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Abstract

Access to the right evidence does not guarantee that large language models (LLMs)
will reason with it correctly. This gap between retrieval and reasoning is especially
concerning in clinical settings, where outputs must align with structured protocols.
We study this gap using Written Exposure Therapy (WET) guidelines as a testbed.
In evaluating model responses to curated clinician-vetted questions, we find that
errors persist even when authoritative passages are provided. To address this, we
propose an evaluation framework that measures accuracy, consistency, and fidelity
of reasoning. Our results highlight both the potential and the risks: retrieval-
augmented generation (RAG) can constrain outputs, but safe deployment requires
assessing reasoning as rigorously as retrieval.

1 Introduction

Large language models (LLMs) are changing healthcare, but access to evidence does not guarantee
sound reasoning. In clinical care, where every decision must follow strict protocols, the gap between
retrieval and inference is not just technical, it is clinical and ethical. Retrieval-augmented generation
(RAG) offers a partial solution by grounding model outputs in external knowledge [13], yet a central
question remains: do LLMs actually reason with what they retrieve?

This issue is acute in mental health, where hallucinations and misinterpretations can directly affect
patient care [16]. Written Exposure Therapy (WET) [18], a brief manualized treatment for PTSD
validated in multiple randomized controlled trials [19], provides an ideal testbed. Its structured,
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text-based format demands precise adherence to therapeutic steps, making it well suited to evaluate
whether LLMs can follow clinical guidelines under RAG conditions. Testing WET with RAG is not
just a benchmark, it is a litmus test for safe AI use in mental health.

Prior RAG evaluations focus on surface metrics such as retrieval relevance, hallucination rates, or
LLM-as-judge scoring [17, 11]. While tools like RAGAS and datasets like RAGTruth advance
measurement, they do not test whether models actually use retrieved content. Probing studies
like Lost in the Middle [15] and the “needle-in-a-haystack” test [12] show that LLMs often ignore
available evidence. Self-RAG [2] adds critique and citation but is a training method, not an evaluation
framework. Critically, none of these approaches are domain-specific, leaving open the question of
whether LLMs can truly adhere to clinical guidelines.

What is missing is a causal, clinically grounded test of inference fidelity. Our work addresses this
gap. We introduce CARE-RAG (Clinical Assessment and Reasoning Evaluation for RAG), the first
benchmark to systematically manipulate context correctness (relevant, noisy, or misleading) and
stratify tasks by reasoning demand (none, light, or heavy) in a clinical guideline QA setting. Using
WET as the foundation, We evaluate 20 state-of-the-art LLMs across three orthogonal dimensions,
and our primary contributions are:

1. Context fidelity: Models are systematically tested on their ability to distinguish relevant
evidence from noisy distractors and misleading passages.

2. Reasoning complexity: Models are assessed under increasing levels of inference demand,
from shallow to deep reasoning tasks.

3. Question type: Models are benchmarked on multiple-choice, yes/no, and open-ended
questions directly derived from clinical guidelines.

Our curated dataset includes clinician-validated gold answers, rationales, and supporting spans, en-
abling reproducible and fine-grained evaluation. Together, these contributions move RAG evaluation
beyond retrieval accuracy toward testing context-grounded reasoning under clinical constraints. By
situating our benchmark in WET, we offer not only methodological advances for RAG research but
also practical insights into what it means for LLMs to be clinically trustworthy.

2 Related Work

2.1 RAG system performance under different context quality and noise

The quality of retrieved documents strongly shapes the performance of retrieval-augmented generation
(RAG) systems [13]. Recent evidence shows that noisy retrieval often degrades accuracy, though
in some cases mild noise can produce slight gains by acting as a form of robustness calibration
[3]. Dedicated benchmarks reinforce these insights: RGB [5], NoiserBench [23], and RAMDocs
[22] all highlight how retrieval corruption influences model behavior. However, these benchmarks
typically assess a small number of models and emphasize correctness, overlooking whether systems
still comply with domain-specific constraints. This limitation is critical in safety-sensitive settings
such as clinical decision support, where guideline fidelity matters as much as factual precision [18, 8].

Emerging research further suggests that both the type and semantic relevance of noise influence
how LLMs exploit retrieved passages [7, 6]. Yet, to our knowledge, no prior study systematically
evaluates how RAG systems behave under controlled noise or adversarial retrieval in the context of
Written Exposure Therapy (WET) for PTSD. To address this gap, we assess twenty language models,
spanning small, large, and finetuned variants, under three controlled evidence conditions: (i) correct
context, (ii) correct context with noise, and (iii) incorrect context.

