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ABSTRACT

Hard constraints in reinforcement learning (RL) often degrade policy performance.
Lagrangian methods offer a way to blend objectives with constraints, but require
intricate reward engineering and parameter tuning. In this work, we extend recent
advances that connect Hamilton-Jacobi (HJ) equations with RL to propose two
novel value functions for dual-objective satisfaction. Namely, we address: 1) the
Reach-Always-Avoid (RAA) problem – of achieving distinct reward and penalty
thresholds – and 2) the Reach-Reach (RR) problem – of achieving thresholds of
two distinct rewards. In contrast with temporal logic approaches, which typically
involve representing an automaton, we derive explicit, tractable Bellman forms
in this context via decomposition. Specifically, we prove that the RAA and RR
problems may be rewritten as compositions of previously studied HJ-RL problems.
We leverage our analysis to propose a variation of Proximal Policy Optimization
(DOHJ-PPO), and demonstrate that it produces distinct behaviors from previous
approaches, out-competing a number of baselines in success, safety and speed
across a range of tasks for safe-arrival and multi-target achievement.

1 INTRODUCTION

The development of special Bellman equations from the Hamilton-Jacobi (HJ) perspective of dynamic
programming (DP) has illustrated a novel route to safety and target-achievement in reinforcement
learning (RL) Fisac et al. (2019); Hsu et al. (2021). In comparison with the canonical RL discounted-
sum cost and corresponding additive DP update, these equations, namely the Safety Bellman Equation
(SBE) and Reach-Avoid Bellman Equation (RABE), propagate the minimum (worst) penalty and
maximum (best) reward, yielding a value function defined by the outlying performance of a trajectory.
In mission-critical applications, where avoiding failure is a necessary condition, these equations have
proved invaluable in the field of safe control Mitchell et al. (2005); Ames et al. (2016). By focusing
on extremal values rather than discounted sums, the HJ-RL equations induce behaviors that act with
respect to the best or worst outcomes in time-optimal fashions, performing far more safely than
Lagrangian methods Ganai et al. (2023); So et al. (2024). Accordingly, these updates yield policies
with significantly improved performance in target-achievement and obstacle-avoidance tasks over
long horizons Yu et al. (2022a;b), relevant to fundamental and practical problems in many domains.

In this work, we advance the existing HJ-RL formulations by generalizing them to compositional
problems. To date, the HJ-RL Bellman equations are limited to three operations: Reach (R), wherein
the agent seeks to reach a goal (achieve a reward threshold), Avoid (A), wherein the agent seeks
to avoid an obstacle (avoid a penalty threshold), and Reach-Avoid (RA), where the agent reaches
a goal while avoiding obstacles on the way. In this light, we extend the HJ-RL Bellman equations
to two complementary problems concerned with dual-satisfaction, namely the Reach-Reach (RR)
problem for reaching two goals and the Reach-Always-Avoid (RAA) problem for continuing to
avoid hazards after reaching a goal, demonstrated in Figure 1. We prove that the RAA and RR have a
fundamental structure such that their Bellman equations may be decomposed into combinations of
SBEs and RABEs. From this theory, we devise DOHJ-PPO, a novel algorithm for learning the RAA
and RR values which bootstraps concurrently solved decompositions for coupling on-policy PPO
roll-outs. Notably, this allows one to automatically learn to satisfy dual-objective tasks, for example,
in the RAA, the F16 learns to fly into the desired airspace without crashing afterward (Figure 1, top
middle-left), and in the RR case, the Hopper learns to jump into a target without diving so it may
then achieve the second target (Figure 1, bottom left). The RAA and RR problems are distinct from
both standard sum-of-reward values and the simpler HJ-RL formulations, providing new perspectives
and performant tools for constrained decision-making.
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Figure 1: Depiction of the Reach-Always-Avoid (RAA) and Reach-Reach (RR) Tasks. In the RAA tasks, the
zero-level set of the rewards (goals) and penalties (obstacles) are depicted in green and red respectively, while
in the RR problem, the zero-level set of the two rewards (two goals) are depicted in green and blue. The RAA
value is defined by the minimum of the minimum penalty and maximum reward, inducing the agents to enter the
goals at some time without ever entering the obstacles. The RR value is defined by the minimum of the two
maximum rewards, inducing the agents to enter both goals at some time.

Our contributions include:
1. We introduce novel value functions corresponding to the RAA and RR problems.
2. We prove that these value functions and their optimal policies can be decomposed into reach,

avoid, and reach-avoid value functions (Theorems 1 and 2).
3. We demonstrate the nature of the RAA and RR values and their optimal policies in a simple

grid-world example with deep Q-learning (DQN) (Figure 2).
4. We propose DOHJ-PPO to solve these value functions, which bootstraps concurrently

solved decompositions for effectively coupling the on-policy rollouts (Section 7.2).
5. In continuous control tasks, we showcase that with little to no tuning, DOHJ-PPO is more

successful, safer and faster than Lagrangian and existing HJ-RL baselines (Figure 4).

2 RELATED WORKS

This work involves aspects of safety (e.g. hazard avoidance), liveness (e.g. goal reaching), and
balancing competing objectives. We summarize the relevant related works here.

Constrained and Multi-Objective RL. Constrained Markov decision processes (CMPDs) maximize
the expected sum of discounted rewards subject to an expected sum of discounted costs, or an
instantaneous safety violation function remaining below a set threshold Altman (2021); Achiam et al.
(2017a); Wachi and Sui (2020). CMDPs are an effective way to incorporate state constraints into
RL problems, and the efficient and accurate solution of the underlying optimization problem has
been extensively researched, first by Lagrangian methods and later by an array of more sophisticated
techniques Stooke et al. (2020); Li et al. (2024); Chen et al. (2021); Miryoosefi and Jin (2021); Yang
et al. (2020). Multi-objective RL is an approach to designing policies that obtain Pareto-optimal
expected sums of discounted vector-valued rewards Wiering et al. (2014); Van and Nowé (2014); Cai
et al. (2023), including by deep-Q and other deep learning techniques Mossalam et al. (2016); Abels
et al. (2019); Yang et al. (2019). By contrast, this work explicitly balances rewards and penalties in a
way that does not require specifying a Lagrange multiplier or similar hyperparameter. Moreover, our
work treats goal-reaching and hazard-avoidance as hard constraints, and the learned value function
has a direct interpretation in terms of the constraint satisfaction.

Goal-Conditioned RL (GCRL). GCRL simultaneously learns optimal policies for a range of
different (but typically related) tasks Liu et al. (2022); Plappert et al. (2018); Ren et al. (2019);
Ma et al. (2022); Campero et al. (2020); Trott et al. (2019); Eysenbach et al. (2022); Ma et al.
(2022); Campero et al. (2020). In GCRL, states are augmented with information on the current goal.
While these goals are in their simplest form mostly independent, some work extends GCRL to more
sophisticated composite tasks Chane-Sane et al. (2021). Our work primarily focuses on composing
specific learned tasks rather than learning general tasks simultaneously.
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Linear Temporal Logic (LTL), Automatic State Augmentation, Automatons, and Generalized
Objective Functions, . Many works have been explored that merge LTL and RL, canonically focused
on Non-Markovian Reward Decision Processes (NMRDPs) Bacchus et al. (1996). Here, the reward
gained at each time step may depend on the previous state history. Many of these works convert these
NMRDPs to MDPs via state augmentation Bacchus et al. (1997); Thiebaux et al. (2006); Camacho
et al. (2021); Icarte et al. (2018); Camacho et al. (2019). Often the augmented states are taken
to be products between an ordinary state and an automaton state, where the automaton is used to
determine "where" in the LTL specification an agent currently is. Other works using RL for LTL tasks
involve MDP verification Brázdil et al. (2014), hybrid systems theory Cohen et al. (2023), GCRL
with complex LTL tasks Qiu et al. (2023), almost-sure objective satisfaction Sadigh et al. (2014),
incorporating (un)timed specifications Hamilton et al. (2022), and using truncated LTL Li et al.
(2017). While the problems we attempt to solve (e.g. reaching multiple goals) can be thought of as
specific instantiations of LTL specifications, our approach to solving these problems is fundamentally
different from those in this line of work. Our state augmentation and subsequent decomposition of the
problem are performed in a specific manner to leverage new HJ-based methods on the subproblems.
Through our specific choice of state augmentation, we still prove that we can achieve an optimal
policy in theory (and approximately so in practice) despite the non-NMRDP setup. There is also
significant literature on generalized objective functions in RL Wang et al. (2020); Cui and Yu (2023);
Tang et al. (2025), but these works are either not able to or are not tailored to simultaneously handle
multiple rewards/penalties in the context of safe optimal control, which is where our decompositional
approach becomes useful. On the other hand, works that do try to handle multiple rewards and
penalties (including by decomposition) still use discounted-sum-of-rewards objectives van Seijen
et al. (2017); Pitis (2023); Lin et al. (2020).

Hamilton-Jacobi (HJ) Methods. HJ is a dynamic programming-based framework for solving reach,
avoid, and reach-avoid tasks Mitchell et al. (2005); Fisac et al. (2015). The value functions used in
HJ have the advantage of directly specifying desired behavior, so that a positive value corresponds
to task achievement and a negative value corresponds to task failure. Recent works use RL to find
corresponding optimal policies by leveraging the unconventional Bellman updates associated with
these value functions So et al. (2024); Hsu et al. (2021); Fisac et al. (2019). We build on these works
by extending these advancements to more complex tasks, superficially mirroring the progression from
MDPs to NMRDPs in the LTL-RL literature. Additional works merge HJ and RL, but do not concern
themselves with such composite tasks Ganai et al. (2023); Yu et al. (2022a); Zhu et al. (2024).

3 PROBLEM DEFINITION

Consider a Markov decision process (MDP)M = ⟨S,A, f⟩ consisting of finite state and action
spaces S and A, and unknown discrete dynamics f that define the deterministic transition st+1 =
f(st, at). Let an agent interact with the MDP by selecting an action with policy π : S → A to yield
a state trajectory sπt , i.e. sπt+1 = f (sπt , π (s

π
t )) .

In this work, we consider the Reach-Always-Avoid (RAA) and Reach-Reach (RR) problems, which
both involve the composition of two objectives, which are each specified in terms of the best reward
and worst penalty encountered over time. In the RAA problem, let r, p : S → R represent a reward
to be maximized and a penalty to be minimized. We will let q = −p for mathematical convenience,
but for conceptual ease we recommend the reader think of trying to minimize the largest-over-time
penalty p rather than maximize the smallest-over-time q. In the RR problem, let r1, r2 : S → R be
two distinct rewards to be maximized. The agent’s overall objective is to maximize the worst-case
outcome between the best-over-time reward and worst-over-time penalty (in RAA) and the two
best-over-time rewards (in RR), i.e.

(RAA)

 maximize (w.r.t. π) min
{
maxt r(s

π
t ), mint q(s

π
t )
}

s.t. sπt+1 = f (sπt , π (s
π
t )) ,

sπ0 = s,

(RR)

 maximize (w.r.t. π) min
{
maxt r1(s

π
t ), maxt r2(s

π
t )
}

s.t. sπt+1 = f (sπt , π (s
π
t )) ,

sπ0 = s.

As the names suggest, these optimization problems are inspired by — but not limited to — tasks
involving goal reaching and hazard avoidance. More specifically, the RAA problem is motivated by a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: DQN Grid-World Demonstration of the RAA & RR Problems. We compare our novel formulations
with previous HJ-RL formulations (RA & R) in a simple grid-world problem with DQN. The zero-level sets of q
(hazards) are highlighted in red, those of r (goals) in blue, and trajectories in black (starting at the dot). In both
models, the agents actions are limited to {left, right, straight} and the system flows upwards over time.

task in which an agent wishes to both reach a goal G and perennially avoid a hazardH (even after it
reaches the goal). The RR problem is motivated by a task in which an agent wishes to reach two goals,
G1 and G2, in either order. While these problems are thematically distinct, they are mathematically
complementary (differing by a single max/min operation), and hence we tackle them together.

The values for any policy in these problems then take the forms V πRAA and V πRR,

V πRAA(s) = min
{
max
t
r(sπt ), min

t
q(sπt )

}
and V πRR(s) = min

{
max
t
r1(s

π
t ), max

t
r2(s

π
t )
}
.

One may observe that these values are fundamentally different from the infinite-sum value commonly
employed in RL Sutton and Barto (2018), and do not accrue over the trajectory but, rather, are
determined by certain points. Moreover, while each return considers two objectives, these objectives
are combined in worst-case fashion to ensure dual-satisfaction. Although many of the works discussed
in the previous section approach related tasks (e.g. goal reaching and hazard avoidance) via traditional
sum-of-discounted-rewards formulations, these novel value functions have a more direct interpretation
in the following sense: if r is positive (only) within G and q is positive (only) insideH, V πRAA(s) will
be positive if and only if the RAA task will be accomplished by the policy π. Similarly if r1 and r2
are positive within G1 and G2, respectively, V πRR(s) will be positive if and only if the RR task will be
accomplished by the policy π.

