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Abstract

In this paper, we present an approach to im-001
prove the robustness of BERT language mod-002
els against word substitution-based adversar-003
ial attacks by leveraging adversarial perturba-004
tions for self-supervised contrastive learning.005
We create an efficient word-level adversarial006
attack, and use it to finetune BERT on ad-007
versarial examples generated on the fly during008
training. In contrast with previous works, our009
method improves model robustness without us-010
ing any labeled data. Experimental results011
show that our method improves robustness of012
BERT against four different word substitution-013
based adversarial attacks, and combining our014
method with adversarial training gives higher015
robustness than adversarial training alone. As016
our method improves the robustness of BERT017
purely with unlabeled data, it opens up the pos-018
sibility of using large text datasets to train ro-019
bust language models.020

1 Introduction021

Pretrained language models such as BERT (De-022

vlin et al., 2019, inter alia) have had a tremendous023

impact on many NLP tasks. However, several re-024

searchers have demonstrated that these models are025

vulnerable to adversarial attacks, which fool the026

model by adding small perturbations to the model027

input (Jia and Liang, 2017).028

A prevailing method to improve model robust-029

ness against adversarial attacks is adversarial train-030

ing (Madry et al., 2018) In NLP, adversarial train-031

ing in the input space has been challenging, as032

existing natural language adversarial attacks are033

too slow to generate adversarial examples on the034

fly during training (Alzantot et al., 2018; Ebrahimi035

et al., 2018; Ren et al., 2019). While some recent036

work (Wang et al., 2021b) have started exploring037

efficient input space adversarial training (e.g., for038

text classification), scaling adversarial training to039

pretrained language models like BERT has been040

challenging.041

In this work, we propose an approach to adver- 042

sarially finetune BERT-like models without using 043

any labeled data. In order to achieve this, we rely 044

on self-supervised contrastive learning (Chen et al., 045

2020). Self-supervised contrastive learning has 046

recently gained attention in the community and 047

contrastive learning has been used to learn better 048

representations for text classification (Giorgi et al., 049

2021; Kim et al., 2021; Gao et al., 2021). How- 050

ever, how to use these methods to improve model 051

robustness remains an open question. 052

We combine self-supervised contrastive learning 053

with adversarial perturbations by using adversarial 054

attacks to generate hard positive examples for con- 055

trastive learning. To efficiently create adversarial 056

examples, we leverage an adversarial attack, that 057

is capable of generating multiple adversarial exam- 058

ples in parallel1. The attack adversarially creates 059

hard positive examples for contrastive learning by 060

iteratively replacing words to follow the direction 061

of the contrastive loss (see fig. 2). 062

Experiments show that our method can improve 063

the robustness of pretrained language models with- 064

out looking at the labels. Additionally, by combin- 065

ing our method with adversarial training, we are 066

able to obtain better robustness than conducting 067

adversarial training alone (see section 4.5). Our 068

study of the vector representations of clean exam- 069

ples and their corresponding adversarial examples 070

indeed explains that our method improves model 071

robustness by pulling clean examples and adversar- 072

ial examples closer. 073

Our contribution in this paper are two-fold. On 074

the one hand, we improve the robustness of the 075

pretrained language model BERT by using self- 076

supervised contrastive learning with adversarial 077

perturbations (see section 3.2). On the other hand, 078

we create for BERT a word-level adversarial attack, 079

1In contrast, previous attacks generate adversarial exam-
ples one by one (Alzantot et al., 2018; Ebrahimi et al., 2018;
Ren et al., 2019).
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which makes adversarial training with on-the-fly080

