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Abstract
Scientific taxonomy plays a crucial role in organizing and
structuring scientific knowledge across various fields like
Medical Science and Computer Science. With the rapid ad-
vancement of scientific research and the emergence of new
scientific concepts, people have also sought to automatically
populate an existing taxonomy. Entity set expansion, taxon-
omy expansion, and seed-guided taxonomy construction are
three representative tasks that can be applied to automatic
taxonomy construction. Previous studies view them as three
separate tasks. Therefore, their proposed techniques usually
work for one specific task only, lacking generalizability and
a holistic perspective. In this paper, we aim at a unified so-
lution to the three tasks. To be specific, we identify two
common skills needed for entity set expansion, taxonomy
expansion, and seed-guided taxonomy construction: finding
“siblings” and finding “parents”. We propose a taxonomy-
guided instruction tuning framework to teach a large lan-
guage model to generate siblings and parents for query enti-
ties, where the joint pre-training process facilitates the mutual
enhancement of the two skills. Extensive experiments on mul-
tiple benchmark datasets demonstrate the efficacy of our pro-
posed TAXOINSTRUCT framework, which outperforms task-
specific baselines across all three tasks.

Introduction
Entities play a fundamental role in text mining and nat-
ural language processing, benefiting a wide spectrum of
tasks such as semantic search (Shen et al. 2018b), ques-
tion answering (Christmann, Saha Roy, and Weikum 2022),
and text generation (Li et al. 2021). In scientific research,
to better describe the semantics of scientific entities, tax-
onomies are constructed in various fields, including Medical
Science (Coletti and Bleich 2001), Environment (Bordea,
Lefever, and Buitelaar 2016), and Computer Science (Shen
et al. 2018a), to characterize the parent-child relationship be-
tween entities. In many cases, taxonomies are initially cu-
rated by domain experts. However, because of the constant
and rapid emergence of novel concepts, automatically en-
riching a taxonomy with new entities becomes necessary to
ensure its freshness and completeness. To this end, previous
studies have considered three representative tasks for incor-
porating new entities into existing knowledge.
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(1) Entity Set Expansion (Wang and Cohen 2007; Rong
et al. 2016; Shen et al. 2017): Given a set of entities be-
longing to a certain semantic class, the task is to find more
entities also in that class. For example, if there are seed en-
tities {Database, Information Retrieval, Operating System},
an entity set expansion algorithm should return other com-
puter science subfields such as Data Mining and Human-
Computer Interaction. From the taxonomy perspective, this
task can be viewed as finding “siblings” of existing entities.

(2) Taxonomy Expansion (Shen et al. 2020b; Yu et al. 2020;
Zeng et al. 2021): The task aims to insert a provided new
entity into an existing taxonomy by finding its most suit-
able “parents”. For instance, suppose the existing taxonomy
has the root node Scientific Fields and its children Computer
Science, Mathematics, Physics, and Chemistry. Given a new
concept Data Mining, a taxonomy expansion model should
put it as a child of Computer Science.

(3) Seed-Guided Taxonomy Construction (Shen et al.
2018a): Given a seed taxonomy with a small number of en-
tities, the task is to construct a more comprehensive taxon-
omy containing the seed taxonomy. For example, if the in-
put includes Computer Science, Chemistry, and several of
their subfields (e.g., Data Mining and Organic Chemistry),
the expected output should be a taxonomy containing more
scientific fields (e.g., Mathematics and Physics) and sub-
fields (e.g., Database, Algebra, and Astrophysics), with their
parent-child edges specified. To approach this problem, we
can first discover new entities at each layer and then fig-
ure out the parent-child edges between entities from adja-
cent layers. Essentially, this can be viewed as pipelining the
steps of finding “siblings” and finding “parents”.

As we can clearly see, all the three aforementioned tasks
can be cast as finding entities that have a specific type of
relationship with the given entities: entity set expansion can
be viewed as finding “siblings”; taxonomy expansion relies
on finding “parents”; seed-guided taxonomy construction is
a combination of both. However, existing studies always
focus on one of the three tasks and propose task-specific
techniques, with less concern for their commonalities. In-
tuitively, finding “siblings” and finding “parents” can mutu-
ally benefit each other. For instance, knowing that Data Min-
ing has siblings Database and Information Retrieval helps
us predict the parent of Data Mining to be Computer Sci-
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Figure 1: Illustrations of the three tasks.

ence, and vice versa. Once the accuracies of sibling predic-
tion and parent prediction are both improved, by taking them
as building blocks, the three tasks can be better solved in a
holistic and unified way.
Contributions. Inspired by the idea above, in this paper,
we aim at a unified framework to tackle entity set expan-
sion, taxonomy expansion, and seed-guided taxonomy con-
struction simultaneously. To be specific, we leverage ex-
isting taxonomies (e.g., the Comparative Toxicogenomics
Database (Davis et al. 2022)) as rich sources of sibling-
sibling and parent-child relationships to pre-train a model
for sibling finding and parent finding. The pre-trained model
can be further fine-tuned on domain-specific data (e.g.,
parent-child pairs in the input taxonomy for the taxonomy
expansion task) to perform downstream tasks. To imple-
ment this framework, we exploit the ability of large language
models (LLMs) (Achiam et al. 2023; Touvron et al. 2023) to
follow human instructions (Wei et al. 2022; Ouyang et al.
2022). Our proposed TAXOINSTRUCT framework utilizes
task-specific instructions to teach an LLM the skills of gen-
erating sibling entities and the parent entity for one or more
query entities. The joint pre-training process facilitates the
mutual enhancement of the two skills.