2.2 Assessing RAG system performance across reasoning levels

Research on retrieval-augmented generation (RAG) has primarily focused on measuring retrieval
quality and output faithfulness, often using automated metrics or LLM-as-judge frameworks. Tools
such as RAGAS evaluate context relevance, answer relevance, and hallucination [9], while datasets
like RAGTruth provide annotated examples of hallucinations across domains [11]. However, these
approaches rarely distinguish whether models infer from retrieved content versus relying on back-
ground knowledge. Other studies, such as Lost in the Middle and “needle-in-a-haystack” probes,
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reveal that LLMs frequently ignore mid-context information, underscoring that evidence availability
does not ensure evidence use [12, 15]. Self-RAG introduces self-critique and citation behaviors, but
it is a training approach rather than an evaluation framework [2]. Importantly, prior work has not
systematically manipulated context correctness (right, noisy, wrong) or stratified tasks by reasoning
load (no, light, heavy). Our study addresses this gap by causally testing whether LLMs infer from
the right context across reasoning levels and comparing how different models exploit RAG in a
clinical guideline QA setting. In particular, we evaluate along three orthogonal dimensions: (i)
context fidelity, contrasting relevant, relevant-plus-noise, and non-relevant passages; (ii) reasoning
complexity, spanning no reasoning, light reasoning, and heavy reasoning tasks; and (iii) question type,
including multiple-choice items reformulated from clinical guidelines, clinician-validated true/false
evaluations, and open-ended questions requiring free-form justification.

3 Methodology

This section outlines the step-by-step methodology we employed to design the dataset, construct
controlled context conditions, and evaluate inference and scoring for large language models on WET
[8] clinical guideline questions.

Figure 1: WET Benchmarking pipeline. Each curated clinical guideline question (multiple choice, true/false, or
open-ended) is processed through the following steps: (1) Retrieval: Relevant, noisy, or irrelevant guideline
passages are retrieved from the WET corpus using FAISS embeddings. (2) Prompting: A common JSON-
structured prompt instructs the LLM to answer with both reasoning and evidence from the retrieved context.
(3) Reasoning vs. Context: The model generates an answer and reasoning, which are compared against the
RAG-supplied context and ground truth. (4) Evaluation: Automated scoring (accuracy, entailment, similarity,
response similarity) and human review assess whether the LLM incorporated context into its reasoning. (5)
Aggregation: Scores are combined to compare models and track improvement over time, highlighting which
LLMs better exploit RAG in guideline-based QA.

3.1 Dataset Creation

To capture the breadth of clinical reasoning required in Written Exposure Therapy (WET), we
constructed a structured dataset of multiple-choice, yes/no, and open-ended questions. Each type was
developed through distinct processes, with oversight from domain experts to ensure clinical validity.

• Multiple-Choice Questions (MCQs): Curated and iteratively refined by a multi-panel
team of psychologists specializing in PTSD care. Each MCQ probed specific aspects of
WET implementation (e.g., session structure, patient objections). Candidate questions and
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distractors underwent multiple rounds of expert review to guarantee content accuracy and
clarity.

• Yes/No Questions: Focused on core guideline rules where binary decisions are critical (e.g.,
“Does the index trauma need to be a discrete event?”). Items were curated directly from
WET manuals and PTSD clinical guidelines, yielding unambiguous gold-standard answers
supported by authoritative references.

• Open-Ended Questions: Drawn from frequently acknowledged themes during WET ses-
sions (e.g., writing concerns, reluctance to continue). These items reflect clinically realistic
prompts requiring contextual reasoning and empathetic framing.

Each question was paired with a gold-standard answer, rationale, and supporting text span, en-
abling both automated evaluation (accuracy, faithfulness) and independent expert review for clinical
soundness.

3.2 Evaluation Design

Context Condition Construction To evaluate whether LLMs truly rely on retrieved evidence, we
developed three controlled retrieval regimes for each question using a FAISS-based vector store of
WET guideline passages. Source text was segmented into 512-token chunks with 50% overlap, and
cosine similarity search was used with k = 3. Table 2 summarizes the construction steps.

