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Abstract

The immense scale of the recent large language models (LLM) allows many in-
teresting properties, such as, instruction- and chain-of-thought-based fine-tuning,
that has significantly improved zero- and few-shot performance in many natu-
ral language processing (NLP) tasks. Inspired by such successes, we adopt such
an instruction-tuned LLM FLAN-T5 as the text encoder for text-to-audio (TTA)
generation—a task where the goal is to generate an audio from its textual de-
scription. The prior works on TTA either pre-trained a joint text-audio encoder
or used a non-instruction-tuned model, such as, T5. Consequently, our latent dif-
fusion model (LDM)-based approach (TANGO) outperforms the state-of-the-art
AudioLDM on most metrics and stays comparable on the rest on AudioCaps test
set, despite training the LDM on a 63 times smaller dataset and keeping the text
encoder frozen. This improvement might also be attributed to the adoption of au-
dio pressure level-based sound mixing for training set augmentation, whereas the
prior methods take a random mix.
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1 Introduction

Following the success of automatic text-to-image (TTI) generation [28–30], many researchers have
also succeeded in text-to-audio (TTA) generation [16, 17, 38] by employing similar techniques as the
former. Such models may have strong potential use cases in the media production where the creators
are always looking for novel sounds that fit their creations. This could be especially useful in pro-
totyping or small-scale projects where producing the exact sound could be infeasible. Beyond this,
these techniques also pave the path toward general-purpose multimodal AI that can simultaneously
recognize and generate multiple modalities.

To this end, the existing works use a large text encoder, such as, RoBERTa [18] and T5 [27], to encode
the textual description of the audio to be generated. Subsequently, a large transformer decoder or
a diffusion model generates the audio prior, which is subsequently decoded by a pre-trained VAE,
followed by a vocoder. We instead assume that replacing the text encoder with an instruction-
tuned large language model (LLM) would improve text understanding and overall audio generation
without any fine-tuning, due to its recently discovered gradient-descent mimicking property [3]. To
augment training samples, the existing methods take a randomly generated combination of audio
pairs, along with the concatenation of their descriptions. Such a mixture does not account for the
overall pressure level of the source audios, potentially leading to a louder audio overwhelming the
quieter one. Thus, we employ a pressure level-based mixing method, as suggested by Tokozume
et al. [35].

Our model (TANGO) 1 is inspired by latent diffusion model (LDM) [30] and AudioLDM [17] mod-
els. However, instead of using CLAP-based embeddings, we used a large language model (LLM)
due to its powerful representational ability and fine-tuning mechanism, which can help learn com-
plex concepts in the textual description. Our experimental results show that using an LLM greatly
improves text-to-audio generation and outperforms state-of-the-art models, even when using a sig-
nificantly smaller dataset. In the image generation literature, the effects of LLM has been studied be-
fore by Saharia et al. [32]. However, they considered T5 as the text encoder which is not pre-trained
on instruction-based datasets. FLAN-T5 [2] is initialized with a T5 checkpoint and fine-tuned on a
dataset of 1.8K NLP tasks in terms of instructions and chain-of-thought reasoning. By leveraging
instruction-based tuning, FLAN-T5 has achieved state-of-the-art performance on several NLP tasks,
matching the performance of LLMs with billions of parameters.

In Section 3, we empirically show that TANGO outperforms AudioLDM and other baseline ap-
proaches on most of the metrics on AudioCaps test set under both objective and subjective evalua-
tions, despite training the LDM on a 63 times smaller dataset. We believe that if TANGO is trained
on a larger dataset such as AudioSet (as Liu et al. [17] did), it would be able to provide even better
results and improve its ability to recognize a wider range of sounds.

The overall contribution of this paper is threefold:

1. We do not use any joint text-audio encoder—such as CLAP—for guidance. Liu et al. [17] claim
that CLAP-based audio guidance is necessary during training for better performance. We instead
use a frozen instruction-tuned pre-trained LLM FLAN-T5 with strong text representation capacity
for text guidance in both training and inference.

2. AudioLDM needed to fine-tune RoBERTa [18] text encoder to pre-train CLAP. We, however,
keep FLAN-T5 text encoder frozen during LDM training. Thus, we find that LDM itself is capable
of learning text-to-audio concept mapping and composition from a 63 times smaller training set, as
compared to AudioLDM, given an instruction-tuned LLM.

