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Abstract

Social recommendation has shown promising improvements over traditional sys-
tems since it leverages social correlation data as an additional input. Most existing
works assume that all data are available to the recommendation platform. However,
in practice, user-item interaction data (e.g., rating) and user-user social data are
usually generated by different platforms, both of which contain sensitive infor-
mation. Therefore, How to perform secure and efficient social recommendation
across different platforms, where the data are highly-sparse in nature remains an
important challenge. In this work, we bring secure computation techniques into
social recommendation, and propose S3Rec, a sparsity-aware secure cross-platform
social recommendation framework. As a result, S3Rec can not only improve the
recommendation performance of the rating platform by incorporating the sparse
social data on the social platform, but also protect data privacy of both platforms.
Moreover, to further improve model training efficiency, we propose two secure
sparse matrix multiplication protocols based on homomorphic encryption and
private information retrieval. Our experiments on two benchmark datasets demon-
strate that S3Rec improves the computation time and communication size of the
state-of-the-art model by about 40× and 423× in average, respectively.

1 Introduction

The recent advances of social recommendation have achieved remarkable performances in recommen-
dation tasks [12, 28]. Unlike traditional methods, social recommendation leverages user-item rating
data (e.g. from Netflix) with user-user social data (e.g. from Facebook) to facilitate model training.
The intuition behind this setup is that Facebook’s social data is much better than Netflix’s social
data in both quantity and quality, and those social data at Facebook can help to improve Netflix’s
recommendation performance. However, the cross-platform nature, the high sparsity and sensitivity
of recommendation/social data make social recommendation hard-to-deploy in the real world [5]. In
summary, the main problem we are facing is,

How to perform secure and efficient social recommendation across different platforms, where the
data are highly-sparse in nature?

Specifically, we focus on the problem of collaborative social recommendation in the two-party model,
where one party (denoted as P0) is a rating platform that holds user-item rating data, and the other
party (denoted as P1) is a social platform that holds user-user social data. We also assume that the
adversaries are semi-honest, which is commonly used in the secure computation literature [9]. That
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is to say, the adversary will not deviate from the pre-defined protocol, but will try to learn as much
information as possible from its received messages.

Choices of privacy enhancing techniques. Currently, many anonymization techniques have been
used in publishing recommendation data, such as k-anonymity and differential privacy [11]. On the
other hand, cryptographic methods like secure multiparty computation (MPC) [11] and homomorphic
encryption (HE) have been proposed to enable calculation on the protected data. Since k-anonymity
has been demonstrated risky in practice (e.g., the re-identification attack on Netflix Prize dataset
[22]), and differential privacy introduces random noises to the dataset which eventually affects model
accuracy [10, 30], we consider they are not the ideal choice for our framework. Instead, we choose
a combination of cryptographic tools (i.e., MPC and HE, but mainly MPC) which allows multiple
parties to jointly compute a function depending on their private inputs while providing security
guarantees.

Choices of social recommendation model. In literature, many social recommendation models
have been proposed [8, 18, 27] using matrix factorization or neural networks. Existing MPC-based
neural network protocols [21, 29] usually suffer from accuracy loss and inefficiency due to their
approximation of non-linear operations. Especially for the case of social recommendation, training
data could exceed to millions, and this makes NN-based model a less ideal choice. Therefore, we
choose the classic social recommendation model, Soreg [18], as a typical example, and present how
to build a secure and efficient version of Soreg under cross-domain social recommendation scenario.

Dealing with sparse data in secure machine learning. One important property of social recom-
mendation data is its high sparsity. Take LibraryThing dataset [32] for example, its social matrix
density is less than 0.02%. Recently, Schoppmann et al. introduced the ROOM framework [26]
for secure computation over sparse data. However, their solution only works on column-sparse
or row-sparse data, and in addition, it requires secure matrix multiplication protocol (for instance,
based on Beaver’s multiplication triple). Chen et al. proposed a secure protocol for a sparse matrix
multiplies a dense matrix [6], which combines homomorphic encryption and secret sharing, but it
only works well when the dense matrix is small. Different from their work, in this paper, we propose
a PIR-based matrix multiplication which does not reply on pre-generated correlated randomness.