Inference Evaluation Across Reasoning Levels In addition to correctness, we evaluated whether
models could generate and use reasoning based on the retrieved context. For each question, the LLM
was asked not only to answer but also to provide a short reasoning trace. These traces were then used
to judge whether the model was truly grounding its inference in the provided evidence. LLM as a
judge generated reasoning scored for correctness and grounding in the provided context.

Scoring Accuracy was calculated for multiple-choice and yes/no questions using exact matches
with the gold answers. Cosine similarity was used for open-ended responses to measure how close
model outputs were to the reference answers. The inference score came from an LLM-as-judge,
which checked the reasoning traces generated by each model for correctness and grounding in the
given context. Together, these measures show not only whether a model answered correctly but also
whether it used the context in a reliable way. Note: Further details regarding the evaluation design
A.1, reasoning fidelity metrics A.2, methodological limitations and future work A.4are provided in the
appendix A.

4 Results

We evaluate model performance along three orthogonal dimensions that probe whether LLMs can
truly reason with retrieved clinical evidence. First, context fidelity tests whether models follow
clinical guidelines when provided with relevant, noisy, or non-relevant passages. Second, reasoning
complexity distinguishes between tasks requiring no reasoning, light reasoning, and heavy reasoning,
allowing us to assess whether models sustain performance as inference demands increase. Third,
expert evaluation examines whether models exhibit the clinical reasoning needed to interpret practice
guidelines. While control questions were answered reliably, no model achieved perfect accuracy
on reasoning items, which often required interpreting gray areas of therapy delivery. These results
suggest that even when models capture guideline content, they may misinterpret subtle instructions-
highlighting the need for guardrails and prompt design to ensure faithful clinical application.

4.1 Context Fidelity Evaluation

Table 1 reports results across 20 LLMs, grouped by size and specialization, with three complementary
scores: cosine similarity for open-ended answers, accuracy across multiple-choice and yes/no
questions, and inference scores measuring whether models incorporated retrieved context into their
reasoning. Together, these metrics provide a comprehensive view of how models handle evidence
under controlled retrieval conditions. Notably, while several models achieve near-perfect accuracy
on multiple-choice questions, their inference scores reveal substantial variation in whether correct
answers were grounded in RAG context. This highlights the importance of evaluating not just outputs,
but the reasoning process behind them.
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Model Cos. Similarity* Accuracy Score Inference Score*

Question Type Open-ended Multiple Choice Yes/No All

Small Models General Qwen2.5-3B-Instruct 0.698 0.944 0.875 0.745
Gemma-2-2B-IT 0.719 1.000 0.500 0.773
Gemma-2-9B-IT 0.643 1.000 0.750 0.894
Llama-3.1-8B-Instruct 0.768 1.000 0.750 0.845
GPT-4o-mini 0.706 1.000 0.900 0.839

Reasoning DeepSeek-R1-Distill-Llama-8B 0.760 0.500 0.625 0.767
DeepSeek-R1-Distill-Qwenf-14B 0.690 0.222 0.000 0.882
Claude-3.5-Haiku 0.756 1.000 0.700 0.876

Large Models General Qwen-QwQ-32B 0.700 0.722 0.625 0.839
Qwen2.5-32B-Instruct 0.637 1.000 0.625 0.800
Llama-3.1-70B-Instruct 0.704 1.000 0.875 0.830
GPT-3.5-Turbo 0.756 1.000 0.900 0.880
Gemini-2.5-Flash 0.829 1.000 0.600 0.903
Gemini-2.5-Pro 0.803 1.000 0.700 0.827
GPT-4o 0.750 1.000 0.700 0.870

Reasoning Claude-Opus-4-1 (2025-08-05) 0.752 1.000 0.800 0.839
Claude-Sonnet-4 (2025-05-14) 0.744 1.000 0.800 0.785

Finetuned Model BioMistral-7B 0.723 0.889 0.875 0.876

Table 1: Comparative evaluation of small, large, and finetuned language models across similarity, accuracy, and
inference scores. The table presents a comparison of Small, Large, and Finetuned language models grouped
by either generic or reasoning. For each model, it reports cosine similarity for open-ended questions, accuracy
scores across multiple choice and yes/no questions, and inference score across open-ended questions. *Cos.
Similarity is the semantic similarity of outputs to the extracted RAG context. *Inference Score is the confidence
(0–1) from the judge LLM that the model’s reasoning is supported by the retrieved context, reflecting factual
consistency in open-ended responses..