generated adversarial examples efficient (see sec-081

tion 3.3 and see appendix D for speed comparisons).082

Additionally, we also show that our method is capa-083

ble of using out-of-domain data to improve model084

robustness (see table 2 and section 4.5). This opens085

an opportunity for using large-scale unlabeled data086

to train robust language models.087

2 Related Work088

2.1 Adversarial Training for NLP089

Adversarial training improves model robustness by090

augmenting clean examples with adversarial exam-091

ples during training. Previous works on adversarial092

training for natural language mainly focus on per-093

turbations in the vector space, while actual adver-094

sarial attacks create adversarial examples by chang-095

ing natural language symbols. For example, Zhu096

et al. (2020) and Liu et al. (2020) improve model097

generalization ability by adversarial training on the098

word embedding space, without mentioning model099

robustness. However, they either ignore model ro-100

bustness, or only test model robustness against the101

adversarial dataset ANLI, without paying attention102

to actual adversarial attacks. Other works conduct103

adversarial training in the word space (Alzantot104

et al., 2018; Ren et al., 2019). Still, they can only105

do adversarial training on a limited number of pre-106

generated adversarial examples due to the low effi-107

ciency of the attacks. A recent work (Wang et al.,108

2021b) conducts adversarial training efficiently in109

the word space, but their method is limited to non-110

contextualized models.111

Our work also differs from previous works in112

natural language adversarial training. On the one113

hand, as opposed to previous works, which are114

supervised, we propose a self-supervised learning115

scheme to improve the robustness of pretrained116

language models. On the other hand, while previ-117

ous works mostly focus on adversarial training in118

embedding space, we conduct efficient adversar-119

ial training with pretrained language models at the120

word level.121

2.2 Contrastive Learning for NLP122

Contrastive learning was first proposed in the im-123

age domain to improve model performance in a124

self-supervised fashion (He et al., 2020; Chen et al.,125

2020). These methods bring representations of sim-126

ilar examples closer and push representations of127

dissimilar examples further apart. Additionally,128

researchers also find that by adding adversarial 129

perturbations during contrastive learning, image 130

classification models become more robust against 131

adversarial attacks (Kim et al., 2020). 132

In NLP, previous works on contrastive learn- 133

ing mainly focus on improving model generaliza- 134

tion. Gunel et al. (2021) boost performance of 135

RoBERTa by adding supervised signals during fine- 136

tuning on downstream tasks. Lee et al. (2021) 137

tackle the “exposure bias" problem in text gen- 138

eration by adding adversarial signals during con- 139

trastive learning. Other similar works include Pan 140

et al. (2021), Giorgi et al. (2021), and Gao et al. 141

(2021). Although these works have demonstrated 142

the usefulness of contrastive learning in NLP ap- 143

plications, few have addressed the robustness of 144

NLP models, particularly pretrained language mod- 145

els, against natural language adversarial attacks. 146

Recently, Wang et al. (2021a) claimed that their 147

method improves model robustness against adver- 148

sarial sets. However, such sets are pre-generated 149

and are less challenging than adversarial exam- 150

ples generated on the fly by actual adversarial at- 151

tacks (Jin et al., 2020; Ren et al., 2019). In this 152

paper, we focus on improving the robustness of pre- 153

trained language models against word substitution- 154

based adversarial attacks. We present the details of 155

our method in section 3. 156

3 Methodology 157

In this section, we describe our method for self- 158

supervised contrastive learning with adversarial 159

perturbations. Specifically, section 3.1 gives the 160

background and motivation of our problem, and 161

section 3.2 describes the adversarial contrastive 162

learning framework. Finally, in section 3.3, we 163

describe the adversarial attack used in contrastive 164

learning. 165

3.1 Background and Motivation 166

Imagine we have a batch of N samples: 167{
(X1, y1), (X2, y2), . . . , (Xn, yN )

}
, where Xi = 168

{w1, w2, . . . , wL} is an example text consisting of 169

L words and yi is the corresponding label. Let 170

Xi be the current input to encoder f(·), c(·) be 171

the softmax classification layer, and a(·) be a natu- 172

ral language adversarial attack. Thus, we have: 173

X ′i = a(Xi),hi = f(Xi),h
′
i = f(X ′i), ŷi = 174

c(hi), ŷ
′
i = c(h′i), where hi,h

′
i ∈ Rd are fixed- 175

size representations of Xi and X ′i, and ŷi and ŷ′i 176

are predicted labels of Xi and X ′i, respectively. 177
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Figure 1: An illustration of our method. (a) For the original example X , we obtain the hard positive example
X ′ by Geometry Attack for contrastive loss (see section 3.3). (b) Before contrastive learning, in the vector space,
the clean example z, the hard positive example z′, and the adversarial example zadv are far from each other.
Contrastive learning pulls the clean example z, and the hard positive example z′ together. (c) After contrastive
learning, the clean example z, the hard positive example z′, and the adversarial example zadv are close. We omit
MLP in this figure for simplicity. We use a different color to show another example from the dataset. See section 3
for details. Note that the adversarial example Xadv and its corresponding vector zadv are not used in contrastive
learning. We nevertheless show Xadv and zadv for illustration purposes.