4 REACHABILITY AND AVOIDABILITY IN RL

The reach V πR , avoid V πA , and reach-avoid V πRA values, respectively defined by

V πR (s) = max
t
r(sπt ), V πA (s) = min

t
q(sπt ), V πRA(s) = max

t
min

{
r(sπt ),min

τ≤t
q(sπτ )

}
,

have been previously studied Fisac et al. (2019) leading to the derivation of special Bellman equations.
To put these value functions in context, assume the goal G is the set of states for which r(s) is
positive and the hazardH is the set of states for which q(s) is non-positive. See Figure 2 for a simple
grid-world demonstration comparing the RAA and RR values with the previously existing RA and
R values. Then V πR , V πA , and V πRA are positive if and only if π causes the agent to eventually reach
G, to always avoid H, and to reach G without hitting H prior to the reach time, respectively. The
Reach-Avoid Bellman Equation (RABE), for example, takes the form Hsu et al. (2021)

V ∗
RA(s) = min

{
max

{
max
a∈A

V ∗
RA (f(s, a)) , r(s)

}
, q(s)

}
,

and is associated with optimal policy π∗
RA(s) (without the need for state augmentation, see the

appendix). This formulation does not naturally induce a contraction, but may be discounted to induce
contraction by defining V γRA(z) implicitly via

V γRA(s) = (1− γ)min{r(s), q(s)}+ γmin

{
max

{
max
a∈A

V γRA (f(s, a)) , r(s)

}
, q(s)

}
,

for each γ ∈ [0, 1). A fundamental result (Proposition 3 in Hsu et al. (2021)) is that

lim
γ→1

V γRA(s) = VRA(s).
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Figure 3: Examples where a Non-Augmented Policy is Flawed. In both MDPs, consider an agent with no
memory. (Left) For a deterministic policy based on the current state, the agent can only achieve one target (RR),
as this policy must associate the middle state with either of the two possible actions. (Right) The RAA case is
slightly more complex. Assume the robot will make sure to avoid the fire at all costs (which is easily done from
the current state). It would also prefer to not encounter the cone hazard, but will do so if needed to achieve the
target. From its current state the robot cannot determine whether to pursue the target by crossing the cone or
move to the right. The correct decision depends on state history, specifically on whether the robot has already
reached the target state or not (e.g. imagine the initial state is on the target state).

These prior value functions and corresponding Bellman equations have proven powerful for these
simple reach/avoid/reach-avoid problem formulations. In this work, we generalize the aforementioned
results to the broader class involving VRAA (assure no penalty after the reward threshold is achieved)
and VRR (achieve multiple rewards optimally). Through this generalization, we are able to train an
agent to accomplish more complex tasks with noteworthy performance.

5 THE NEED FOR AUGMENTING STATES WITH HISTORICAL INFORMATION

We here discuss a small but important detail regarding the problem formulation. The value functions
we introduce may appear similar to the simpler HJ-RL value functions discussed in the previous
section; however, in these new formulations the goal of choosing a policy π : S → A is inherently
flawed without state augmentation. In considering multiple objectives over an infinite horizon,
situations arise in which the optimal action depends on more than the current state, but rather the
history the trajectory. This complication is not unique to our problem formulation, but also occurs for
NMDPs (see the Related Works section). To those unfamiliar with NMDPs, this at first may seem like
a paradox as the MDP is by definition Markov, but the problem occurs not due to the state-transition
dynamics but the nature of the reward. An example clarifying the issue is shown in Figure 3.

To allow the agent to use relevant aspects of its history, we will henceforth consider an augmentation
of the MDP with auxiliary variables. A theoretical result in the next section states that this choice
of augmentation is sufficient in that no additional information will be able to improve performance
under the optimal policy. Note that the state augmentation is needed because of the use of HJR-style
optimization objectives (rather than discounted sum-of-rewards). The point of the state augmentation
is not to make the rewards and penalties Markovian (indeed, they are already Markovian as they are
deterministic functions of the current state).

5.1 AUGMENTATION OF THE RAA PROBLEM

We consider an augmentation of the MDP defined byM = ⟨S,A, f⟩ consisting of augmented states
S = S ×Y ×Z and the same actionsA. For any initial state s, let the augmented states be initialized
as y = r(s) and z = q(s), and let the transition ofM be defined by

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
t , z

π̄
t

))
; yπ̄t+1 = max

{
r
(
sπ̄t+1

)
, yπ̄t
}
; zπ̄t+1 = min

{
q
(
sπ̄t+1

)
, zπ̄t
}
,

such that yt and zt track the best reward and worst penalty up to any point. Hence, the policy forM
given by π̄ : S → A may now consider information regarding the history of the trajectory.

By definition, the RAA value forM,

V π̄RAA(s) = min
{
max
t
r(sπ̄t ),min

t
q(sπ̄t )

}
,

is equivalent to that ofM except that it allows for a policy π̄ which has access to historical information.
We seek to find π̄ that maximizes this value.
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5.2 AUGMENTATION OF THE RR PROBLEM

For the Reach-Reach problem, we augment the system similarly, except that zt is updated using a
max operation instead of a min:

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
t , z

π̄
t

))
; yπ̄t+1 = max

{
r1
(
sπ̄t+1

)
, yπ̄t
}
; zπ̄t+1 = max

{
r2
(
sπ̄t+1

)
, zπ̄t
}
.

Again, by definition,
V π̄RR(s) = min

{
max
t
r1(s

π̄
t ),max

t
r2(s

π̄
t )
}
.

The RR problem is again to find an augmented policy π̄ which maximizes this value.

6 OPTIMAL POLICIES FOR RAA AND RR BY VALUE DECOMPOSITION

We now discuss our first theoretical contributions. We refer the reader to the appendix for the proofs
of the theorems.

6.1 DECOMPOSITION OF RAA INTO AVOID AND REACH-AVOID PROBLEMS

Our main theoretical result for the RAA problem shows that we can solve this problem by first solving
the avoid problem corresponding to the penalty q(s) to obtain the optimal value function V ∗

A (s) and
then solving a reach-avoid problem with the negated penalty function q(s) and a modified reward
function rRAA(s).
Theorem 1. For all initial states s ∈ S,

max
π̄

V π̄RAA(s) = max
π

max
t

min

{
rRAA (sπt ) ,min

τ≤t
q (sπτ )

}
, (1)

where rRAA(s) := min {r(s), V ∗
A (s)}, with

V ∗
A (s) := max

π
min
t
q (sπt ) .

This decomposition is significant, as methods customized to solving avoid and reach-avoid problems
were recently explored in Fisac et al. (2019); Hsu et al. (2021); So et al. (2024); So and Fan (2023),
allowing us to effectively solve the optimization problem defining V ∗

A (s) as well as the optimization
problem that defines the right-hand-side of 1.
Corollary 1. The value function V ∗

RAA(s) := maxπ̄ V
π̄

RAA(s) satisfies the Bellman equation

V ∗
RAA (s) = min

{
max

{
max
a∈A

V ∗
RAA (f(s, a)) , rRAA(s)

}
, q(s)

}
.

Readers familiar with temporal logic (TL) may be interested in how these decompositions relate
to decompositions of predicates in TL. We discuss the distinction between these two classes of
decompositions in Sec. L of the Appendix, and how the TL predicate algebra is insufficient for safe
optimal control.

6.2 DECOMPOSITION OF THE RR PROBLEM INTO THREE REACH PROBLEMS

Our main result for the RR problem shows that we can solve this problem by first solving two reach
problems corresponding to the rewards r1(s) and r2(s) to obtain reach value functions V ∗

R1(s) and
V ∗

R2(s), respectively. We then solve a third reach problem with a modified reward rRR(s).
Theorem 2. For all initial states s ∈ S,

max
π̄

V π̄RR(s) = max
π

max
t
rRR (sπt ) , (2)

where rRR(s) := max {min {r1(s), V ∗
R2(s)} ,min {r2(s), V ∗

R1(s)}}, with

V ∗
R1(s) := max

π
max
t
r1 (s

π
t ) , V ∗

R2(s) := max
π

max
t
r2 (s

π
t ) .

Corollary 2. The value function V ∗
RR(s) := maxπ̄ V

π̄
RR(s) satisfies the Bellman equation

V ∗
RR (s) = max

{
max
a∈A

V ∗
RR (f(s, a)) , rRR(s)

}
.

6
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6.3 OPTIMALITY OF THE AUGMENTED PROBLEMS

We previously motivated the choice to consider an augmented MDP M over the original MDP
in the context of the RAA and RR problems. In this section, we justify our particular choice of
augmentation. Indeed, the following theoretical result shows that further augmenting the states with
additional historical information cannot improve performance under the optimal policy.

Theorem 3. Let s ∈ S. Then

max
π

V πRAA(s) ≤ max
π̄

V π̄RAA(s) = max
a0,a1,...

min
{
max
t
r(st),min

t
q(st)

}
,

and

max
π

V πRR(s) ≤ max
π̄

V π̄RR(s) = max
a0,a1,...

min
{
max
t
r1(st),max

t
r2(st)

}
where st+1 = f(st, at) and s0 = s.

The terms on the right of the lines above reflect the best possible sequence of actions to solve the
RAA or RR problem, and the theorem states that the optimal augmented policy achieves that value,
represented by the middle terms. This value will generally be less than or equal to the outcome from
using a non-augmented policy, represented by the terms on the left.

7 DOHJ-PPO: SOLVING RAA AND RR WITH RL

In the previous sections, we demonstrated that the RAA and RR problems can be solved through
decomposition of the values into formulations amenable to existing RL methods. However, we make
a few assumptions in the derivation that would limit performance and generalization, namely, the
determinism of the values as well as access to the decomposed values (by solving them beforehand).
In this section, we propose relaxations to the RR and RAA theory and devise a custom variant of
Proximal Policy Optimization, DOHJ-PPO, to solve this broader class of problems, and demonstrate
its performance.

7.1 STOCHASTIC REACH-AVOID BELLMAN EQUATION

It is well known that the most performative RL methods allow for stochastic learning. In So et al.
(2024), the Stochastic Reachability Bellman Equation (SRBE) is described for Reach problems
and used to design a specialized PPO algorithm. We first generalize this notion to a Stochastic
Reach-Avoid Bellman Equation (SRABE). Using Theorems 1 and 2, the SRBE and SRABE offer the
necessary tools for designing a PPO variant for solving the RR and RAA problems.

By anology to the SRBE, the SRABE is given by

Ṽ πRAA(s) = Ea∼π
[
min

{
max

{
Ṽ πRAA (f(s, a)) , rRAA(s)

}
, q(s)

}]
. (SRABE)

More rigorously, we actually consider the discounted SRABE, which is contractive, and the corre-
sponding quality function below in the limit γ → 1− (as in Hsu et al. (2021)),

Ṽ γ,πRAA(s) = (1− γ)min {rRAA(s), q(s)}+ γEa∼π
[
min

{
max

{
Ṽ γ,πRAA (f(s, a)) , rRAA(s)

}
, q(s)

}]
.

Q̃γ,πRAA(s, a) = (1− γ)min {rRAA(s), q(s)}+ γmin
{
max

{
Ṽ γ,πRAA (f(s, a)) , rRAA(s)

}
, q(s)

}
.

Theoretically speaking, the use of the SRABE is justified by Theorem 4 in the Appendix. With this
action-value function we then follow So et al. to derive the corresponding policy gradient result
with an augmented version of the dynamics; for details, see Prop. X in the Appendix. The PPO
advantage function is then given by ÃπRAA = Q̃RAA − ṼRAA Schulman et al. (2017). Although, this
approximation may be poor in highly noisy settings, we show this approach yields conservative
estimates of the value with stochastic policies (Appendix sec. D), and validate it empirically with
stochastic dynamics in Sec. 8.3.
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7.2 ALGORITHM

We introduce DOHJ-PPO for solving the RAA and RR problems, which integrates the SRABE and
SRBE via three minimal modifications to PPO Schulman et al. (2017) (see appendix for more).

Additional actor and critics are introduced to represent the decomposed objectives. Per Theo-
rems 1 and 2, one may know that the RAA and RR values are given by a composition of the simpler
R, A and RA values. Therefore, we learn these decompositions with their own networks and integrate
them into the composed actor and critic training, namely via the GAE and target with the special
RAA and RR reward functions in Theorems 1 and 2.

The composed actor and critic are learned concurrently to the decomposed actor and critics
by bootstrapping the current values Rather than learning the decomposed and composed rep-
resentations sequentially, DOHJ-PPO bootstraps to learn them simultaneously. Namely, at each
iteration, we rollout trajectories for composed and decomposed updates with each actor. In the update
of the composed representation specifically, the decomposed values are inferred from the current
decomposed critic(s) along the composed trajectories. This design choice allows us to couple the
on-policy learning of PPO in the following way.

Trajectories for training the decomposed actor and critic(s) are initialized with states sampled
from the composed trajectories, which we refer to as coupled resets. While it is possible to estimate
the decomposed objectives independently—i.e., prior to solving the composed task—this approach
might lead to inaccurate or irrelevant value estimates in on-policy settings. For example, in the RAA
problem, the avoid decomposition will solely prioritize avoiding penalties and, hence, might converge
to an optimal strategy within a reward-irrelevant region, misaligned with the overall task.

8 EXPERIMENTS

8.1 DQN DEMONSTRATION

We begin by demonstrating the utility of our theoretical results (Theorems 1 and 2) through a simple
2D grid-world experiment using DQN (Figure 2). In this environment, the agent can move left, right,
or remain stationary, while drifting upward at a constant rate. Throughout, reward regions are shown
in blue and penalty regions in red. On the left, we compare the optimal value functions learned under
the classic Reach-Avoid (RA) formulation with those from the Reach-Always-Avoid (RAA) setting.
In the RA scenario, trajectories successfully avoid the obstacle but may terminate in regions from
which future collisions are inevitable, as there is no incentive to consider what happens after reaching
the minimum reward threshold. In contrast, under the RAA formulation, where the objective involves
maximizing cumulative reward while accounting for future penalties (as per Theorem 1), the agent
learns to reach the target while remaining in safe regions thereafter. On the right, we consider a similar
environment without obstacles but with two distinct targets. Here, the Reach-Reach (RR) formulation
induces trajectories that visit both targets, unlike simple reach tasks in which the agent halts after
reaching a single goal. These qualitative results highlight the behavioral distinctions induced by
the RAA and RR objectives compared to their simpler counterparts. Additional algorithmic and
experimental details are provided in the Apendix.

8.2 CONTINUOUS CONTROL TASKS WITH DOHJ-PPO

To evaluate the method under more complex and less structured conditions, we extend our analysis
to continuous control settings. Specifically, we consider RAA and RR tasks in the Hopper, F16,
SafetyGym, and HalfCheetah environments, depicted in Figure 1. In the RAA tasks, the penalty
function generally characterizes regions of states where the agent (or its body parts) is intended to
avoid, while the reward characterizes regions of states where the agent is intended to reach.