4.2 Reasoning Inference Evaluation

The entailment (inference) score is computed by measuring the logical consistency between a model’s
generated reasoning and the retrieved context (values range from 0 to 1, with higher scores indicating
stronger support). The accuracy score is calculated as the fraction of model answers that exactly
match the gold-standard correct answer. Evaluating these together reveals whether models not only
access relevant context but also reason with it. As shown in Figure 2, accuracy for multiple-choice
questions increases with higher entailment scores, indicating stronger evidence-based reasoning,
whereas Yes/No performance remains less consistent, highlighting a weakness in binary decision-
making.

4.3 Expert Evaluation

We expanded the evaluation to include two expert clinicians for assessing CARE-RAG. A more
detailed summary of their feedback is provided in Appendix A.3.

5 Conclusion

This work introduces CARE-RAG, a benchmark for evaluating whether large language models
(LLMs) can follow clinical guidelines using Written Exposure Therapy (WET) as a testbed. By
combining a clinician-validated dataset, controlled retrieval setups, and reasoning-tier evaluation, we
move beyond surface-level accuracy to assess how models reason with retrieved evidence.

Results from Table 1 show that while most models performed well on multiple-choice and yes/no
questions, their reasoning traces often lacked grounding in the retrieved context. No model achieved
perfect inference across all reasoning levels. Notably, Llama-3.1-8B-Instruct, Gemini-2.5-Pro, and
BioMistral-7B consistently scored high on inference, even under noisy or misleading condition,
demonstrating stronger context sensitivity and guideline adherence.

These findings highlight a critical gap: models may retrieve the right content but still misinterpret
clinical instructions. To safely deploy LLMs in therapeutic settings, future work must focus on
prompt design, reasoning scaffolds, and guardrail mechanisms that ensure fidelity to evidence under
uncertainty.
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A Extended Experimental Details

Condition Description

Right Context (Gold Evidence) Query: Each question used to query the FAISS store.
Chunking: 512-token windows with 50% overlap.
Retrieval: Top k = 3 passages returned via cosine similarity ensured direct support for the gold
answer.
Purpose: Baseline condition simulating ideal retrieval where evidence is sufficient and directly
relevant.

Right Context with Noise (Gold +
Distractors)

Base Retrieval: Start with the three gold passages identified for the question.
Adversarial Distractors: Constructed by re-querying FAISS with adversarially modified versions of
the original question—queries designed to maintain surface similarity while introducing semantic
misalignment.
Noise Injection: Distractor passages interleaved with gold passages in randomized order to avoid
positional bias.
Purpose: Evaluates whether models can discriminate relevant evidence from misleading yet plausible
text and still ground their answers in the correct spans.

Wrong Context (Misleading Evi-
dence)

Exclusion: Gold passages deliberately excluded from FAISS retrieval.
Substitution: Plausible but incorrect passages injected (e.g., related guideline sections).
Quality Control: Misleading passages manually verified to be realistic yet uninformative.
Purpose: Stress-tests whether models hallucinate or overgeneralize when only misleading evidence
is present.

Table 2: Context Condition Construction
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Figure 2: Accuracy across entailment score bins for three models (Qwen-QwQ-32B, Llama-3.1-8B-Instruct,
BioMistral-7B), separated by MCQ and Yes/No questions; higher entailment generally improves MCQ accuracy,
while Yes/No remains less consistent.

A.1 Evaluation Design Clarifications

Each question type (multiple-choice, yes/no, open-ended) was balanced across three context con-
ditions (relevant, relevant-plus-noise, and misleading), yielding a total of 99 evaluation instances.
Specifically, the dataset included 18 multiple-choice, 10 yes/no, and 5 open-ended questions, each
evaluated under three context conditions (33 × 3 = 99). Retrieval quality was verified via FAISS cosine
similarity thresholds ( 0.8) with k = 3 top passages, and clinician review confirmed the correctness of
evidence retrieved. Automated and human scoring pipelines were cross-checked on 15% of samples
to ensure consistency. This setup isolates retrieval quality from reasoning fidelity, aligning with
controlled-evidence frameworks such as Platinum-Bench (MIT CSAIL, 2024)[21].