Assuming the attack successfully fools the178

model, we have ŷi 6= ŷ′i. Our assumption is that al-179

though Xi and X ′i are very similar to each other on180

the word level, the distance of their representations181

hi and h′i are larger such that the softmax classifier182

c(·) predicts Xi and X ′i to be of different classes.183

To obtain a robust model, we optimize the en-184

coder such that hi and h′i become similar to each185

other. We achieve this goal by conducting self-186

supervised contrastive learning with adversarial187

perturbations, during which we use an attack to188

create hard positive examples, maximizing the con-189

trastive loss.190

3.2 Self-Supervised Contrastive Learning191

with Adversarial Perturbations192

Following previous works on self-supervised con-193

trastive learning (He et al., 2020; Chen et al., 2020),194

we formulate our learning objectives as follows.195

Consider we have a batch of n examples and Xi196

is the i-th input, we first obtain X ′i = t(Xi) as an197

augmentation ofXi by transformation t(·). We call198

Xi and X ′i a pair of positive examples. All other199

examples in the same batch are considered negative200

examples of Xi and X ′i.201

To take advantage from using more negative202

examples, we use MoCo (He et al., 2020) as our203

framework, in which we employ an encoder fq for204

the positive examples, and another momentum en-205

coder fk for the negative examples. We then have206

hi = fq(Xi) and h′i = fk(X
′
i), where hi,h

′
i ∈ Rd207

are representations ofXi andX ′i, respectively. Dur-208

ing training, fq and fk are initialized the same. We209

update fk momentarily by θk ← m·θk+(1−m)·θq,210

where θk and θq denote the parameters of fk and211

fq, respectively. We also use gq(·) and gk(·) to map 212

hi and h′i to zi, z
′
i ∈ Rc, respectively, where gq(·) 213

and gk(·) are MLPs with one hidden layer of sig- 214

moid activation. We conduct contrastive learning 215

on z instead of h to prevent the contrastive learn- 216

ing objective from removing information useful 217

for downstream tasks. After contrastive learning, 218

we use h as the sentence representation for down- 219

stream tasks. 220

Additionally, we also maintain a dynamic first- 221

in-first-out queue for the negative examples. Dur- 222

ing training, before computing contrastive loss at 223

the end of each batch, all encoded examples of the 224

current batch are enqueued into the queue, and the 225

oldest examples are dequeued simultaneously. 226

In our experiments, we use the attack described 227

in section 3.3 or back-translation (Zhu et al., 2015) 228

for augmentation t(·). Assume that we have an 229

encoded example zi and the encoded examples in 230

the queue are {z0, z1, · · · , zQ−1}, where Q is the 231

size of the queue. Among the encoded examples in 232

the queue, one of them is z′i, which forms a pair of 233

positive examples with zi. We then have: 234

`i = − log
exp(sim(zi, z

′
i)/τ)∑Q

k=0 exp(sim(zi, zk)/τ)
(1) 235

236where τ is the temperature parameter, sim(·, ·) is 237

the similarity function, and Q is the size of the dy- 238

namic queue. In this paper, we compute similarity 239

by dot product as in MoCo. 240

By optimizing eq. (1), the goal is to maximize 241

the similarity of representations between similar 242

(positive) pairs of examples while minimizing the 243

similarity of representations between dissimilar 244

(negative) examples. We use the geometry-inspired 245
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attack described in section 3.3 to create pairs of246

examples that are similar on the word level but at247

the same time are distant from each other in the248

representation space.249

We illustrate method in fig. 1. In fig. 1 (b) and250

(c), by conducting contrastive learning and using251

the Geometry Attack generated adversarial exam-252

ples as hard positives, the vector representations253

obtained from the model become invariant to the254

adversarial attacks.255

𝒛𝒊

𝒛𝒊𝟏

𝒛𝒊𝟐

𝒗𝒛𝒊

||𝒑𝒊𝟏||

||𝒑𝒊𝟐||

Figure 2: An illustration of one iteration in Geometry
Attack for contrastive loss. See section 3.3 for details.

3.3 Creating Hard Positive Examples by256

Geometry Attack257

We describe how we create adversarial examples258

for contrastive loss during self-supervised con-259

trastive learning (see fig. 1 (b)). Inspired by Meng260

and Wattenhofer (2020), who leverage geometry261

of representations to generate natural language ad-262

versarial examples for text classification tasks, we263

also use the geometry of pretrained representations264

to create adversarial examples for contrastive loss.265

The created adversarial examples are used as posi-266

tive examples of the original examples in our con-267

trastive learning framework, and at the same time268

are created to maximize the contrastive loss. Hence,269

we refer to adversarial examples created by the at-270

tack as hard positive examples.271

The intuition of our attack is that we repeat-272

edly replace words in the original texts such that273

in each iteration, the replaced word increases the274

contrastive loss as much as possible. To be specific,275

consider an example Xi, we then have:276

1. Determine Direction for Sentence Vector277

Compute the gradients of `i with respect to zi. In278

this step, we find the direction we should move279

from zi to increase the contrastive loss `i. We280

have the gradient vector vzi = ∇zi`i.281

2. Choose Original Word to be Replaced Com-282

pute the gradients of `i with respect to input word283

embeddings ofXi. For words tokenized into mul-284

tiple tokens, we take the average of the gradients285

of the tokens. In this step, we find the word wt286

which has the most influence in computing `i.287

Specifically, assuming we have L words, then we 288

choose t = argmaxt{||g1||, ||g2||, . . . , ||gL||}, 289

where gk is the gradients of li with respect to the 290

embeddings of word wk, 1 ≤ k ≤ L. 291

3. Generate Candidate Set Suppose we choose 292

the word wt in step 2. In this step, we use a pre- 293

trained BERT to choose the most probable can- 294

didates wt to replace it in the original text. We 295

have the candidates set = {wt1 , wt2 , · · · , wtT }. 296

Following Jin et al. (2020), we filter out seman- 297

tically different words from the candidate set by 298

discarding candidate words of which the cosine 299

similarity of their embeddings between the em- 300

beddings of wt is below a threshold ε. 301

4. Choose Replacement Word Replace wt with 302

words in the candidates set, resulting in text vec- 303

tors {zi1 , zi2 , · · · , ziT }. We compute delta vec- 304

tor rij ← zij−zi. The projection of rij onto vzi 305

is: pij ←
rij ·vzi

||vzi ||
. We select word wtm , where 306

m ← argmaxj ||pij ||. In other words, wtm re- 307

sults in the largest projection pim onto vzi . 308

5. Repetition Replace wt with wtm in Xi, then we 309

have zi ← zim . Repeat step 1-4 for N iterations, 310

where N is a hyperparameter of our method. We 311

expect `i to increase in each iteration. 312

Figure 2 illustrates an iteration of our attack, in 313

which we have two options to choose from the can- 314

didate set. This attack can be easily implemented in 315

a batched fashion, making it possible for us to gen- 316

erate adversarial examples on the fly during train- 317

ing. Furthermore, our attack is fast, which makes it 318

possible to conduct contrastive learning with adver- 319

sarial perturbations as well as adversarial training 320

with adversarial examples generated on the fly. We 321

give a speed comparison of our attack and other 322

attacks in appendix D. We also give pseudocode 323

of the attack in algorithm 1 of appendix A. 324

4 Experiments 325

4.1 Datasets 326

We test how our method improves model robust- 327

ness on four text classification datasets: AG’s 328

News, Yelp, IMDB, and DBpedia (See appendix B 329

for details). 330

4.2 Evaluation Metrics 331

We report the attack success rate and the replace- 332

ment rate of the attacks as the evaluation metrics. 333

To prevent the model accuracy on clean examples 334

from confounding the results, we define the success 335
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rate of an attack on all correctly classified exam-336