3. To mix audio pairs for data augmentation, inspired by Tokozume et al. [35], we consider the
pressure levels of the audio pairs, instead of taking a random combination as the prior works like
AudioLDM. This ensures good representations of both source audios in the fused audio.

1The acronym TANGO stands for Text-to-Audio using iNstruction Guided diffusiOn and was
suggested by ChatGPT. The word TANGO is often associated with music [37] and dance [36]. According to
Wikipedia [36], “Tango is a partner dance and social dance that originated in the 1880s along the Río de la
Plata, the natural border between Argentina and Uruguay.” The image above resembles the TANGO dance form
and was generated by prompting Dalle-V2 with “A couple dancing tango with musical notes in
the background”
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Figure 1: Overall architecture of TANGO.

2 Method

TANGO, as depicted in Fig. 1, has three major components: i) textual-prompt encoder, ii) latent
diffusion model (LDM), and iii) mel-spectogram/audio VAE. The textual-prompt encoder encodes
the input description of the audio. Subsequently, the textual representation is used to construct a
latent representation of the audio or audio prior from standard Gaussian noise, using reverse dif-
fusion. Thereafter the decoder of the mel-spectogram VAE constructs a mel-spectogram from the
latent audio representation. This mel-spectogram is fed to a vocoder to generate the final audio.

2.1 Textual-Prompt Encoder

We use the pre-trained LLM FLAN-T5-LARGE (780M) [2] as the text encoder (Etext) to obtain
text encoding τ ∈ RL×dtext , where L and dtext are the token count and token-embedding size,
respectively. Due to the pre-training of FLAN-T5 models on a large-scale chain-of-thought- (CoT)
and instruction-based dataset, Dai et al. [3] posit that they are able to learn a new task very well
from the in-context information by mimicking gradient descent through attention weights. This
property is missing in the older large models, such as RoBERTa [18] (used by Liu et al. [17]) and
T5 [27] (used by Kreuk et al. [16]). Considering each input sample a distinct task, it might be
reasonable to assume that the gradient-descent mimicking property could be pivotal in learning the
mapping between textual and acoustic concepts without fine-tuning the text encoder. The richer pre-
training may also allow the encoder to better emphasize the key details with less noise and enriched
context. This again may lead to the better transformation of the relevant textual concepts into their
acoustics counterparts. Consequently, we keep the text encoder frozen, assuming the subsequent
reverse diffusion process (see Section 2.2) would be able to learn the inter-modality mapping well
for audio prior to construction. We also suspect that fine-tuning Etext may degrade its in-context
learning ability due to gradients from the audio modality that is out of distribution to the pre-training
dataset. This is in contrast with Liu et al. [17] that fine-tunes the pre-trained text encoder as a part
of the text-audio joint-representation learning (CLAP) to allow audio prior reconstruction from text.
In Section 3, we empirically show that such joint-representation learning may not be necessary for
text-to-audio transformation.
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2.2 Latent Diffusion Model for Text-Guided Generation

The latent diffusion model (LDM) [30] is adapted from Liu et al. [17], with the goal to construct the
audio prior z0 (see Section 2.5) with the guidance of text encoding τ . This essentially reduces to
approximating the true prior q(z0|τ) with parameterized pθ(z0|τ).
LDM can achieve the above through forward and reverse diffusion processes. The forward diffusion
is a Markov chain of Gaussian distributions with scheduled noise parameters 0 < β1 < β2 < · · · <
βN < 1 to sample noisier versions of z0:

q(zn|zn−1) = N (
√

1− βnzn−1, βnI), (1)

q(zn|z0) = N (
√
αnz0, (1− αn)I), (2)

where N is the number of forward diffusion steps, αn = 1 − βn, and αn =
∏n

i=1 αn. Song et al.
[34] show that Eq. (2) conveniently follows from Eq. (1) through reparametrization trick that allows
direct sampling of any zn from z0 via a non-Markovian process:

zn =
√
αnz0 + (1− αn)ϵ, (3)

where the noise term ϵ ∼ N (0, I). The final step of the forward process yields zN ∼ N (0, I).