To examine the efficacy of TAXOINSTRUCT, we con-
duct comprehensive experiments on 4 scientific domain and
2 general domain benchmark datasets of entity set expan-
sion, taxonomy expansion, and seed-guided taxonomy con-
struction. Experimental results demonstrate that TAXOIN-
STRUCT, as a unified framework, significantly outperforms
competitive task-specific baselines in all three tasks. We also
analyze the performance of TAXOINSTRUCT when different
LLM backbones are plugged in, demonstrating that the ef-
fectiveness of TAXOINSTRUCT is generic and does not reply
on a specific choice of the LLM.

Problem Definition
In this section, we formally introduce the three representa-
tive tasks for populating a taxonomy with new entities.
Entity Set Expansion. As shown in Figure 1(a), given a few
example entities (also known as “seeds”), the entity set ex-
pansion task (Wang and Cohen 2007; Rong et al. 2016; Shen
et al. 2017) aims to find a set of “sibling” entities that belong
to the same semantic class as the seeds. Formally, we have
the following task definition.

Definition 1 (Entity Set Expansion) Given a small set of
seed entities S = {s1, s2, ..., sM}, the task is to dis-
cover more entities S+ = {sM+1, sM+2, ..., sM+N}, where
s1, s2, ..., sM+N fall into the same semantic category.

Taxonomy Expansion. As shown in Figure 1(b), given an
existing taxonomy and a set of new entities, taxonomy ex-
pansion (Shen et al. 2020b; Yu et al. 2020; Zeng et al. 2021)
aims at inserting the new entities into the taxonomy. This
process is facilitated by finding a proper “parent” node in
the existing taxonomy for each new entity. Formally,

Definition 2 (Taxonomy Expansion) Given an existing tax-
onomy T (which contains a set of entities S and the parent-
child relationship between the entities Parent(·) : S →
S ∪ {ROOT}) and a set of new entities S+, the task is to
expand the taxonomy to a more complete one T + with enti-
ties S ∪ S+ and the parent-child relationship Parent+(·) :
S ∪ S+ → S ∪ {ROOT}.

Seed-Guided Taxonomy Construction. As shown in Fig-
ure 1(c), seed-guided taxonomy construction (Shen et al.
2018a) deals with the case where we need to first find a set
of new entities to be inserted to the taxonomy and then find
the proper parent node for each new entity.

Definition 3 (Seed-Guided Taxonomy Construction) Given
a small set of seeds that form a tree structure T =
(S0,S1, ...,SL), where S0 = {sROOT} contains the root
node, Sl (1 ≤ l ≤ L) denotes the set of seeds at layer l, and
the parent-child relationship is characterized by a mapping
function Parent(·) : Sl → Sl−1, the task aims to discover
more entities at each level (denoted by the sets S+

1 , ...,S+
L ,

where entities in Sl and S+
l belong to the same semantic

class) and predict their parent-child relationship (charac-
terized by Parent+(·) : Sl ∪ S+

l → Sl−1 ∪ S+
l−1).

We need to clarify two key differences between taxonomy
expansion (Definition 2) and seed-guided taxonomy con-
struction (Definition 3): First, taxonomy expansion assumes
that the new entities to be inserted into the existing taxon-
omy are already given, while seed-guided taxonomy con-
struction needs to discover these new entities first. In other
words, taxonomy expansion mainly focuses on the task of
finding “parents”, whereas seed-guided taxonomy construc-
tion aims to first predict “siblings” and then predict “par-
ents”. Second, because seed-guided taxonomy construction



finds new entities that share the same semantic granularity
with the seeds at each layer, it can only make the taxonomy
“wider” but not “deeper”. By contrast, taxonomy expansion
can enrich the taxonomy with entities that are more fine-
grained than any input seeds.

The TAXOINSTRUCT Framework
According to the definitions of the three tasks, we notice that
they can be reduced to two key challenges – finding “sib-
lings” and finding “parents”. Entity set expansion relies on
the former; taxonomy expansion relies on the latter; seed-
guided taxonomy construction can be viewed as a pipeline
of both. Inspired by this, we aim to train a unified model that
simultaneously supports these two skills (therefore facili-
tates all three tasks). To implement this idea, in this section,
we propose TAXOINSTRUCT, a unified taxonomy-guided in-
struction tuning framework.

Instruction Tuning for Entity Set Expansion
Given a set of seeds S = {s1, s2, ..., sM} belonging to
the same semantic class, the entity set expansion task en-
forces two restrictions on the expanded entities S+ =
{sM+1, sM+2, ..., sM+N}. First, sM+n (1 ≤ n ≤ N) can
be classified into the same category as s1, s2, ..., sM . For
example, in Figure 1(a), both Heart Enlargement and Ar-
rhythmia can be classified into the category Heart Disease.
Second, sM+n must also share the same granularity with
s1, s2, ..., sM . For example, although Congenital Heart De-
fect belongs to Heart Disease as well, it should not be ex-
panded in Figure 1(a) because it is more fine-grained than
the seed Heart Defect. These two restrictions are inherently
describing the concept of “siblings” in a taxonomy, since
“siblings” share the same parent and reside in the same level.

Inspired by this, we formulate the entity set expansion
task (from a taxonomy perspective) as finding other siblings
of the seed entities. We approach this problem by unleashing
LLMs’ power of following task-specific instructions (Wei
et al. 2022; Ouyang et al. 2022; Wang et al. 2023b). Briefly,
given a set of INPUT entities S = {s1, s2, ..., sM} that share
the same parent node Parent(S), we INSTRUCT an LLM
(e.g., Llama-3 8B1) to generate more children of Parent(S)
in its RESPONSE.

Nevertheless, the parent entity Parent(S) is not available
in the standard entity set expansion task (Rong et al. 2016;
Shen et al. 2017; Yu et al. 2019). Thus, we first prompt the
LLM to generate the parent entity for the seed set S. Fol-
lowing the (INSTRUCTION, INPUT, RESPONSE) schema of
Llama-3, we form the instruction as follows:

INSTRUCTION: Given a list of entities, output the most
likely parent class for the entity given by user.

