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ABSTRACT

Gaussian process regression is a flexible Bayesian method for capturing nonlin-
earity. Although recent advancements allow us to handle various types of tasks
by specifying the covariance and likelihood functions, the interpretation of its
predictions is sometimes challenging due to the large number of parameters. In
this study, we propose a clustering approach to improve the interpretability of
Gaussian process posteriors. Assuming that the parameters corresponding to data
points within each cluster are identical, the number of parameters in the posterior
distribution is reduced. The assignment of data points to clusters is formulated
as a mixed-integer quadratic programming problem, with the objective function
being a weighted squared error from the mean of the posterior distribution ap-
proximated by variational inference. Graph partitioning and decision tree learning
can be represented by incorporating linear inequality constraints into this formu-
lation. Experimental results demonstrated that our approach provided significant
advantages in enhancing the interpretability of spatial modeling. Moreover, our
formulation has produced higher-scoring decision trees compared to Classification
and Regression Trees algorithm.

1 INTRODUCTION

Gaussian process regression is a Bayesian nonlinear regression method (Rasmussen & Williams,
2006). This regression framework can handle various types of tasks by specifying the covari-
ance and likelihood functions. Spatial modeling is a key application of Gaussian process regres-
sion (Cressie, 1993). Stationary covariance functions that incorporate the Euclidean metric are
widely used to model spatial relationships. Non-Euclidean metrics are specifically designed to
capture anisotropic or nonstationary structures (Paciorek & Schervish, 2003; Feragen et al., 2014).
Covariance functions can be designed flexibly for tasks beyond geostatistics. There are covari-
ance functions equivalent to an infinitely wide deep neural network (Lee et al., 2018). Likelihood
functions based on the behavior of observations significantly impact prediction performance. Speci-
fying non-Gaussian likelihoods that are not conjugate with a Gaussian process prior has emerged
as a significant area of research. Variational inference with inducing points is a common ap-
proach that maximizes a lower bound on the marginal likelihood using a Gaussian approximation
(Quiñonero-Candela & Rasmussen, 2005; Titsias, 2009). Some studies have extended this approach
to accommodate general likelihoods (Sheth et al., 2015; Hensman et al., 2015b).

Although Gaussian process regression has flexible expressive power, too many parameters can some-
times make it difficult to interpret the prediction results. Surrogate models trained to approximate
the predictions of a black-box model show promise in tackling this challenge (Molnar, 2022). De-
cision trees are known for being interpretable machine learning models (Quinlan, 1986). They can
handle nonlinear regression tasks while maintaining a clear decision-making process. Assuming
that the data points in each leaf share a common parameter, a decision tree helps reduce the number
of parameters in a Gaussian process posterior distribution. Figure 1 illustrates the behavior of the
decision tree surrogate model for a posterior distribution given new inputs. Compared to a decision
tree trained directly on observed data, a surrogate model performs better when the distribution of
new inputs differs from the training data. This is advantageous for practical applications, such as
in marketing and risk management, as it facilitates the creation of groups tailored to target users.
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feature

Leaf 1 Leaf 2

Leaf 1 Leaf 2

Figure 1: Surrogate models for Gaussian process posteriors. Left: graph partitioning. Right: deci-
sion tree learning. Colors illustrate the level of the mean in a posterior. The height from the axis in
the right figure represents the distribution of a feature.

Given that a leaf is a type of cluster of data points, clustering with other structures can similarly be
used to build surrogate models. Graph partitioning is the process of dividing the nodes of a graph
into smaller disjoint subgraphs while minimizing an objective (Nascimento & de Carvalho, 2011;
Buluç et al., 2016). This technique is particularly beneficial for clustering data points based on their
dependencies in spatial modeling.

In this study, we propose a clustering approach to enhance the interpretability of Gaussian process
regression. To train surrogate models for Gaussian process posteriors, it is required to adopt crite-
ria that align with the likelihood functions. We formulate a mixed-integer quadratic programming
(MIQP) problem to assign data points to clusters, maximizing the probability density of the poste-
rior distribution approximated through variational inference. The objective function minimizes the
weighted squared error from the mean of the Gaussian distribution that approximates the posterior,
with weights determined by the inverse of the variance. Incorporating linear inequality constraints
into this formulation allows us to represent graph partitioning and decision tree learning. Figure 2
illustrates the overview of our approach. Experiments demonstrate that graph partitioning through
the Gaussian process posterior enhances the interpretability of spatial modeling. Moreover, decision
tree learning using our formulation has achieved higher scores than Classification and Regression
Trees (CART) algorithm (Breiman et al., 1984).

2 RELATED WORK

Local Surrogate Model. While our approach attempts to approximate the overall behavior of black-
box models with interpretable models, other candidate methods are available to explain individ-
ual predictions (Guidotti et al., 2018). Local Interpretable Model-agnostic Explanations (LIME)
uses local surrogate models trained on perturbed samples generated around a specific instance
(Ribeiro et al., 2016). These models approximate the original model’s behavior within the local re-
gion. Using the concept of SHapley value from cooperative game theory (Shapley, 1953), SHapley
Additive exPlanations (SHAP) assigns an importance value to each feature for a particular prediction
(Lundberg & Lee, 2017). SHAP values, used as coefficients in a linear function of binary variables
corresponding to features, provide valuable properties for enhancing interpretability. Koh & Liang
2017 proposed a method to formalize the impact of a training point on a prediction, providing effi-
cient computation through influence functions derived from robust statistics (Hampel, 1976). This
formulation helps us understand the behavior of black-box models during the learning process.