The reverse process denoises and reconstructs z0 through text-guided noise estimation (ϵ̂θ) using
loss

LDM =

N∑
n=1

γnEϵn∼N (0,I),z0 ||ϵn − ϵ̂
(n)
θ (zn, τ)||22, (4)

where zn is sampled from Eq. (3) using standard normal noise ϵn, τ is the text encoding (see Sec-
tion 2.1) for guidance, and γn is the weight of reverse step n [5], taken to be a measure of signal-to-
noise ratio (SNR) in terms of α1:N . The estimated noise is used to reconstruct z0:

pθ(z0:N |τ) = p(zN )

N∏
n=1

pθ(zn−1|zn, τ), (5)

pθ(zn−1|zn, τ) = N (µ
(n)
θ (zn, τ), β̃

(n)), (6)

µ
(n)
θ (zn, τ) =

1
√
αn

[zn − 1− αn√
1− αn

ϵ̂
(n)
θ (zn, τ)], (7)

β̃(n) =
1− ᾱn−1

1− ᾱn
βn. (8)

The noise estimation ϵ̂θ is parameterized with U-Net [31] with a cross-attention component to in-
clude the text guidance τ . In contrast, AudioLDM [17] uses audio as the guidance during train-
ing. During inference, they switch back to text guidance, as this is facilitated by pre-trained joint
text-audio embedding (CLAP). We did not find audio-guided training and pre-training CLAP to be
necessary, as argued in Section 2.1.

2.3 Augmentation

Many text-to-image [25] and text-to-audio [16] works have shown the efficacy of training with
fusion-based augmented samples to improve cross-modal concept-composition abilities of the dif-
fusion network. Therefore, we synthesize additional text-audio pairs by superimposing existing
audio pairs on each other and concatenating their captions.

Unlike Liu et al. [17] and Kreuk et al. [16], to mix audio pairs, we do not take a random combination
of them. Following Tokozume et al. [35], we instead consider the human auditory perception for
fusion. Specifically, the audio pressure level G is taken into account to ensure that a sample with
high pressure level do not overwhelm the sample with low pressure level. The weight of an audio
sample (x1) is calculated as a relative pressure level (see Fig. 2 in the appendix for its distribution)

p = (1 + 10
G1−G2

20 )−1, (9)

where G1 and G2 are pressure levels of two audio samples x1 and x2, respectively. This ensures
good representation of both audio samples, post mixing.
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Furthermore, as pointed out by Tokozume et al. [35], the energy of a sound wave is proportional to
the square of its amplitude. Thus, we mix x1 and x2 as

mix(x1, x2) =
px1 + (1− p)x2√

p2 + (1− p)2
. (10)

2.4 Classifier-Free Guidance

To guide the reverse diffusion process to reconstruct the audio prior z0, we employ a classifier-free
guidance [6] of text input τ . During inference, a guidance scale w controls the contribution of text
guidance to the noise estimation ϵ̂θ, with respect to unguided estimation, where empty text is passed:

ϵ̂
(n)
θ (zn, τ) = wϵ

(n)
θ (zn, τ) + (1− w)ϵ

(n)
θ (zn). (11)

We also trained a model for which the text guidance was randomly dropped for 10% of the samples
during training. We found this model to perform equivalently to a model for which text guidance
was always used for all samples.

2.5 Audio VAE and Vocoder

Audio variational auto-encoder (VAE) [12] compresses the mel-spectogram of an audio sample,
m ∈ RT×F , into an audio prior z0 ∈ RC×T/r×F/r, where C, T , F , r are the number of channels,
number of time-slots, number of frequency-slots, and compression level, respectively. The LDM
(see Section 2.2) reconstructs the audio prior ẑ0 using input-text guidance τ . The encoder and
decoder are composed of ResUNet blocks [14] and are trained by maximizing evidence lower-bound
(ELBO) [12] and minimizing adversarial loss [8]. We adopt the checkpoint of audio VAE provided
by Liu et al. [17]. Thus, we use their best reported setting, where C and r are set to 8 and 4,
respectively.

As a vocoder to turn the audio-VAE decoder-generated mel-spectogram into an audio, we also use
HiFi-GAN [13] as Liu et al. [17].

