	1

1863 The Hopper environment is taken from Gym Brockman et al. (2016) and So et al. (2024). In both
 1864 RAA and RR problems, we define rewards and penalties based on the position of the Hopper head,
 1865 which we denote as (x, y) in this section.
 1866

1867 In the RAA task, the reward is defined as
 1868

$$1869 r(x, y) = \sqrt{|x - 2| + |y - 1.4|} - 0.1 \quad (54)$$

1870 to incentive the Hopper to reach its head to the position at $(x, y) = (2, 1.4)$. The penalty q is defined
 1871 as the minimum of signed distance functions to a ceiling obstacle at $(1, 0)$, wall obstacles at $x > 2$
 1872 and $x < 0$ and a floor obstacle at $y < 0.5$. In order to safely arrive at high reward (and always
 1873 avoid the obstacles), the Hopper thus must pass under the ceiling and not dive or fall over in the
 1874 achievement of the target, as is the natural behavior.
 1875

1876 In the RR task, the first reward is defined again as
 1877

$$1878 r_1(x, y) = \sqrt{|x - 2| + |y - 1.4|} - 0.1 \quad (55)$$

1879 to incentive the Hopper to reach its head to the position at $(x, y) = (2, 1.4)$, and the second reward as
 1880

$$1881 r_2(x, y) = \sqrt{|x - 0| + |y - 1.4|} - 0.1 \quad (56)$$

1882 to incentive the Hopper to reach its head to the position at $(x, y) = (0, 1.4)$. In order to achieve both
 1883 rewards, the Hopper must thus hop both forwards and backwards without crashing or diving.
 1884

1885 In all experiments, the Hopper is initialized in the default standing posture at a random $x \in [0, 2]$ so
 1886 as to learn a position-agnostic policy. The DOHJ-PPO parameters used to train these problems can
 1887 be found in Table 2.
 1888

1890 I DETAILS OF RAA & RR EXPERIMENTS: F16

1891
 1892 The F16 environment is taken from So et al. (2024), including a F16 fighter jet with a 26 dimensional
 1893 observation. The jet is limited to a flight corridor with up to 2000 relative position north (x_{PN}), 1200
 1894 relative altitude (x_H), and ± 500 relative position east (x_{PE}).
 1895

1896 In the RAA task, the reward is defined as

$$1897 \quad 1898 \quad 1899 \quad r(x, y) = \frac{1}{5} |x_{PN} - 1500| - 50 \quad (57)$$

1900 to incentivize the F16 to fly through the geofence defined by the vertical slice at 1500 relative position
 1901 north. The penalty q is defined as the minimum of signed distance functions to geofence (wall)
 1902 obstacles at $x_{PN} > 2000$ and $|x_{PE}| > 500$ and a floor obstacle at $x_H < 0$. In order to safely arrive
 1903 at high reward (and always avoid the obstacles), the F16 thus must fly through the target geofence
 1904 and then evade crashing into the wall directly in front of it.

1905 In the RR task, the rewards are defined as

$$1906 \quad 1907 \quad 1908 \quad r_1(x_{PN}, x_H) = \frac{1}{5} \sqrt{|x_{PN} - 1250| + |y - 850|} - 30 \quad (58)$$

1909 and

$$1910 \quad 1911 \quad 1912 \quad r_2(x_{PN}, x_H) = \frac{1}{5} \sqrt{|x_{PN} - 1250| + |y - 350|} - 30 \quad (59)$$

1913 to incentive the F16 to reach both low and high-altitude horizontal cylinders. In order to achieve both
 1914 rewards, the F16 must thus aggressively pitch, roll and yaw between the two targets.

1915 In all experiments, the F16 is initialized with position $x_{PN} \in [250, 750]$, $x_H \in [300, 900]$, $x_{PE} \in$
 1916 $[-250, 250]$ and velocity in $v \in [200, 450]$. Additionally, the roll, pitch, and yaw are initialized with
 1917 $\pm \pi/16$ to simulate a variety of approaches to the flight corridor. Further details can be found in
 1918 So et al. (2024). The DOHJ-PPO parameters used to train these problems can be found in Table 3.
 1919