Non-parametric Clustering. The probability density function estimated by non-parametric mod-
els, such as suport vector machines (Ben-Hur et al., 2002) and Gaussian processes (Kim & Lee,
2007), enables us to indetify high-density regions. The valleys in this probability distribution are
interpreted as the boundaries between clusters. Unlike our approach, this clustering method focuses
on identifying regions rather than grouping individual data points into clusters and does not aim to
preserve the prediction accuracy of the original models.

Optimal Tree. An optimal tree is a decision tree constructed to minimize a certain objective func-
tion. Although optimal trees may offer both simplicity and precision, building them is an NP-
complete task (Hyafil & Rivest, 1976). For this reason, practical algorithms are typically heuristic.
The CART algorithm is one of the most widely used heuristics for decision tree learning. Re-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

New Input

Gaussian Process Posterior

Input Output
Weighted Squared Error

Optimal Clusters

variational inference

Clusters

finding clusters by MIQP

updating a Gaussian process prior

Figure 2: Overview of our approach. To reduce the number of parameters in the Gaussian pro-
cess posterior distribution, we assign new data points to clusters. The assignment of data points
is formulated as an MIQP problem that minimizes the weighted squared error. Graph partitioning
and decision tree learning are specific cases of this clustering approach. The figure represents the
process of decision tree learning.

cent improvements in computing performance have motivated the development of exact algorithms.
Bertsimas & Dunn 2017 proposed a mixed-integer linear programming (MIP) approach to find op-
timal trees. Since its publication, many subsequent approaches (Hu et al., 2019; Verwer & Zhang,
2019; Aglin et al., 2020; Verhaeghe et al., 2020; Günlük et al., 2021; Demirovic & Stuckey, 2021;
Demirović et al., 2022; Zhang et al., 2023) have been proposed. Appendix B shows whether these
approaches are classification or regression. For several reasons, building optimal classification trees
is easier. Specifically, the binarization technique proposed by (Verwer & Zhang, 2019) enables the
efficient conversion of continuous variables into binary ones for classification tasks. While continu-
ous variables can be directly represented by linear inequalities in an MIP formulation, most metrics
used in regression tasks do not take an affine form. Our approach aims to minimize the weighted
squared error involving continuous variables. To the best of our knowledge, no existing work in the
context of optimal trees has yet satisfied this requirement.

3 PRELIMINARY

To set the foundation for our approach, we describe Gaussian process regression, MIQP, and two
potential surrogate models. Appendix A indicates the list of symbols. Let the domain of inputs
denote X ≡ X1 × · · · × Xd ⊂ Rd.

3.1 GAUSSIAN PROCESS REGRESSION

A Gaussian process f ∼ GP(τ(·), k(·, ·)) is a distribution over functions characterized by a mean
function τ : X → R and a covariance function k : X × X → (0,∞). For simplicity, we take
τ(·) = 0. A stochastic process {f(x) | x ∈ X} is a Gaussian process if and only if the random
variables {f(x) | x ∈ X ′} for any finite set X ′ ⊆ X follow a multivariate normal distribution. A
more detailed introduction is presented in (Rasmussen & Williams, 2006).

Variational Inference. Inducing points Z ≡ (zi)
m
i=1 with zi ∈ X are used in variational inference

for Gaussian process regression. The posterior distribution of u ≡ (f(zi))
m
i=1 is approximated

by q(u) ≡ N (u; b,S), where b is an m-dimensional real vector and S is an m × m positive-
definite matrix. These parameters (Z, b,S) are learned to maximize the evidence lower bound
given observed data. Let the (i, j)-th element of the Gram matrix for (A,B) be the return value
of a covariance function when the inputs are the i-th row of A and the j-th row of B. We assume
that symmetric Gram matrices are positive-definite. For new inpus X ≡ (xi)

n
i=1 with xi ∈ X , the

posterior distribution of f ≡ (f(xi))
n
i=1 is approximated by

q(f) ≡ N (f ;µ,Σ), (1)

where µ ≡ K⊤
ufK

−1
uub, Σ ≡ Kff + K⊤

ufK
−1
uu (S − Kuu)K

−1
uuKuf , Kuu is the Gram matrix

of (Z,Z), Kuf is the Gram matrix of (Z,X), Kff is the Gram matrix of (X,X), and N is the
probability density function of Gaussian distribution.
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3.2 MIXED-INTEGER QUADRATIC PROGRAMMING

Minimizing 1
2x

⊤Qx + c⊤x with respect to an I-dimensional real vector x is refered to as an un-
constrained quadratic programming problem, where Q is an I× I real symmetric matrix and c is an
I-dimensional real vector. If the matrix Q is positive-definite, then−Q−1c is the solution of uncon-
strained quadratic programming (Boyd & Vandenberghe, 2004). An MIQP problem is formulated
by incorporating linear inequality constraints and requiring certain elements of x to be either 0 or 1.
Algorithms to solve it benefit from the positive-definiteness of Q. We refer to this type of MIQP as
a positive-definite MIQP.