3 Experiments

3.1 Datasets and Training

Text-to-Audio Generation. We perform our main text-to-audio generation experiments on the
AudioCaps dataset [11]. The dataset contains 45,438 audio clips paired with human-written captions
for training. The validation set contains 2,240 instances. The audio clips are ten seconds long
and were collected from YouTube videos. The clips were originally crowd-sourced as part of the
significantly larger AudioSet dataset [4] for the audio classification task.

We train our LDM using only the paired (text, audio) instances from the AudioCaps dataset. We
use the AudioCaps test set as our evaluation data. The test set contains five human-written captions
for each audio clip. We use one caption for each clip chosen at random following Liu et al. [17]
for consistent evaluation with their work. The randomly chosen caption is used as the text prompt,
using which we generate the audio signal from our model.

Audio VAE and Vocoder. We use the audio VAE model from Liu et al. [17]. This VAE net-
work was trained on the AudioSet, AudioCaps, Freesound2, and BBC Sound Effect Library3 (SFX)
datasets. Longer audio clips in Freesound and BBC SFX were truncated to the first thirty seconds
and then segmented into three parts of ten seconds each. All audio clips were resampled in 16KHz
frequency for training the VAE network. We used a compression level of 4 with 8 latent channels
for the VAE network.

We also use the vocoder from Liu et al. [17] for audio waveform generation from the mel spec-
trogram generated by the VAE decoder. The vocoder is a HiFi-GAN [13] network trained on the
AudioSet dataset. All audio clips were resampled at 16KHz for training the vocoder network.

2https://freesound.org/
3https://sound-effects.bbcrewind.co.uk
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Model, Hyperparameters, and Training Details We freeze the FLAN-T5-LARGE text encoder
in TANGO and only train the parameters of the latent diffusion model. The diffusion model is based
on the Stable Diffusion U-Net architecture [30, 31] and has a total of 866M parameters. We use 8
channels and a cross-attention dimension of 1024 in the U-Net model.

We use the AdamW optimizer [19] with a learning rate of 3e-5 and a linear learning rate scheduler
for training. We train the model for 40 epochs on the AudioCaps dataset and report results for the
checkpoint with the best validation loss, which we obtained at epoch 39. We use four A6000 GPUs
for training TANGO, where it takes a total of 52 hours to train 40 epochs, with validation at the end of
every epoch. We use a per GPU batch size of 3 (2 original + 1 augmented instance) with 4 gradient
accumulation steps. The effective batch size for training is 3 (instance) ∗4 (accumulation) ∗4 (GPU)
= 48.

3.2 Baseline Models

In our study, we examine three existing models: DiffSound by Yang et al. [38], AudioGen by Kreuk
et al. [16], and AudioLDM by Liu et al. [17]. AudioGen and DiffSound use text embeddings for con-
ditional generative training, while AudioLDM employs audio embeddings to avoid potential noise
from weak textual descriptions in the paired text-audio data. AudioLDM uses audio embeddings
from CLAP and asserts that they are effective in capturing cross-modal information. The models
were pre-trained on large datasets, including AudioSet, and fine-tuned on the AudioCaps dataset,
before evaluation, for enhanced performance. Thus, comparing them to our model TANGO would
not be entirely fair.

Despite being trained on a much smaller dataset, our model TANGO outperformed the baselines
that were trained on significantly larger datasets. We may largely attribute this to the use of LLM
FLAN-T5. Therefore, our model TANGO sets itself apart from the three existing models, making it
an exciting addition to the current research in this area.

It is important to note that the AudioLDM-L-Full-FT checkpoint from Liu et al. [17] was not avail-
able for our study. Therefore, we used the AudioLDM-M-Full-FT checkpoint, which was released
by the authors and has 416M parameters. This checkpoint was fine-tuned on both the AudioCaps
and MusicCaps datasets. We performed a subjective evaluation using this checkpoint in our study.
We attempted to fine-tune the AudioLDM-L-Full checkpoint on the AudioCaps dataset. However,
we were unable to reproduce the results reported in Liu et al. [17] due to a lack of information on
the hyperparameters used.

Our model can be compared directly to AudioLDM-L since it has almost the same number of pa-
rameters and was trained solely on the AudioCaps dataset. However, it is worth noting that Liu
et al. [17] did not release this checkpoint, which made it impossible for us to conduct a subjective
evaluation of its generated samples.