As baselines, we compare DOHJ-PPO against a variety of classes of RL algorithms. We include
several augmented Lagrangian methods which transform constraints (either for reaching both or
always avoiding) into mixed objectives, such as Constrained PPO (CPPO) Achiam et al. (2017b), PPO-
LAG Ray et al. (2019), P2BPO Dey et al. (2024), and LOGBAR Zhang et al. (2024). Additionally,
we include three HJ-RL baselines designed for the previous R and RA problems, RESPO Ganai et al.
(2023), RCPPO So et al. (2024) and RA Hsu et al. (2021). Lastly, we also include a few methods
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Figure 4: Success (→) and Partial Success (→) in RAA and RR Tasks for DOHJ-PPO and Baselines. We
evaluate DOHJ-PPO in black against baselines over 1,000 trajectories in the Hopper, F16, SafetyGym and
HalfCheetah environments. In the first and third row, the Partial Success percentage of each algorithm is given,
defined by the number of trajectories to achieve one objective (reaching or always-avoiding in the RAA, reaching
either in the RR). In the second and fourth rows, SUCCESS percentage is given, defined by the number of
trajectories to achieve both objectives. Most baselines achieve partial success, however, few achieve total success
as the environment becomes more difficult, underscoring the difficulty of balancing objectives in RL.

based on approaches in STL/LTL-RL and MORL, including a decomposed STL (D-STL) PPO, a
sparse-reward STL PPO (SPARSE) and a MORL-based PPO. All algorithms are trained on random
initial conditions and then evaluated on new random initial conditions within distribution. To quantify
performance of the dual-objective tasks, we measure (1) the percent of trajectories which achieve at
least both tasks successfully, (2) the percent of trajectories which achieve at least one of the tasks
(dubbed partial success), and (3) the mean steps in each trajectory until success.

Empirically, we find that our method performs at the top-level, achieving first or second place among
all tasks and environments (Figure 4). In fact, as the multi-target (RR) or safe-achievement (RAA)
tasks become more complex (e.g. the HalfCheetah), our algorithm increasingly dominates the 10
state-of-the-art baselines. Note, that almost all algorithms can achieve partial success at a high rate in
each dual-objective task, highlighting the difficulty of mixed or competing objectives, particularly
with discounted-sum rewards. Moreover, DOHJ-PPO is the sole performant algorithm in both RAA
and RR tasks, displaying the fastest achievement times across tasks (see appendix).

These results underscore the challenging nature of composing multiple satisfaction objectives using
traditional baselines with discounted-sum rewards. In contrast, DOHJ-PPO provides a direct and
robust solution to handling these complex tasks, with little to no tuning. Our algorithm enjoys
these benefits because of the structure of the novel Bellman updates, which propagate the extreme
(maximum and minimum) values as opposed to the short-term average (discounted-sum) values.

8.3 COMPARISON IN STOCHASTIC DYNAMICS

To design an algorithm robust to randomness, DOHJ-PPO employs the SRBE and SRABE discussed
in Sec. 7.1 in place of their analogous deterministic forms. This choice equates to an approximation of
the decompositional results (Thms. 1 and 2) that interchanges the extrema and expectation operators.
The empirical results in Fig. 4 justify this approximation with stochastic policies, however, this
noise is introduced for exploration and ultimately attenuated in training. To interrogate the behavior
of DOHJ-PPO with stochastic dynamics, we inject affine Gaussian noise into the evolution of the
HalfCheetah dynamics for both RAA and RR tasks. Note, only the velocities and angular velocities
of the agent are perturbed to protect contact physics. We compare our algorithm against the top three

9
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Figure 5: Success (↑) in the HalfCheetah RAA and RR Tasks with Increasingly Stochastic Dynamics. We
plot the learning trajectories of DOHJ-PPO in black and the top baselines for the HalfCheetah environment
with an affine Gaussian noise added to the dynamics. Task achievement (success) is given by the percentage of
256 trajectories that either reach the target and always-avoid the obstacles or reach both targets (corresponding
to VRAA > 0 and VRR > 0). Each column corresponds to a different scale of noise – null, low (0.5), moderate
(1.) and high (2.) – which is added to the velocities and angular velocities of the HalfCheetah dynamics. In the
RAA task, DOHJ-PPO outperforms all baselines up to the highest noise settings where all algorithms perform
equivalently poorly. In the RR task, DOHJ-PPO outperforms all algorithms significantly. In summary, this
ablation demonstrates the robustness of DOHJ-PPO to certain stochasticity in the dynamics and the validity of
the SRBE and SRABE approximations.

baselines in each task along a scale of standard deviations of low (0.5), moderate (1.) and high (2.)
quantity, plotting the maximum learning curve over three seeds in Fig. 5.

In this ablation, we find that the proposed approach, using the novel Bellman equations with stochastic
relaxations, offers a significant performance improvement even in the face of significant noise. In the
RAA task, DOHJ-PPO dominates the top performing baselines with a 8%-22% peak-performance
gap between it and the second best algorithm (and is the fastest to peak-performance) for moderate
noise levels, beyond which all algorithms perform equally poorly. In the RR case, we find an even
starker result, with all but one experiment demonstrating a >30% improvement in peak-performance
even in the high-noise regimes, with an exception of the moderate noise case where DOHJ-PPO still
performs >15% than the best baseline, DSTL. Interestingly, DOHJ-PPO is the slower than DSTL
to peak performance, but performs twice as well at best in three of the four settings. These results
demonstrate that despite certain highly-noisy dynamics DOHJ-PPO is competitive at worst and
optimal in majority. See Appendix Sec. D for further analysis and discussion of the usage of the
SRBE and SRABE approximations.

9 CONCLUSIONS

In this work, we introduced two novel Bellman formulations for new problems (RAA and RR) which
generalize those considered in several recent publications. We derive decomposition results to break
them into simpler Bellman equations, which can then be composed to obtain the corresponding value
functions and optimal policies. We use these results to design DOHJ-PPO, which shows to be the
most performant and balanced algorithm in safe-arrival and multi-target achievement. DOHJ-PPO
employs the stochastic relaxations of the simpler Bellman equations (the SRBE and SRABE), for
which we offer rigorous justification and empirical validation in the case of stochastic policies. As
expectation and extrema operations do not commute, more work is needed to provide guarantees
under stochastic dynamics. Nonetheless, we demonstrate through an artificial ablation that DOHJ-
PPO can be successful in the face of certain dynamic randomness. With regard to more complex
objectives, it appears one might employ our results to iteratively decompose layered objectives
corresponding to temporal logic specifications into a graph of Bellman values. However, doing so
would require deriving generalized decomposition principles for nontrivial compositions of logical
operations. Moreover, a practical algorithm for solving the decomposed graph of values might
benefit from a more efficient representation, mechanisms to guarantee convergence, and heuristics
to improve sampling efficiency, but we leave this to future work. By solving the RAA and RR
values, this work provides a road-map to extend complex Bellman formulations, via decomposing
higher-level problems into lower-level ones, establishing a foundation for nuanced tasks in real-world
environments and safe RL.
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awaiting their response to publicize it, but will do so as soon as possible as we are committed to fair
and open resources without bias or discrimination.
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ACHIEVEMENT SPEED RESULTS FROM DOHJ-PPO EXPERIMENTS

Here we present additional results for RAA and RR problems solved with DOHJ-PPO. In both
settings, DOHJ-PPO out-performs or matches the best of baselines with less tuning and faster arrival.
Notably as the difficulty of the problem increases the gap increases significantly with DOHJ-PPO
remaining the sole algorithm that can achieve the task in reasonable time and in both RAA and RR
categories.

Figure 6: Steps to Success (←) in RAA and RR Tasks for DOHJ-PPO and Baselines For the same 1000
trajectories in Figure 4, we quantify here the number of steps until achievement of both tasks: reaching without
crash afterward in the RAA, reaching both goal in the RR. DOHJ-PPO is not only competitive but consistently
achieves the dual-objective problems in the fewest number of steps.
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PROOF NOTATION

Throughout the theoretical sections of this supplement, we use the following notation.

We let N = {0, 1, . . . } be the set of whole numbers.

We let A be the set of maps from N to A. In other words, A is the set of sequences of actions the
agent can choose. Given a1,a2 ∈ A, and τ ∈ N, we let [a1,a2]τ be the element of A for which

[a1,a2]τ (t) =

{
a1(t) t < τ,

a2(t− τ) t ≥ τ.
Similarly, given a ∈ A and a ∈ A, we let [a,a] be the element of A for which

[a,a](t) =

{
a t = 0,

a(t− 1) t ≥ 1.

Additionally, given a ∈ A and τ ∈ N, we let a|τ be the element of A for which
a|τ (t) = a(t+ τ) ∀t ∈ N.

The [·, ·]τ operation corresponds to concatenating two action sequences (using only the 0th to (τ −1)st

elements of the first sequence), the [·, ·] operation corresponds to prepending an action to an action
sequence, and the ·|τ operation corresponds to removing the 0th to (τ − 1)st elements of an action
sequence.

We let Π be the set of policies π : S → A. Given s ∈ S and π ∈ Π, we let ξπs : N → S be the
solution of the evolution equation

ξπs (t+ 1) = f (ξπs (t), π (ξ
π
s (t)))

for which ξπs (0) = s. In other words, ξπs (·) is the state trajectory over time when the agent begins at
state s and follows policy π.

We will also “overload” this trajectory notation for signals rather than policies: given a ∈ A, we let
ξas : N→ S be the solution of the evolution equation

ξas (t+ 1) = f (ξas (t),a(t))

for which ξas (0) = s. In other words, ξas (·) is the state trajectory over time when the agent begins at
state s and follows action sequence a.

A PROOF OF RAA MAIN THEOREM

We first define the value functions, V ∗
A , Ṽ

∗
RA, V

∗
RAA : S → R by

V ∗
A (s) = max

π∈Π
min
τ∈N

q (ξπs (τ)) ,

Ṽ ∗
RA(s) = max

π∈Π
max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
,

V ∗
RAA(s) = max

π∈Π
min

{
max
τ∈N

r (ξπs (τ)) ,min
κ∈N

q (ξπs (κ))

}
,

where rRAA is as in Theorem 1.

We next define the value functions, v∗A, ṽ
∗
RA, v

∗
RAA : S → R, which maximize over action sequences

rather than policies:
v∗A(s) = max

a∈A
min
τ∈N

q (ξas (τ)) ,

ṽ∗RA(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
,

v∗RAA(s) = max
a∈A

min

{
max
τ∈N

r (ξas (τ)) ,min
κ∈N

q (ξas (κ))

}
,

Observe that for each s ∈ S,
v∗A(s) ≥ V ∗

A (s), ṽ∗RA(s) ≥ Ṽ ∗
RA(s), v∗RAA(s) ≥ V ∗

RAA(s).

We now prove a series of lemmas that will be useful in the proof of the main theorem.
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Lemma 1. There is a π ∈ Π such that

v∗A(s) = min
τ∈N

q (ξπs (τ))

for all s ∈ S.

Proof. Choose π ∈ Π such that

π(s) ∈ argmax
a∈A

v∗A (f(s, a)) ∀s ∈ S.

Fix s ∈ S. Note that for each τ ∈ N,

v∗A (ξπs (τ + 1)) = v∗A (f (ξπs (τ), π (ξ
π
s (τ))))

= max
a∈A

v∗A (f (ξπs (τ), a))

= max
a∈A

max
a∈A

min
κ∈N

q
(
ξaf(ξπs (τ),a)(κ)

)
= max

a∈A
max
a∈A

min
κ∈N

q
(
ξ
[a,a]
ξπs (τ)(κ+ 1)

)
= max

a∈A
min
κ∈N

q
(
ξaξπs (τ)(κ+ 1)

)
≥ max

a∈A
min
κ∈N

q
(
ξaξπs (τ)(κ)

)
≥ v∗A (ξπs (τ)) .

It follows by induction that v∗A (ξπs (τ)) ≥ v∗A (ξπs (0)) for all τ ∈ N, so that

v∗A(s) ≥ min
τ∈N

q (ξπs (τ)) ≥ min
τ∈N

v∗A (ξπs (τ)) = v∗A (ξπs (0)) = v∗A(s).

Corollary 3. For all s ∈ S, we have V ∗
A (s) = v∗A(s).

Lemma 2. There is a π ∈ Π such that

ṽ∗RA(s) = max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
for all s ∈ S.

Proof. First, let us note that in this proof we will use the standard conventions that

max∅ = −∞ and min∅ = +∞.
We next introduce some notation. First, for convenience, we set v∗ = ṽ∗RA and V ∗ = Ṽ ∗

RA. Given
s ∈ S and a ∈ A, we write

va(s) = max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
.

Similarly, given s ∈ S and π ∈ Π, we write

V π(s) = max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
.

Then

V ∗(s) = max
π∈Π

max
τ∈N

min

{
rRAA (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
= max

π∈Π
V π(s),

and

v∗(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
= max

a∈A
va(s).

It is immediate that v∗(s) ≥ V ∗(s) for each s ∈ S, so it suffices to show the reverse inequality.
Toward this end, it suffices to show that there is a π ∈ Π for which V π(s) = v∗(s) for each s ∈ S.
Indeed, in this case, V ∗(s) ≥ V π(s) = v∗(s).
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We now construct the desired policy π. Let α0 = +∞, S0 = ∅, and v∗0 : S → R∪{−∞}, s 7→ −∞.
We recursively define αt ∈ R, St ⊆ S, and v∗t : S → R ∪ {−∞} for t = 1, 2, . . . by

αt+1 = max
s∈S\St

min

{
max

{
rRAA(s),max

a∈A
v∗t (f(s, a))

}
, q(s)

}
, (3)

St+1 = St ∪
{
s ∈ S \ St

∣∣∣∣min

{
max

{
rRAA(s),max

a∈A
v∗t (f(s, a))

}
, q(s)

}
= αt+1

}
, (4)

v∗t+1(s) =


v∗t (s) s ∈ St,
αt+1 s ∈ St+1 \ St,
−∞ s ∈ S \ St+1.