3.3 SURROGATE MODELS

Directed Acyclic Graph. A graph is defined by a set of vertices and edges. A directed acyclic graph
(DAG) is a graph with directed edges and no cycles. The problem of learning DAGs is central to
many areas of machine learning, such as Bayesian network structure learning (Kitson et al., 2023).
A connected graph, which is an undirected graph where a path exists between every pair of vertices,
represents the connectivity among data points. If a DAG has exactly one leaf (i.e., a node with
no child), then it becomes a connected graph when the directions of the edges are ignored. Let a
topological ordering ≺ denote a binary relation between any two of vertices such that

Vi ≺ Vj ∧ Vj ≺ Vk ⇒ Vi ≺ Vk and Vi ≺ Vj ⇒ Vi /∈ Πj , (2)

where Vi is the i-th vertex, and Πi is the set of vertices with edges directed towards Vi. If and only
if a graph is a DAG, a topological ordering exists (Cormen et al., 1990).

Decision Tree. Decision trees graphically represent decision-making, illustrating how decisions
lead to consequences. A decision tree is a graphical representation of decision-making, illustrating
how decisions lead to consequences. A comprehensive description of decision trees can be found
in (Quinlan, 1986; Breiman et al., 1984). A path from root to leaf in the tree structure corresponds
to a conjunctive rule, and the entire decision tree captures a set of disjunctive rules. Starting from
the root node, branches are recursively built down according to the possible values of input features.
Each node corresponds to a subset of the input domain. For uniformity of notation, we let the initial
domain of the i-th feature at the root node be [minXi,maxXi + ϵi), where ϵi is a positive real
number smaller than the minimum non-zero interval in the i-th feature of the inputs. We denote the
locations of the two nodes directly below the node located at o as o → left and o → right. Let
[sio, tio) denote the domain of the i-th feature corresponding to the node located at o. We adopt one
feature at each branch. Then the relation of domains is{

sio = sio→left, tio = tio→right, tio→left = sio→right (if the i-th feature is adopted),
sio = sio→left = sio→right, tio = tio→left = tio→right (otherwise).

(3)

Decision trees are commonly used for supervised learning tasks. Given complete data, branches are
optimized to maximize a specific metric. Common measures (e.g., information gain, Gini index,
and mean squared error) can be represented as a linear sum of local scores computed at the leaves
of a tree. Many algorithms rely on these linear metrics, which enable the separate optimization of
subtrees within the overall tree.

4 APPROACH

In this section, we introduce surrogate models to improve the interpretability of Gaussian process
posteriors. Our approach relies on the concept of clustering through a Gaussian process posterior.
Graph partitioning and decision tree learning can be modeled by finding clusters under certain con-
straints. These tasks are formulated as MIQP problems.

4.1 CLUSTERING FOR GAUSSIAN PROCESS POSTERIOR

Each data point has a parameter in the framework of Gaussian process regression. While this allows
us to deal with various observations flexibly, too many parameters generally pose a disadvantage
for the interpretation of estimation results. To improve the explainability of a Gaussian process
posterior, we assign new data points to l clusters where the data points in each cluster have a common
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parameter. Let ω ≡ (ωi)
n
i=1 with ωi ∈ {1, · · · , l} denote the data point assignment, and v ≡ (vi)

l
i=1

with vi ∈ R denote the parameters corresponding to clusters. From eq. (1), the posterior probability
of v and ω can be approximated by

L(ω,v) ≡ −n

2
log(2π)− 1

2
log|Σ| − 1

2
(Wv − µ)⊤Σ−1(Wv − µ), (4)

where W is an n × l matrix satisfying [W ]ij = 1 if ωi = j; [W ]ij = 0 otherwise. For simplicity,
we assume that each column in W contains at least one non-zero component. Here we aim to find
clusters that maximize L(ω,v). The following lemma is used in this maximization. See appendix C.
Lemma 4.1. W⊤Σ−1W is positive-definite.

From lemma 4.1, the unique mode of v given ω is v̂(ω) ≡ (W⊤Σ−1W )−1W⊤Σ−1µ. A naive
approach to addressing this optimization is to iterate between optimizing ω given v and updating
v as v̂(ω). See appendix D. While this iteration always converges, the convergence destination
depends on the initial state of ω. Therefore, we attempt to maximize L(ω,v) directly. To present
the assignment ω, we use binary variables w = ((wij)

l
j=1)

n
i=1 with wij ∈ {0, 1}. Each element

wij corresponds to [W ]ij . The optimization problem involving w and v is formulated as follows:

minimize (W̄v − µ)⊤Σ−1(W̄v − µ) subject to wi1 + · · ·+ wil = 1 for all 1 ≤ i ≤ n, (5)

where W̄ is an n × l matrix satisfying [W̄ ]ij = wij . To transform the fourth-degree polynomials
into quadratic ones, we replace wijvj with v̄ij under the following constraint:

−Mwij ≤ v̄ij ≤Mwij and vj −M(1− wij) ≤ v̄ij ≤ vj +M(1− wij), (6)

where M is a positive real number such that [−M,M ]l includes v̂(ω) for any ω. Lastly, we intro-
duce the following theorem. See appendix E.
Theorem 4.2. Equation (5) can be reformulated as a positive-definite MIQP problem.