3.3 Evaluation Metrics

Objective Evaluation. In this work, we used two commonly used objective metrics: Frechet Au-
dio Distance (FAD) and KL divergence. FAD [10] is a perceptual metric that is adapted from Fechet
Inception Distance (FID) for the audio domain. Unlike reference-based metrics, it measures the
distance between the generated audio distribution and the real audio distribution without using any
reference audio samples. On the other hand, KL divergence [38, 16] is a reference-dependent metric
that computes the divergence between the distributions of the original and generated audio sam-
ples based on the labels generated by a pre-trained classifier. While FAD is more related to human
perception, KL divergence captures the similarities between the original and generated audio sig-
nals based on broad concepts present in them. In addition to FAD, we also used Frechet Distance
(FD) [17] as an objective metric. FD is similar to FAD, but it replaces the VGGish classifier with
PANN. The use of different classifiers in FAD and FD allows us to evaluate the performance of the
generated audio using different feature representations.

Subjective Evaluation. Following Liu et al. [17] and Kreuk et al. [16], we ask six human evalua-
tors to assess two aspects –– overall audio quality (OVL) and relevance to the input text (REL) – of
30 randomly-selected baseline- and TANGO-generated audio samples on a scale from 1 to 100. The
evaluators were proficient in the English language and instructed well to make a fair assessment.
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Table 1: The comparison between TANGO and baseline TTA models. FT indicates the model is
fine-tuned on the Audiocaps (AC) dataset. The AS and AC stand for AudioSet and AudiocCaps
datasets respectively. We borrowed all the results from [17] except for AudioLDM-L-Full which was
evaluated using the model released by the authors on Huggingface. Despite the LDM being trained
on a much smaller dataset, TANGO outperforms AudioLDM and other baseline TTA models as per
both objective and subjective metrics. ‡ indicates the results are obtained using the checkpoints
released by Liu et al. [17].

Model Datasets Text #Params Objective Metrics Subjective Metrics
FD ↓ KL ↓ FAD ↓ OVL ↑ REL ↑

Ground truth − − − − − − 91.61 86.78

DiffSound [38] AS+AC ✓ 400M 47.68 2.52 7.75 − −
AudioGen [16] AS+AC+8 others ✓ 285M − 2.09 3.13 − −
AudioLDM-S AC ✗ 181M 29.48 1.97 2.43 − −
AudioLDM-L AC ✗ 739M 27.12 1.86 2.08 − −

AudioLDM-M-Full-FT‡ AS+AC+2 others ✗ 416M 26.12 1.26 2.57 79.85 76.84
AudioLDM-L-Full‡ AS+AC+2 others ✗ 739M 32.46 1.76 4.18 78.63 62.69

AudioLDM-L-Full-FT AS+AC+2 others ✗ 739M 23.31 1.59 1.96 − −
TANGO AC ✓ 866M 24.52 1.37 1.59 85.94 80.36

3.4 Results and Analysis

Main Results. We report our main comparative study in Table 1. We comapre our proposed
method TANGO with DiffSound [38], AudioGen [16] and various configurations of AudioLDM [17].
AudioLDM obtained best results with 200 sampling steps from the LDM during inference. For
a fair comparison, we also use 200 inference steps in TANGO and in our additional AudioLDM
experiments. We used a classifier-free guidance scale of 3 for TANGO. AudioLDM used a guidance
scale among {2, 2.5, 3} in their various experiments.

TANGO achieves new state-of-the-art results for objective metrics when trained only on the Audio-
Caps dataset, with scores of 24.52 FD, 1.37 KL, and 1.59 FAD. This is significantly better than
the most direct baseline AudioLDM-L, which also used only the AudioCaps dataset for LDM train-
ing. We attribute this to the use of FLAN-T5 as text encoder in TANGO. We also note that TANGO
matches or beats the performance of AudioLDM-*-FT models, which used significantly (∼ 65 times)
larger datasets for LDM training. The AudioLDM-*-FT models used two phases of LDM training
– first on the collection of the four datasets, and then only on AudioCaps. TANGO is thus far more
sample efficient as compared to the AudioLDM-*-FT model family.

TANGO also shows very promising results for subjective evaluation, with an overall audio quality
score of 85.94 and a relevance score of 80.36, indicating its significantly better audio generation
ability compared to AudioLDM and other baseline text-to-audio generation approaches.