A.2 Reasoning Fidelity Measurement

We define reasoning fidelity as the logical entailment between a model’s reasoning trace and the
retrieved evidence. The fidelity score F ∈ [0, 1] represents the probability that reasoning steps are
supported by context. Unlike accuracy, which measures outcome correctness, fidelity evaluates the
quality of inference. For example, a model may produce a correct answer using incorrect reasoning
(high accuracy, low fidelity). Fidelity is computed using entailment-based scoring and cross-checked
with an LLM-as-judge. Future work will extend this to structured prompt optimization methods such
as GEPA[1] for improved reasoning alignment.

A.3 Expert Evaluation Expansion

The expert evaluation process was expanded in the final version to include two independent clinical
reviewers instead of one. Specifically, evaluations were conducted by a psychologist certified
in Written Exposure Therapy (WET) and a psychiatrist with trauma-focused care experience. The
following feedback summarizes their joint assessment of the models’ clinical reasoning and adherence
to therapeutic guidelines.

These results indicate gaps in clinical reasoning required for an LLM to be able to interpret practice
guidelines in a testing format. While some models got all control questions correct, no model got
every reasoning question right. These questions were designed to test an LLMs ability to correctly
identify specific instructions in therapy delivery from mostly unambiguous text. The questions that
the models got wrong were related to a grey area in the interpretation of the therapy delivery. For
example, many models suggested that it is ok to provide feedback on the writing in the first session.
While the therapist typically does not provide specific feedback, they can comment on the length of
time the participant spent writing or whether the handwriting was legible and other ancillary factors.
It is also not unreasonable that an LLM would get that question wrong on a test, yet still provide
the correct feedback in a therapy setting. In order to simulate clinical reasoning in a digital therapy
setting, these gaps can be controlled for with prompt engineering and other guardrail measures.

Their joint feedback provided a more comprehensive perspective on model reasoning fidelity and
adherence to clinical guidelines. This update strengthens the validity and interpretive reliability of
the results discussed in Section 4.3 of the main manuscript.
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A.4 Limitations and Future Work

While CARE-RAG provides a clinically grounded framework for evaluating reasoning under retrieval,
several limitations remain. First, reliance on LLM-as-judge introduces bias due to potential self-
evaluation artifacts. Ensemble or multi-agent adjudication could mitigate this. Second, expert
validation was performed with a small clinical sample, which may limit interpretive diversity. Future
iterations will expand to multiple clinician validation.

In upcoming work, we are extending the benchmark to evaluate a broader range of Retrieval-
Augmented Generation (RAG) architectures, including Graph RAG, Self RAG, Naive RAG, Corrective
RAG, Causal RAG, Modular RAG, and Light RAG [24]. This expansion will use a larger question set
derived from Written Exposure Therapy (WET) manuals and clinical scenarios to probe inference
fidelity across retrieval paradigms.

We also plan to explore emerging Agentic Context Engineering (ACE) [20] as a mechanism for
optimizing context retrieval in long-form clinical documents. In therapeutic chatbots, one persistent
challenge is extracting the most essential references from extensive guideline materials such as the
WET manual. ACE offers a promising pathway for enabling agents to dynamically identify and
prioritize relevant clinical context, bridging reasoning fidelity with practical clinical use.

Recent works such as Retrieval-Augmented Generation: A Survey [10] and Towards Robust and
Adaptive RAG Systems [14] provide additional theoretical underpinnings for these upcoming exten-
sions.

A.5 Additional Resources and Related Work

Recent research efforts such as Platinum-Bench (MIT CSAIL, 2024)[21], GEPA [1] for structured
prompt optimization, and SkyRL (2025)[4] for reinforcement-driven prompt tuning provide com-
plementary directions for extending CARE-RAG towards longitudinal, adaptive clinical reasoning
evaluation.

A.6 Formatting and Reproducibility Notes

All final formatting and reproducibility adjustments were completed in accordance with NeurIPS
2025 workshop camera-ready submission requirements. Figures and tables were reformatted for
consistent caption font size, alignment, and visual clarity. The abstract was condensed into a single
paragraph per reviewer feedback, and Table 2 and Figure 2 was moved to the appendix to improve
readability and maintain the five-page main text limit. Minor layout refinements were made to ensure
uniform margins and consistent font scaling throughout the manuscript.

All experiments were re-run with fixed random seeds, version-controlled datasets, and open-source
model checkpoints to guarantee reproducibility. Data preprocessing scripts and evaluation code will
be released upon request or publication to promote transparency and enable independent validation
of the reported results.
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