By discarding the covariance among new inputs, our approach becomes equivalent to a regression
model trained on the complete data (X,µ) with a weighted squared error. Intuitively, the weights
of data points with high uncertainty are small. Consider marginalizing v in L(ω,v). This metric is

L(ω, v̂(ω))− 1

2
log|W⊤Σ−1W |+ l

2
log(2π). (7)

See appendix F. The second term indicates the difference from the objective function in the MIQP
problem. Although this term restricts the increase in the number of clusters, it cannot be expressed
in quadratic form. To leverage efficient algorithms for MIQP formulation, we focus on the maxi-
mization of L(ω,v) in this study.

The above discussion lays the foundation to evaluate the approximation performance for Gaussian
process posteriors. However, the enhancement of interpretability remains outside the scope of this
evaluation. A cluster that is too small often hinders interpretability, even with high predictive per-
formance. Small clusters can also hinder the practicality of clustering. For instance, the profitability
of small clusters may be poor when setting advertisements in each cluster. The following constraint
ensures that the i-th non-empty cluster contains at least n0 data points:

n0αi ≤ w1i + · · ·+ wni ≤ nαi, (8)

where αi ∈ {0, 1} corresponds to whether the i-th cluster is empty (αi = 0) or not (αi = 1).
The number of clusters is optimized by incorporating α1, · · · , αl into the variable set of the MIQP
problem. Additionally, we often assume that data points within a certain granularity are included
in the same cluster. Practical usage constrains the minimum granularity of clusters, such as by city,
grade, or age group. The granularity constraint is closely related to ensuring the fairness of machine
learning models, as well as other societal requirements. Moreover, this assumption is advantageous
for scalable tasks as it reduces the number of variables in the MIQP formulation.

4.2 FORMULATION FOR GRAPH PARTITIONING

Spatially connected datapoints in each cluster are easier to make the estimation results more visually
comprehensible. In particular, such clusters within physical spaces tend to have more meaningful

5
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0 ≤ 𝑟12 + 𝑟23 − 𝑟13 ≤ 1
0 ≤ 𝑟12 + 𝑟24 − 𝑟14 ≤ 1
0 ≤ 𝑟13 + 𝑟34 − 𝑟14 ≤ 1

𝑒21 ≤ 1 − 𝑟12
𝑒31 ≤ 1 − 𝑟13
𝑒41 ≤ 1 − 𝑟14

⋮

Ordering

4

1

3

−2 1 − 𝑒21 ≤ 𝑤21 − 𝑤11 + 2 𝑤22 − 𝑤12 ≤ 2 1 − 𝑒21
−2 1 − 𝑒31 ≤ 𝑤31 − 𝑤11 + 2 𝑤32 − 𝑤12 ≤ 2 1 − 𝑒31
−2 1 − 𝑒41 ≤ 𝑤41 − 𝑤11 + 2 𝑤42 −𝑤12 ≤ 2 1 − 𝑒41

⋮

2

1 − 𝛽1 ≤ 𝑒21 + 𝑒31 + 𝑒41

⋮
Connectivity

Separation

𝑤11 = 1
𝑤12 = 0

𝑤41 = 0
𝑤42 = 1

𝑤21 = 1
𝑤22 = 0

𝑤31 = 1
𝑤32 = 0

1

2

3

4

Figure 3: Example of graph partitioning. Edges in the connected graph are either removed or re-
placed by directed edges. Each DAG with exactly one leaf corresponds to a cluster.

interpretations. Let the i-th data point correspond to the i-th vertex of an undirected graph, and let
the neighboring data points correspond to the vertices connected by edges to it. We consider the
graph partitioning problem, which constructs separate connected graphs by removing edges from
the undirected graph. Each separate connected graph corresponds to a cluster. Here we introduce
the following theorem. See appendix G.
Theorem 4.3. If and only if an undirected graph is a connected graph, there exists at least one DAG
that has exactly one leaf, with edges included in the set of directed edges obtained when the edges
in the undirected graph are replaced by bidirectional edges.

From theorem 4.3, we construct at most l DAGs that can be represented by linear inequalities for an
MIQP formulation. Figure 3 illustrates this formulation.

Separation. The following condition ensures that there exists no directed edge from the j-th vertex
in one cluster to the i-th vertex in a different cluster:

−l(1− eij) ≤
∑

1≤k≤l
k(wik − wjk) ≤ l(1− eij), (9)

where eij ∈ {0, 1} corresponds to whether the directed edge exists (eij = 1) or not (eij = 0). This
condition implies that each cluster has its own separate graph.

Ordering. The separate graph within a cluster becomes a DAG when eq. (2) holds. The ordering of
vertices and the consistency of edges in this equation are captured by

0 ≤ rij + rjk − rik ≤ 1 and eji ≤ 1− rij , (10)

where rij ∈ {0, 1} satisfies rij = 0 if the order of the j-th vertex is higher than the i-th vertex;
otherwise, rij = 1. Let rij = 1− rji. This formulation requires 1

2n(n− 1) binary variables.