Effect of Inference Steps and Classifier-Free Guidance. The number of inference steps and
the classifier-free guidance scale are of crucial importance for sampling from latent diffusion mod-
els [34, 6]. We report the effect of varying number of steps and varying guidance scale for audio
generation in AudioCaps in Table 2. We found that a guidance scale of 3 provides the best results
for TANGO. In the left part of Table 2, we fix the guidance scale of 3 and vary the number of steps
from 10 to 200. The generated audio quality and resultant objective metrics consistently become
better with more steps. Liu et al. [17] reported that the performance for AudioLDM plateaus at
around 100 steps, with 200 steps providing only marginally better performance. However, we notice
a substantial improvement in performance when going from 100 to 200 inference steps for TANGO,
suggesting that there could be further gain in performance with more inference steps.

We report the effect of varying guidance scale with a fixed 100 steps in the right half of Table 2.
The first row uses a guidance scale of 1, thus effectively not applying classifier-free guidance at all
during inference. Not surprisingly, the performance of this configuration is poor, lagging far behind
the classifier-free guided models across all the objective measures. We obtain almost similar results
with a guidance scale of 2.5 and better FD and KL with a guidance scale of 5. We obtain the best
FAD metric at a guidance scale of 3 and the metric becomes poorer with larger guidance.
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Table 2: Effect on the objective evaluation metrics with a varying number of inference steps and
classifier-free guidance.

Model Varying Steps Varying Guidance
Guidance Steps FD ↓ KL ↓ FAD ↓ Steps Guidance FD ↓ KL ↓ FAD ↓

TANGO 3

10 45.12 1.66 11.38

100

- 35.76 2.02 6.22
20 31.38 1.39 4.52 2.5 26.32 1.39 1.97
50 25.33 1.27 2.13 3 26.13 1.37 1.87
100 26.13 1.37 1.87 5 24.28 1.28 2.32
200 24.52 1.37 1.59 10 26.10 1.31 3.30

Temporal Sequence Modelling. We analyze how TANGO and AudioLDM models perform audio
generation when the text prompt contains multiple sequential events. Consider the following ex-
amples: A toy train running as a young boy talks followed by plastic clanking then a child laughing contains
three separate sequential events, whereas Rolling thunder with lightning strikes contains only one. We
segregate the AudioCaps test set using the presence of temporal identifiers – while, before, after,
then, followed – into two subsets, one with multiple events and the other with single event. We show
the objective evaluation results for audio generation on these subsets in Table 3. TANGO achieves the
best FD and FAD scores for both multiple events and single event instances. The best KL divergence
score is achieved by the AudioLDM-M-Full-FT model. We conjecture that the larger corpus from
the four training datasets in AudioLDM could be more helpful in improving the reference-based KL
metric, unlike the reference-free FD and FAD metrics.

Table 3: Objective evaluation results for audio generation in the presence of multiple events or a
single event in the text prompt in the AudioCaps test set. The multiple events and single event
subsets collectively constitute the entire AudioCaps test set. It should be noted that FD and FAD
are corpus-level non-linear metrics, and hence the FD and FAD scores reported in Table 1 are not
average of the subset scores reported in this table.

Model Datasets Multiple Events Single Event
FD ↓ KL ↓ FAD ↓ FD ↓ KL ↓ FAD ↓

AudioLDM-L-Full AS+AC+2 others 43.65 1.90 3.77 35.39 1.66 5.24
AudioLDM-M-Full-FT 34.57 1.32 2.45 29.40 1.21 3.27

TANGO AC 33.36 1.45 1.75 28.59 1.30 2.04

Performance against Number of Labels. Recall that the AudioCaps dataset was curated from the
annotations of the audio classification task in the AudioSet dataset. The text prompts in AudioCaps
can thus be paired with the discrete class labels of AudioSet. The AudioSet dataset contains a
total of 632 audio event classes. For instance, A woman and a baby are having a conversation and
its corresponding audio clip has the following three labels: Speech, Child speech kid speaking, Inside
small room. We group instances having one label, two labels, and multiple (two or more) labels
in AudioCaps and evaluate the generated audios across the objective metrics. We report the result
of the experiment in Table 4. TANGO outperforms AudioLDM models across all the objective
metrics for audio generation from texts with one label or two labels. For texts with multiple labels,
AudioLDM achieves a better KL divergence score and TANGO achieves better FD and FAD scores.
Interestingly, all the models achieve consistently better FD and KL scores with progressively more
labels, suggesting that such textual prompts are more effectively processed by the diffusion models.