ples in the test set. Lower success rates indicate337

higher robustness. The replacement rate refers to338

the percent of original words replaced in the clean339

example. Higher replacement rates indicate that340

the attack needs to replace more words to fool the341

model, and thus means that the model is more ro-342

bust.343

4.3 Adversarial Attacks for Evaluating344

Robustness345

We use four word substitution-based adversarial346

attacks to evaluate the model robustness.347

Geometry Attack We use the same attack de-348

scribed in section 3.3 to generate adversarial exam-349

ples for sentence classification tasks by replacing350

contrastive loss with cross-entropy classification351

loss. We set the maximum number of replaced352

words to 20.353

TextFooler, PWWS, and BAE-R We use the de-354

fault implementations from TextAttack (Morris355

et al., 2020).356

All these attacks will give up and terminate once357

the maximum number of replaced words (some-358

times also called perturbation budget) is reached.359

4.4 Experimental Designs360

We have the following hypotheses for our ap-361

proach:362

H1: Self-supervised contrastive learning improves
model robustness against adversarial attacks. More-
over, using adversarial perturbations during con-
trastive learning further improves robustness.

363

To validate this hypothesis, we set three different364

pretraining schemes:365

BTCL: Pretraining with back-translation as the366

transformation t(·) for self-supervised contrastive367

learning.368

ADCL: Pretraining with Geometry Attack for con-369

trastive loss (see section 3.3) as transformation t(·)370

for self-supervised contrastive learning.371

NP: Apart from the above two settings, we also add372

a No Pretraining baseline to understand the general373

effectiveness of contrastive learning.374

H2: Combining self-supervised contrastive learn-
ing with adversarial training gives higher robust-
ness than conducting adversarial training alone.

375

We use different finetune strategies to understand376

how adding adversarial training to our method af-377

fects model robustness. We have two settings:378

FTC: We finetune the pretrained model on the clean379

examples of the corresponding downstream dataset.380

ADV: We conduct adversarial training. Note that 381

our adversarial training is different from previous 382

works (Ren et al., 2019; Alzantot et al., 2018), 383

which merely finetune the model on a fixed num- 384

ber of pre-generated adversarial examples. Instead, 385

our adversarial training scheme is similar to Madry 386

et al. (2018), where the model is finetuned on clean 387

examples and adversarial examples generated on 388

the fly during each batch of training. 389

We use Geometry Attack for adversarial train- 390

ing as the remaining three attacks are not efficient 391

enough to generate adversarial examples on the fly 392

(see appendix D for details). 393

H3: Our contrastive learning method is capable
of using out-of-domain data to improve the model
robustness.

394

While in H1 and H2, we use the same dataset for 395

pretraining and finetuning, we want to test how our 396

method can leverage out-of-domain data. Hence, 397

we have two additional experimental settings: 398

In-Domain: We use the same dataset during con- 399

trastive learning and finetuning. 400

Out-of-Domain: We use different datasets for 401

contrastive learning and finetuning. 402

H4: By optimizing eq. (1), our method pulls the
representations of the clean samples and their cor-
responding hard positive examples closer in the
vector space while pushing other different exam-
ples further. In this way, the representations of
clean examples and their adversarial examples are
also closer in the vector space.

403

404
We validate this hypothesis by conducting a vector 405

space study. See section 4.5 for details. 406

Note that to avoid confusing adversarial exam- 407

ples generated during contrastive learning and ad- 408

versarial examples generated during finetuning, 409

we refer to the former as hard positive examples 410

(see section 3.3). 411

4.5 Results 412

Table 1 shows the experimental results for validat- 413

ing H1 and H2. For each dataset, when evaluating 414

the model robustness, we use the same perturbation 415

budget across different settings. Note that although 416

the replacement rates vary across different settings 417

of the same dataset, the perturbation budget for the 418

same attack is the same in these settings. By using 419

the same perturbation budget, we ensure that the 420

success rates of the attacks provide us with a fair 421

evaluation of the robustness of the model (Wang 422

et al., 2021b; Ren et al., 2019). 423
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Dataset Pretrain Finetune Acc. (%) Success Rate (%) ↓ Replaced (%) ↑

Geometry TextFooler PWWS BAE-R Geometry TextFooler PWWS BAE-R

AG

NP
FTC 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4
ADV 94.4 20.7 25.1 26.1 10.7 20.5 29.3 22.3 7.7

BTCL FTC 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5

ADCL
FTC 94.3 76.5 80.7 55.9 14.1 19.1 26.7 22.6 7.5
ADV 94.4 18.7 23.5 24.7 9.7 20.6 29.3 22.2 7.2

Yelp

NP
FTC 97.1 94.6 94.3 97.0 42.1 10.6 10.4 7.1 6.7
ADV 96.2 38.8 52.4 62.7 22.2 12.8 17.3 11.3 8.8

BTCL FTC 97.1 92.3 91.6 94.8 39.2 11.0 10.1 7.7 6.9

ADCL
FTC 97.0 88.6 88.2 91.1 37.8 10.4 10.5 7.4 6.9
ADV 96.1 35.6 50.1 61.0 21.0 13.4 17.1 11.2 8.3

IMDB

NP
FTC 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0
ADV 92.0 51.4 75.3 79.1 35.1 7.4 12.7 9.3 3.6

BTCL FTC 92.5 93.3 96.6 95.1 52.0 4.5 7.4 4.4 3.3

ADCL
FTC 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3
ADV 91.9 48.7 74.4 77.6 31.8 8.1 12.4 9.1 3.5

DBpedia

NP
FTC 99.2 79.6 79.3 46.7 14.3 17.8 23.2 16.2 13.3
ADV 99.0 13.9 16.5 17.7 10.9 21.6 28.2 18.9 14.1

BTCL FTC 99.2 77.4 76.8 45.1 13.0 18.9 22.8 18.1 13.1

ADCL
FTC 99.1 73.6 74.5 42.6 11.6 18.2 22.9 17.6 12.8
ADV 99.0 12.4 14.8 16.2 10.1 20.1 28.6 18.2 13.8

Table 1: Experimental results for H1 and H2. In-Domain setting is used. We bold the best results, while the
second best is in italic.