Connectivity. Let Ci denote the set of indices of the vertices that are adjacent to the i-th vertex. The
following constraints ensure that each DAG has exactly one leaf:

1− βi ≤
∑

j∈Ci

eji for all 1 ≤ i ≤ n, (11)

where βi ∈ {0, 1} corresponds to whether the i-th vertex is a leaf (βi = 1) or not (βi = 0). We
constraint the number of clusters and leaves by adding α1 + · · ·+ αl = β1 + · · ·+ βn.

4.3 FORMULATION FOR DECISION TREE LEARNING

Graph partitioning improves the interpretability of Gaussian process posteriors by visualizing the
relationships among data points in a low-dimensional space. For higher-dimensional data, simple

6
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New Input

(6, 4)

(6, 2)

(8, 0)

right ([𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 , 8 + 𝜀1), [𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 , 4 + 𝜀2))

𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝛿1(1 − 𝑤11) ≤ 6 ≤ 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿1 1 − 𝑤11 − 𝜀1
𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝛿2(1 − 𝑤12) ≤ 4 ≤ 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿2(1 − 𝑤12) − 𝜀2
𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝛿1(1 − 𝑤21) ≤ 8 ≤ 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿1(1 − 𝑤21) − 𝜀1
𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝛿2(1 − 𝑤22) ≤ 0 ≤ 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿2(1 − 𝑤22) − 𝜀2

6 = 𝑠1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 ≤ 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝑡1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 = 8 + 𝜀1
0 = 𝑠2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 ≤ 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝑡2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 = 4 + 𝜀2

𝑚𝑎𝑥 𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 6, 8 + 𝜀1 − 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝛿1𝛾1 𝑟𝑜𝑜𝑡 ≤ 𝑠1 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿1
𝑚𝑎𝑥 𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 0, 4 + 𝜀2 − 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 ≤ 𝛿2𝛾2 𝑟𝑜𝑜𝑡 ≤ 𝑠2 𝑟𝑜𝑜𝑡→𝑟𝑖𝑔ℎ𝑡 − 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡 + 𝛿2

left ([6, 𝑡1 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡), [0, 𝑡2 𝑟𝑜𝑜𝑡→𝑙𝑒𝑓𝑡))

root ([6,8 + 𝜀1), [0,4 + 𝜀2))

𝛾1 𝑟𝑜𝑜𝑡 + 𝛾2 𝑟𝑜𝑜𝑡 = 1

Splitting

Assignment

Adoption 0 < 𝜀1 < 2, 0 < 𝜀2< 2, 𝛿1= 8 − 6 + 𝜀1, 𝛿2= 4 − 0 + 𝜀2

Figure 4: Example of decision tree learning. This figure shows a tree with depth 1. Deeper trees can
be generated by recursively applying the same split used in this tree.

rules for building clusters can facilitate interpretation. Decision trees offer such rules by creating
clusters through orthogonal splits. To learn a decision tree as an MIQP problem, we introduce
additional linear inequality constraints to eq. (5). Figure 4 presents this formulation. Aside from
this method, constraints for assigning data points can be applied not at each leaf, but at each split.
See appendix H. While our approach requires specifying the binary tree structure in advance, eq. (8)
allows for empty leaves within the given tree structure. Consequently, the decision tree structure is
indirectly optimized.

Adoption. The following constraint captures that one feature is adopted at the branch located at o:

γ1o + · · ·+ γdo = 1, (12)

where γio ∈ {0, 1} corresponds to whether the i-th feature is adopted (γio = 1) or not (γio = 0).
While this splitting involves a single feature, it can easily be extended to multiple features.

Splitting. The common conditions and the case distinctions in eq. (3) are as follows:

sio = sio→left ≤ sio→right ≤ tio→left ≤ tio→right = tio, (13)
max{sio→right − sio, tio − tio→left} ≤ δiγio ≤ sio→right − tio→left + δi, (14)

where δi ≡ maxXi −minXi + ϵi. These constraints are applied sequentially starting from the root
node, allowing us to determine the domain associated with each leaf.

Assignment. Based on the domains of the leaves, we allocate each data point to a leaf. For the a-th
leaf located at o, the i-th data point must satisfy

sjo − δj(1− wia) ≤ xij ≤ tjo + δj(1− wia)− ϵj , (15)

where xij is the j-th feature of xi. The number of inequalities for this constraint increases as
the number of new inputs grows, making the learning process for decision trees more difficult.
The assumption of minimum granularity of clusters helps mitigate this issue, requiring only minor
adjustments to the inequalities.

5 EXPERIMENT

In this section, we conduct two experiments to evaluate our approach. The first experiment focuses
on graph partitioning for geostatistical tasks, with a visualization of the clusters formed on the map.
The second addresses decision tree learning as an exact search algorithm, comparing its accuracy
with the CART algorithm. The sources of the data and software are indicated in appendix I.2.
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Dataset K-means  l = 2 K-means  l = 4

Original Model Our Approach  l = 2 Our Approach  l = 4

1.0

1.5

2.0

2.5

3.0

Figure 5: Behavior of graph partitioning. The loss from the k-means algorithm was 0.686 for l = 2
and 0.650 for l = 4. The loss from the our approach was 0.582 for l = 2 and 0.551 for l = 4.
For each l ∈ {2, 4}, the k-means algorithm converged within a few seconds, and our formulation
obtained feasible solutions that were not proven optimal within 5 hours. The color bar represents
the observed values or expected values at each data point. The upper bound for the displayed values
is 3, and the lower bound is 1.