(5)

From (4) it follows that
S0 ⊆ S1 ⊆ S2 ⊆ . . . , (6)

which together with (3) shows that

α0 ≥ α1 ≥ α2 ≥ . . . . (7)

Also, whenever S \ St is non-empty, the set being appended to St in (4) is non-empty so
∞⋃
t=0

St = S. (8)

For each s ∈ S, let σ(s) be the smallest t ∈ N for which s ∈ St. We choose the policy π ∈ Π of
interest by insisting

π(s) ∈ argmax
a∈A

v∗σ(s)−1(f(s, a)) ∀s ∈ S. (9)

In the remainder of the proof, we show that V π(s) = v∗(s) for each s ∈ S by induction. Let n ∈ N
and suppose the following induction assumptions hold:

V π(s) = v∗(s) = v∗n(s) ≥ αn ∀s ∈ Sn, (10)

v∗(s′) ≤ αn ∀s′ ∈ S \ Sn. (11)

Note that the above hold trivially when n = 0 since S0 = ∅ and α0 = +∞. Fix some particular
y ∈ Sn+1 and some z ∈ S \ Sn+1. We must show that

V π(y) = v∗(y) = v∗n+1(y) ≥ αn+1, (12)
v∗(z) ≤ αn+1. (13)

In this case, induction then shows that V π(s) = v∗(s) for all s ∈ ∪∞n=0St. Since this union is equal
to S by (8), the desired result then follows.

To show (12)-(13), we first demonstrate the following three claims.

1. Let x ∈ S and w ∈ A be such that f(x,w) ∈ Sn and q(x) ≥ αn+1. We claim x ∈ Sn+1.

We can assume x /∈ Sn, for otherwise the claim follows immediately from (6). Since
f(x,w) ∈ Sn, we have v∗n (f(x,w)) ≥ αn by (10). Thus

αn+1 ≥ min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
≥ min {max{rRAA(x), αn}, αn+1}
= αn+1,

where the first inequality follows from (3), and the equality follows from (7). Thus

αn+1 = min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
,

so the claim follows from (4).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. Let x ∈ Sn+1 \ Sn and w ∈ A be such that f(x,w) ∈ Sn. We claim that

V π(x) = v∗(x) = αn+1. (14)

To show this claim, we will make use of the dynamic programming principle

va(s) = min
{
max

{
rRAA(s), v

a|1 (f(s,a(0)))
}
, q(s)

}
, ∀s ∈ S,a ∈ A,

from which it follows that

V π(s) = min {max {rRAA(s), V
π (f(s, π(s)))} , q(s)} , ∀s ∈ S, (15)

and

v∗(s) = min

{
max

{
rRAA(s),max

a∈A
v∗ (f(s, a))

}
, q(s)

}
, ∀s ∈ S. (16)

Since x ∈ Sn+1 \ Sn, then σ(x) = n + 1 by definition of σ, so π(x) ∈
argmaxa∈A v

∗
n(f(x, a)) by (9). Thus

v∗n (f(x, π(x))) = max
a∈A

v∗n (f(x, a)) . (17)

But then
v∗n (f(x, π(x))) ≥ v∗n (f(x,w)) ≥ αn ≥ αn+1 > −∞,

where the second inequality comes from (10), the third comes from (7), and the final
inequality comes from (3) (S \Sn is non-empty because x ∈ S\Sn). Thus f(x, π(x)) ∈ Sn
by (5). It then follows from (10) that

V π (f(x, π(x))) = v∗ (f(x, π(x))) = v∗n (f(x, π(x))) . (18)

Now, observe that for all s ∈ Sn and s′ ∈ S \ Sn,

v∗(s) = v∗n(s) ≥ αn ≥ v∗(s′) ≥ −∞ = v∗n(s
′), (19)

where the first equality and inequality are from (10), the second inequality is from (11),
and the final equality is from (5). Moreover, f(x, a) ∈ Sn for at least one a (in particular
a = w). Letting A′ = {a ∈ A | f(x, a) ∈ Sn}, it follows from (19) that

max
a∈A

v∗ (f(x, a)) = max
a∈A′

v∗ (f(x, a)) = max
a∈A′

v∗n (f(x, a)) = max
a∈A

v∗n (f(x, a)) . (20)

From (17)-(20) we have

V π (f(x, π(x))) = max
a∈A

v∗ (f(x, a)) = max
a∈A

v∗n (f(x, a)) . (21)

Now observe that

V π(x) = min {max {rRAA(x), V
π (f(x, π(x)))} , q(x)} ,

v∗(x) = min

{
max

{
rRAA(x),max

a∈A
v∗ (f(x, a))

}
, q(x)

}
,

αn+1 = min

{
max

{
rRAA(x),max

a∈A
v∗n (f(x, a))

}
, q(x)

}
,

where the first equation is from (15), the second is from (16), and the third is from (4). But
then (14) follows from the above equations together with (21).

3. Let x ∈ S \ Sn. We claim that v∗(x) ≤ αn+1. Suppose otherwise. Then we can choose
a ∈ A and τ ∈ N such that

min

{
rRAA (ξax(τ)) ,min

κ≤τ
q (ξax(κ))

}
> αn+1. (22)

It follows that ξax(τ) ∈ Sn, for otherwise

αn+1 ≥ min {rRAA(ξ
a
x(τ)), q(ξ

a
x(τ))}

19
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by (3), creating a contradiction.

So x /∈ Sn and ξax(τ) ∈ Sn, indicating that there is some θ ∈ {0, . . . , τ − 1} such that
ξax(θ) /∈ Sn and f (ξax(θ),a(θ)) = ξax(θ + 1) ∈ Sn. Moreover, q (ξax(θ)) > αn+1 by (22).
It follows from claim 1 that ξax(θ) ∈ Sn+1.

But then it follows from claim 2 that v∗ (ξax(θ)) = αn+1. However,

v∗ (ξax(θ)) ≥ min

{
rRAA

(
ξaξax(θ)(τ − θ)

)
, min
κ≤τ−θ

q
(
ξaξax(θ)(κ)

)}
= min

{
rRAA (ξax(τ − θ + θ)) , min

κ≤τ−θ
q (ξax(κ+ θ))

}
= min

{
rRAA (ξax(τ)) , min

κ∈{θ,θ+1,...,τ}
q (ξax(κ))

}
> αn+1,

giving the desired contradiction.

Having established these claims, we return to proving (12) and (13) hold. In fact, (13) follows
immediately from claim 3, so we actually only need to show (12).

If y ∈ Sn, then from (5) and (10), we have that V π(y) = v∗(y) = v∗n(y) = v∗n+1(y), and from (7)
and (10), we also have that v∗n(y) ≥ αn ≥ αn+1. Together these establish (12) when y ∈ Sn.

So suppose y ∈ Sn+1 \ Sn. First, observe that v∗n+1(y) = αn+1 by (5). There are now two
possibilities. If there is some a ∈ A for which f(y, a) ∈ Sn, then (12) follows from claim 2. If
instead, f(y, a) /∈ Sn for each a ∈ A, then maxa∈A v

∗
n (f(y, a)) = −∞ by (5) (or if n = 0 by

definition of v∗0). Thus αn+1 = min {rRAA(y), q(y)} by (4), so

v∗(y) ≥ V π(y) ≥ min {rRAA(y), q(y)} = αn+1 ≥ v∗(y),

where the final inequality follows from claim 3. This completes the proof.

Corollary 4. For all s ∈ S, we have Ṽ ∗
RA(s) = ṽ∗RA(s).

Lemma 3. Let F : A× N→ R. Then

sup
a∈A

sup
τ∈N

sup
a′∈A′

F ([a,a′]τ , τ) = sup
a∈A

sup
τ∈N

F (a, τ) . (23)

Proof. We proceed by showing both inequalities corresponding to (23) hold.

(≥) Given any a ∈ A and τ ∈ N, we have supa′∈A′ F ([a,a′]τ , τ) ≥ F (a, τ). Taking the
suprema over a ∈ A and τ ∈ N on both sides of this inequality gives the desired result.

(≤) Given any a ∈ A and τ ∈ N, we have

sup
a′∈A′

F ([a,a′]τ , τ) ≤ sup
a′′∈A

F (a′′, τ) ,

so that the result follows from taking the suprema over a ∈ A and τ ∈ N on both sides of
this inequality.

Lemma 4. For each s ∈ S,

v∗RAA(s) = ṽ∗RA(s).
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Proof. For each s ∈ S, we have

ṽ∗RA(s) = max
a∈A

max
τ∈N

min

{
rRAA (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
(24)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) , v

∗
A (ξas (τ)) ,min

κ≤τ
q (ξas (κ))

}
(25)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,max

a′∈A
min
κ′∈N

q
(
ξa

′

ξas (τ)
(κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

min

{
r (ξas (τ)) ,max

a′∈A
min
κ′∈N

q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

max
a′∈A

min

{
r (ξas (τ)) ,min

κ′∈N
q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q (ξas (κ))

}
= max

a∈A
max
τ∈N

max
a′∈A

min

{
r
(
ξ[a,a

′]τ
s (τ)

)
,min
κ′∈N

q
(
ξ[a,a

′]τ
s (τ + κ′)

)
,min
κ≤τ

q
(
ξ[a,a

′]τ
s (κ)

)}
(26)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,min

κ′∈N
q (ξas (τ + κ′)) ,min

κ≤τ
q (ξas (κ))

}
(27)

= max
a∈A

max
τ∈N

min

{
r (ξas (τ)) ,min

κ∈N
q (ξas (κ))

}
= max

a∈A
min

{
max
τ∈N

r (ξas (τ)) ,min
κ∈N

q (ξas (κ))

}
= v∗RAA(s),

where the equality between (24) and (25) follows from Corollary 3, and where the equality between
(26) and (27) follows from Lemma 3.

Before the next lemma, we need to introduce two last pieces of notation. First, we let Π be the set of
augmented policies π̄ : S × Y × Z → A, where

Y = {r(s) | s ∈ S} and Z = {q(s) | s ∈ S} .

Next, given s ∈ S , y ∈ Y , z ∈ Z , and π̄ ∈ Π, we let ξ̄π̄s : N→ S , η̄π̄s : N→ Y , and ζ̄ π̄s : N→ Z , be
the solution of the evolution

ξ̄π̄s (t+ 1) = f
(
ξ̄π̄s (t), π̄

(
ξ̄π̄s (t), η̄

π̄
s (t), ζ̄

π̄
s (t)

))
,

η̄π̄s (t+ 1) = max
{
r
(
ξ̄π̄s (t+ 1)

)
, η̄π̄s (t)

}
,

ζ̄ π̄s (t+ 1) = min
{
q
(
ξ̄π̄s (t+ 1)

)
, ζ̄ π̄s (t)

}
,

for which ξ̄π̄s (0) = s, η̄π̄s (0) = r(s), and ζ̄ π̄s (0) = q(s).

Lemma 5. There is a π̄ ∈ Π such that

v∗RAA(s) = min

{
max
τ∈N

r
(
ξ̄π̄s (τ)

)
,min
τ∈N

q
(
ξ̄π̄s (τ)

)}
(28)

for all s ∈ S.

Proof. By Lemmas 1 and 2 together with Corollary 3, we can choose π, θ ∈ Π such that

ṽ∗RA(s) = max
τ∈N

min

{
r (ξπs (τ)) , v

∗
A (ξπs (τ)) ,min

κ≤τ
q (ξπs (κ))

}
∀s ∈ S,

v∗A(s) = min
τ∈N

q
(
ξθs (τ)

)
∀s ∈ S.

We introduce some useful notation we will use throughout the rest of the proof. For each s ∈ S, let
[s]+ = f(s, π(s)), [y]+s = max{y, r ([s]+)}, [z]+s = min{z, q ([s]+)}.
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We define an augmented policy π̄ ∈ Π by

π̄(s, y, z) =

{
π(s) min{[y]+s , [z]+s , v∗A([s]+)} ≥ min{y, z, v∗A(s)},
θ(s) otherwise.

Now fix some s ∈ S . For all t ∈ N, set x̄t = ξ̄π̄s (t), ȳt = η̄π̄s (t) = maxτ≤t r(x̄τ ), and z̄t = ζ̄ π̄s (t) =
minτ≤t q(x̄τ ), and also set x◦t = ξπs (t), y

◦
t = maxτ≤t r(x

◦
τ ), and z◦t = minτ≤t q(x

◦
τ ).

First, assume that t is such that min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} < min{ȳt, z̄t, v∗A(x̄t)}. In this case,
π̄(x̄t, ȳt, z̄t) = θ(x̄t), so that

min{z̄t, v∗A(x̄t)} = min{z̄t+1, v
∗
A(x̄t+1)}

by our choice of θ. Since ȳt is non-decreasing in t, thus have

min{ȳt, z̄t, v∗A(x̄t)} ≤ min{ȳt+1, z̄t+1, v
∗
A(x̄t+1)}.

Next, assume that t is such that min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} ≥ min{ȳt, z̄t, v∗A(x̄t)}. In this case,
we have that π̄(x̄t, ȳt, z̄t) = π(x̄t), so

min{ȳt, z̄t, v∗A(x̄t)} ≤ min{[ȳt]+x̄t
, [z̄t]

+
x̄t
, v∗A([x̄t]

+)} = min{ȳt+1, z̄t+1, v
∗
A(x̄t+1)}.

It thus follows from these two cases that min{ȳt, z̄t, v∗A(x̄t)} is non-decreasing in t. Let

T = min
{
t ∈ N | min{[ȳt]+x̄t

, [z̄t]
+
x̄t
, v∗A([x̄t]

+)} < min{ȳt, z̄t, v∗A(x̄t)}
}
.