1920 **Table 3: Hyperparameters for F16 Learning**

1921 Hyperparameters for DOHJ-PPO	1922 Values
1923 Network Architecture	MLP
1924 Units per Hidden Layer	256
1925 Numbers of Hidden Layers	2
1926 Hidden Layer Activation Function	tanh
1927 Entropy coefficient	Linear Decay 1e-2 → 0
1928 Optimizer	Adam
1929 Discount factor γ	Linear Anneal 0.995 → 0.999
1930 GAE lambda parameter	0.95
1931 Clip Ratio	0.2
1932 Actor Learning rate	Linear Decay 1e-3 → 0
1933 Reward/Cost Critic Learning rate	Linear Decay 1e-3 → 0
1934 Number of Environments	256
1935 Number of Steps	200
1936 Total Timesteps (RAA)	50M
1937 Total Timesteps (RR)	100M
1938 Scan Steps	10
1939 Update Epochs	10
1940 Number of Minibatches	64
Add'l Hyperparameters for CPPO	
1941 K_P	1
1942 K_I	1e-4
1943 K_D	1

1944 **J DETAILS OF RAA & RR EXPERIMENTS: SAFETYGYM**
1945

1946 The SafetyGym environment is taken from the SafetyGym Point Environment Brockman et al. (2016),
1947 reimplemented in So et al. (2024). In both RAA and RR problems, we define rewards and penalties
1948 based on the position of the Point position, which we denote as (x, y) in this section.

1949 In the RAA task, the reward is defined as
1950

$$1951 r(x, y) = \sqrt{|x| + |y|} - 0.3 \quad (60)$$

1952 to incentive the Point to reach to the position at $(x, y) = (0., 0.)$. The
1953 penalty q is defined as the minimum of signed distance functions to wall ob-
1954 stacles at $|x| \geq 3$ and $y \geq |3|$, and a scatter of eight random obstacles at
1955 $\{(1.4, 0.6), (0.4, 1.2), (-1.2, 0.8), (-0.9, 0.1.5), (-0.1, -1.1), (0.7, 0.2), (-0.3, 0.8), (-1.3, -1.3)\}$.
1956 In order to safely arrive at high reward (and always avoid the obstacles), the Point thus must drive
1957 through the obstacles and without leaving the box or crashing after arriving.

1958 In the RR task, the first reward is defined again as
1959

$$1960 r_1(x, y) = \sqrt{|x - 2.5| + |y - 2.5|} - 0.3 \quad (61)$$

1961 to incentive the Point to drive to the position at $(x, y) = (2.5, 2.5)$, and the second reward as
1962

$$1963 r_2(x, y) = \sqrt{|x + 2.5| + |y + 2.5|} - 0.3 \quad (62)$$

1964 to incentive the Point to drive to the position at $(x, y) = (-2.5, -2.5)$. In order to achieve both
1965 rewards, the Point must thus drive to both targets.

1966 In all experiments, the Point is initialized at a random $(x, y) \in [-2, 2]^2$ so as to learn a position-
1967 agnostic policy. The DOHJ-PPO parameters used to train these problems can be found in Table
1968 4.

1969 **Table 4: Hyperparameters for SafetyGym Learning**
1970

1971 Hyperparameters for DOHJ-PPO	1972 Values
1972 Network Architecture	1973 MLP
1973 Units per Hidden Layer	1974 256
1974 Numbers of Hidden Layers	1975 2
1975 Hidden Layer Activation Function	1976 tanh
1976 Entropy coefficient	1977 Linear Decay 5e-3 → 0
1977 Optimizer	1978 Adam
1978 Discount factor γ	1979 Linear Anneal 0.995 → 0.9995
1979 GAE lambda parameter	1980 0.95
1980 Clip Ratio	1981 0.2
1981 Actor Learning rate	1982 Linear Decay 3e-4 → 0
1982 Reward/Cost Critic Learning rate	1983 Linear Decay 3e-4 → 0
1983 Number of Environments	1984 128
1984 Number of Steps	1985 400
1985 Total Timesteps (RAA)	1986 50M
1986 Total Timesteps (RR)	1987 100M
1987 Scan Steps	1988 4
1988 Update Epochs	1989 10
1989 Number of Minibatches	1990 32
Add'l Hyperparameters for CPPO	
1990 K_P	1991 1
1991 K_I	1992 1e-4
1992 K_D	1993 1

1994 **K DETAILS OF RAA & RR EXPERIMENTS: HALFCHEETAH**
1995

1996 The HalfCheetah environment is taken from Gym Brockman et al. (2016), reimplemented in So et al.
1997 (2024). In both RAA and RR problems, we define rewards based on the HalfCheetah head position,