Gaussian Process Posteriors. The posterior distribution was approximated using variational in-
ference methods for Gaussian likelihoods (Hensman et al., 2013) and non-Gaussian likelihoods
(Hensman et al., 2015a). The initial m inducing points were obtained using the k-means clustering
algorithm (Arthur & Vassilvitskii, 2007). The covariance functions were designed by multiplying
a constant kernel with the radius basis function (RBF) kernel and adding white noise. The RBF
kernel includes a lengthscale hyperparameter for each dimension of the input space. We present
the likelihood function in appendix I.1. The link function was the identity function for the Gaus-
sian, the exponential function for the Poisson, and the probit function for the Bernoulli, respectively.
The mean function was τ(·) = 0. We evaluate the approximation performance of surrogate models
for this Gaussian process posterior using a loss function defined as the root mean squared error,
weighted by the variance of the posterior. Let n0 = 1.

Computational Environment. All experiments were conducted on a 64-bit Windows machine with
an Intel Xeon W-2265 @ 3.50 GHz and 128 GB of RAM. The code was implemented using Python
version 3.7.3. Gurobi Optimizer version 9.1.2 was applied to solve the MIQP problem. Gaussian
process regression via variational inference was performed using GPy version 1.12.0. Scikit-learn
version 1.5.2 was used for the k-means algorithm. We set all parameters to their default values
across all software.

5.1 GRAPH PARTIONING

Setting. As a spatial dataset, we used location points (i.e., longitude and latitude pairs) as inputs
and house prices as outputs in the California Housing dataset (20640 samples). These location

8
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Table 1: Performance of decision tree learning. The mean and standard deviation of the loss in
10-fold cross validation are shown. In all trials, the CART algorithm finished within a few seconds,
and the MIQP found feasible solutions that were not proven optimal.

Name m Likelihood Time Limit CART MIQP

Diabetes 10 Gaussian 1 hour 10.5± 3.46 9.18± 2.97
Abalone 100 Poisson 5 hours 0.0961± 0.00274 0.0932± 0.00362
Cancer 10 Bernoulli 1 hour 1.05± 0.124 0.976± 0.0967

points fall within the range [−124.35,−114.31]× [32.54, 41.95]. The regional mesh is expected to
help in building interpretable clusters. We assumed that the data points included within each 1 × 1
grid belong to a common cluster, and that a data point is connected with another data point if they
belong to the same grid or the adjacent grids. A Gaussian process prior was trained on the entire
dataset, with m = 100 inducing points and a Gaussian likelihood. The new inputs were identical
to the inputs used for training. The time limit for our clustering approach in each trial was set to 5
hours. As a baseline, we adopted the k-means clustering algorithm without the regional mesh and
the Gaussian process posteriors.

Result. As shown in fig. 5, we successfully represented that coastal California housing prices tend
to be higher. This result suggests that our approach is capable of capturing clusters with flexible
boundaries based on the behavior of the outputs. We believe that existing unsupervised learning
methods cannot adequately represent these boundaries. The main drawback of our formulation is
the increasing computational cost as the number of clusters grows. For l = 8, we were unable to
obtain a feasible cluster within the time limit.

5.2 DECISION TREE LEARNING

Setting. To demonstrate the performance of decision tree learning by the MIQP formulation, we
used three dataset: Diabetes (442 samples with d = 10), Abalone (4177 samples with d = 8),
and Cancer (569 samples with d = 30). Since our approach cannot handle categorical variables
directly, we binarized the column in the Abalone dataset that contains three categories: M, F, and
I. We compared the loss from the MIQP formulation with that from the CART algorithm. Ninety
percent of each dataset was allocated to obtaining a Gaussian process posterior, while the remaining
ten percent was used to build a decision tree surrogate model. The tree structure was set to a depth
of 3 with l = 8 leaves.

Result. Table 1 shows that the MIQP formulation outperformed the CART algorithm in terms
of accuracy across the three datasets. However, considering that the MIQP formulation did not
find higher accuracy trees for the Abalone dataset within 1 hour from the start, the execution time
presents a challenge for larger datasets.

6 CONCLUSION

In this study, we proposed a clustering approach to construct surrogate models aimed at enhancing
the interpretability of predictions in Gaussian process regression. Graph partitioning and decision
tree learning are important tasks for constructing surrogate models. They can be formulated as MIQP
problems that maximize a metric to evaluate approximation performance. Experimental results sug-
gest that our approach allows for obtaining flexible clusters in geostatistical tasks. Moreover, deci-
sion tree learning using our formulation resulted in higher-scoring trees than those produced by the
CART algorithm.

Limitation. The objective function in eq. (5) is not a linear metric when the covariance among new
inputs is retained. Although our approach can address this challenge, the increasing number of cross
terms in the objective function makes finding optimal solutions more difficult. Additionally, even if
the covariance is ignored, the computational cost becomes significant with a larger number of new
inputs. While the assumption of minimum granularity for clusters helps reduce computational cost,
we need to investigate its feasibility for practical tasks.