Our framework. In this paper, we propose S3Rec, a sparsity-aware secure cross-platform social
recommendation framework. Starting with the classic Soreg model, we observe that the training
process of Soreg involves two types of calculation terms: (1) the rating term which could be calculated
by P0 locally, and (2) the social term which needs to be calculated by P0 and P1 collaboratively.
Therefore, the key to S3Rec is designing secure and efficient protocols for calculating the social term.

To begin with, we first let both parties perform local calculation. Then both parties invoke a secure
social term calculation protocol and let P0 finally receive the plaintext social term, and update the
model accordingly. In this way, the security of our protocol relies significantly on the secure social
term calculation protocol (for simplicity, we refer this protocol as the ‘ST-MPC’ protocol), and we
propose a secure instantiation and prove its security. Similarly, the efficiency of S3Rec relies heavily
on the performance of ST-MPC, and at the core, it relies on the efficiency of a matrix multiplication
protocol. The naïve secure matrix multiplication protocol is traditionally evaluated through Beaver’s
triples [3], and has O(km2) asymptotic communication complexity, where k is the dimension of
latent factors and m is the number of users. To improve the communication efficiency, we propose
two secure sparse matrix multiplication protocols for ST-MPC, based on two sparsity settings: (1)
insensitive sparsity, which is a weaker variant of matrix multiplication where we assume both parties
know the locations of non-zero values in the sparse matrix, and (2) sensitive sparsity, which is
also a weaker variant of matrix multiplication, but stronger than (1), and we assume ‘only’ the
number of zeros is public. Nevertheless, we present secure constructions for MatrixMul in both
cases by leveraging two cryptography primitives called Private Information Retrieval (PIR) [1] and
Homomorphic Encryption (HE) [24]. PIR can hide the locations of the non-zero values in the sparse
matrix while HE enables additions and multiplications on ciphertexts. To this end, we drop the
communication complexity of secure MatrixMul to O(km) for the insensitive sparsity case and to
O(αkm) for the sensitive sparsity case, where α denotes the density of user social matrix.

Summary of our experimental results. We conduct experiments on two popularly used dataset,
i.e., Epinions [19] and LibraryThing [32]. The results demonstrate that (1) S3Rec achieves the same
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performance as existing social recommendation models, and (2) S3Rec improves the computation
time and communication size of the state-of-the-art (SeSoRec) by about 40× and 423× in average.

Contributions. We summarize our main contributions below: (1) We propose S3Rec, a privacy-
preserving cross-platform social recommendation framework, which relies on a general protocol
for calculating the social term securely; (2) We propose two secure sparse matrix multiplication
protocols based on different sparsity visibility, i.e., insensitive sparsity and sensitive sparsity. We
prove that both protocols are secure under semi-honest adversaries; and (3) We empirically evaluate
the performance of S3Rec on benchmark datasets.

2 Tools and Recommendation Model

Notation. We use [n] to denote the set {1, ..., n}, and |x| to denote the bit length of x. In terms of
MPC, we denote a secret shared value of x in ZN as JxK, where N is a positive integer. Also, we let
JxK0 denote P0’s share, and JxK1 denote P1’s share, where JxK = JxK0 + JxK1 ∈ ZN . We also use
← to denote the assignment of variables, e.g., x← 4.

2.1 Tools

In this section, we introduce several secure computation tools used in our work.

MatrixMul(X,Y)

(Offline) Generate km2 Beaver’s triples
1 : ∀xi,j ∈ X, P0 invokes Jxi,jK← Shr(xi,j)

2 : ∀yi,j ∈ Y, P1 invokes Jyi,jK← Shr(yi,j)

3 : foreach i ∈ [k], j ∈ [m], let Jzi,jK = 0,

4 : foreach a ∈ [m], b ∈ [m],

5 : JtmpK← Mul(Jxi,aK, Jyb,jK)
6 : Jzi,jK← Add(JtmpK, Jzi,jK)
7 : endfor

8 : endfor

9 : return JZK

Figure 1: Secure matrix multiplication protocol,
where Shr is a secret sharing algorithm.