1998 which we denote as (x, y) in this section, and we define the penalties based on the position of all
 1999 HalfCheetah body positions (back, neck, head, thighs, shins, and feet).
 2000

2001 In the RAA task, the reward is defined as

2002
$$r(x, y) = |x - 5.5| - 0.25 \quad (63)$$

 2003

2004 to incentive the HalfCheetah to reach its head to the cylinder centered at $x = 5.5$. The penalty q
 2005 is defined as the minimum of signed distance functions to a floor obstacles at $(0, 4.5)$ and $(0, 6.5)$
 2006 which have height of 0.05 and width 0.5, and a back wall obstacle at $x < -0.9$. In order to safely
 2007 arrive at high reward (and always avoid the obstacles), the HalfCheetah thus must jump over the front
 2008 floor obstacle (at $x = 4.5$) and avoid crashing into, either by hopping over or standing, the back floor
 2009 obstacle (at $x = 6.5$).
 2010

2011 In the RR task, the first reward is defined again as
 2012

2013
$$r_1(x, y) = \sqrt{|x - 5| + |y - 1|} - 0.1 \quad (64)$$

 2014

2015 to incentive the HalfCheetah to reach its head to the position at $(x, y) = (5, 1)$, and the second reward
 2016 as
 2017

2018
$$r_2(x, y) = \sqrt{|x + 5| + |y - 1|} - 0.1 \quad (65)$$

 2019 to incentive the HalfCheetah to reach its head to the position at $(x, y) = (-5, 1)$. In order to achieve
 2020 both rewards, the HalfCheetah must thus gallop both forwards and backwards.
 2021

2022 In all experiments, the HalfCheetah is initialized in the default standing posture at a random $x \in$
 2023 $[0.5, 1.5]$ so as to learn a position-agnostic policy. The DOHJ-PPO parameters used to train these
 2024 problems can be found in Table 5.
 2025

2026 Table 5: Hyperparameters for HalfCheetah Learning

2027 Hyperparameters for DOHJ-PPO	2028 Values
2029 Network Architecture	2030 MLP
2031 Units per Hidden Layer	2032 256
2033 Numbers of Hidden Layers	2034 2
2035 Hidden Layer Activation Function	2036 tanh
2037 Entropy coefficient	2038 Linear Decay 5e-3 → 0
2039 Optimizer	2040 Adam
2041 Discount factor γ	2042 Linear Anneal 0.995 → 0.9995
2043 GAE lambda parameter	2044 0.95
2045 Clip Ratio	2046 0.2
2047 Actor Learning rate	2048 Linear Decay 3e-4 → 0
2049 Reward/Cost Critic Learning rate	2050 Linear Decay 3e-4 → 0
2051 Number of Environments	2052 128
2053 Number of Steps	2054 400
2055 Total Timesteps (RAA)	2056 100M
2057 Total Timesteps (RR)	2058 150M
2059 Scan Steps	2060 4
2061 Update Epochs	2062 10
2063 Number of Minibatches	2064 32
Add'l Hyperparameters for CPPO	
2065 K_P	2066 100
2067 K_I	2068 1e-4
2069 K_D	2070 1

2071 **L CONTRAST WITH DECOMPOSITIONS IN TEMPORAL LOGIC**

2072 Temporal Logic (TL) predicates, including those for reach (eventually φ), avoid (always not ψ), and
 2073 reach-avoid (not ψ until φ) problems, enjoy useful algebraic properties. These properties provide
 2074 a convenient way to decompose complex TL predicates into simpler predicates. Unfortunately, the
 2075

2052 decomposition of these predicates does not generally translate to valid decompositions of the optimal
 2053 value functions in HJR.

2054 More explicitly, it is indeed possible to phrase HJR problem formulations, such as our RR and RAA
 2055 problems, using the language of quantitative semantics from the TL literature. In particular, the
 2056 standard HJR problem is to find the sequence of actions that maximizes some objective function,
 2057 and this objective function can generally be written as a quantitative semantic corresponding to the
 2058 specification of the desired system behavior (however, this is not explicitly written in TL notation
 2059 in the HJR literature). That said, the optimal value function decomposition results for the RR and
 2060 RAA problems are distinct from the decomposition of the corresponding quantitative semantics. In
 2061 other words, our decomposition results are statements about the optimal control associated with the
 2062 quantitative semantic, not the quantitative semantic itself.