INPUT: Find the parent class for {s1, s2, ..., sM}.

RESPONSE: The parent class is

The generated parent entity Parent(S) is then used to
guide the expansion process. Because entity set expansion
normally contains a very small number of (e.g., 3) seed en-
tities, it is hard to get sufficient self-supervision from the

1https://huggingface.co/meta-llama/Meta-Llama-3-8B

seeds for further fine-tuning. Therefore, we directly perform
inference by leveraging the following instruction:

INSTRUCTION: Given a category and an entity set belong-
ing to this category, output other entities belonging to this
category and sharing the same granularity as the seeds.

INPUT: Find other entities belonging to the category
Parent(S) and sharing the same granularity as the seeds
{s1, s2, ..., sM}.

RESPONSE: The expanded entities are

The LLM will generate a set of expanded entities, which
we denote as R = {r1, r2, ..., rK}. After that, we perform
a ranking step to sort these entities. To be specific, we use
a moderate-size auxiliary pre-trained language model (e.g.,
BERT (Devlin et al. 2019)) to compute the similarity score
between each generated entity r ∈ R and Parent(S):

sim(r,Parent(S)) = cos
(
PLM(r),PLM(Parent(S))

)
, (1)

where PLM(·) is the average output token embedding after
feeding the entity name into the moderate-size auxiliary pre-
trained language model. All entities in R are then ranked ac-
cording to sim(·,Parent(S)). Afterwards, we add the top-κ
entities (κ = 3 in TAXOINSTRUCT) expanded in the first it-
eration back to the seed entity list S and rerun the expansion
process with the enriched seed set. This process can be con-
ducted iteratively, following the common practice of previ-
ous entity set expansion algorithms (Shen et al. 2017; Zhang
et al. 2020). After the final iteration, we rank all seeds and
expanded entities (except the original seeds which should
not appear in the output) according to sim(·,Parent(S)) and
obtain a list, S+, of expanded entities.

Instruction Tuning for Taxonomy Expansion
Taxonomy expansion is a parent-finding task. Given a IN-
PUT entity sq ∈ S+, we INSTRUCT an LLM to identify the
correct parent node Parent(sq) from a provided list of can-
didates S = {s1, s2, ..., sM} (i.e., entities in the existing tax-
onomy). We form the (INSTRUCTION, INPUT, RESPONSE)
schema as follows:

INSTRUCTION: Given a set of candidate parent classes and
an entity, output the most likely parent class for the entity
given by user.

INPUT: Given candidate parents {s1, s2, ..., sM}, find the
parent class for sq .

RESPONSE: The parent class is

In practice, however, the input taxonomy may contain tens of
thousands of entities (Shen et al. 2020b; Zeng et al. 2021). If
we include all of them as candidates and put them into the in-
struction, the LLM may be overwhelmed by the overly large
label space and can hardly follow the instruction. To tackle
this problem, we utilize a moderate-size auxiliary language
model (e.g., BERT (Devlin et al. 2019)) to first retrieve a set
of candidates from the taxonomy and thus reduce the label
space for the LLM. More specifically, given the query sq , we
select top-U (e.g., U = 20) entities Uq ⊆ S with the highest
similarity to sq .



Uq = arg max
U⊆S,|U|=U

∑
s∈U

cos
(
PLM(sq),PLM(s)

)
, (2)

where PLM(·) has the same meaning as in Eq. (1). The re-
trieved subset Uq will replace the entire candidate list in the
INPUT.

Since the input taxonomy contains rich (parent, child) en-
tity pairs, we exploit them to fine-tune the LLM so that it
better understands the parent-child relationship and domain
knowledge. To be specific, given a node si in the input tax-
onomy and its parent Parent(si), we construct training data
in two different ways:
Distinguishing the parent from its siblings: We take the sib-
lings of Parent(si) as candidates and fine-tune the LLM
to identify the true parent Parent(si) from {Parent(si)} ∪
Sibling(Parent(si)).
Distinguishing the parent from semantically similar entities:
We use Eq. (2) to find the set of top-U entities Ui that are
closest to si. Then, the LLM needs to identify the true
parent Parent(si) from the candidates {Parent(si)} ∪ Ui.

Because the candidates will be sequential in the instruc-
tion, to mitigate potential effects of their order, we ran-
domly shuffle the candidate list (i.e., either {Parent(si)} ∪
Sibling(Parent(si)) or {Parent(si)} ∪ Ui) V times. Each
shuffled list Vi,j will be used to construct an individual tu-
ple of (INSTRUCTION, INPUT, RESPONSE) to fine-tune the
LLM. Formally, we have:

INSTRUCTION: Given a set of candidate parent classes and
an entity, output the most likely parent class for the entity
given by user.

INPUT: Given candidate parents Vi,j , find the parent class
for si.

RESPONSE: The parent class is
The LLM is fine-tuned via maximizing the following objec-
tive function (i.e., the log-likelihood to generate the correct
parent entity):
M∑
i=1

V∑
j=1

log Pr(Parent(si) | INSTRUCTION, INPUT, RESPONSE ).

(3)

Instruction Tuning for Seed-Guided Taxonomy
Construction
According to Definition 3, seed-guided taxonomy construc-
tion can be naturally divided into two subtasks: (1) expand-
ing the entity set at each layer to discover new entities (i.e.,
finding “siblings” and “cousins”2) and (2) expanding the
taxonomy by finding the proper “parent” for each new en-
tity. These two subtasks bear similarity with entity set ex-
pansion and taxonomy expansion, respectively. Therefore,
we can adopt similar instructions used in previous sections.