Multi-Party Computation (MPC). MPC is a
cryptographic tool which enables multiple par-
ties (say, n parties) to jointly compute a function
f(x1, ..., xn), where xi is i-th party’s private in-
put. MPC protocols ensure that, at the end of
the protocol, parties eventually learn nothing but
their own input and the function output. MPC
has been widely-used in secure machine learn-
ing systems such as PrivColl [31] and CrypT-
Flow [15], most of which support a wide range
of linear (e.g. addition, multiplication) and non-
linear functions (e.g. equality test, comparison).
Here, we present three popular MPC protocols
(addition, multiplication, and matrix multiplica-
tion), which we will use later in our protocol,

Add(JxK, JyK): Take two shares as inputs from
both parties, Pb∈{0,1} locally calculate
and return JxKb + JyKb.

Mul(JxK, JyK): Take two shares as inputs from
both parties, then evaluate using
Beaver’s Triples [3].

Homomorphic Encryption (HE) scheme. HE is essentially a specific type of encryption scheme
which allows manipulation on encrypted data. More specifically, HE involves a key pair (pk, sk),
where the public key pk is used for encryption and the secret key sk is used for decryption. In this
work, we use an additive HE scheme (i.e., Paillier [24]) which allows the following operations:

Encpk(x)⊕ Encpk(y): addition between two ciphertexts, returns z = Encpk(x+ y);

Encpk(x)⊗ y: multiplication between a ciphertext and a plaintext, returns z = Encpk(x · y).

Private Information Retrieval (PIR). Now, we introduce single-server PIR [1]. In this setting, we
assume there is a server and a client, where the server holds a database DB = {d1, ..., dn} with n
elements, and the client wants to retrieve DBi while hiding the query index i from the server. Roughly,
a PIR protocol consists of a tuple of algorithm (PIR.Query,PIR.Response,PIR.Extract). First, the
client generates a query q ← PIR.Query(i) from an index i, and then sends query q to the server.
The server then is able to generate a response r ← PIR.Response(DB, q) based on the query and
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database DB, and returns r to the client. Finally, the client extracts the result from server’s response
DBi ← PIR.Extract(r).

Client Server

q ← PIR.Query(i) q

r r ← PIR.Response(DB, q)

DBi ← PIR.Extract(r)

Figure 2: An overview of Private Information Retrieval (PIR).

2.2 Recommendation model

Recall that we assume there are two platforms, a rating platform P0, and a social platform P1. We
assume P0 holds a private rating matrix R ∈ Rm×n, and P1 holds a private user social matrix
S ∈ Rm×m, where n and m denote the number of items and their common users, respectively. Also,
we denote the user latent factor matrix as U ∈ Rk×m and item latent factor matrix as V ∈ Rk×n,
where k is the dimension of latent factors. We further define an indication matrix I ∈ Rm×n, where
Ii,j denotes whether user i has rated item j.

Existing work [27] summarizes factorization based social recommendation models as the combination
of a “basic factorization model” and a “social information model”. To date, different kinds of social
information models have been proposed [18, 14], and their common intuition is that users with social
relations tend to have similar preferences. In this work, we focus on the classic social recommendation
model, i.e., Soreg [18], which aims to learn U and V by minimizing the following objective function,
m∑
i=1

n∑
j=1

1

2
Ii,j
(
ri,j − u∗,iT v∗,j

)2
+
λ

2

m∑
i=1

‖u∗,i‖2F +
λ

2

n∑
j=1

‖v∗,j‖2F +
γ

2

m∑
i=1

m∑
f=1

si,f‖u∗,i−u∗,f‖2F ,

(1)
where the first term is the basic factorization model, the last term is the social information model, and
the middle two terms are regularizers, ‖ · ‖2F is the Frobenius norm, λ and γ are hyper-parameters. If
we denote D ∈ Rm×m as a diagonal matrix with diagonal element db =