There are again two cases:

(T <∞) In this case, π̄(x̄t, ȳt, z̄t) = π(x̄t) for t < T . Then x̄t = x◦t , ȳt = y◦t , and z̄t = z◦t for all
t ≤ T . It follows that [x̄t]+ = x◦t+1, [ȳt]+x̄t

= y◦t+1, and [z̄t]
+
x̄t

= z◦t+1 for all t ≤ T . Thus
by definition of T ,

min
{
y◦t+1, z

◦
t+1, v

∗
A

(
x◦t+1

)}
≥ min {y◦t , z◦t , v∗A (x◦t )} ∀t < T.

and
min

{
y◦T+1, z

◦
T+1, v

∗
A

(
x◦T+1

)}
< min {y◦T , z◦T , v∗A (x◦T )} .

But since y◦t is non-decreasing and min{z◦t , v∗A(x◦t )} is non-increasing in t, it follows that
min{y◦t , z◦t , v∗A(x◦t )} must achieve its maximal value at the smallest t for which it strictly
decreases from t to t+ 1, i.e.

min {ȳT , z̄T , v∗A (x̄T )} = min {y◦T , z◦T , v∗A (x◦T )}
= max

t∈N
min {y◦t , z◦t , v∗A (x◦t )}

≥ max
t∈N

min {r (x◦t ) , z◦t , v∗A (x◦t )}

= ṽ∗RA(s).

where the final equality follows from our choice of π. Since min{ȳt, z̄t, v∗A(x̄t)} is non-
decreasing in t, then

min{ȳt, z̄t} ≥ min{ȳt, z̄t, v∗A(x̄t)} ≥ min{ȳT , z̄T , v∗A(x̄T )} = ṽ∗RA(s) ∀t ≥ T.

Thus

v∗RAA(s) ≥ min

{
max
t∈N

r (x̄t) ,min
t∈N

q (x̄t)

}
= lim
t→∞

min{ȳt, z̄t} ≥ ṽ∗RA(s) = v∗RAA(s),

where the final equality follows from Lemma (4). Thus the proof is complete in this case.

(T =∞) In this case, π̄(x̄t, ȳt, z̄t) = π(x̄t) for all t ∈ N. Then x̄t = x◦t , ȳt = y◦t , and z̄t = z◦t for
all t ∈ N. Also [x̄t]

+ = x◦t+1, [ȳt]+x̄t
= y◦t+1, and [z̄t]

+
x̄t

= z◦t+1 for all t ∈ N. Thus by
definition of T ,

min
{
y◦t+1, z

◦
t+1, v

∗
A

(
x◦t+1

)}
≥ min {y◦t , z◦t , v∗A (x◦t )} ∀t ∈ N.
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Let T ′ ∈ argmaxt∈N min {y◦t , z◦t , v∗A (x◦t )}. Then
min {ȳT ′ , z̄T ′ , v∗A (x̄T ′)} = min {y◦T ′ , z◦T ′ , v∗A (x◦T ′)}

= max
t∈N

min {y◦t , z◦t , v∗A (x◦t )}

≥ max
t∈N

min {r (x◦t ) , z◦t , v∗A (x◦t )}

= ṽ∗RA(s).

The rest of the proof the follows the same as the previous case with T replaced by T ′.

Corollary 5. For all s ∈ S, we have V ∗
RAA(s) = v∗RAA(s).

Proof of Theorem 1. Theorem 1 is now a direct consequence of the previous corollary together with
Corollary 4 and Lemma 4.

A.1 A DIRECT DERIVATION OF THE RAA BELLMAN EQUATION

Here, we offer a direct derivation for the RAA Bellman equation. Note, this derivation does not
guarantee that the resulting Bellman equation is unique, and is just for intuition for the rigor above.

v∗RAA(s) := max
a0,a1,...

min

{
max

τ∈{0,1,... }
r(xa0,a1,...s (τ)), min

κ∈{0,1,... }
q(xa0,a1,...s (κ))

}
= min

{
q(s), max

a0,a1,...
min

{
max

τ∈{0,1,... }
r(xa0,a1,...s (τ)), min

κ∈{1,2,... }
q(xa0,a1,...s (κ))

}}
= min

{
q(s), max

a0,a1,...
min

{
max

{
r(s), max

τ∈{1,2,... }
r(xa0,a1,...s (τ))

}
, min
κ∈{1,2,... }

q(xa0,a1,...s (κ))

}}
,

(29)
where xa0,a1,...s is the system trajectory starting from state s under the sequence of actions a0, a1, . . . .
Using the identity min{max{a, b}, c} = max{min{a, c},min{b, c}},

v∗RAA(s) = min

{
q(s), max

a0,a1,...
max

{
min

{
r(s), min

κ∈{1,2,... }
q(xa0,a1,...s (κ))

}
,

min

{
min

κ∈{1,2,... }
q(xa0,a1,...s (κ)), max

τ∈{1,2,... }
r(xa0,a1,...s (τ))

}}}
= min

{
q(s),max

{
min

{
r(s), max

a0,a1,...
min

κ∈{1,2,... }
q(xa0,a1,...s (κ))

}
,

max
a0,a1,...

min

{
min

κ∈{1,2,... }
q(xa0,a1,...s (κ)), max

τ∈{1,2,... }
r(xa0,a1,...s (τ))

}}}
= min

{
q(s),max

{
min

{
r(s), max

a0,a1,...
min

κ∈{1,2,... }
q(xa0,a1,...s (κ))

}
,max

a
v∗RAA(f(s, a))

}}
= min

{
q(s),max

{
min

{
q(s), r(s), max

a0,a1,...
min

κ∈{0,1,... }
q(xa0,a1,...s (κ))

}
,max

a
v∗RAA(f(s, a))

}}
= min

{
q(s),max

{
min

{
r(s), max

a0,a1,...
min

κ∈{0,1,... }
q(xa0,a1,...s (κ))

}
,max

a
v∗RAA(f(s, a))

}}
,

where in the penultimate step we used the identity min{a,max{b, c}} =
min{a,max{min{a, b}, c}}. Noticing that v∗A(s) = maxa0,a1,...minκ∈{0,1,... } q(x

a0,a1,...
s (κ)), we

have
v∗RAA(s) = min

{
q(s),max

{
min {r(s), v∗A(s)} ,max

a
v∗RAA(f(s, a))

}}
. (30)

This completes the derivation of the RAA Bellman equation.

Lastly, we may note that if define r̃(s) := min{r(s), v∗A(s)}, the above becomes the RA Bellman
equation,

v∗RAA(s) = min
{
q(s),max

{
r̃(s),max

a
v∗RAA(f(s, a))

}}
. (31)
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B PROOF OF RR MAIN THEOREM

We first define the value functions, V ∗
R1, V

∗
R2, Ṽ

∗
R , V

∗
RR : S → R by

V ∗
R1(s) = max

π∈Π
max
τ∈N

r1 (ξ
π
s (τ)) ,

V ∗
R2(s) = max

π∈Π
max
τ∈N

r2 (ξ
π
s (τ)) ,

Ṽ ∗
R (s) = max

π∈Π
max
τ∈N

rRR (ξas (τ)) ,

V ∗
RR(s) = max

π∈Π
min

{
max
τ∈N

r1 (ξ
π
s (τ)) ,max

τ∈N
r2 (ξ

π
s (τ))

}
.

We next define the value functions, v∗R1, v
∗
R2, ṽ

∗
R, v

∗
RR : S → R, which maximize over action sequences

rather than policies:

v∗R1(s) = max
a∈A

max
τ∈N

r1 (ξ
a
s (τ)) ,

v∗R2(s) = max
a∈A

max
τ∈N

r2 (ξ
a
s (τ)) ,

ṽ∗R(s) = max
a∈A

max
τ∈N

rRR (ξas (τ)) ,

v∗RR(s) = max
a∈A

min

{
max
τ∈N

r1 (ξ
a
s (τ)) ,max

τ∈N
r2 (ξ

a
s (τ))

}
,

where rRR is as in Theorem 2. Observe that for each s ∈ S,

v∗R1(s) ≥ V ∗
R1(s), v∗R2(s) ≥ V ∗

R2(s), ṽ∗R(s) ≥ Ṽ ∗
R (s), v∗RR(s) ≥ V ∗

RR(s).

We now prove a series of lemmas that will be useful in the proof of the main theorem.

Lemma 6. There are π1, π2 ∈ Π such that

v∗R1(s) = max
τ∈N

r1 (ξ
π1
s (τ)) and v∗R2(s) = max

τ∈N
r2 (ξ

π2
s (τ))

for all s ∈ S.

Proof. We will just prove the result for v∗R1(s) since the other result follows identically. For each
s ∈ S, let τs be the smallest element of N for which

max
a∈A

r1 (ξ
a
s (τs)) = v∗R1(s).

Moreover, for each s ∈ S, let as be such that

r1 (ξ
as
s (τs)) = v∗R1(s).

Let π1 ∈ Π be given by π1(s) = as(0). It suffices to show that

r1 (ξ
π1
s (τs)) = v∗R1(s) (32)

for all s ∈ S, for in this case, we have

v∗R1(s) ≥ max
τ∈N

r1 (ξ
π1
s (τ)) ≥ r1 (ξπ1

s (τs)) = v∗R1(s) ∀s ∈ S.

We show (32) holds for each s ∈ S by induction on τs. First, suppose that s ∈ S is such that τs = 0.
Then

r1 (ξ
π1
s (τs)) = r1(s) = r1 (ξ

as
s (τs)) = v∗R1(s).

For the induction step, let n ∈ N and suppose that

r1 (ξ
π1
s (τs)) = v∗R1(s) ∀s ∈ S such that τs ≤ n.
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Now fix some x ∈ S such that τx = n+ 1. Notice that

v∗R1(x) ≥ v∗R1 (f (x, π1(x)))

≥ max
a∈A

r1

(
ξaf(x,π1(x))

(n)
)

≥ r1
(
ξ
ax|1
f(x,π1(x))

(n)
)

= r1

(
ξ[π1(x),ax|1]
x (n+ 1)

)
= r1 (ξ

ax
x (τx))

= v∗R1(x),

so that v∗R1 (f (x, π1(x))) = v∗R1(x) and τf(x,π1(x)) ≤ n. It suffices to show

τf(x,π1(x)) = n, (33)

for then, by the induction assumption, we have

r1 (ξ
π1
x (τx)) = r1

(
ξπ1

f(x,π1(x))
(n)
)
= v∗R1 (f (x, π1(x))) = v∗R1(x).

To show (33), assume instead that
τf(x,π1(x)) < n.

But

v∗R1(x) ≥ max
a∈A

r1
(
ξax
(
τf(x,π1(x)) + 1

))
≥ r1

(
ξ
[π1(x),af(x,π1(x))]
x

(
τf(x,π1(x)) + 1

))
= r1

(
ξ
af(x,π1(x))

f(x,π1(x))

(
τf(x,π1(x))

))
= v∗R1 (f (x, π1(x)))

= v∗R1(x),

so that
v∗R1(x) = max

a∈A
r1
(
ξax
(
τf(x,π1(x)) + 1

))
and thus

τx ≤ τf(x,π1(x)) + 1 < n+ 1,

giving our desired contradiction.

Corollary 6. For all s ∈ S, we have V ∗
R1(s) = v∗R1(s) and V ∗

R2(s) = v∗R2(s).
Lemma 7. There is a π ∈ Π such that

ṽ∗R(s) = max
τ∈N

rRR (ξπs (τ)) .

for all s ∈ S.

Proof. This lemma follows by precisely the same proof as the previous lemma, with r1, v∗R1, and π1
replaced with rRR, ṽ∗R, and π respectively.

Corollary 7. For all s ∈ S, we have Ṽ ∗
R (s) = ṽ∗R(s).

Lemma 8. Let ζ1 : N→ R and ζ2 : N→ R. Then

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}
.

Proof. We proceed by showing both inequalities corresponding to the above equality hold.
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(≤) Observe that

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
≤ max

{
min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

sup
τ ′∈N

ζ2(τ + τ ′)

}
,min

{
sup
τ∈N

sup
τ ′∈N

ζ1(τ + τ ′), sup
τ∈N

ζ2(τ)

}}
= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}

(≥) Fix ε > 0. Choose τ1, τ2 ∈ N such that ζ1(τ1) ≥ supτ∈N ζ1(τ) − ε and ζ2(τ2) ≥
supτ∈N ζ2(τ)− ε. Without loss of generality, we can assume τ1 ≤ τ2. Then

sup
τ∈N

max

{
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
,min

{
sup
τ ′∈N

ζ1(τ + τ ′), ζ2(τ)

}}
≥ sup

τ∈N
min

{
ζ1(τ), sup

τ ′∈N
ζ2(τ + τ ′)

}
≥ min

{
ζ1(τ1), sup

τ ′∈N
ζ2(τ1 + τ ′)

}
≥ min {ζ1(τ1), ζ2(τ2)}

≥ min

{
sup
τ∈N

ζ1(τ)− ε, sup
τ∈N

ζ2(τ)− ε
}

= min

{
sup
τ∈N

ζ1(τ), sup
τ∈N

ζ2(τ)

}
− ε.

But since ε > 0 was arbitrary, the desired inequality follows.