2In the first step of seed-guided taxonomy construction, we
need to find entities that share the same semantic granularity as the
seeds at each layer. They are only required to be the descendants
of the root node and may not share the same parent entity with the
seeds. Therefore, we aim to discover not only “siblings” but also
“cousins” of the seeds here.

Finding “Siblings” and “Cousins”. Given the input tax-
onomy T = (S0,S1, ...,SL) where S0 = {sROOT} and
Sl = {sl,1, sl,2, ..., sl,Ml

} (1 ≤ l ≤ L), we expand each
layer l by using the following (INSTRUCTION, INPUT, RE-
SPONSE) schema:

INSTRUCTION: Given a category and an entity set belong-
ing to this category, output other entities belonging to this
category and sharing the same granularity as the seeds.

INPUT: Find other entities belonging to the category
sROOT and sharing the same granularity as the seeds
{sl,1, sl,2, ..., sl,Ml}.

RESPONSE: The expanded entities are

The major difference between this instruction and that for
entity set expansion is that we put sROOT rather than
Parent(Sl) into the INPUT to discover not only “siblings”
but also “cousins” of Sl. We denote the expanded enti-
ties at layer l as S+

l = {sl,Ml+1, sl,Ml+2, ..., sl,Ml+Nl
}

(1 ≤ l ≤ L).
Finding “Parents”. For each newly discovered entity
sl,Ml+n ∈ S+

l \Sl, we need to insert it into the taxonomy by
finding its parent from all entities that are one layer coarser.
When l = 1, this problem is trivial because the parent is
sROOT. When l ≥ 2, we consider the following instruction:

INSTRUCTION: Given a set of candidate parent classes and
an entity, output the most likely parent class for the entity
given by user.

INPUT: Given candidate parents {sl−1,1, sl−1,2,
..., sl−1,Ml−1+Nl−1}, find the parent for sl,Ml+n.

RESPONSE: The parent class is

The major difference between this instruction and that for
taxonomy expansion is that the candidate parent list in the
INSTRUCTION contains entities at layer l−1 only (i.e., S+

l−1)
rather than the entire input taxonomy.

In seed-guided taxonomy construction, similar to taxon-
omy expansion, we are given a taxonomy structure T as
input. Thus, we can also construct training data from T to
fine-tune the LLM. For each seed sl,m ∈ Sl (l ≥ 2), we
train the LLM to pick the correct parent node Parent(sl,m)
from Sl−1. (Note that to align the INSTRUCTION used in
fine-tuning with that in inference, the candidate parent list is
Sl−1 instead of the entire input taxonomy.) The objective is
still maximizing the log-likelihood.

L∑
l=2

Ml∑
m=1

log Pr(Parent(sl,m) | INSTRUCTION, INPUT, RESPONSE ).

(4)
After the LLM is fine-tuned, we apply it to find both “sib-

lings”/ “cousins” and “parents” to complete the seed-guided
taxonomy construction task.

A Unified Pre-training Framework
With the above instructions, one can directly prompt/tune an
LLM to perform each task separately. However, task-specific
training data may be too scarce for the model to acquire
sufficient knowledge and skills for finding siblings and par-
ents. For example, the input taxonomy of the seed-guided



taxonomy construction task typically contains about 10 en-
tities (Shen et al. 2018a). To bridge this gap, we propose
to first continually pre-train a general-purpose LLM (e.g.,
Llama-3 8B) on an existing large taxonomy with the afore-
mentioned instructions, expecting the knowledge and skills
it learns from pre-training data can be transferred to the three
downstream tasks.
Pre-training Data. To largely avoid overlap between pre-
training data and evaluation benchmarks in downstream
tasks (e.g., Wiki (Ling and Weld 2012), Environment (Bor-
dea, Lefever, and Buitelaar 2016), and DBLP (Shen et al.
2018a)), we adopt only one existing large-scale taxonomy
for pre-training: Comparative Toxicogenomics Database
(CTD) (Davis et al. 2022), where we take its MEDIC dis-
ease vocabulary.
Pre-training Tasks. The pre-training tasks are parent find-
ing and sibling finding, with the parent finding task includ-
ing both the setting of finding a parent for a single en-
tity and for a list of entities. Given a set of sibling entities
S = {s1, s2, ..., s|S|} and their parent Parent(S), we ran-
domly pick M of them as seeds, where M is very small
(e.g., M = 4). For ease of notation, we denote the seeds as
s1, s2, ..., sM . The pre-training objective of sibling finding
is to generate sM+1, ..., s|S| from the seeds:

log Pr( sM+1, ..., s|S| | INSTRUCTION, INPUT, RESPONSE ),
(5)

where the (INSTRUCTION, INPUT, RESPONSE) schema fol-
lows the Entity Set Expansion’s sibling-finding template.
The pre-training objective of parent finding is to generate
Parent(S) for each individual seed si (1 ≤ i ≤ M) as well
as for the entire set of seeds {s1, s2, ..., sM}:

log Pr( Parent(S) | INSTRUCTION, INPUT, RESPONSE ), (6)

where the (INSTRUCTION, INPUT, RESPONSE) schema fol-
lows the Taxonomy Expansion’s parent-finding template.

Intuitively, the two pre-training tasks can mutually ben-
efit each other because accurately predicting the siblings
sM+1, ..., s|S| of s1, s2, ..., sM helps inferring the parent
Parent(S) of s1, s2, ..., sM , and vice versa.

Experiments
We now demonstrate the effectiveness of TAXOINSTRUCT
in all three tasks by comparing it with previous competitive
methods on benchmark datasets. We have also included de-
tailed descriptions of metrics and baselines in the Appendix.