2063 This subtle distinction can be clarified by the following counter-examples, where a valid decomposi-
 2064 tion of the quantitative semantic (on the TL side) for the RR and RAA problem does not translate to a
 2065 valid decomposition of the optimal value functions (on the HJR side) for the RAA problem. We will
 2066 use F as the eventually operator, G as the always operator, and $\wedge/\vee/\neg$ as logical and/or/not.

2068 L.1 RAA CASE

2069 Consider an RAA problem where my friend is holding a piñata which I would like to break with a
 2070 bat. We can always decompose the RAA quantitative semantic into R and A quantitative semantics.
 2071 However, suppose there is some state of the system from which I can either eventually hit the piñata
 2072 or always avoid hitting my friend, but not both. In this case, the optimal value function for the R and
 2073 A problems will both be non-negative, even though I cannot actually achieve the RAA task from this
 2074 state.

2075 To make this argument explicit, define the atomic predicates φ and ψ to represent hitting the piñata
 2076 and hitting my friend, respectively:

$$2079 \quad (\mathbf{x}, t) \models \varphi \iff r(\mathbf{x}(t)) \geq 0, \\ 2080 \quad (\mathbf{x}, t) \models \psi \iff p(\mathbf{x}(t)) \geq 0.$$

2081 Given a predicate μ , let ρ_μ be the corresponding quantitative semantic. Thus, $\rho_\varphi[\mathbf{x}, t] = r(\mathbf{x}(t))$ and $\rho_\psi[\mathbf{x}, t] = p(\mathbf{x}(t))$. The quantitative semantics for the R, A, and RAA problems are then,
 2082 respectively:

$$2083 \quad \rho_R[\mathbf{x}, t] := \rho_{F\varphi}[\mathbf{x}, t] = \max_{\tau \geq t} r(\mathbf{x}(\tau)), \quad (66)$$

$$2084 \quad \rho_A[\mathbf{x}, t] := \rho_{G\neg\psi}[\mathbf{x}, t] = \min_{\tau \geq t} -p(\mathbf{x}(\tau)), \quad (67)$$

$$2085 \quad \rho_{RAA}[\mathbf{x}, t] := \rho_{(F\varphi) \wedge (G\neg\psi)}[\mathbf{x}, t] = \min \left\{ \max_{\tau \geq t} r(\mathbf{x}(\tau)), \min_{\tau \geq t} -p(\mathbf{x}(\tau)) \right\}. \quad (68)$$

2086 As mentioned earlier, the optimal value functions for the R, A, and RAA problems can then be written
 2087 in terms of the quantitative semantics, i.e.

$$2088 \quad V_R^*(s) = \max_{\pi} \rho_R[\mathbf{x}_s^\pi, 0],$$

$$2089 \quad V_A^*(s) = \max_{\pi} \rho_A[\mathbf{x}_s^\pi, 0],$$

$$2090 \quad V_{RAA}^*(s) = \max_{\pi} \rho_{RAA}[\mathbf{x}_s^\pi, 0],$$

2091 where \mathbf{x}_s^π is the trajectory of the bat corresponding to the initial state s and policy π .

2092 But here is the key point: although it is always true that

$$2093 \quad \rho_{RAA}[\mathbf{x}, t] = \min\{\rho_R[\mathbf{x}, t], \rho_A[\mathbf{x}, t]\},$$

2094 in general we only have that

2106
2107
2108

$$V_{\text{RAA}}^*(s) \leq \min\{V_{\text{R}}^*(s), V_{\text{A}}^*(s)\}.$$

2109
2110
2111
Indeed this inequality is sometimes strict. Again, consider the case where there is some state of the
system s from which I can either eventually hit the piñata or always avoid hitting my friend, but
cannot do both. Then

2112
2113
2114

$$V_{\text{RAA}}^*(s) < 0 \leq \min\{V_{\text{R}}^*(s), V_{\text{A}}^*(s)\}.$$

2115
2116
2117
In other words, the algebra that applies to the TL predicates translates to an algebra on the TL
quantitative semantics, but it does not generally translate to an algebra on the optimal value functions.
This is why our decomposition required thorough justification.