∑m
c=1 sb,c and E ∈ Rm×m

as a diagonal matrix with diagonal element ei =
∑m

b=1 sb,i. The gradients of L in Eq. (1) with
respect to U and V are,

∂L
∂U

= −V
((

R− UT V
)T
◦ I
)
+ λU︸ ︷︷ ︸

Rating term: computed byP0 locally

+
γ

2
U(DT + ET )− γUST︸ ︷︷ ︸

Social term: computed byP0 and P1 collaboratively

, (2)

∂L
∂V

= −U
((

R− UT V
)T
◦ I
)
+ λV︸ ︷︷ ︸

Rating term: computed byP0 locally

. (3)

3 Framework

We summarize our proposed S3Rec framework in Figure 3. To begin with, we assume that party
P0 holds the rating matrix R and P1 holds the social matrix S. At first, P0 randomly initializes
U←$Rk×m and V←$Rk×n. Then, for each iteration (while the model dose not coverage), we let
P0 and P1 jointly evaluate the social term defined in Eq 2. P0 then locally calculates the rating term
in Eq 2 and Eq 3, as well as ∂L/∂U and ∂L/∂V. Party P0 then locally updates U and V accordingly
and ends the iteration.

Communication efficiency. In our framework, the only communication between two parties occurs
in the ST-MPC protocol. Since we choose additive secret sharing, the Add protocol contains only
local computation, we claim that the communication efficiency of S3Rec significantly relies on
the efficiency of matrix multiplication protocol. We give a popular MatrixMul protocol in Figure
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Global Parameter: Regularization strength γ, and learning rate θ.
Input: Private rating matrix R from platform P0, private user social matrix S from platform P1.
Output: Platform P0 receives the user latent matrix U and item latent matrix V.

1 : Platform P0 initializes U and V,
2 : while not coverage,
3 : P0 and P1 securely calculate the social term←
4 : P0 locally computes the rating terms
5 : P0 locally updates U by U← U− θ · ∂L/∂U
6 : P0 locally updates V by V← V− θ · ∂L/∂V
7 : endwhile

8 : return U and V to platform P0

ST-MPC(γ,U,D,E,S)

1 : JR0K← MatrixMul(γU/2,DT + ET )

2 : JR1K← MatrixMul(−γU, ST )
3 : JRK← Add(JR0K, JR1K)
4 : return Rec(JRK) to P0

Figure 3: Our proposed S3Rec framework, where MatrixMul stands for secure matrix multiplication
protocol, Add stands for secure add protocol, Rec stands for reconstruction protocol for secret sharing.

1 and analyze its efficiency in our framework. The protocol in Figure 1 requires km2 log2N bit
online communication, where m is the number of users and k is the dimension of latent factors. As
for the usual case where the number of users is ≈ 104, k = 10, and logN = 64, one invocation of
MatrixMul protocol would have a total communication of around 7.4GB. Considering 100 iterations
of our framework, this leads to ≈ 1491GB communication, which is impractical. Fortunately, the
social matrices (D, E, and S) are highly sparse in social recommendation. In the following section,
we propose a PIR-based sparse matrix multiplication protocol with better communication efficiency.

3.1 Secure sparse matrix multiplication

Essentially, any matrix could be represented by a value vector and a location vector, where the value
vector contains all non-zero values and the location vector contains locations of those values. That is,
a sparse matrix Y ∈ Rm×m can be represented by a pair of vectors (ly ∈ Nt

m2 , vy ∈ Rt), where t is
the number of non-zero values in Y.

Tx(i)

Ty(j)

xi,∗filter with ly

filter with ly
yj,∗

P0

P1

Tx

Ty

Many Mul()
and Add()

Figure 4: Matrix multiplication
with insensitive sparsity.

Dense-sparse matrix multiplication. Considering the case
where X ∈ Rk×m is the dense matrix from P0 and Y ∈ Rm×m

is the sparse matrix from P1. Now we consider the following
two cases.

Case 1: insensitive sparsity, i.e., insensitive ly and sensitive
vy. This refers to the case where the locations of zero values
are public or contain no sensitive information. Take the social
matrices (D and E) for example, both of them are diagonal, and
thus the location vector is insensitive while the value vector is
still sensitive.