Categorical Modelling. The class labels in AudioSet can be arranged hierarchically to obtain the
following top-level categories: i) Human sounds, ii) Animal sounds, iii) Natural sounds, iv) Sounds
of Things, v) Channel, environment, background sounds, vi) Source-ambiguous sounds, and vii)
Music. We map the class labels in AudioCaps to the seven main categories listed above. The Music
category is very rare in AudioCaps and the rest either appear on their own or in various combinations
with others. We select the most frequently occurring category combinations and analyze the perfor-
mance of various models within the constituting AudioCaps instances in Table 5. The performance
of the two models is pretty balanced across the FD and KL metrics, with TANGO being better in
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Table 4: Performance of audio generation in AudioCaps for texts containing one, two, or multiple
(two or more) labels. Each text in AudioCaps has its corresponding multi-category labels from
AudioSet. We use these labels to segregate the AudioCaps dataset into three subsets.

Model Datasets One Label Two Labels Multiple Labels
FD ↓ KL ↓ FAD ↓ FD ↓ KL ↓ FAD ↓ FD ↓ KL ↓ FAD ↓

AudioLDM-L-Full AS+AC+2 others 48.11 2.07 4.71 44.93 1.90 4.09 34.94 1.68 4.59
AudioLDM-M-Full-FT 46.44 1.85 3.77 39.01 1.29 3.52 26.74 1.10 2.62

TANGO AC 40.81 1.84 1.79 35.09 1.56 2.53 26.05 1.24 1.96

Table 5: Performance of AudioLDM-M-Full FT and TANGO for the most frequently occurring
categories in AudioCaps dataset. CEB indicates the Channel, environment, and background sounds
category.

Human Animal Natural Things CEB FD ↓ KL ↓ FAD ↓
AudioLDM TANGO AudioLDM TANGO AudioLDM TANGO

✓ ✗ ✗ ✗ ✗ 38.15 34.06 1.01 0.99 2.81 2.13
✗ ✓ ✗ ✗ ✗ 78.62 77.78 1.82 1.92 4.28 4.62
✓ ✓ ✗ ✗ ✗ 61.91 70.32 0.89 1.29 6.32 5.19
✗ ✗ ✓ ✗ ✗ 51.61 57.75 1.89 1.96 6.75 5.15
✗ ✗ ✗ ✓ ✗ 35.60 33.13 1.35 1.43 5.42 3.40
✗ ✗ ✓ ✓ ✗ 55.06 42.00 1.46 1.12 6.57 3.89
✓ ✗ ✗ ✓ ✗ 37.57 39.22 1.11 1.34 3.26 3.18
✗ ✗ ✗ ✓ ✓ 54.25 52.77 1.43 1.33 11.49 9.26

some, and AudioLDM in others. However, TANGO achieves better FAD scores in all but one group,
with large improvements in (human, animal), (natural), (things), and (natural, things) categories.

4 Related Works

Diffusion Models. Recent years have seen a surge in diffusion models as a leading approach for
generating high-quality speech [1, 15, 24, 25, 9, 7]. These models utilize a fixed number of Markov
chain steps to transform white noise signals into structured waveforms. Among them, FastDiff
has achieved remarkable results in high-quality speech synthesis [7]. By leveraging a stack of time-
aware diffusion processes, FastDiff can generate speech samples of exceptional quality at an impres-
sive speed, 58 times faster than real-time on a V100 GPU, making it practical for speech synthesis
deployment. It surpasses other existing methods in end-to-end text-to-speech synthesis. Another
noteworthy probabilistic model for audio synthesis is DiffWave [15], which is non-autoregressive
and generates high-fidelity audio for various waveform generation tasks, including neural vocod-
ing conditioned on mel spectrogram, class-conditional generation, and unconditional generation.
DiffWave delivers speech quality that is on par with the powerful WaveNet vocoder [23] while syn-
thesizing audio much faster. Diffusion models have emerged as a promising approach for speech
processing, particularly in speech enhancement [20, 33, 26, 21]. Recent advancements in diffusion
probabilistic models have led to the development of a new speech enhancement algorithm that incor-
porates the characteristics of noisy speech signals into the forward and reverse diffusion processes
[22]. This new algorithm is a generalized form of the probabilistic diffusion model, known as the
conditional diffusion probabilistic model. During its reverse process, it can adapt to non-Gaussian
real noises in the estimated speech signal, making it highly effective in improving speech quality. In
addition, Qiu et al. [26] propose SRTNet, a novel method for speech enhancement that incorporates
the diffusion model as a module for stochastic refinement. The proposed method comprises a joint
network of deterministic and stochastic modules, forming the “enhance-and-refine” paradigm. The
paper also includes a theoretical demonstration of the proposed method’s feasibility and presents ex-
perimental results to support its effectiveness, highlighting its potential in improving speech quality.