H1: To validate H1, we focus on rows with the424

FTC setting during finetuning. We can observe that425

models without any contrastive pretraining (NP)426

are the most vulnerable to adversarial attacks. For427

example, the success rate of the Geometry Attack428

for AG’s News dataset is 86.2% for the NP model.429

In contrast, for BTCL and ADCL, the success rate of430

the Geometry Attack is at least 5.6% lower than this431

setting. This shows that self-supervised contrastive432

learning does improve model robustness.433

Additionally, we can also see from table 1 that434

ADCL improves the model robustness more than435

BTCL. For example, in the IMDB dataset, the436

model pretrained with ADCL is 9.1% more robust437

than the model pretrained with BTCL (93.3% →438

84.2%), showing that using adversarial pertur-439

bations during contrastive learning further im-440

proves model robustness against adversarial at-441

tacks. Hence, we do not combine BTCL with ADV442

in later experiments for simplicity.443

To further understand how contrastive learning444

improves the model robustness, we study the trans-445

ferability of the adversarial examples between mod-446

els without any contrastive pretraining (NP) and the447

models pretrained with ADCL. To be specific, the448

models are first pretrained using either NP or ADCL,449

and then finetuned on clean examples (FTC). Then,450

we use a NP model to generate adversarial exam-451

ples on the test set of each dataset, and then test452

the corresponding model pretrained with ADCL on453

these adversarial examples. And vice versa. 454

Table 3 shows the results. We can see that adver- 455

sarial examples generated by models pretrained 456

with ADCL have much higher success rates on 457

models without any contrastive pretraining (NP). 458

For example, for the AG’s News dataset, the suc- 459

cess rates increase by 32.1%, 35.3%, 33.8%, and 460

22.1% for Geometry Attack, TextFooler, BAE-R, 461

and PWWS, respectively. This demonstrates that 462

by self-supervised contrastive learning with adver- 463

sarial perturbations, the models become more ro- 464

bust against attacks. 465

H2: To validate H2, we compare two settings of 466

NP + ADV and ADCL + ADV. We note that when 467

compared with conducting adversarial training 468

alone (NP+ ADV), combining our self-supervised 469

contrastive learning method with adversarial train- 470

ing (ADCL+ ADV) constantly results in higher ro- 471

bustness. In other words, the adversarial attacks 472

have lower success rates and higher replacement 473

rate in ADCL + ADV models than in NP + ADV 474

models. For instance, for the IMDB dataset, the 475

ADCL+ ADV model is 2.7% more robust than the 476

NP + ADV model, when both models are tested 477

against the Geometry Attack (Success rates of Ge- 478

ometry attack: ADCL + ADV: 48.7%, NP + ADV: 479

51.4%; Replacement rates: ADCL + ADV: 8.1%, 480

NP+ ADV: 7.4%). 481

Note that when test NP + ADV models and 482

ADCL + ADV models against the other three ad- 483
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Dataset Domain Pretrain Acc. (%) Success Rate (%) ↓ Replaced (%)↑

Geometry TextFooler PWWS BAE-R Geometry TextFooler PWWS BAE-R

AG

- NP 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4

In-Domain
BTCL 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5
ADCL 94.3 76.9 80.7 55.9 14.1 19.1 26.7 22.6 7.5

Out-of-Domain ADCL 94.1 79.2 84.0 60.4 16.3 18.7 25.9 21.9 7.5

IMDB

- NP 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0

In-Domain
BTCL 92.5 93.3 96.6 95.1 52.0 4.5 7.4 4.4 3.3
ADCL 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3

Out-of-Domain ADCL 92.5 92.3 95.7 94.5 50.1 4.4 8.6 5.3 3.1

Table 2: Comparison of Out-of-Domain with In-Domain. We use the DBpedia dataset as the out-of-domain
dataset for AG’s News and IMDB. Models are finetuned on clean examples after pretraining (FTC). Best results
are bolded, while the second best are in italic.

Dataset Attack Success Rate (%)
NP→ ADCL ADCL→ NP

AG

Geometry 30.2 62.3
TextFooler 19.7 55.0

BAE-R 26.4 60.2
PWWS 28.3 50.4

Yelp

Geometry 30.1 36.4
TextFooler 22.4 28.0

BAE-R 37.4 41.5
PWWS 34.8 36.3

IMDB

Geometry 38.2 41.4
TextFooler 22.1 25.2

BAE-R 28.9 30.8
PWWS 24.7 26.0

DBpedia

Geometry 34.6 52.2
TextFooler 27.5 42.8

BAE-R 32.5 55.8
PWWS 55.3 58.8

Table 3: Transferability of adversarial examples. The
models are pretrained under either NP or ADCL, and
then finetuned on clean examples. NP → ADCL: We
generate adversarial examples using the model pre-
trained with NP, then test the model pretrained with
ADCL on these adversarial examples. The same applies
to ADCL→ NP.