Our protocol mainly works as follows. First, P0 and P1 parse X
and Y into two tables Tx and Ty separately, where the value set
of each bin in Tx is a subset of one row in X, that is, Tx(i) ⊆
xi,∗. Similarly, bin set in Ty is a subset of one column in Y,
Ty(i) ⊆ y∗,i. The intuition behind is to use bins to contain only
the necessary values needed to calculate the output value (which means filter out the zero multiplies
in each bin). Take the first bin for example (that is, Tx(0) and Ty(0)), for j ∈ [m], Tx(0) contains
all x0,j where yj,0 is a non-zero value, and Ty(0) contains all non-zero yj,0. In order to get the final
result, we perform the secure inner product protocol on Tx(0) and Ty(0), and denote the result as
Jz0,0K. We show the high level idea in Figure 4. By doing this, our protocol concretely consumes
k|ly| Beaver’s triples and therefore has O(k|ly|) online communication complexity. Figure 5 shows
the technical details of our proposed protocol for case 1. For Line 1 in ST-MPC (Figure 3), clearly
both parties know that D and E are diagonal matrices, that is, |ly| = m. Therefore, our proposed
protocol in Figure 4 can drop the complexity from O(km2) to O(km).
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MatrixMul(X,Y) with insensitive sparsity

(Offline) Generate km2 Beaver’s triples
1 : ∀(i, j) ∈ ly, P1 pushes yi,j into Ty(j)
2 : for j ∈ [k] do

3 : P1 lets Ty = ∅
4 : ∀a ∈ [m], b ∈ [m], if (i, a) ∈ ly, P0 pushes xa,b into Tx(a)
5 : for j ∈ [m] do

6 : Both parties let Jzi,jK = 0, then, for all values v ∈ Tx(i), u ∈ Ty(j)
7 : P0 invokes JvK← Shr(v), P1 invokes JvK← Shr(u)

8 : Jzi,jK = Add(Mul(JvK, JuK), Jzi,jK)
9 : endfor

10 : endfor

MatrixMul(X,Y) with sensitive sparsity

(Offline) P0 generates an additive HE key pair (pk, sk) , then sends pk to P1

1 : ∀i ∈ [k], j ∈ [m], P0 lets ei,j = Enc(pk, xi,j), and lets E be the encrypted matrix
2 : ∀(i, j) ∈ ly, P1 pushes yi,j into Ty(j), also, P1 invokes qi,j ← PIR.Query(i+ jk)

3 : P1 sends the query set (denoted as q) to P0

4 : ∀qi,j ∈ q, P0 invokes ri,j ← PIR.Response(E, qi,j).
5 : P0 sends the response set (denoted as r) to P1

6 : ∀ri,j ∈ r, P1 invokes ei,j ← PIR.Extract(ri,j) and pushes ei,j to T ′
e(i)

7 : for i ∈ [k], j ∈ [m] do

8 : P0 lets βi,j = Encpk(0)

9 : ∀v ∈ T ′
e(i), u ∈ Ty(j), P0 invokes βi,j = v ⊗ u⊕ βi,j

10 : P0 samples random numbers gi,j ←$Zδ, then letsβi,j = gi,j ⊕ βi,j
11 : P0 sends βi,j to P1, then letsJzi,jK0 = −gi,j
12 : endfor

13 : P0decrypts all receving messages and lets Jzi,jK1 = Decsk(βi,j)

14 : return JZK

Figure 5: Dense-sparse MatrixMul(X,Y) with insensitive and sensitive sparsity protocols, where we
have X ∈ Rk×m,Y ∈ Rm×m.

Lemma 1. The first protocol in Figure 5 is secure against semi-honest adversary if we assume the
existence of secure addition and multiplication semi-honest MPC protocols.

Proof. Please find the proof in the Technical Appendix.

Case 2: sensitive sparsity, i.e., sensitive ly and sensitive vy. For a more general case, where both
the location vector and the value vector contain sensitive information. Take the social matrix S for
instance, its location vector indicates the existence of a social relation between two users, its value
vector further shows the strength of their relation, and both of which are sensitive.