Lemma 9. For each s ∈ S,

ṽ∗R(s) = v∗RR(s).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. For each s ∈ S,

ṽ∗R(s) =max
a∈A

max
τ∈N

rRR (ξas (τ)) (34)

=max
a∈A

max
τ∈N

max {min {r1 (ξas (τ)) , v∗R2 (ξ
a
s (τ))} ,min {v∗R1 (ξ

a
s (τ)) , r2 (ξ

a
s (τ))}} (35)

=max
a∈A

max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

a′∈A
max
τ ′∈N

r2

(
ξa

′

ξas (τ)
(τ ′)

)}
,

min

{
max
a′∈A

max
τ ′∈N

r1

(
ξa

′

ξas (τ)
(τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

a′∈A
max
τ ′∈N

r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
a′∈A

max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max
a′∈A

max

{
min

{
r1 (ξ

a
s (τ)) ,max

τ ′∈N
r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2 (ξ

a
s (τ))

}}
=max

a∈A
max
τ∈N

max
a′∈A

max

{
min

{
r1

(
ξ[a,a

′]τ
s (τ)

)
,max
τ ′∈N

r2

(
ξ[a,a

′]τ
s (τ + τ ′)

)}
,

min

{
max
τ ′∈N

r1

(
ξ[a,a

′]τ
s (τ + τ ′)

)
, r2

(
ξ[a,a

′]τ
s (τ)

)}}
(36)

=max
a∈A

max
τ∈N

max

{
min

{
r1 (ξ

a
s (τ)) ,max

τ ′∈N
r2 (ξ

a
s (τ + τ ′))

}
,

min

{
max
τ ′∈N

r1 (ξ
a
s (τ + τ ′)) , r2 (ξ

a
s (τ))

}}
(37)

=max
a∈A

min

{
max
τ∈N

r1 (ξ
a
s (τ)) ,max

τ∈N
r2 (ξ

a
s (τ))

}
(38)

=v∗RR(s),

where the equality between 34 and 35 follows from Corollary 6, the equality between 36 and 37
follows from Lemma 3, and the equality between 37 and 38 follows from Lemma 8.

Before the next lemma, we need to introduce two last pieces of notation. First, we let Π be the set of
augmented policies π̄ : S × Y × Z → A, as in the previous section, but where

Y = {r1(s) | s ∈ S} and Z = {r2(s) | s ∈ S} .

Next, given s ∈ S , y ∈ Y , z ∈ Z , and π̄ ∈ Π, we let ξ̄π̄s : N→ S , η̄π̄s : N→ Y , and ζ̄ π̄s : N→ Z , be
the solution of the evolution

ξ̄π̄s (t+ 1) = f
(
ξ̄π̄s (t), π̄

(
ξ̄π̄s (t), η̄

π̄
s (t), ζ̄

π̄
s (t)

))
,

η̄π̄s (t+ 1) = max
{
r1
(
ξ̄π̄s (t+ 1)

)
, η̄π̄s (t)

}
,

ζ̄ π̄s (t+ 1) = max
{
r2
(
ξ̄π̄s (t+ 1)

)
, ζ̄ π̄s (t)

}
,

for which ξ̄π̄s (0) = s, η̄π̄s (0) = r1(s), and ξ̄π̄s (0) = r2(s).

Lemma 10. There is a π̄ ∈ Π such that

v∗RR(s) = min

{
max
τ∈N

r1
(
ξ̄π̄s (τ)

)
,max
τ∈N

r2
(
ξ̄π̄s (τ)

)}
for all s ∈ S.
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Proof. By Lemmas 6 and 7 together with Corollary 6, we can choose π, θ1, θ2 ∈ Π such that

v∗R1(s) = max
τ∈N

r1
(
ξθ1s (τ)

)
∀s ∈ S,

v∗R2(s) = max
τ∈N

r2
(
ξθ2s (τ)

)
∀s ∈ S,

ṽ∗R(s) = max
τ∈N

max {min {r1 (ξπs (τ)) , v∗R2 (ξ
π
s (τ))} ,min {r2 (ξπs (τ)) , v∗R1 (ξ

π
s (τ))}} ∀s ∈ S.

Define π̄ ∈ Π by

π̄(s, y, z) =


π(s) max{y, z} < ṽ∗R(s)

θ1(s) max{y, z} ≥ ṽ∗R(s) and y ≤ z,
θ2(s) max{y, z} ≥ ṽ∗R(s) and y > z.

Now fix some s ∈ S . For all t ∈ N, set x̄t = ξ̄π̄s (t), ȳt = η̄π̄s (t) = maxτ≤t r1(x̄τ ), and z̄t = ζ̄ π̄s (t) =
maxτ≤t r2(x̄τ ), and also set x◦t = ξπs (t). It suffices to show

v∗RR(s) ≤ min

{
max
τ∈N

r1 (x̄τ ) ,max
τ∈N

r2 (x̄τ )

}
, (39)

since the reverse inequality is immediate. We proceed in three steps.

1. We claim there exists a t ∈ N such that max {r1(x̄t), r2(x̄t)} ≥ ṽ∗R(x̄t).
Suppose otherwise. Then π̄(x̄t, ȳt, z̄t) = π(x̄t) so that x̄t = x◦t for all t ∈ N. Thus

max
t∈N

max {r1(x̄t), r2(x̄t)} < max
t∈N

ṽ∗R(x̄t)

= ṽ∗R(s)

= max
τ∈N

max {min {r1 (x◦τ ) , v∗R2 (x
◦
τ )} ,min {r2 (x◦τ ) , v∗R1 (x

◦
τ )}}

= max
τ∈N

max {min {r1 (x̄τ ) , v∗R2 (x̄τ )} ,min {r2 (x̄τ ) , v∗R1 (x̄τ )}}

≤ max
τ∈N

max {r1(x̄τ ), r2(x̄τ )} ,

providing the desired contradiction.

2. Let T be the smallest element of N for which

max {r1(x̄T ), r2(x̄T )} ≥ v∗R(x̄T ),

which must exist by the previous step, and let T ′ be the smallest element of N for which

max {min {r1 (x◦T ′) , v∗R2 (x
◦
T ′)} ,min {r2 (x◦T ′) , v∗R1 (x

◦
T ′)}} = ṽ∗R(s),

which must exist by our choice of π. We claim T ′ ≥ T .

Suppose otherwise. Since x̄t = x◦t for all t ≤ T , then in particular x̄T ′ = x◦T ′ , so that

max {min {r1 (x̄T ′) , v∗R2 (x̄T ′)} ,min {r2 (x̄T ′) , v∗R1 (x̄T ′)}} = ṽ∗R(s).

But then
max{r1(x̄T ′), r2(x̄T ′)} ≥ ṽ∗R(s) ≥ ṽ∗R(x̄T ′).

By our choice of T , we then have T ≤ T ′, creating a contradiction.

3. It follows from the previous step that

ṽ∗R(x̄T ) = ṽ∗R(x
◦
T ) = ṽ∗R(s).

By our choice of T , there are two cases: r1(x̄T ) ≥ ṽ∗R(x̄T ) and r2(x̄T ) ≥ ṽ∗R(x̄T ). We
assume the first case and prove the desired result, with case two following identically. To
reach a contradiction, assume

r2(x̄t) < ṽ∗R(x̄T ) ∀t ∈ N.
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But then π̄(x̄t, ȳt, z̄t) = θ2(x̄t) for all t ≥ T , so v∗R2(x̄T ) = maxt≥T r2(x̄t) < ṽ∗R(x̄T ) ≤
ṽ∗R(s). Thus r2(x◦T ′) ≤ v∗R2(x

◦
T ′) ≤ v∗R2(x

◦
T ) = v∗R2(x̄T ) < ṽ∗R(s). It follows that

max {min {r1 (x◦T ′) , v∗R2 (x
◦
T ′)} ,min {r2 (x◦T ′) , v∗R1 (x

◦
T ′)}} < ṽ∗R(s),

contradicting our choice of T ′.

Thus r2(x̄t) ≥ ṽ∗R(x̄T ) = ṽ∗R(s) for some t ∈ N and also r1(x̄T ) ≥ ṽ∗R(x̄T ) = ṽ∗R(s), so
that (39) must hold by Lemma 9.

Corollary 8. For all s ∈ S, we have V ∗
RR(s, r1(s), r2(s)) = v∗RR(s).

Proof of Theorem 2. The proof of this theorem immediately follows from the previous corollary
together with Corollary 7 and Lemma 9.

C PROOF OF OPTIMALITY THEOREM

Proof of Theorem 3. The inequalities in both lines of the theorem follow from the fact that for each
π ∈ Π, we can define a corresponding augmented policy π̄ ∈ Π by

π̄(s, y, z) = π(s) ∀s ∈ S, y ∈ Y, z ∈ Z,
in which case V πRAA(s) = V π̄RAA(s) and V πRR(s) = V π̄RR(s) for each s ∈ S. Note that in general, we
cannot define a corresponding policy for each augmented policy, so the reverse inequality does not
generally hold (see Figure 3 for intuition regarding this fact).

The equalities in both lines of the theorem are simply restatements of Lemma 5 and Lemma 9.

D THE SRABE AND ITS POLICY GRADIENT

We first justify the SRABE from a theoretical perspective. For each γ ∈ (0, 1) and stochastic policy
π : S → ∆(A) (with ∆(A) the probability simplex on A), let Ṽ γ,πRA , V

γ,∗
RA : S → R be the (unique)

solutions of the Bellman equations

Ṽ γ,πRA (s) = (1− γ)min {r(s), q(s)}+ γEa∼π
[
min

{
max

{
Ṽ γ,πRA (f(s, a)) , r(s)

}
, q(s)

}]
,

V γ,∗RA (s) = (1− γ)min {r(s), q(s)}+ γ

[
min

{
max

{
max
a∈A

V γ,∗RA (f(s, a)) , r(s)

}
, q(s)

}]
,

respectively, where r : S → R and q : S → R. Note that the above Bellman equations are indeed
γ-contractive.
Theorem 4. Let γ ∈ (0, 1). Given any π : S → ∆(A), we have

Ṽ γ,πRA ≤ V
γ,∗
RA .

Moreover, there exists a π∗ : S → ∆(A) such that

Ṽ γ,π
∗

RA = V γ,∗RA .

Proof. Let π : S → ∆(A). Define the Bellman operators Bπγ , B
∗
γ : RS → RS (where RS is the set

of all maps v : S → R) by

Bπγ [v](s) = (1− γ)min {r(s), q(s)}+ γEa∼π [min {max {v (f(s, a)) , r(s)} , q(s)}] ,

B∗
γ [v](s) = (1− γ)min {r(s), q(s)}+ γ

[
min

{
max

{
max
a∈A

v (f(s, a)) , r(s)

}
, q(s)

}]
,

respectively. For each v ∈ RS , we have Bπγ [v] ≤ B∗
γ [v]. Then Ṽ γ,πRA = Bπγ [Ṽ

γ,π
RA ] ≤ B∗

γ [Ṽ
γ,π
RA ] and

V γ,∗RA = B∗
γ [V

γ,∗
RA ].
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Since B∗
γ is a contraction and also a monotonic operator (B∗

γ [v] ≤ B∗
γ [w] when v ≤ w), it follows

from the comparison principle for Bellman operators that Ṽ γ,πRA ≤ V
γ,∗
RA .

Now let π∗ : S → A be such that π∗(s) is supported on argmaxa∈A v(f(s, a)). Then Ṽ γ,π
∗

RA =

Bπ
∗

γ [Ṽ γ,π
∗

RA ] = B∗
γ [Ṽ

γ,π∗

RA ] and V γ,∗RA = B∗
γ [V

γ,∗
RA ], so that Ṽ γ,π

∗

RA = V γ,∗RA .

To understand the significance of the above theorem, recall that when solving RA problems (as is
needed during our solution of the RAA problem) we are interested in estimating V γ,∗RA in the limit
γ → 1− (see Proposition 3 in Fisac et al. (2019)). The above theorem tells us that to obtain V γ,∗RA we
can search for a (possibly stochastic) policy π that maximizes Ṽ γ,πRA . Doing so allows us to use the
PPO adaptation described in the DOHJ-PPO algorithm for finding RA value functions. Analogous
results hold for the R and A subproblems.

D.1 POLICY GRADIENT

By analogy to the SRBE, the SRABE is given by

Ṽ πRAA(s) = Ea∼π
[
min

{
max

{
Ṽ πRAA (f(s, a)) , rRAA(s)

}
, q(s)

}]
. (SRABE)

The corresponding action-value function is

Q̃πRAA(s, a) = min
{
max

{
Ṽ πRAA (f(s, a)) , rRAA(s)

}
, q(s)

}
.

We define a modification of the dynamics f involving an absorbing state s∞ as follows:

f ′(s, a) =

{
f(s, a) q (f(s, a)) < Ṽ πRAA(s) < rRAA (f(s, a)) ,

s∞ otherwise.

We then have the following proposition:

Proposition 1. For each s ∈ S and every θ ∈ Rnp , we have

∇θṼ πθ

RAA(s) ∝ Es′∼d′π(s),a∼πθ

[
Q̃πθ

RAA(s
′, a)∇θ lnπθ(a|s′)

]
,

where d′π(s) is the stationary distribution of the Markov Chain with transition function

P (s′|s) =
∑
a∈A

π(a|s) [f ′(s, π(a|s)) = s′] ,

with the bracketed term equal to 1 if the proposition inside is true and 0 otherwise.

Following Hsu et al. (2021), we then define the discounted value and action-value functions with
γ ∈ [0, 1).

Proof of Proposition 1. We here closely follow the proof of Theorem 3 in So et al. (2024), which
itself modifies the proofs of the Policy Gradient Theorems in Chapter 13.2 and 13.6 Sutton and Barto
(2018). We only make the minimal modifications required to adapt the PPO algorithm developed
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previously for the SRBE to on for the SRABE.