versarial attacks, ADCL+ADV models do not show484

an advantage over NP+ADV models in terms of re-485

placement rates, despite that ADCL+ ADV models486

still constantly make lower success rates against487

the adversarial attacks. We argue that this is be-488

cause we use the Geometry Attack for adversarial489

training during finetuning, and the adversarial ex-490

amples from the Geometry Attack might not fully491

match the distribution from the other attacks. Nev-492

ertheless, we can still conclude that ADCL+ ADV493

models are more robust than NP+ ADV models.494

Our experiments also show that during con-495

trastive learning, the queue size (see section 3.2)496

has an impact on the final performance. We give497

the detailed analysis in appendix C.498

H3: For the Out-of-Domain setting, we use499

the DBpedia dataset as the out-of-domain dataset500

for the AG’s News and IMDB datasets, mainly be-501

cause (1) Computational limits: While using larger 502

datasets such as BookCorpus or Wikipedia might 503

be more useful, conducting self-supervised con- 504

trastive learning on these datasets exceeds the limits 505

of our computational infrastructure; (2) The DBpe- 506

dia dataset is several times larger than AG’s News 507

and IMDB. This should give us a glimpse of what 508

it looks like when we scale self-supervised con- 509

trastive learning with adversarial perturbations to 510

even larger out-of-domain datasets; (3) The DBpe- 511

dia dataset (topic classification on Wikipedia) has 512

a different task and domain compared to the AG’s 513

News dataset (news classification from a newspa- 514

per) and IMDB dataset (sentiment classification 515

on movie reviews). This discrepancy allows us to 516

understand how out-of-domain datasets could help. 517

Table 2 shows our results. We can see 518

that models pretrained with ADCL under the 519

Out-of-Domain setting are more robust than 520

models without any pretraining at all (NP). This 521

shows that our method can improve model robust- 522

ness using out-of-domain data. For instance, for 523

the IMDB dataset, the success rate of TextFooler 524

decreases from 98.7% for FT models to 92.3% for 525

Out-of-Domain ADCLmodels. This shows that 526

our method can improve the model robustness even 527

if the dataset used for contrastive learning is from 528

a completely different domain. Note that in table 2, 529

after pretraining, we finetune the model on clean 530

examples (FTC). 531

We also notice that models pretrained with ADCL 532

under the Out-of-Domain setting are not as ro- 533

bust as models pretrained with ADCL under the 534

In-Domain setting. This indicates we might need 535

to use much larger unlabeled raw datasets to obtain 536

more improvements. 537

H4: To validate this hypothesis, we study the vector 538

representations of M = 1000 clean examples of 539

the AG’s News dataset and their corresponding 540
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Figure 3: t-SNE plot of the vector representations of clean examples and adversarial examples from the AG’s News
dataset. Markers of the same color indicate a pair of clean example (◦) and adversarial example (4). Check sec-
tion 4.5 for the evaluation settings. The ranges of x-axis and y-axis are normalized to [0, 1]. We connect each clean
example by a dotted line to its corresponding adversarial example.

adversarial examples. We obtain the adversarial541

examples by attacking a NP+ FTC model.542

Let v1,v2...vM and v′1,v
′
2...v

′
M be the vector543

representations of the clean examples and corre-544

sponding adversarial samples, respectively. For545

each setting, we evaluate three metrics:546

• The average distance dpos between each of the547

positive pairs vi and v′i, where 1 ≤ i ≤M . Then548

we have dpos = 1
M

∑M
i=1 distance(vi,v

′
i).549

• The average distance dneg between550

negative pairs, which is dneg =551
1

2(M−1)
∑M

i=1

∑M
j=1 1i 6=j(distance(vi,vj)+552

distance(vi,v′j)).553

• The difference δ = dneg − dpos between (a) and554

(b).555

Furthermore, we evaluate the above metrics un-556

der the following settings:557

• NP + FTC: Finetune the model on clean exam-558

ples.559

• ADCL + FTC: First do ADCL pretraining, and560

then finetune the model on clean examples.561

• NP+ ADV: Finetune the model with adversarial562

training.563

• ADCL+ ADV: First do ADCL pretraining. Then564

finetune with adversarial training.565

Table 4 shows the results. We can see that our566

method (1) increases the distance between negative567

pairs in all settings; (2) decreases the distance be-568

tween positive pairs in NP+FTC and ADCL+FTC569

models, while the distances between positive pairs570

barely change in NP+ADV and ADCL+ADV mod-571

els; (3) increases δ in all settings. The above ob-572

servations validate H4 in section 4.4, and further573

explain that our method achieves higher robustness574

by pushing vector representations of clean exam-575

ples and adversarial examples closer.576

In fig. 3, we further give qualitative analysis on577

the distances between clean examples and adversar-578

Dataset Distance (dpos/dneg/δ)
NP+ FTC ADCL+ FTC NP+ ADV ADCL+ ADV

AG 2.4/3.9/1.5 1.8/4.0/2.2 0.7/4.1/3.4 0.7/4.4/3.7

Yelp 3.5/3.7/0.2 2.9/4.0/1.1 0.7/3.2/2.5 0.5/3.4/2.9

IMDB 3.0/3.7/0.7 2.3/3.8/1.5 0.6/3.4/2.8 0.6/3.8/3.2

DBpedia 2.8/4.8/2.0 2.3/5.1/2.8 0.4/4.9/4.5 0.4/5.2/4.8

Table 4: Vector space study. For each setting, we eval-
uate three metrics: (a) Average distance between posi-
tive pairs; (b) Average distance between negative pairs;
(c) Difference between (a) and (b).