Entity Set Expansion
Datasets Following previous studies (Shen et al. 2017;
Yan et al. 2019; Zhang et al. 2020), we use two benchmark
datasets, APR and Wiki, to evaluate entity set expansion al-
gorithms. The APR dataset has 15 testing queries related to
news articles published by Associated Press and Reuters in
2015; the Wiki dataset contains 40 testing queries related to
a subset of English Wikipedia articles.

Baselines We compare TAXOINSTRUCT with the follow-
ing methods: (1) EgoSet (Rong et al. 2016), (2) SetEx-
pan (Shen et al. 2017), (3) SetExpander (Mamou et al.
2018a), (4) CaSE (Yu et al. 2019), (5) SetCoExpan (Huang

Table 1: Performance of compared methods in the entity set
expansion task. Bold: the best score. *: TAXOINSTRUCT is
significantly better than this method with p-value < 0.05.
†, ‡, and ▷: the scores of this method are reported in (Zhang
et al. 2020), (Huang et al. 2020), and (Li et al. 2022), respec-
tively.

Method APR Wiki
MAP@10 MAP@20 MAP@10 MAP@20

EgoSet † 0.758∗ 0.710∗ 0.904∗ 0.877∗

SetExpan † 0.789∗ 0.763∗ 0.944∗ 0.921∗

SetExpander † 0.287∗ 0.208∗ 0.499∗ 0.439∗

CaSE † 0.619∗ 0.494∗ 0.897∗ 0.806∗

SetCoExpan ‡ 0.933∗ 0.915∗ 0.976∗ 0.964∗

CGExpan † 0.992 0.990∗ 0.995 0.978∗

SynSetExpan ▷ 0.985∗ 0.990∗ 0.991∗ 0.978∗

ProbExpan ▷ 0.993 0.990∗ 0.995 0.982

TAXOINSTRUCT 0.9956 0.9928 0.9957 0.9875
NoParentPretrain 0.9867∗ 0.9689∗ 0.9746∗ 0.9720∗

et al. 2020), (6) CGExpan (Zhang et al. 2020), (7) SynSet-
Expan (Shen et al. 2020a), (8) ProbExpan (Li et al. 2022).
representation of entities for entity set expansion. Besides,
since TAXOINSTRUCT is pre-trained on both the parent-
finding and sibling-finding tasks, to show that the former
skill can benefit the latter one, we examine an ablation
of TAXOINSTRUCT, NoParentPretrain, that is only pre-
trained for finding siblings in entity set expansion.

Evaluation Metric Following previous studies (Shen
et al. 2017; Zhang et al. 2020), we adopt the Mean Average
Precision (MAP@k) as the evaluation metric.

Experimental Results Table 1 shows the MAP@10 and
20 scores of compared methods in entity set expansion. We
run TAXOINSTRUCT multiple times and report the average
performance. To show statistical significance, we conduct
a two-tailed Z-test to compare TAXOINSTRUCT with each
baseline, and the significance level is marked in Table 1.
We can observe that: (1) TAXOINSTRUCT consistently out-
performs all baselines, including those empowered by lan-
guage model probing (e.g., CGExpan and ProbExpan). In
most cases, the advantage of TAXOINSTRUCT is statistically
significant. (2) TAXOINSTRUCT performs significantly bet-
ter than NoParentPretrain. This implies that even in the en-
tity set expansion task, where finding siblings is the pri-
marily required skill, pre-training TAXOINSTRUCT to find
parents still effectively boosts the performance. This finding
validates our motivation for pre-training a unified model to
jointly solve different but related tasks.

Taxonomy Expansion
Datasets Following (Jiang et al. 2023b), we use two scien-
tific domain datasets, Environment and Science, from the
shared task in SemEval 2016 (Bordea, Lefever, and Buite-
laar 2016). The entities (both existing ones in the input tax-
onomy and new ones to be inserted) are scientific concepts
related to environment and general science, respectively.

Baselines We compare TAXOINSTRUCT with the
following methods: TAXI (Panchenko et al. 2016),
HypeNET (Shwartz, Goldberg, and Dagan 2016),



Table 2: Performance of compared methods in the taxonomy
expansion task. Bold and *: the same meaning as in Table 1.
†, ‡, and ▷: the scores of this method are reported in (Jiang
et al. 2023b), (Zeng et al. 2021), and (Liu et al. 2021), re-
spectively.

Method Environment Science
Acc Wu&P Acc Wu&P

TAXI † 0.167∗ 0.447∗ 0.130∗ 0.329∗

HypeNET † 0.167∗ 0.558∗ 0.154∗ 0.507∗

BERT+MLP † 0.111∗ 0.479∗ 0.115∗ 0.436∗

TaxoExpan † 0.111∗ 0.548∗ 0.278∗ 0.576∗

Arborist ‡ 0.4615∗ – 0.4193∗ –
Graph2Taxo ‡ 0.2105∗ – 0.2619∗ –
STEAM † 0.361∗ 0.696∗ 0.365∗ 0.682∗

TMN ‡ 0.3793∗ – 0.3415∗ –
TEMP ▷ 0.492∗ 0.777∗ 0.578∗ 0.853
GenTaxo ‡ 0.4828∗ – 0.3878∗ –
BoxTaxo † 0.381∗ 0.754∗ 0.318∗ 0.647∗

TAXOINSTRUCT 0.5115 0.8300 0.6165 0.8480
NoSiblingPretrain 0.4616∗ 0.7911∗ 0.5953∗ 0.8559

BERT+MLP (Devlin et al. 2019), TaxoExpan (Shen
et al. 2020b), Arborist (Manzoor et al. 2020),
Graph2Taxo (Shang et al. 2020), STEAM (Yu et al.
2020), TMN (Zhang et al. 2021), TEMP (Liu et al. 2021),
GenTaxo (Zeng et al. 2021), BoxTaxo (Jiang et al. 2023b).