∇θṼ πθ

RAA(s) =∇θ

(∑
a∈A

πθ(a|s)Q̃πθ

RAA(s, a)

)
=
∑
a∈A

(
∇θπθ(a|s)Q̃πθ

RAA(s, a)

+ πθ(a|s)∇θmin
{
max

{
Ṽ πRAA (f(s, a)) , rRAA(s)

}
, q(s)

})
=
∑
a∈A

(
∇θπθ(a|s)Q̃πθ

RAA(s, a)

+ πθ(a|s)
[
q(s) < ṼRAA (f(s, a)) < rRAA(s)

]
∇θṼ πRAA (f(s, a))

)
(40)

=
∑
s′∈S

[( ∞∑
k=0

Pr(s→ s′, k, π)

)∑
a∈A
∇θπθ(a|s′)Q̃πθ

RAA(s
′, a)

]
(41)

=
∑
s′∈S

[( ∞∑
k=0

Pr(s→ s′, k, π)

)∑
a∈A

πθ(a|s′)
∇θπθ(a|s′)
πθ(a|s′)

Q̃πθ

RAA(s
′, a)

]

=
∑
s′∈S

[( ∞∑
k=0

Pr(s→ s′, k, π)

)
Ea∼πθ(s′)

[
∇θ lnπθ(a|s′)Q̃πθ

RAA(s
′, a)

]]
∝ Es′∼d′π(s)Ea∼πθ(s′)

[
∇θ lnπθ(a|s′)Q̃πθ

RAA(s
′, a)

]
,

where the equality between (40) and (41) comes from rolling out the term ∇θṼ πRAA (f(s, a)) (see
Chapter 13.2 in Sutton and Barto (2018) for details), and where Pr(s→ s′, k, π) is the probability
that under the policy π, the system is in state s′ at time k given that it is in state s at time 0.

Note, Proposition 1 is vital to updating the actor in Algorithm 1.

E THE DOHJ-PPO ALGORITHM

In this section, we outline the details of our Actor-Critic algorithm DOHJ-PPO beyond the details
given in Algorithm 1.

In Algorithm 1, the Bellman update Bγ [Q̃, r̃] differs for the RAA task and RR task, and the Bγi [Q̃]
differs between the reach, avoid, and reach-avoid tasks.

E.1 THE SPECIAL BELLMAN UPDATES AND THE CORRESPONDING GAES

Akin to previous HJ-RL policy algorithms, namely RCPO Yu et al. (2022b), RESPO Ganai et al.
(2023) and RCPPO So et al. (2024), DOHJ-PPO fundamentally depends on the discounted HJ
Bellman updates Fisac et al. (2019). To solve the RAA and RR problems with the special rewards
defined in Theorems 1 & 2, DOHJ-PPO utilizes the Reach, Avoid and Reach-Avoid Bellman updates,
given by

BγR[Q | r](s, a) = (1− γ)r(s) + γmax {r(s), Q(s, a)} , (42)

BγA[Q | q](s, a) = (1− γ)q(s) + γmin {q(s), Q(s, a)} , (43)

BγRA[Q | r, q](s, a) = (1− γ)min {r(s), q(s)}+ γmin {q(s),max {r(s), Q(s, a)}} . (44)

To improve our algorithm, we incorporate the Generalized Advantage Estimate corresponding to
these Bellman equations in the updates of the Actors. As outlined in Section A of So et al. (2024), the
GAE may be defined with a reduction function corresponding to the appropriate Bellman function
which will be applied over a trajectory roll-out. We generalize the Reach GAE definition given in So
et al. (2024) to propose a Reach-Avoid GAE (the Avoid GAE is simply the flip of the Reach GAE)
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Algorithm 1 : DOHJ-PPO (Actor-Critic)

Require: Composed and Decomposed Actor parameters θ and θi, Composed and Decomposed
Critic parameters ω and ωi, GAE λ, learning rate βk and discount factor γ. Let Bγ amd Bγi
represent the Bellman update and decomposed Bellman update for the users choice of problem
(RR or RAA).

1: Define Composed Actor and Critic Q̃
2: Define Decomposed Actor(s) and Critic(s) Q̃i
3: for k = 0, 1, . . . do
4: for t = 0 to T − 1 do
5: Sample trajectories for τt : {ŝt, at, ŝt+1}
6: Define ℓ̃(st) with Decomposed Critics Q̃i(st) (Theorems 1 & 2)
7: Composed Critic update:

ω ← ω − βk∇ωQ̃(τt) ·
(
Q̃(τt)−Bγ [Q̃, r̃](τt)

)
8: Compute Bellman-GAE AλHJ with Bγ
9: (Standard) update Composed Actor

10: Decomposed Critic update(s):

ω ← ω − βk∇ωQ̃i(τt) ·
(
Q̃i(τt)−Bγi [Q̃i](τt)

)
11: Compute Bellman-GAE Aλi with Bγi
12: (Standard) update Decomposed Actor(s)
13: end for
14: end for
15: return parameter θ, ω

as all will be used in DOHJ-PPO algorithm for either RAA or RR problems. Consider a reduction
function ϕ(n)RA : Rn → R, defined by

ϕ
(n)
RA(x1, x2, x3, . . . , x2n+1) = ϕ

(1)
RA(x1, x2, ϕ

(n−1)
RA (x3, . . . , x2n+1)), (45)

ϕ
(1)
RA(x, y, z) = (1− γ)min {x, y}+ γmin {y,max {x, z}} . (46)

The k-step Reach-Avoid Bellman advantage Aπ(k)RA is then given by,

A
(k)
RA(s) = ϕ

(n)
RA

(
r(st), q(st), . . . , r(st+k−1), q(st+k−1), V

(st+k)
)
− V (st+k). (47)

We may then define the Reach-Avoid GAE AλRA as the λ-weighted sum over the advantage functions

AλRA(s) =
1

1− λ

∞∑
k=1

λkA
(k)
RA(s) (48)

which may be approximated over any finite trajectory sample. See So et al. (2024) for further details.

E.2 MODIFICATIONS FROM STANDARD PPO

To address the RAA and RR problems, DOHJ-PPO introduces several key modifications to the
standard PPO framework Schulman et al. (2017):

Additional actor and critic networks are introduced to represent the decomposed objectives.
Rather than learning the decomposed objectives separately from the composed objective, DOHJ-PPO
optimizes all objectives simultaneously. This design choice is motivated by two primary factors:
(i) simplicity and minor computational speed-up, and (ii) coupling between the decomposed and
composed objectives during learning.

The decomposed trajectories are initialized using states sampled from the composed trajectory,
we refer to as coupled resets.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

While it is possible to estimate the decomposed objectives independently—i.e., prior to solving the
composed task—this approach might lead to inaccurate or irrelevant value estimates in on-policy
settings. For example, in the RAA problem, the decomposed objective may prioritize avoiding
penalties, while the composed task requires reaching a reward region without incurring penalties. In
such a case, a decomposed policy trained in isolation might converge to an optimal strategy within
a reward-irrelevant region, misaligned with the overall task. Empirically, we observe that omitting
coupled resets causes DOHJ-PPO to perform no better than standard baselines such as CPPO, whereas
their inclusion significantly improves performance.

The special RAA and RR rewards are defined using the decomposed critic values and updated
using their corresponding Bellman equations.
This procedure is directly derived from our theoretical results (Theorems 1 and 2), which establish
the validity of using modified rewards within the respective RA and R Bellman frameworks. These
rewards are used to compute the composed critic target as well as the actor’s GAE. In Algorithm 1,
this process is reflected in the critic and actor updates corresponding to the composed objective.

F DDQN DEMONSTRATION

As described in the paper, we demonstrate the novel RAA and RR problems in a 2D Q-learning
problem where the value function may be observed easily. We juxtapose these solitons with those
of the previously studied RA and R problems which consider more simple objectives. To solve all
values, we employ the standard Double-Deep Q learning approach (DDQN) Van Hasselt et al. (2016)
with only the special Bellman updates.

F.1 GRID-WORLD ENVIRONMENT

The environment is taken from Hsu et al. (2021) and consists of two dimensions, s = (x, y), and
three actions, a ∈ {left, straight, right}, which allow the agent to maneuver through the space. The
deterministic dynamics of the environment are defined by constant upward flow such that,

f((xi, yi), ai) =


(xi−1, yi+1) ai = left
(xi, yi+1) ai = straight
(xi+1, yi+1) ai = right

(49)

and if the agent reaches the boundary of the space, defined by x ≥ |2|, y ≤ −2 and y ≥ 10, the
trajectory is terminated. The 2D space is divided into 80 × 120 cells which the agent traverses
through.

In the RA and RAA experiments, the reward function r is defined as the negative signed-distance
function to a box with dimensions (xc, yc, w, h) = (0, 4.5, 2, 1.5), and thus is negative iff the agent is
outside of the box. The penalty function q is defined as the minimum of three (positive) signed distance
functions for boxes defined at (xc, yc, w, h) = (±0.75, 3, 1, 1) and (xc, yc, w, h) = (0, 6, 2.5, 1),
and thus is positive iff the agent is outside of all boxes.

In the R and RR experiments, one or two rewards are used. In the R experiment, the reward function
r is defined as the maximum of two negative signed-distance function of boxes with dimensions
(xc, yc, w, h) = (±1.25, 0, 0.5, 2), and thus is negative iff the agent is outside of both boxes. In the
RR experiment, the rewards r1 and r2 are defined as the negative signed distance functions of the
same two boxes independently, and thus are positive if the agent is in one box or the other respectively.

F.2 DDQN DETAILS

As per our theoretical results in Theorems 1 and 2, we may now perform DDQN to solve the RAA
and RR problems with solely the previously studied Bellman updates for the RA Hsu et al. (2021)
and R problems Fisac et al. (2019). We compare these solutions with those corresponding to the
RA and R problems without the special RAA and RR targets, and hence solve the previously posed
problems. For all experiments, we employ the same adapted algorithm as in Hsu et al. (2021), with
no modification of the hyper-parameters given in Table 1.
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Table 1: Hyperparameters for DDQN Grid World

DDQN hyperparameters Values
Network Architecture MLP
Numbers of Hidden Layers 2
Units per Hidden Layer 100, 20
Hidden Layer Activation Function tanh
Optimizer Adam
Discount factor γ 0.9999
Learning rate 1e-3
Replay Buffer Size 1e5 transitions
Replay Batch Size 100
Train-Collect Interval 10
Max Updates 4e6

G BASELINES

In both RAA and RR problems, we employ Constrained PPO (CPPO) Achiam et al. (2017a) as the
major baseline as it can handle secondary objectives which are reformulated as constraints. The
algorithm was not designed to minimize its constraints necessarily but may do so in attempting to
satisfy them. As a novel direction in RL, few algorithms have been designed to optimize max/min
accumulated costs and thus CPPO serves as the best proxy. Below we also include a naively
decomposed STL algorithm to offer some insight into direct approaches to optimizing the max/min
accumulated reward.

G.1 CPPO BASELINES

Although CPPO formulations do not directly consider dual-objective optimization, the secondary
objective in RAA (avoid penalty) or overall objective in RR (reach both rewards) may be transformed
into constraints to be satisfied of a surrogate problem. For the RAA problem, this may be defined as

maxπ Eπ

[ ∞∑
t

γtmax
t′≤t

r(sπt′)

]
s.t. min

t
q(sπt ) ≥ 0. (50)

For the RR problem, one might propose that the fairest comparison would be to formulate the
surrogate problem in the same fashion, with achievement of both costs as a constraint, such that

maxπ Eπ

[ ∞∑
t

γtmin

{
max
t′≤t

r1(s
π
t′),max

t′≤t
r2(s

π
t′)

}]
s.t. min

{
max
t
r1(s

π
t ),max

t
r2(s

π
t )
}
≥ 0,

(51)
which we define as variant 1 (CPPO-v1). Empirically, however, we found this formulation to be the
poorest by far, perhaps due to the abundance of the non-smooth combinations. We thus also compare
with more naive formulations which relax the outer minimizations to summation in the reward

maxπ Eπ

[ ∞∑
t

γtmax
t′≤t

r1(s
π
t′) + max

t′≤t
r2(s

π
t′)

]
s.t. min

{
max
t
r1(s

π
t ),max

t
r2(s

π
t )
}
≥ 0,

(52)
which we define as variant 2 (CPPOv2), and additionally, in the constraint

maxπ Eπ

[ ∞∑
t

γtmax
t′≤t

r1(s
π
t′) + max

t′≤t
r2(s

π
t′)

]
s.t. max

t
r1(s

π
t ) + max

t
r2(s

π
t ) ≥ 0, (53)

which we define as variant 3 (CPPOv3). This last approach, although naive and seemingly unfair,
vastly outperforms the other variants in the RR problem.

G.2 STL BASELINES

In contrast with constrained optimization, one might also incorporate the STL methods, which in the
current context simply decompose and optimize the independent objectives. For the RAA problem,
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the standard RA solution serves as a trivial STL baseline since we may attempt to continuously
attempt to reach the solution while avoiding the obstacle. In the RR case, we define a decomposed
STL baseline (DSTL) which naively solves both R problems, and selects the one with lower value to
achieve first.

H DETAILS OF RAA & RR EXPERIMENTS: HOPPER

Table 2: Hyperparameters for Hopper Learning

Hyperparameters for DOHJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.999
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 3e-4→ 0
Reward/Cost Critic Learning rate Linear Decay 3e-4→ 0
Number of Environments 128
Number of Steps 400
Total Timesteps (RAA) 50M
Total Timesteps (RR) 50M
Scan Steps 4
Update Epochs 10
Number of Minibatches 32

Add’l Hyperparameters for CPPO
KP 1
KI 1e-4
KD 1

The Hopper environment is taken from Gym Brockman et al. (2016) and So et al. (2024). In both
RAA and RR problems, we define rewards and penalties based on the position of the Hopper head,
which we denote as (x, y) in this section.

In the RAA task, the reward is defined as

r(x, y) =
√
|x− 2|+ |y − 1.4| − 0.1 (54)

to incentive the Hopper to reach its head to the position at (x, y) = (2, 1.4). The penalty q is defined
as the minimum of signed distance functions to a ceiling obstacle at (1, 0), wall obstacles at x > 2
and x < 0 and a floor obstacle at y < 0.5. In order to safely arrive at high reward (and always
avoid the obstacles), the Hopper thus must pass under the ceiling and not dive or fall over in the
achievement of the target, as is the natural behavior.