9
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ETHICS STATEMENT

This study, which introduces a clustering approach, does not involve any direct ethical concerns.
While our approch could be applied in various fields, any potential ethical considerations would de-
pend on the specific context. We should be cautious about fairness or bias in clusters when applying
the method in real-world scenarios.

REPRODUCIBILITY STATEMENT

The proofs of the claims and the supplementary descriptions of the experiments are provided in the
appendix. All the source code used in the experiments is included in the supplementary material.
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A NOTATIONS

Notations Description

X X1 × · · · × Xd ⊂ Rd

f f ∼ GP(τ(·), k(·, ·)) with τ : X → R and k : X × X → (0,∞)
n the number of data points
m the number of inducing points
l the number of clusters
X (xi)

n
i=1 with xi ∈ X

Z (zi)
m
i=1 with zi ∈ X

f (f(xi))
n
i=1 ∈ Rn

u (f(zi))
m
i=1 ∈ Rm with zi ∈ X

v (vi)
l
i=1 with vi ∈ R

ω (ωi)
n
i=1 with ωi ∈ {1, · · · , l}

w ((wij)
l
j=1)

n
i=1 with wij ∈ {0, 1}

q(u) N (u; b,S) with an real vector b and an positive-definite matrix S
q(f) N (f ;µ,Σ) with µ = K⊤

ufK
−1
uub and Σ = Kff +K⊤

ufK
−1
uu (S −Kuu)K

−1
uuKuf

Kff the Gram matrix of (X,X)
Kuf the Gram matrix of (Z,X)
Kuu the Gram matrix of (Z,Z)
W n× l matrix satisfying [W ]ij = 1 if ωi = j; [W ]ij = 0 otherwise
W̄ n× l matrix satisfying [W̄ ]ij = wij ∈ {0, 1}

L(ω,v) −n
2 log(2π)− 1

2 log|Σ| −
1
2 (Wv − µ)⊤Σ−1(Wv − µ)

v̂(ω) (W⊤Σ−1W )−1W⊤Σ−1µ
[sio, tio) the domain of the i-th feature located at o

αi whether the i-th cluster is empty (αi = 0) or not (αi = 1)
βi whether the i-th vertex is a leaf (βi = 1) or not (βi = 0)
γio whether the i-th feature located at o is adopted (γio = 1) or not (γio = 0)
ξo the split threshold ξo ∈ (−∞,∞) for the branch located at o
eij whether the directed edge Vj → Vi exists (eij = 1) or not (eij = 0)
rij rij = 0 if the order of the j-th vertex is higher than the i-th vertex; otherwise, rij = 1
v̄ij a binary variable corresponding to wijvj
Ci the set of indices of the vertices that are adjacent to the i-th vertex
M a positive real number such that [−M,M ]l includes v̂(ω) for any ω
δi maxXi −minXi + ϵi
ϵi a positive real number smaller than the minimum non-zero interval in the i-th feature
n0 the minimum number of data points in a non-empty cluster
N the probability density function of Gaussian distribution

B OPTIMAL TREES

Name Task Approach

(Breiman et al., 1984) classification and regression heuristic
(Bertsimas & Dunn, 2017) classification exact

(Hu et al., 2019) classification exact
(Verwer & Zhang, 2019) classification exact

(Aglin et al., 2020) classification exact
(Verhaeghe et al., 2020) classification exact

(Günlük et al., 2021) classification exact
(Demirovic & Stuckey, 2021) classification exact

(Demirović et al., 2022) classification exact
(Zhang et al., 2023) regression exact

Our Approach regression exact
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C PROOF OF LEMMA 4.1

For any n-dimensional real vector x ̸= 0, the following holds:

x⊤Σx = x⊤(Kff −K⊤
ufK

−1
uuKuf )x+ x⊤K⊤

ufK
−1
uuSK

−1
uuKufx

= x⊤K⊤
ufK

−1
uuKuuK

−1
uuKufx− 2x⊤K⊤

ufK
−1
uuKufx+ x⊤Kffx

+ (K−1
uuKufx)

⊤S(K−1
uuKufx)

= x⊤
uKuuxu + 2x⊤K⊤

ufxu + x⊤Kffx+ x⊤
uSxu

=
[
x⊤
u x⊤] [Kuu Kuf

K⊤
uf Kff

] [
xu

x

]
+ x⊤

uSxu

where xu ≡ −K−1
uuKufx. From the assumption that symmetric Gram matrices and S are positive-

definite, Σ is positive-definite. If xv ̸= 0, then Wxv ̸= 0. Therefore, the following holds:

x⊤
vW

⊤Σ−1Wxv = (Wxv)
⊤Σ−1(Wxv) > 0

for any l-dimensional real vector xv ̸= 0. From this result, W⊤Σ−1W is positive-definite.

D ALTERNATING OPTIMIZATION

Here we assume that algorithm 1 does not converge. The following holds:

L(ω(0), v̂(ω(0))) < L(ω(1), v̂(ω(0))) ≤ L(ω(1), v̂(ω(1))) < L(ω(2), v̂(ω(1))) ≤ · · · ,

where ω(i) is the state of ω at the i-th itertation in algorithm 1. Therefore, ω(i) ̸= ω(j) for all
0 ≤ i < j. This is inconsistent with the finite space of ω. Hence, algorithm 1 always converges.