We also consider an ablation version of TAXOINSTRUCT,
NoSiblingPretrain, for the taxonomy expansion task, which
mainly relies on the parent-finding skill.

Evaluation Metrics We adopt Accuracy (Acc) Wu &
Palmer Similarity (Wu&P) (Wu and Palmer 1994) as the
evaluation metrics for the taxonomy expansion task.

Previous studies (Yu et al. 2020; Zeng et al. 2021; Jiang
et al. 2023b) also consider the mean reciprocal rank (MRR)
as an evaluation metric. However, it requires a model to rank
all nodes in the taxonomy according to their likelihood of
being the parent, which is not applicable to TAXOINSTRUCT
that generates only one predicted parent entity.

Experimental Results Table 2 shows the performance of
compared methods in taxonomy expansion. We can see that:
(1) TAXOINSTRUCT significantly outperforms the baselines
in almost all cases. The only exception is that TEMP has a
higher Wu&P score on the Science dataset. Besides TEMP,
GenTaxo is a competitive baseline which adopts a gen-
erative paradigm for taxonomy expansion. However, un-
like TAXOINSTRUCT that exploits the power of LLMs to
fully unleash the strengths of the generative paradigm, Gen-
Taxo only considers the Gated Recurrent Unit (GRU) ar-
chitecture, leading to suboptimal performance. (2) TAXOIN-
STRUCT achieves higher metrics than NoSiblingPretrain in
most columns, indicating that even in the taxonomy expan-
sion task, where finding parents is the primarily demanded
skill, pre-training our model to accurately find siblings is
still helpful. Combining this observation with the one from
the ablation analysis in Entity Set Expansion’s experiment,
we conclude that sibling-finding and parent-finding skills
can mutually benefit each other.

Table 3: Performance of compared methods in the seed-
guided taxonomy construction task. Bold and *: the same
meaning as in Table 1.

Method
DBLP PubMed-CVD

Sibling Parent Sibling Parent
nDCG@50 nDCG@50 nDCG@50 nDCG@50

HSetExpan 0.881∗ 0.827∗ 0.652∗ 0.509∗

NoREPEL 0.883∗ 0.815∗ 0.671∗ 0.622∗

NoGTO 0.953∗ 0.886∗ 0.740∗ 0.643∗

HiExpan 0.952∗ 0.905 0.737∗ 0.713∗

TAXOINSTRUCT 0.982 0.921 0.922 0.8034
NoParentPretrain 0.967∗ 0.784∗ 0.892∗ 0.7864
NoSiblingPretrain 0.943∗ 0.911 0.793∗ 0.6838∗

Seed-Guided Taxonomy Construction
Datasets We adopt two scientific domain datasets, DBLP
and PubMed-CVD, introduced in (Shen et al. 2018a).
The seeds we use are the same as those in (Shen et al.
2018a). Both datasets have a two-layer input taxonomy. For
PubMed-CVD, there are 3 seeds at the top layer (i.e., Car-
diovascular Abnormalities, Vascular Diseases, and Heart
Disease) and 10 seeds at the bottom layer. For DBLP,
there are 5 seeds at the top layer (i.e., Machine Learning,
Data Mining, Natural Language Processing, Information
Retrieval, and Wireless Networks) and 11 seeds at the bot-
tom layer.

Baselines We compare TAXOINSTRUCT with the fol-
lowing methods: HSetExpan (Shen et al. 2017), HiEx-
pan (Shen et al. 2018a). We also add two ablation ver-
sions of HiExpan: HiExpan-NoREPEL (Shen et al. 2018a),
HiExpan-NoGTO (Shen et al. 2018a)

Shen et al. (2018a) have released the output taxonomies3

of the four baselines above on DBLP and PubMed-CVD,
which we use for evaluation. In addition to these four base-
lines, following our practice in the previous two tasks,
we consider two ablation versions, NoParentPretrain and
NoSiblingPretrain.

Evaluation Metrics At the top layer, most baselines and
our TAXOINSTRUCT model achieve near perfect accuracy.
Therefore, our evaluation metrics focus on the more chal-
lenging bottom layer. We use Sibling nDCG@k to eval-
uates the accuracy of the sibling-finding step and Parent
nDCG@k for the accuracy of the parent-finding step. For-
mally, given the bottom-layer seeds S2 = {s2,1, ..., s2,M},
we examine the top-k expanded bottom-layer entities S+

2 =
{s2,M+1, ..., s2,M+k}.

Experimental Results Table 3 demonstrates the Parent
and Sibling nDCG@50 scores of compared methods in seed-
guided taxonomy construction. We find that: (1) TAXOIN-
STRUCT performs evidently the best in both sibling-finding
and parent-finding steps on both datasets. Note that expand-
ing correct sibling terms which are relevant to the taxon-
omy serves as the prerequisite of finding correct parents for
the expanded terms. If an expanded sibling is wrong (i.e.,
it should not appear at this layer or even in the taxonomy),

3http://bit.ly/2Jbilte



then it is impossible to predict its correct parent. This ex-
plains why a Sibling nDCG@50 score is always higher than
the corresponding Parent nDCG@50 score. (2) TAXOIN-
STRUCT consistently beats the two ablation versions, which
is intuitive because seed-guided taxonomy construction re-
quires the collaboration of the two skills. NoSiblingPretrain
has a lower Sibling nDCG@50 score than NoParentPre-
train on both datasets (because the former is not pre-trained
for sibling finding). However, on DBLP, NoSiblingPretrain
achieves a much smaller performance drop between Sibling
nDCG@50 and Parent nDCG@50 scores than NoParentPre-
train due to its strength in parent finding.