In this case, both the dense matrix X and the entire sparse matrix Y are sensitive. Following the idea in
case 1, the matrix multiplication protocol should first generate Tx, Ty according to vx, vy and ly , and
then perform the inner product multiplication for each aligned bins in Tx, Ty . Still, P1 can generate
Ty according to its own inputs vy, ly. However, P0 cannot generate Tx directly, since vx is kept by
itself while ly is held by P1. We make a communication and computation trade-off by leveraging PIR
techniques, and as a result, our PIR-based approach has lower concrete communication, and overall
is faster than the baseline protocol.

We show the high-level idea of our PIR-based protocol in Figure 6. The intuition behind is to let P1

obliviously filter each bin in Tx since both value vector and location vector are sensitive. In summary,
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first P0 encrypts all the values in Tx, the encrypted table is denoted as Te. Then P1 and P0 invoke PIR
protocol, where P0 acts as server and sets Te as PIR database, P1 acts as client and parses ly to many
PIR queries. At the end of PIR protocol, P1 receives the encrypted and filtered table T ′e. Afterwards
P1 performs secure inner product evaluation. By doing this, the communication complexity drops
from O(km2) to O(αkm), compared with the simple solution. The details of our protocol are shown
in Figure 5. For Line 2 in ST-MPC (Figure 3), the social matrix (S) is sparse in nature, and thus our
proposed protocol in Figure 6 can significantly improve its efficiency. In summary, with our proposed
two secure MatrixMul protocols, one can securely calculate the social term efficiently. For instance,
again considering the social recommendation with ≈ 104 users, our proposal only requires a total of
≈ 3.6GB communication for each iteration.

Lemma 2. The second protocol in Figure 5 is secure against semi-honest adversary with the leakage
of |ly| if we assume the existence of a secure PIR protocol.

Proof. Please find the proof in the Technical Appendix.

3.2 Security discussions of the social term

Ty(j)

filter with ly yj,∗

P0

P1

Ty

encrypt matrix E← Enc(X)

T ′e(i)T ′e

PIR

ly

Many ⊕ and ⊗

Figure 6: Matrix multiplication
with sensitive sparsity.

In S3Rec, two parties jointly calculate the social term γU(DT +

ET )/2 − γUST and then reveal the social term to P0 (see
Eq. (2)). The security of S3Rec relies on whether P0 can resolve
the social matrix ST given its own inputs U and the social term.
We claim that this is difficult because, the number of equations
T (#epoch, 100 in our experiments) is much smaller than that of
the variables n (#user, much more than 100 in practice), which
indicates that there are infinite solutions for this. In practice,
T < n can be easily satisfied for both the social platform
and the rating platform. The reasons are two-folds. First, our
proposed framework is secure against a semi-honest adversary
(which is a popular threat model in the secure computation
literature), i.e., both platforms will strictly follow the protocol
execution. Second, the number of items whose size/scale is
usually large and publicly-known in practice. Therefore, both
platforms can agree on an iteration number T such that T < n,
before running our proposed framework. Each platform can shut down the program if it reaches the
pre-defined number of iterations. Moreover, the reveal of the social term to P0 could be avoided by
taking the whole model training procedure as an MPC functionality and designing a complicated
protocol for it. Inevitably, such protocol introduces impractical communication costs, and we leave
how to solve this efficiently as a future work.

4 Experiments

Our experiments intend to answer the following questions. Q1: How do the social recommendation
models using both rating data on P0 and social data on P1 outperform the model that only uses rating
data on P0 (Section 4)? Q2: How does our model perform compared with SeSoRec (Section 4)? Q3:
How does the social data sparsity affect the performance of SeSoRec and our model (Section 4)?

Implementation and setup. We run our experiments on a machine with 4-Core 2.4GHz Intel Core
i5 with 16G memory, we compile our program using a modern C++ compiler (with support for C++
standard 17). In addition, our tests were run in a local network, with ≈ 3ms network latency. For
additive HE scheme, we choose the implementation of libpaillier1. Also, we use Seal-PIR2 with same
parameter setting as the original paper [1]. For security, we choose 128-bit computational security
and 40-bit statistical security as recommended by NIST [2]. Similarly we leverage the generic ABY
library3 to implement SeSoRec [5] and MPC building blocks such as addition, multiplication, and
truncation. In particular, we choose 64-bit secret sharing in all our experiments.