In the RR task, the first reward is defined again as

r1(x, y) =
√
|x− 2|+ |y − 1.4| − 0.1 (55)

to incentive the Hopper to reach its head to the position at (x, y) = (2, 1.4), and the second reward as

r2(x, y) =
√
|x− 0|+ |y − 1.4| − 0.1 (56)

to incentive the Hopper to reach its head to the position at (x, y) = (0, 1.4). In order to achieve both
rewards, the Hopper must thus hop both forwards and backwards without crashing or diving.

In all experiments, the Hopper is initialized in the default standing posture at a random x ∈ [0, 2] so
as to learn a position-agnostic policy. The DOHJ-PPO parameters used to train these problems can
be found in Table 2.
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I DETAILS OF RAA & RR EXPERIMENTS: F16

The F16 environment is taken from So et al. (2024), including a F16 fighter jet with a 26 dimensional
observation. The jet is limited to a flight corridor with up to 2000 relative position north (xPN ), 1200
relative altitude (xH ), and ±500 relative position east (xPE).

In the RAA task, the reward is defined as

r(x, y) =
1

5
|xPN − 1500| − 50 (57)

to incentivize the F16 to fly through the geofence defined by the vertical slice at 1500 relative position
north. The penalty q is defined as the minimum of signed distance functions to geofence (wall)
obstacles at xPN > 2000 and |xPE | > 500 and a floor obstacle at xH < 0. In order to safely arrive
at high reward (and always avoid the obstacles), the F16 thus must fly through the target geofence
and then evade crashing into the wall directly in front of it.

In the RR task, the rewards are defined as

r1(xPN , xH) =
1

5

√
|xPN − 1250|+ |y − 850| − 30 (58)

and

r2(xPN , xH) =
1

5

√
|xPN − 1250|+ |y − 350| − 30 (59)

to incentive the F16 to reach both low and high-altitude horizontal cylinders. In order to achieve both
rewards, the F16 must thus aggressively pitch, roll and yaw between the two targets.

In all experiments, the F16 is initialized with position xPN ∈ [250, 750], xH ∈ [300, 900], xPE ∈
[−250, 250] and velocity in v ∈ [200, 450]. Additionally, the roll, pitch, and yaw are initialized with
±π/16 to simulate a variety of approaches to the flight corridor. Further details can be found in
Soet al. (2024). The DOHJ-PPO parameters used to train these problems can be found in Table 3.

Table 3: Hyperparameters for F16 Learning

Hyperparameters for DOHJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.999
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 1e-3→ 0
Reward/Cost Critic Learning rate Linear Decay 1e-3→ 0
Number of Environments 256
Number of Steps 200
Total Timesteps (RAA) 50M
Total Timesteps (RR) 100M
Scan Steps 10
Update Epochs 10
Number of Minibatches 64

Add’l Hyperparameters for CPPO
KP 1
KI 1e-4
KD 1
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J DETAILS OF RAA & RR EXPERIMENTS: SAFETYGYM

The SafetyGym environment is taken from the SafetyGym Point Environment Brockman et al. (2016),
reimplemented in So et al. (2024). In both RAA and RR problems, we define rewards and penalties
based on the position of the Point position, which we denote as (x, y) in this section.

In the RAA task, the reward is defined as

r(x, y) =
√
|x|+ |y| − 0.3 (60)

to incentive the Point to reach to the position at (x, y) = (0., 0.). The
penalty q is defined as the minimum of signed distance functions to wall ob-
stacles at |x| ≥ 3 and y ≥ |3|, and a scatter of eight random obstacles at
{(1.4, 0.6), (0.4, 1.2), (−1.2, 0.8), (−0.9, 0.1.5), (−0.1,−1.1), (0.7, 0.2), (−0.3, 0.8), (−1.3,−1.3)}.
In order to safely arrive at high reward (and always avoid the obstacles), the Point thus must drive
through the obstacles and without leaving the box or crashing after arriving.

In the RR task, the first reward is defined again as

r1(x, y) =
√
|x− 2.5|+ |y − 2.5| − 0.3 (61)

to incentive the Point to drive to the position at (x, y) = (2.5, 2.5), and the second reward as

r2(x, y) =
√
|x+ 2.5|+ |y + 2.5| − 0.3 (62)

to incentive the Point to drive to the position at (x, y) = (−2.5,−2.5). In order to achieve both
rewards, the Point must thus drive to both targets.

In all experiments, the Point is initialized at a random (x, y) ∈ [−2, 2]2 so as to learn a position-
agnostic policy. The DOHJ-PPO parameters used to train these problems can be found in Table
4.

Table 4: Hyperparameters for SafetyGym Learning

Hyperparameters for DOHJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 5e-3→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.9995
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 3e-4→ 0
Reward/Cost Critic Learning rate Linear Decay 3e-4→ 0
Number of Environments 128
Number of Steps 400
Total Timesteps (RAA) 50M
Total Timesteps (RR) 100M
Scan Steps 4
Update Epochs 10
Number of Minibatches 32

Add’l Hyperparameters for CPPO
KP 1
KI 1e-4
KD 1

K DETAILS OF RAA & RR EXPERIMENTS: HALFCHEETAH

The HalfCheetah environment is taken from Gym Brockman et al. (2016), reimplemented in So et al.
(2024). In both RAA and RR problems, we define rewards based on the HalfCheetah head position,
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which we denote as (x, y) in this section, and we define the penalties based on the position of all
HalfCheetah body positions (back, neck, head, thighs, shins, and feet).

In the RAA task, the reward is defined as

r(x, y) = |x− 5.5| − 0.25 (63)

to incentive the HalfCheetah to reach its head to the cylinder centered at x = 5.5. The penalty q
is defined as the minimum of signed distance functions to a floor obstacles at (0, 4.5) and (0, 6.5)
which have height of 0.05 and width 0.5, and a back wall obstacle at x < −0.9. In order to safely
arrive at high reward (and always avoid the obstacles), the HalfCheetah thus must jump over the front
floor obstacle (at x = 4.5) and avoid crashing into, either by hopping over or standing, the back floor
obstacle (at x = 6.5).

In the RR task, the first reward is defined again as

r1(x, y) =
√
|x− 5|+ |y − 1| − 0.1 (64)

to incentive the HalfCheetah to reach its head to the position at (x, y) = (5, 1), and the second reward
as

r2(x, y) =
√
|x+ 5|+ |y − 1| − 0.1 (65)

to incentive the HalfCheetah to reach its head to the position at (x, y) = (−5, 1). In order to achieve
both rewards, the HalfCheetah must thus gallop both forwards and backwards.

In all experiments, the HalfCheetah is initialized in the default standing posture at a random x ∈
[0.5, 1.5] so as to learn a position-agnostic policy. The DOHJ-PPO parameters used to train these
problems can be found in Table 5.

Table 5: Hyperparameters for HalfCheetah Learning

Hyperparameters for DOHJ-PPO Values
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 5e-3→ 0
Optimizer Adam
Discount factor γ Linear Anneal 0.995→ 0.9995
GAE lambda parameter 0.95
Clip Ratio 0.2
Actor Learning rate Linear Decay 3e-4→ 0
Reward/Cost Critic Learning rate Linear Decay 3e-4→ 0
Number of Environments 128
Number of Steps 400
Total Timesteps (RAA) 100M
Total Timesteps (RR) 150M
Scan Steps 4
Update Epochs 10
Number of Minibatches 32

Add’l Hyperparameters for CPPO
KP 100
KI 1e-4
KD 1

L CONTRAST WITH DECOMPOSITIONS IN TEMPORAL LOGIC

Temporal Logic (TL) predicates, including those for reach (eventually φ), avoid (always not ψ), and
reach-avoid (not ψ until φ) problems, enjoy useful algebraic properties. These properties provide
a convenient way to decompose complex TL predicates into simpler predicates. Unfortunately, the
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decomposition of these predicates does not generally translate to valid decompositions of the optimal
value functions in HJR.

More explicitly, it is indeed possible to phrase HJR problem formulations, such as our RR and RAA
problems, using the language of quantitative semantics from the TL literature. In particular, the
standard HJR problem is to find the sequence of actions that maximizes some objective function,
and this objective function can generally be written as a quantitative semantic corresponding to the
specification of the desired system behavior (however, this is not explicitly written in TL notation
in the HJR literature). That said, the optimal value function decomposition results for the RR and
RAA problems are distinct from the decomposition of the corresponding quantitative semantics. In
other words, our decomposition results are statements about the optimal control associated with the
quantitative semantic, not the quantitative semantic itself.

This subtle distinction can be clarified by the following counter-examples, where a valid decomposi-
tion of the quantitative semantic (on the TL side) for the RR and RAA problem does not translate to a
valid decomposition of the optimal value functions (on the HJR side) for the RAA problem. We will
use F as the eventually operator, G as the always operator, and ∧/∨/¬ as logical and/or/not.

L.1 RAA CASE

Consider an RAA problem where my friend is holding a piñata which I would like to break with a
bat. We can always decompose the RAA quantitative semantic into R and A quantitative semantics.
However, suppose there is some state of the system from which I can either eventually hit the piñata
or always avoid hitting my friend, but not both. In this case, the optimal value function for the R and
A problems will both be non-negative, even though I cannot actually achieve the RAA task from this
state.

To make this argument explicit, define the atomic predicates φ and ψ to represent hitting the piñata
and hitting my friend, respectively:

(x, t) |= φ ⇐⇒ r(x(t)) ≥ 0,

(x, t) |= ψ ⇐⇒ p(x(t)) ≥ 0.

Given a predicate µ, let ρµ be the corresponding quantitative semantic. Thus, ρφ[x, t] = r(x(t))
and ρψ[x, t] = p(x(t)). The quantitative semantics for the R, A, and RAA problems are then,
respectively:

ρR[x, t] := ρFφ[x, t] = max
τ≥t

r(x(τ)), (66)

ρA[x, t] := ρG¬ψ[x, t] = min
τ≥t
−p(x(τ)), (67)

ρRAA[x, t] := ρ(Fφ)∧(G¬ψ)[x, t] = min

{
max
τ≥t

r(x(τ)),min
τ≥t
−p(x(τ))

}
. (68)

As mentioned earlier, the optimal value functions for the R, A, and RAA problems can then be written
in terms of the quantitative semantics, i.e.

V ∗
R(s) = max

π
ρR[x

π
s , 0],

V ∗
A(s) = max

π
ρA[x

π
s , 0],

V ∗
RAA(s) = max

π
ρRAA[x

π
s , 0],

where xπs is the trajectory of the bat corresponding to the initial state s and policy π.

But here is the key point: although it is always true that

ρRAA[x, t] = min{ρR[x, t], ρA[x, t]},

in general we only have that
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V ∗
RAA(s) ≤ min{V ∗

R(s), V
∗
A(s)}.

Indeed this inequality is sometimes strict. Again, consider the case where there is some state of the
system s from which I can either eventually hit the piñata or always avoid hitting my friend, but
cannot do both. Then

V ∗
RAA(s) < 0 ≤ min{V ∗

R(s), V
∗
A(s)}.

In other words, the algebra that applies to the TL predicates translates to an algebra on the TL
quantitative semantics, but it does not generally translate to an algebra on the optimal value functions.
This is why our decomposition required thorough justification.

L.2 RR CASE

Next, suppose that we are solving an RR problem for a small robotic boat that must deliver supplies
to two downstream islands in a wide river that flows from north to south. The islands are at the same
latitude, but one is to the west and one is to the east. Suppose the boat starts far enough upstream that
it can reach either island, but the current is too strong to move from one island to the other. Then the
boat can satisfy the R task for the west island (by ignoring the east island) and it can satisfy the R task
for the east island (by ignoring the west island), but it cannot satisfy the RR task. The decomposition
of the quantitative semantics for the RR problem into the minimum of the quantitative semantics for
the two R problems will then not translate to a valid decomposition of the value functions.

More explicitly, with r1 and r2 the signed distance functions to either island, let

(x, t) |= φ ⇐⇒ r1(x(t)) ≥ 0, (69)
(x, t) |= ψ ⇐⇒ r2(x(t)) ≥ 0. (70)

Thus, ρφ[x, t] = r1(x(t)) and ρψ[x, t] = r2(x(t)). The quantitative semantics for reaching the west
island, reaching the east island, and reaching both islands are then respectively,

ρR1[x, t] := ρFφ[x, t] = max
τ≥t

r1(x(τ)), (71)

ρR2[x, t] := ρFψ[x, t] = max
τ≥t

r2(x(τ)), (72)

ρRR[x, t] := ρ(Fφ)∧(Fψ)[x, t] = min

{
max
τ≥t

r1(x(τ)),max
τ≥t

r2(x(τ))

}
. (73)

As before, the optimal value functions for the two R problems and the RR problems can then be
written in terms of the quantitative semantics, i.e.

V ∗
R1(s) = max

π
ρR1[x

π
s , 0], (74)

V ∗
R2(s) = max

π
ρR2[x

π
s , 0], (75)

V ∗
RR(s) = max

π
ρRR[x

π
s , 0]. (76)

But we still have the analogous issue: although it is always true that

ρRR[x, t] = min{ρR1[x, t], ρR2[x, t]},

in general we only have that

V ∗
RR(s) ≤ min{VR1(s), V

∗
R2(s)}.
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When we begin from some state of the system s from which I can eventually reach the east island or I
can eventually reach the west island, but not both, then the inequality is strict:

V ∗
RR(s) < 0 ≤ min{VR1(s), V

∗
R2(s)}.

M BROADER IMPACTS

This paper touches on advancing fundamental methods for Reinforcement Learning. In particular, this
work falls into the class of methods designed for Safe Reinforcement Learning. Methods in this class
are primarily intended to prevent undesirable behaviors in virtual or cyber-physical systems, such as
preventing crashes involving self-driving vehicles or potentially even unacceptable speech among
chatbots. It is an unfortunate truth that safe learning methods can be repurposed for unintended use
cases, such as to prevent a malicious agent from being captured, but the authors do not foresee the
balance of potential beneficial and malicious applications of this method to be any greater than other
typical methods in Safe Reinforcement Learning.
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