ial examples of the AG’s News dataset by showing 579

the t-SNE plot. We can see from the plot that the 580

distances between the clean examples and the cor- 581

responding adversarial examples are closer when 582

we apply ADCL pretraining, and that combining 583

adcl with adv gives the smallest distance between 584

supervised adversarial examples. Additional plots 585

of other datasets are available in appendix H. 586

5 Conclusion and Future Work 587

In this paper, we improve the robustness of pre- 588

trained language models against word substitution- 589

based adversarial attacks by using self-supervised 590

contrastive learning with adversarial perturbations. 591

Our method is different from previous works as we 592

can improve model robustness without accessing 593

annotated labels. Furthermore, we also conduct 594

word-level adversarial training on BERT with an 595

efficient attack. Our adversarial training is different 596

from previous works in that (1) it is on the word 597

level; (2) we generate adversarial examples on the 598

fly, instead of generating a fixed adversarial set 599

beforehand. Experiments show that our method im- 600

proves model robustness. We find that combining 601

our method with adversarial training results in bet- 602

ter robustness than conducting adversarial training 603

alone. In the future, we plan to scale our method to 604

even larger out-of-domain datasets. 605

8



Ethical Considerations606

To the best of our knowledge, the data used in607

our work does not contain sensitive information.608

Although our models are evaluated on academic609

datasets in this paper, they could also be used in610

sensitive contexts, e.g. healthcare or legal scenarios.611

It is essential that necessary anonymization and612

robustness evaluation is undertaken before using613

our models in these settings.614
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A Geometry Attack for Contrastive Loss706

Algorithm 1 is the pseudocode of our Geometry707

Attack for contrastive loss. Refer to Section 3.3 for708

more details.709

B Datasets710

Dataset Labels Avg Len Train Test

AG’s News 4 44 120K 7.6K

IMDB 2 292 25K 25K

DBPedia 14 67 560K 70K

Yelp 2 177 560K 38K

Table 5: Statistics of the datasets.

The statistics of each dataset are shown in Ta-711

ble 5. In our work, the maximum sequence length712

is set to 128 for AG’s News and DBpedia, 256713

for Yelp, and 512 for IMDB. To save time during714

evaluating the model robustness against attacks,715

we randomly select a part of the test examples in716

each dataset for evaluation. Specifically, we select717

1,000 samples from IMDB, 2,000 samples from718

Yelp, and 5,000 samples from DBpedia. We use719

all 7,600 samples from the AG’s News test set for720

evaluation.721

AG’s News2 Topic classification dataset with four722

types of news articles: World, Sports, Business and723

Science/Technology.724

IMDB (Maas et al., 2011) Binary sentiment clas-725

sification dataset on positive and negative movie726

reviews.727

Yelp Yelp review dataset for binary sentiment clas-728

sification. Following Zhang et al. (2015), reviews729

with star 1 and 2 are considered negative, and re-730

views with star 3 and 4 are considered positive.731

DBpedia (Zhang et al., 2015) Topic classification732

dataset with 14 non-overlapping classes. Both con-733

tent and title fields are used in our work.734

C Effect of Queue Size735

We conduct additional experiments to study the736

effect of queue size. We use a queue size of737

8192, 16384, 32768, and 65536 under the setting738

of ADCL+FT for the AG’s News dataset. As is739

shown in Table 6, a larger queue size generally740

helps improve the model robustness. However, we741

also notice that when the queue size is too large742

2http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

Queue Size Original Acc. (%) Success (%) Replaced (%)

Vanilla 94.2 86.2 18.6

8192 94.4 77.8 18.9

16384 94.3 76.9 18.7

32768 94.3 76.5 19.1

65536 94.4 76.7 19.3

Table 6: Effect of queue size. We use the Geometry
Attack to evaluate the robustness of each model. The
FT model is finetuned without contrastive learning.

(65536), the model robustness starts to decrease. 743

We argue that this is because a too large queue size 744

results in less frequent queue updates, which makes 745

the vectors in the queue stale. 746

D Speed of Different Attacks 747

We show in Table 7 the average number of seconds 748

each attack needs for one example. We obtain 749

the average time by attacking 1000 examples and 750

then taking the average. We can observe that the 751

Geometry attack is at least four times faster than 752

TextFooler, and 4 to 10 times faster than PWWS 753

and BAE-R. The efficiency of the Geometry attack 754

allows us to generate adversarial examples on the 755

fly. 756

Attack AG’s News IMDB DBpedia Yelp

Geometry 0.44 2.02 0.69 1.16

TextFooler 2.48 8.69 2.89 4.86

PWWS 6.29 21.86 2.52 10.27

BAE-R 5.37 24.10 7.74 16.03

Table 7: Average number of seconds each attack needs
for an example.

E Adversarial Training with 757

Pre-generated Examples 758

We compare two different methods for adversarial 759

training: 760

• Pre-generated We pre-generate for each ex- 761

ample in the training set an adversarial exam- 762

ple. We then augment the original training 763

set with the adversarial examples. Finally, the 764

model is finetuned on the augmented dataset. 765

• On-the-fly This setting is the same as ADV 766

in Table 1, where we generate adverarial ex- 767

amples on the fly for each mini-batch during 768

training. 769
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Algorithm 1 Geometry Attack for Contrastive Loss

1: Input: Example Xi = {w1, w2, . . . , wL}, encoder f and MLP g
2: Output: Adversarial example X ′i
3: Initialize zi ← g(f(Xi))
4: for iter = 1 to N do
5: calculate `i using Equation 1
6: vzi ← ∇zi`i
7: E ← BertEmbeddings(X ′i) = {e1, e2, . . . , eL}
8: G← ∇E`i = {g1, g2, . . . , gL}
9: t← argmaxt ||gt||