1libpaillier: http://acsc.cs.utexas.edu/libpaillier/, GPL license
2Seal-PIR: https://github.com/microsoft/SealPIR, MIT license
3ABY: https://github.com/encryptogroup/ABY, LGPL license
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Dataset. We choose two popular benchmark datasets to evaluate the performance of our proposed
model, i.e., Epinions [19] and LibraryThing (Lthing) [32], both of which are popularly used for
evaluating social recommendation tasks. Following existing work [5], we remove the users and items
that have less than 15 interactions for both datasets. We summarize the statistics of both datasets after
process in Table 1. Notice that we assume users’ rating data are located at P0, users’ social data are
located at P1, and P0 and P1 share the same user set.

Table 1: Dataset statistics.

Dataset #user #item #rating rating density #social relation social density

Epinions 11,500 7,596 283,319 0.32% 275,117 0.21%
Lthing 15,039 14,957 529,992 0.24% 44,710 0.02%

Comparison Methods. We compare S3Rec with the following classic and state-of-the-art models:

– MF [20] is a classic matrix factorization model that only uses rating data on P0, i.e., when γ = 0
for S3Rec.

– Soreg [18] is a classic social recommendation model, which does not consider data privacy and
assumes both rating data and social data are available on P0.

– SeSoRec [5] tries to solve the privacy-preserving cross-platform social recommendation problem,
but suffers from security and efficiency problem.

Hyper-parameters. For all the model, during comparison, we set k = 10. We tune learning rate θ
and regularizer parameter λ in {10−3, 10−2, ..., 101} to achieve their best values. We also report the
effect of K on model performance.

Metrics. We will evaluate both accuracy and efficiency of our proposed model. For accuracy, we
choose Root Mean Square Error (RMSE) as the evaluation metric, since ratings range in [0, 5]. For
efficiency, we report the computation time (in seconds) and the communication size between P0 and
P1 (in gigabytes), if has, for all the models. We use five-fold cross-validation during experiments.

Performance Comparison. We first compare the model performances in terms of accuracy (RMSE)
and efficiency (total time and communication). Table 2 shows the time and communication for each
epoch, where time is shown in seconds, and communication is shown in GB.

From those Tables, we find that: (1) the use of social information can indeed improve the recom-
mendation performance of the rating platform, e.g., 1.193 vs. 1.062 and 0.927 vs. 0.098 in terms of
RMSE on Epinions and Lthing, respectively. This result is consistent with existing work from [18, 5];
(2) despite the same RMSE as SeSoRec and Soreg, S3Rec significantly improves the efficiency of
SeSoRec, especially on the more sparse Lthing dataset, reducing the total time for one epoch from
around 4.5 hours to around 4.5 minutes, and reducing the total communication from nearly 1.3TB to
around 2.2GB. This yields an improvement of 18.57× faster, and 224.8× less communication on
Epinions and 61.37× faster and 620.2× less communication on Lthing, respectively.

Effect of Social Data Sparsity. Next, we try to study the effect of social data sparsity on training
efficiency. In order to do this, we sample the social relation of both datasets with a rate of 0.8,
0.6, and 0.4. As the result, the RMSEs of both SeSoRec and S3Rec decrease to 1.0932, 1.1373,
1.1751 on Epinions dataset, and 0.9112, 0.9187, 0.9210 on Lthing dataset. The rational behind is
that recommendation performance decreases with the number of social relations. We also report the
efficiency of both models on Epinions and Lthing datasets in Table 3. From it, we can find that the
computation time and communication size of SeSoRec are constant no mater what the sample rate is.
In contrast, the computation time and communication size of S3Rec decrease linearly with sample
rate. This result benefits from that S3Rec can deal with sparse social data with our proposed sparse
matrix multiplication protocols.

Effect of k. For efficiency, we report the running time and communication size of SeSoRec and
PriorRec w.r.t k in Table 4, where we use the Epinions dataset. From it, we can get that in average,
S3Rec improves SeSoRec 18.6x in terms of total running time and 225x in terms of communication.
More specifically, we observe that (1) the total running time of both SeSoRec and PriorRec increase
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Table 2: Comparison results of different models in terms of model accuracy (in RMSE), running time
(in seconds), and communication size (in GB), on Epinions and Lthing datasets.