Text-to-Audio Generation. The field of text-to-audio generation has received limited attention
until recently [16, 38]. In Yang et al. [38], a text encoder is used to obtain text features, which are
then processed by a non-autoregressive decoder to generate spectrogram tokens. These tokens are
fed to a vector quantized VAE (VQ-VAE) to generate mel spectrograms that are used by a vocoder to
generate audio. The non-autoregressive decoder is a probabilistic diffusion model. In addition, Yang
et al. [38] introduced a novel data augmentation technique called the mask-based text generation
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strategy (MBTG), which masks out portions of input text that do not represent any event, such as
those indicating temporality. The aim of MBTG is to learn augmented text descriptions from audio
during training. Although this approach seems promising, its fundamental limitation is the lack
of diversity in the generated data, as it fails to mix different audio samples. Later, Kreuk et al.
[16] proposed a correction to this method, mixing audio signals according to random signal-to-
noise ratios and concatenating the corresponding textual descriptions. This approach allows for the
generation of new (text, audio) pairs and mitigates the limitations of Yang et al. [38]. Unlike Yang
et al. [38], the architecture proposed in Kreuk et al. [16] uses a transformer encoder and decoder
network to autoregressively generate audio tokens from text input.

Recently, Liu et al. [17] proposed AudioLDM, which translates the Latent Diffusion Model of text-
to-visual to text-to-audio generation. They pre-trained VAE-based encoder-decoder networks to
learn a compressed latent representation of audio, which was then used to guide a diffusion model
to generate audio tokens from text input. They found that using audio embeddings instead of text
embeddings during the backward diffusion process improved conditional audio generation. During
inference time, they used text embeddings for text-to-audio generation. Audio and text embeddings
were obtained using pre-trained CLAP, which is the audio counterpart of CLIP embeddings used in
the original LDM model.

5 Limitations

TANGO is not always able to finely control its generations over textual control prompts as it is trained
only on the small AudioCaps dataset. For example, the generations from TANGO for prompts Chop-
ping tomatoes on a wooden table and Chopping potatoes on a metal table are very similar. Chopping
vegetables on a table also produces similar audio samples. Training text-to-audio generation models
on larger datasets is thus required for the model to learn the composition of textual concepts and var-
ied text-audio mappings. In the future, we plan to improve TANGO by training it on larger datasets
and enhancing its compositional and controllable generation ability.

6 Conclusion

In this work, we investigate the effectiveness of the instruction-tuned model, FLAN-T5, for text-
to-audio generation. Specifically, we use the textual embeddings produced by FLAN-T5 in the
latent diffusion model to generate mel-spectrogram tokens. These tokens are then fed to a pre-
trained variational auto-encoder (VAE) to generate mel-spectrograms, which are later used by a pre-
trained vocoder to generate audio. Our model achieved superior performance under both objective
and subjective evaluations compared to the state-of-the-art text-to-audio model, AudioLDM, despite
using only 63 times less training data. We primarily attribute this performance improvement to the
representational power of FLAN-T5, which is due to its instruction-based tuning in the pre-training
stage. In the future, we plan to investigate the effectiveness of FLAN-T5 in other audio tasks, such
as, audio super-resolution and inpainting.
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Figure 2: Distribution of relative pressure level (see Eq. (9)) across the augmented samples.
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