10: C ← BertForMaskedLM({w1, · · · , wt−1,[MASK], wt+1, · · · , wL})
11: C ← Filter(C) // construct candidates set C = {wt1 , wt2 , · · · , wtT }
12: for each wtj ∈ C, 1 ≤ j ≤ T do
13: Xij ← {w1, · · · , wt−1, wtj , wt+1, · · · , wL}
14: zij ← g(f(Xij ))
15: rij ← zij − zi

16: pij ←
rij ·vzi

||vzi ||
17: end for
18: m← argmaxj ||pij ||
19: Xi ← Xim

20: zi ← zim
21: end for
22: X ′i ← Xi

23: return Xi

Dataset Success Rate / Replaced (%)
Geometry TextFooler PWWS BAE-R

Pre-generated 55.3/17.1 59.4/22.6 42.0/17.4 16.5/7.3

On-the-fly 20.7/20.5 25.1/29.3 26.1/22.3 10.7/7.7

Table 8: Comparison between adversarial training with
pre-generated adversarial examples and on-the-fly gen-
erated adversarial examples.

Table 8 shows the results on the AG’s News770

dataset. We can see that on all four attacks, adver-771

sarial training with on-the-fly generated adversarial772

examples gives higher robustness than adversarial773

training with pre-generated adversarial examples.774

F Implementation Details775

In our paper, we use PyTorch Lightning3 and Hug-776

gingFace Transformers4 in our implementation.777

We use BERT as the encoder f(·), and the rep-778

resentation of the [CLS] symbol in the last layer779

is used for h. g(·) is a two-layer MLP, of which780

the output size c is 128. g(·) uses Tanh as activa-781

tion function in the output layer. We use FP16 in782

3https://www.pytorchlightning.ai/
4https://huggingface.co/transformers/

training step to reduce GPU memory usage, and 783

use FusedAdam from DeepSpeed5 as the optimizer. 784

We enable DeepSpeed ZeRO Stage 2 to further 785

speed up training. We conduct all our experiments 786

on 8 RTX TITAN GPUs. 787

Contrastive learning For Geometry Attack for 788

contrastive loss, to reach a balance between attack 789

success rate and efficiency, the maximum num- 790

ber of iterations K is set to 10 for AG’s News, 791

DBpedia, and Yelp, and 15 for IMDB dataset. 792

We do not perturb words that were already per- 793

turbed in previous iterations. For an example Xi = 794

{w1, w2, . . . , wL}, at mostmin{K, 0.2 ·L} words 795

can be perturbed. For each word wt, 1 ≤ t ≤ L, 796

the upper limit of the candidate set size T is set to 797

25. Due to the various maximum lengths in down- 798

stream datasets and GPU memory limits, we use 799

different batch sizes for different datasets. During 800

contrastive learning, the batch size is set to 1024 801

for AG’s News and DBpedia, 448 for Yelp, and 802

192 for IMDB. 803

Fine-tuning During finetuning, we train the model 804

for two epochs for AG’s News and DBpedia, 3 for 805

5https://www.deepspeed.ai/
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Yelp, and 4 for IMDB. The learning rate is set to806

2e− 5 and is adjusted using linear scheduling.807

Adversarial training For adversarial training, the808

number of training epochs is set to 3 with an809

additional first epoch of finetuning on clean ex-810

amples. The adversarial examples are generated811

on the fly in each batch during training. For the812

Geometry Attack in adversarial training, at most813

min{K, 0.4 ·len(Xi)} words can be perturbed in814

an example. The upper limit of the candidate set815

size is set to 50.816

G Hard Positive Examples from817

Geometry Attack for Contrastive Loss818

In Table 9, we show hard positive examples gener-819

ated by our Geometry Attack for contrastive loss820

from the AG’s News dataset.821

Original Zurich employees plead guilty in probe new york
(reuters) - two senior insurance underwriters at zurich
american insurance co pleaded guilty on tuesday to mis-
demeanors related to bid-rigging in the insurance mar-
ket.

Adversarial Zurich employees plead guilty in probe new york
(reuters) - two senior insurance agents at zurich ameri-
can insurance co testified guilty on tuesday to violations
related to bid-rigging in the insurance market.

Original It has a stunning lack of even rudimentary traces of real-
ism . almost every war movie cliche appears in this film
and is done badly. on the other hand , i wouldn’t have
watched it to the end if it hadn’ t been so remarkably
bad that it amused me.

Adversarial It has a stunning lack of even joyless traces of realism .
almost every war movie cliche appears in this film and
is done erroneously. on the other hand , i wouldn’t have
watched it to the end if it hadn’ t been so remarkably
bad that it flabbergasted me.

Original Black watch troops move into position the first units
of a black watch battlegroup are due to arrive today
in their new positions south of baghdad as tony blair
indicated that more british troops may replace them in
the american - controlled zone before the end of the
year.

Adversarial Black watch troops move into place the first units of a
black watch operation are due to arrive today in their new
positions south of baghdad as tony blair indicated that
more british troops may replace them in the american -
controlled zone before the end of the year.

Table 9: Hard positive examples generated by Geome-
try Attack for contrastive loss. Blue words in the origi-
nal examples are replaced by red words in the adversar-
ial examples.

H Additional t-SNE plots822

823

We give t-SNE plots of the vector representations824

of clean examples and adversarial examples from825

Yelp, IMDB and DBpedia in fig. 4, fig. 5 and fig. 6,826

respectively.827
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Figure 4: t-SNE plot of the vector representations of
clean examples and adversarial examples from the Yelp
dataset.
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Figure 5: t-SNE plot of the vector representations
of clean examples and adversarial examples from the
IMDB dataset.
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Figure 6: t-SNE plot of the vector representations of
clean examples and adversarial examples from the DB-
pedia dataset.
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