Related Work
Entity Set Expansion. EgoSet (Rong et al. 2016) is a pi-
oneering work that utilizes skip-grams and word2vec em-
beddings (Mikolov et al. 2013) to perform entity set expan-
sion. Following this idea, SetExpan (Shen et al. 2017) pro-
poses an iterative bootstrapping framework to select indica-
tive skip-grams and gradually expand the entity set; SetEx-
pander (Mamou et al. 2018b) and CaSE (Yu et al. 2019)
leverage distributional similarity obtained from context-
free embedding learning to rank candidate entities accord-
ing to the seeds; SetCoExpan (Huang et al. 2020) gener-
ates auxiliary sets as negative sets and then expand mul-
tiple sets simultaneously to extract discriminative features.
With the emergence of pre-trained language models such
as BERT (Devlin et al. 2019), related studies propose to
replace context-free embeddings with contextualized repre-
sentations. For example, CGExpan (Zhang et al. 2020) uses
BERT to automatically generate class names as a stronger
signal to prevent semantic drifting; ProbExpan (Li et al.
2022) devises an entity-level masked language model with
contrastive learning to refine the representation of entities;
GAPA (Li et al. 2023a) proposes a context pattern genera-
tion module that uses autoregressive language models (e.g.,
GPT-2 (Radford et al. 2019)). However, all aforementioned
approaches do not explore the power of LLMs with billions
of parameters and the ability to follow instructions, while
TAXOINSTRUCT extensively exploits the effectiveness of
LLMs in entity set expansion.
Taxonomy Expansion. Earlier, lexical patterns (Panchenko
et al. 2016) and distributional word representa-
tions (Shwartz, Goldberg, and Dagan 2016) are used
to infer the hypernym-hyponym relationship. Later, many
attempts have focused on exploiting the graph structure
in the input taxonomy to enhance the performance of
taxonomy expansion. For example, TaxoExpan (Shen et al.
2020b) and STEAM (Yu et al. 2020) propose to encode local
ego-graphs and mini-paths, respectively, corresponding to
each entity in the taxonomy; Arborist (Manzoor et al. 2020)
considers heterogeneous edge semantics and optimizes the
shortest-path distance between predicted and actual parents;
GraphTaxo (Shang et al. 2020) proposes a directed acyclic
graph generation method for effective domain transfer;
TMN (Zhang et al. 2021) examines both candidate parents
and candidate children of the inserted query node via a
triplet matching network; Most recently, GenTaxo (Zeng

et al. 2021) presents a GRU-based decoder to generate
concepts for taxonomy completion; TaxoPrompt (Xu et al.
2022) and TacoPrompt (Xu et al. 2023) adopt prompt
tuning on BERT-based encoder model to generate contex-
tualized representations of the global taxonomy structure;
BoxTaxo (Jiang et al. 2023b) uses box embeddings to
replace single-vector embeddings to better capture the
hierarchical structure of concepts. Introducing a more
challenging version of taxonomy expansion, Shen et al.
(2018a) study seed-guided taxonomy construction which
requires the initial step of extracting new entities from
text corpora given a small set of seeds before performing
taxonomy expansion. Different from previous approaches
that utilize context-free embeddings, graph neural networks,
and BERT-based language models, our TAXOINSTRUCT
model unleashes the power of LLMs such as Llama-2.
Moreover, TAXOINSTRUCT is a unified framework aiming
to jointly solve entity set expansion, taxonomy expansion,
and seed-guided taxonomy construction rather than any of
them alone.

Structure-Aware Instruction Tuning. Inspired by the great
success of LLMs in dealing with text data, there has been
increasing attention on utilizing LLMs to learn from (text-
rich) structured data (Jin et al. 2023; Li et al. 2023b; Chen
et al. 2024). Previous approaches have been using instruc-
tion tuning to guide LLMs to acquire structural informa-
tion. For instance, Graph-ToolFormer (Zhang 2023) em-
powers LLMs with graph reasoning abilities via prompt-
augmented by ChatGPT; Wang et al. (2023a) propose Build-
a-Graph Prompting and Algorithmic Prompting techniques
to enhance LLMs in solving graph problems such as short-
est paths and maximum flows; Guo, Du, and Liu (2023)
conduct an empirical benchmark study on LLMs’ ability
to understand graph data by using formal language to de-
scribe graphs; InstructGLM (Ye et al. 2023) demonstrates
that LLMs fine-tuned on node classification and link pre-
diction tasks (with proper designs of instructions) can out-
perform competitive graph neural network baselines; Zhang
et al. (2023) put entity triplets into an instruction template as
the LLM’s input to perform knowledge graph completion.
Different from these studies that focus on graph structures
(e.g., academic and e-commerce networks), our work specif-
ically explores how taxonomy structures can guide the in-
struction tuning process to unleash LLMs’ potential to solve
entity enrichment tasks in a unified way.

Conclusions and Future Work

In this paper, we present TAXOINSTRUCT, a unified frame-
work to jointly solve entity set expansion, taxonomy expan-
sion, and seed-guided taxonomy construction. We propose
a taxonomy-guided instruction tuning technique that effec-
tively exploits the existing large-scale taxonomy to teach
large language models the commonality of the three tasks
(i.e., the skills of sibling finding and parent finding). We
conduct extensive experiments on widely used benchmarks
in all three tasks, which demonstrate the superiority of TAX-
OINSTRUCT over competitive task-specific baselines.
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Appendix
1. Implementation Detail
We use Llama-3 8B as our initial checkpoint and train it with
Low-Rank Adaptation (LoRA) (Hu et al. 2021). The model
is pre-trained for 10 epochs, which takes about 1.5 hours
on one NIVIDIA RTX A6000 GPU. The batch size is 64
for both continual pre-training and task-specific fine-tuning.
The optimizer is AdamW (Loshchilov and Hutter 2017).
When performing downstream tasks, for entity set expan-
sion and taxonomy expansion, we adopt SPECTER (Cohan
et al. 2020) as the moderate-size auxiliary PLM.