Algorithm 1 Finding Clusters
Input: L, v̂ Output: ω

1: while Either the evaluation is initial, or ω has changed since the last evaluation, do
2: ω ← ω′ such that L(ω′, v̂(ω)) is maximal under certain constraints.
3: end while

E PROOF OF THEOREM 4.2

The following holds:

W̄v =

w11 · · · w1l

...
...

wn1 · · · wnl


v1...
vl

 =

w11v1 + · · ·+ w1lvl
...

wn1v1 + · · ·+ wnlvl



=


1 · · · 1

. . .
. . .

1 · · · 1





w11v1
...

w1lvl
...

wn1v1
...

wnlvl


.

As shown in appendix D, Σ is positive-definite. Consequently, using eq. (6), we can get a positive-
definite MIQP problem.
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F MARGINALIZATION

The following holds:

L(ω, v̂(ω)) = −n

2
log(2π)− 1

2
log|Σ| − 1

2
(W v̂(ω)− µ)⊤Σ−1(W v̂(ω)− µ)

= −n

2
log(2π)− 1

2
log|Σ| − 1

2
µ⊤Σ−1µ+

1

2
(W v̂(ω))⊤Σ−1(W v̂(ω))

Using L(ω, v̂(ω)), the following holds:

L(ω,v) = −n

2
log(2π)− 1

2
log|Σ| − 1

2
(Wv − µ)⊤Σ−1(Wv − µ)

= −1

2
(v − (W⊤Σ−1W )−1W⊤Σ−1µ)⊤W⊤Σ−1W (v − (W⊤Σ−1W )−1W⊤Σ−1µ)

− n

2
log(2π)− 1

2
log|Σ| − 1

2
µ⊤Σ−1µ+

1

2
(W v̂(ω))⊤Σ−1(W v̂(ω))

= logN (v; v̂(ω), (W⊤Σ−1W )−1)

+ L(ω, v̂(ω))− 1

2
log|W⊤Σ−1W |+ l

2
log(2π).

Therefore, the marginalization of v in L(ω,v) is

L(ω, v̂(ω))− 1

2
log|W⊤Σ−1W |+ l

2
log(2π).

G PROOF OF THEOREM 4.3

It is evident that no specified DAG exists if the undirected graph is disconnected. We prove that
at least one specified DAG exists if the graph is connected. Consider adding vertices to the set of
vertices one by one. When adding a vertex, we set a directed edge from the new vertex to each vertex
already in the set, provided an undirected edge exists between them. Let the topological ordering
correspond to the order in which vertices are added. Since the directed edges satisfy eq. (2), the
graph obtained through this procedure is a DAG. The starting vertex in this procedure is a leaf.
Given that the undirected graph is connected, we set at least one directed edge when adding each
vertex, except for the initial one. Therefore, at least one specified DAG exists if the undirected graph
is a connected graph.

H ASSIGNMENTS AT BRANCH NODES

We replace the constraints for splitting and assignment in our approach. For the a-th leaf that can
descend from the branch located at o, we consider whether the leaf is on the left or right side of the
branch. The i-th data point must satisfy{

γ1oxi1 + · · ·+ γdoxid ≤ ξo +max1≤j≤d δj(1− wia)−min1≤j≤d ϵj (the left side),
γ1oxi1 + · · ·+ γdoxid ≥ ξo −max1≤j≤d δj(1− wia) (the right side),

where ξo ∈ (−∞,∞) is the split threshold for the branch located at o. This formulation that does
not requires to place constraints on each dimension is almost the same as that in (Bertsimas & Dunn,
2017). For higher-dimensional data, the number of constraints in this formulation tends to be smaller
than in ours. However, the minimum granularity of clusters cannot be used to reduce the number of
inequalities.

I EXPERIMENT

I.1 LIKELIHOOD FUNCTIONS

Let Φ denote the cumulative distribution function of standard normal distribution, Φf denote
Φ(f(x)), and ϕf denote ∂Φ(f(x))

∂f(x) .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Function p(y | f(x)) ∂ log p(y | f(x))
∂f(x)

∂2 log p(y | f(x))
∂f(x)2

Gaussian 1√
2πσ

exp
(
− (y−f(x))2

2σ2

) y−f(x)
σ2 − 1

σ2

Poisson exp(− exp(f(x))+yf(x))
y! − exp(f(x)) + y − exp(f(x))

Bernoulli Φy
f (1− Φf )

1−y ϕf

Φf
y +

−ϕf

1−Φf
(1− y) − fϕfΦf+ϕ2

f

Φ2
f

y − ϕ2
f−fϕf+fϕfΦf

(1−Φf )2
(1− y)

I.2 DATA AND SOFTWARE

Asset URL

GPy https://www.gurobi.com/
Scikit-learn https://scikit-learn.org/stable/
California https://www.dcc.fc.up.pt/˜ltorgo/Regression/cal_housing.html
Diabetes https://www4.stat.ncsu.edu/˜boos/var.select/diabetes.html
Abalone https://archive.ics.uci.edu/
Cancer https://archive.ics.uci.edu/
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