2118
2119
2120

L.2 RR CASE
Next, suppose that we are solving an RR problem for a small robotic boat that must deliver supplies to two downstream islands in a wide river that flows from north to south. The islands are at the same latitude, but one is to the west and one is to the east. Suppose the boat starts far enough upstream that it can reach either island, but the current is too strong to move from one island to the other. Then the boat can satisfy the R task for the west island (by ignoring the east island) and it can satisfy the R task for the east island (by ignoring the west island), but it cannot satisfy the RR task. The decomposition of the quantitative semantics for the RR problem into the minimum of the quantitative semantics for the two R problems will then not translate to a valid decomposition of the value functions.

2128
2129

More explicitly, with r_1 and r_2 the signed distance functions to either island, let

2130
2131
2132
2133
2134

$$(\mathbf{x}, t) \models \varphi \iff r_1(\mathbf{x}(t)) \geq 0, \quad (69)$$

$$(\mathbf{x}, t) \models \psi \iff r_2(\mathbf{x}(t)) \geq 0. \quad (70)$$

2135
2136

Thus, $\rho_\varphi[\mathbf{x}, t] = r_1(\mathbf{x}(t))$ and $\rho_\psi[\mathbf{x}, t] = r_2(\mathbf{x}(t))$. The quantitative semantics for reaching the west
island, reaching the east island, and reaching both islands are then respectively,

2137
2138
2139
2140

$$\rho_{\text{R1}}[\mathbf{x}, t] := \rho_{F\varphi}[\mathbf{x}, t] = \max_{\tau \geq t} r_1(\mathbf{x}(\tau)), \quad (71)$$

$$\rho_{\text{R2}}[\mathbf{x}, t] := \rho_{F\psi}[\mathbf{x}, t] = \max_{\tau \geq t} r_2(\mathbf{x}(\tau)), \quad (72)$$

2141
2142

$$\rho_{\text{RR}}[\mathbf{x}, t] := \rho_{(F\varphi) \wedge (F\psi)}[\mathbf{x}, t] = \min \left\{ \max_{\tau \geq t} r_1(\mathbf{x}(\tau)), \max_{\tau \geq t} r_2(\mathbf{x}(\tau)) \right\}. \quad (73)$$

2143
2144
2145

As before, the optimal value functions for the two R problems and the RR problems can then be
written in terms of the quantitative semantics, i.e.

2146

2147
2148
2149
2150

$$V_{\text{R1}}^*(s) = \max_{\pi} \rho_{\text{R1}}[\mathbf{x}_s^\pi, 0], \quad (74)$$

$$V_{\text{R2}}^*(s) = \max_{\pi} \rho_{\text{R2}}[\mathbf{x}_s^\pi, 0], \quad (75)$$

2151
2152

$$V_{\text{RR}}^*(s) = \max_{\pi} \rho_{\text{RR}}[\mathbf{x}_s^\pi, 0]. \quad (76)$$

2153
2154
2155

But we still have the analogous issue: although it is always true that

2156
2157
2158

$$\rho_{\text{RR}}[\mathbf{x}, t] = \min\{\rho_{\text{R1}}[\mathbf{x}, t], \rho_{\text{R2}}[\mathbf{x}, t]\},$$

2159

in general we only have that

$$V_{\text{RR}}^*(s) \leq \min\{V_{\text{R1}}^*(s), V_{\text{R2}}^*(s)\}.$$

2160 When we begin from some state of the system s from which I can eventually reach the east island or I
2161 can eventually reach the west island, but not both, then the inequality is strict:
2162

2163
$$V_{RR}^*(s) < 0 \leq \min\{V_{R1}(s), V_{R2}^*(s)\}.$$

2164

2165 M BROADER IMPACTS

2166 This paper touches on advancing fundamental methods for Reinforcement Learning. In particular, this
2167 work falls into the class of methods designed for Safe Reinforcement Learning. Methods in this class
2168 are primarily intended to prevent undesirable behaviors in virtual or cyber-physical systems, such as
2169 preventing crashes involving self-driving vehicles or potentially even unacceptable speech among
2170 chatbots. It is an unfortunate truth that safe learning methods can be repurposed for unintended use
2171 cases, such as to prevent a malicious agent from being captured, but the authors do not foresee the
2172 balance of potential beneficial and malicious applications of this method to be any greater than other
2173 typical methods in Safe Reinforcement Learning.
2174

2175 N ACKNOWLEDGMENTS

2176 This section has been redacted for the purpose of anonymous review.
2177

2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213