Models Epinions dataset Lthing dataset
MF Soreg SeSoRec S3Rec MF Soreg SeSoRec S3Rec

RMSE 1.193 1.062 1.062 1.062 0.927 0.908 0.908 0.908
Offline Time - - 7,271 10.86 - - 14,450 8.912
Total Time 3.846 40.50 7,799 419.9 9.596 57.76 16,084 262.1

Offline Comm. - - 788.3 0 - - 1,348 0
Total Comm. - - 798.6 3.552 - - 1,365 2.201

Table 3: Comparison results by varying social data sparsity on Epinions and Lthing datasets.

Metric Models Epinions Lthing
0.4 0.6 0.8 0.4 0.6 0.8

Total time
(Seconds)

SesoRec 7,799 7,799 7,799 16,084 16,084 16,084
S3Rec 366.3 381.2 401.8 194 217 238

(Improvement) (21.29x) (20.46x) (19.41x) (82.91x) (74.12x) (67.58x)

Total communication
(GB)

SesoRec 798 798 798 1,366 1,366 1,366
S3Rec 3.12 3.29 3.46 1.62 1.82 2.01

(Improvement) (255x) (243x) (231x) (843x) (751x) (680x)

Table 4: Effect of k on running time and communication size on Epinions dataset.

Models SeSoRec S3Rec
k = 10 k = 15 k = 20 k = 10 k = 15 k = 20

Offline Time 7,271 12,651 17,676 10.86 9.667 9.815
Total Time 7,799 13,565 19,585 419.9 449.6 527.4

Offline Comm. 788.3 1,182 1,577 0 0 0.
Total Comm. 798.6 1,198 1,597 3.552 3.552 3.552

with k, but the increase rate of S3Rec is slower than that of SeSoRec; (2) the communication size
of SeSoRec increases with k, in contrast, the communication size of S3Rec is constant. This result
demonstrates that our proposed S3Rec has better scalability than SeSoRec in terms of both running
time and communication size.

5 Related Work

Traditional recommender systems that only consider user-item rating information suffer from severe
data sparsity problem [20]. On the one hand, researchers extensively incorporate other kinds of infor-
mation, e.g., social [27], review [25], location [16], and time [7], to further improve recommendation
performance. On the other hand, existing studies begin to explore information on multiple platforms
or domains to address the data sparsity problem in recommender systems, i.e., cross-platform and
cross-domain recommendation [17, 34, 33]. However, most of them cannot solve the data isolation
problem in practice.

So far, there has been several work that may be applied for privacy-preserving cross-domain recom-
mendations. For example, [23] applied garbled circuits for secure matrix factorization, and it has
high security but low efficiency. Chai et al. [4] adopted homomorphic encryption for federated matrix
factorization, but it assumes the existence of a semi-honest server and is not provable secure. [13]
uses differential privacy to protect user location privacy using transfer learning technique, which is not
provable secure and does not suitable to our problem. The most similar work to ours is SeSoRec [5],
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however, it suffers from two main shortcomings: (1) as admitted by SeSoRec, it improves efficiency
by sacrificing security. That is, it reveals the sum of two rows or two columns of the input matrix.
We emphasis that this raises serious security concern in the social recommendation since one may
infer detailed social relations from the element-wise sum of two rows/columns of the user social
matrix, especially when social relations are binary values; (2) SeSoRec treats the social data as a
dense matrix and thus still has serious efficiency issue under the practical sparse social data setting.

6 Conclusion

This paper aims to solve the data isolation problem in cross-platform social recommendation. To do
this, we propose S3Rec, a sparsity-aware secure cross-platform social recommendation framework.
S3Rec conducts social recommendation task and preserves data privacy at the same time. We also
propose two secure sparse matrix multiplication protocols to improve the model training efficiency.
Experiments conducted on two datasets demonstrate that S3Rec improves the computation time and
communication size by around 40× and 423× on average, compared with the state-of-the-art work.
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