2. Evaluation Metrics
2.1 Entity Set Expansion We use AP@k and MAP@k as
evaluation metrics for Entity Set Expansion. Formally, given
a set of seeds S = {s1, ..., sM} and the top-k expanded enti-
ties S+ = {sM+1, ..., sM+k}, the average precision AP@k
is defined as

AP@k(S,S+) =
1

k

∑
i:1≤i≤k and sM+i∼S

∑i
j=1 I(sM+j ∼ S)

i
.

(7)
Here, sM+j ∼ S denotes that the expanded entity sM+j and
the seed entities in S belong to the same semantic class;
I(·) is the indicator function. Since there are multiple test-
ing queries (i.e., multiple sets of seeds) S1, ...,SC and their
corresponding expansion results S+

1 , ...,S+
C , MAP@k is de-

fined as

MAP@k =
1

C

C∑
i=1

AP@k(Si,S+
i ). (8)

2.2 Taxonomy Expansion. We use Accuracy (Acc)
Wu&P as evaluation metrics for Taxonomy Expansion. Ac-
curacy (Acc) is the exact match accuracy of the predicted
parent node of each testing entity. Formally, assume the test-
ing set has C samples x1, ..., xC , and their ground-truth
parents in the input taxonomy are y1, ..., yC , respectively.
Then the accuracy of the learned parent-child relationship
Parent+(·) is defined as

Acc =
1

C

C∑
i=1

I(Parent+(xi) = yi). (9)

Wu & Palmer Similarity (Wu&P) (Wu and Palmer 1994)
calculates the similarity between the predicted parent and
the ground-truth parent based on their distance in the taxon-
omy.

Wu&P =
1

C

C∑
i=1

2× depth(LCP(Parent+(xi), yi))

depth(Parent+(xi)) + depth(yi)
, (10)

where LCP(·, ·) is the lowest common ancestor of two
nodes, and depth(·) denotes the depth of a node in the tax-
onomy.
2.3 Seed-Guided Taxonomy Construction. We evaluate
the performance of Seed-Guided Taxonomy Construction
using Sibling nDCG@k and Parent nDCG@k. Sibling
nDCG@k evaluates the accuracy of the sibling-finding step

Table 4: Performance of TAXOINSTRUCT with different
LLM backbones. For the seed-guided taxonomy construc-
tion task (i.e., DBLP and PubMed-CVD), we show Sibling
nDCG@50; for the taxonomy expansion task (i.e., Environ-
ment and Science), we show Wu&P.

Method DBLP PubMed-CVD Environment Science
Strongest Baseline 0.9527 0.7395 0.777 0.853

TAXOINSTRUCT
Llama-3 8B 0.9817 0.9220 0.8300 0.8480
Llama-2-chat 7B 0.9713 0.8923 0.7739 0.7370
Mistral 7B 0.9635 0.9162 0.7552 0.8437
Gemma 7B 0.9685 0.8627 0.7893 0.8713

(i.e., whether s2,M+i and S2 belong to the same semantic
class).

Sibling nDCG@k =

∑k
i=1

I(s2,M+i∼S2)

log2(i+1)∑k
i=1

1
log2(i+1)

. (11)

Parent nDCG@k evaluates the accuracy of the parent-
finding step. For each expanded bottom-layer entity s2,M+i,
let s1,p(i) denote its ground-truth parent at the top layer.
Then, this metric can be defined as

Parent nDCG@k =

∑k
i=1

I(Parent+(s2,M+i)=s1,p(i))

log2(i+1)∑k
i=1

1
log2(i+1)

. (12)

3. Effect of the LLM Backbone
Although we adopt Llama-3 8B as the backbone of TAX-
OINSTRUCT in our experiments, we need to emphasize that
TAXOINSTRUCT is a generic framework that can be instanti-
ated by various off-the-shelf generative LLMs. To show the
generalizability of TAXOINSTRUCT, we examine the perfor-
mance of TAXOINSTRUCT when Llama-2-chat 7B (Touvron
et al. 2023)4, Mistral 7B (Jiang et al. 2023a)5, and Gemma
7B (Team et al. 2024)6 are plugged in.

Table 4 demonstrates the performance of TAXOIN-
STRUCT with different LLM backbones. Due to space limit,
we only show 4 datasets (out of the 6 benchmarks we used
in previous experiments) and 1 metric for each dataset. We
can see that: (1) On DBLP and PubMed-CVD, all the vari-
ants of TAXOINSTRUCT beat the strongest baseline, no mat-
ter which LLM backbone is plugged in. (2) On the Environ-
ment dataset, both Llama-3 8B and Gemma 7B can make our
framework more powerful than the best-performing base-
line. (3) On the Science dataset, even our default choice
Llama-3 8B does not perform the best in Table 3, when TAX-
OINSTRUCT is instantiated by Gemma 7B, it can beat the
state of the art. To summarize, the effectiveness of TAXOIN-
STRUCT is built upon the power of our proposed framework
and LLMs in general, rather than a specific choice of Llama-
3 8B.

4. Scope and Limitations.
This work is a pioneering attempt to solve the three repre-
sentative expansion tasks in a unified way. Our major focus

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/mistralai/Mistral-7B-v0.1
6https://huggingface.co/google/gemma-7b



is to verify the universal validity of multi-task LLM instruc-
tion tuning in all three tasks. Therefore, we keep our frame-
work as simple as we can, without utilizing complicated sig-
nals such as paths (Liu et al. 2021; Jiang et al. 2022) and
local graphs (Mao et al. 2020; Wang et al. 2021). We are
aware that incorporating these signals into our instructions
may further improve the performance of TAXOINSTRUCT,
but that is beyond the scope of this paper, and we leave it for
future work.


