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Abstract

Medical studies frequently require to extract the relationship between each covariate1

and the outcome with statistical confidence measures. To do this, simple parametric2

models are frequently used (e.g. coefficients of linear regression) but always fitted3

on the whole dataset. However, it is common that the covariates may not have a4

uniform effect over the whole population and thus a unified simple model can miss5

the heterogeneous signal. For example, a linear model may be able to explain a6

subset of the data but fail on the rest due to the nonlinearity and heterogeneity in7

the data. In this paper, we propose DDGroup (data-driven group discovery), a data-8

driven method to effectively identify subgroups in the data with a uniform linear9

relationship between the features and the label. DDGroup outputs an interpretable10

region in which the linear model is expected to hold. It is simple to implement and11

computationally tractable for use. We show theoretically that, given a large enough12

sample, DDGroup recovers a region where a single linear model with low variance13

is well-specified (if one exists), and experiments on real-world medical datasets14

confirm that it can discover regions where a local linear model has improved15

performance. Our experiments also show that DDGroup can uncover subgroups16

with qualitatively different relationships which are missed by simply applying17

parametric approaches to the whole dataset.18

1 Introduction19

In scientific and medical analyses, simple parameteric models are frequently fit to data to draw20

qualitative or quantitative conclusions about the relationships between different variables of interest.21

Typically, a single interpretable model is fit on the entire dataset, implicitly assuming that there are22

uniform relationships between the covariates and target variable across the whole population. In23

practice, the data may instead come from a heterogeneous population, where different subgroups of24

the population may obey qualitatively different trends.25

For example, suppose we fit a linear model with features including several patient biomarkers, as26

well as blood concentration of a particular drug, to predict blood pressure. After fitting the model27

to the whole dataset, we find that there is a statistically signficant negative coefficient on the drug28

concentration. We may be tempted to conclude that this drug should be administered to a general29

patient in order to reduce blood pressure. However, there may be a small subgroup in the data (say,30

patients over the age of 80) for whom the drug actually increases blood pressure. In this case, naively31

fitting a single model to the entire dataset not only reduces our predictive accuracy, it also leads to32

adverse outcomes for this subgroup of the population.33

Modern high-capacity models such as neural networks can help to avoid this problem as they represent34

a much richer function class. However, these models are often inherently difficult to interpret, making35

them unsuitable if the primary goal is to draw scientific or clinical conclusions about the data rather36
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than simply having good predictive performance. This motivates our desire to find interpretable37

regions in the data where interpretable models (such as linear regression) perform well. We call this38

the subgroup selection problem.39

1.1 Our contributions40

In this work, we consider a flexible formalization of the subgroup selection problem. We propose an41

general algorithmic framework and a specific instantiation, DDGroup (data-driven group discovery),42

for data-driven subgroup selection. We prove that DDGroup has desirable theoretical properties, and43

results on synthetic and real data show the effectiveness of DDGroup in practice.44

1.2 Related work45

Subgroup identification is an important topic in biostatistics [20]. Here, the main focus is on46

identifying subsets of the population with a significant beneficial treatment effect from a new drug47

or procedure. Common approaches include global outcome modeling, in which the user models the48

patient response with and without treatment separately, then reconstructs the treatment effect from49

these models; global treatment modeling, in which the user models the treatment effect directly;50

and local modeling, where the user tries to identify a region with a strong positive treatment effect.51

Of these approaches, our method is most closely related to the local modeling approach. However,52

existing local modeling methods typically use tree-based greedy approaches to region selection which53

do not come with any guarantees [20].54

Piecewise linear regression is an existing method for adding flexibility to linear models while55

preserving interpretability. Here, the assumption is that the response is a piecewise linear function56

of the covariates. Early works focused on the one-dimensional covariate case [28], and recently57

methods have been proposed for piecewise linear regression in higher dimensions [26, 11]. Unlike58

the piecewise linear setting, we make no assumptions on the regression function outside of the “good”59

region which we are trying to detect.60

Lastly, as we seek to learn a subset of the data on which we are willing to make predictions, our work61

is connected to the literature on learning with rejection [9] or learning to defer [21, 23, 19], in which a62

model is given the option not to make a prediction. These works focus primarily on classification and63

decide whether or not to make a prediction on individual data point via thresholding model confidence.64

While this implicitly defines a subgroup on which we expect the model to perform well—namely,65

the points for which the model does not defer—, this subgroup will typically be uninterpretable (if66

the model is a neural network). If logistic regression is used, the deferred subgroup will be a slab67

between two parallel hyperplanes, which may be considered interpretable but is fairly inflexible in68

terms of the region selected. In our setting, we focus on the regression problem and on explicitly69

defining an interpretable region in which we will not defer.70

Our problem framework has connections to list-decodable learning [7, 17, 25] and conditional linear71

regression [16, 5]. For the sake of brevity, we discuss these and other related works in the appendix.72

2 Problem setup73

The general subgroup selection problem can be formulated as follows. Let Z = X × Y denote
the sample space, F ⊆ YX denote a class of functions (e.g. linear regression models), and let
ℓ : Y × Y → R be a loss function measuring the performance of our model. We will always have
X ⊆ Rd and Y ⊆ R. Our goal is to find a (interpretable, large as possible) region R ⊆ X of the
feature space where

argmin
f∈F

E[ℓ(y, f(x)) | x ∈ R]

is small. In order to satisfy the interpretability criterion, we will primarily consider regions R which74

are axis-aligned boxes. This corresponds to a subgroup where each feature lies within a specified75

range (corresponding to the sides of the axis-aligned box).76

For this paper, we will specify the function class F to be linear models and the loss ℓ(y, ŷ) = (y− ŷ)277

to be the squared loss. For our theoretical results, we will assume that there exists a “good” region78

R∗ ⊆ X where the linear model is well-specified with low conditional variance of y|x. In this case,79

the goal will be to recover R∗.80
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3 Algorithmic framework81

We introduce an algorithmic framework with three distinct phases. In Phase 1, we find a “core set” of82

points which should belong to the good region, then fit a model to these points. In Phase 2, we reject83

points in the larger dataset which cannot feasibly follow the same model as the core group based on a84

hypothesis test. Finally, in Phase 3, we find a large region which contains only non-rejected points.85

Phase 1: Given a choice of core group size k, for each datapoint, we fit a local model to that point’s86

k nearest neighbors. We then select the group of points with the lowest “training error” of its local87

model as the core group. The pseudocode for selecting the core group is provided in Algorithm 1 in88

the appendix.89

Phase 2: We use the threshold90

ρgrow
α,k,n(xi) = σλ−1

min∥xi∥

√
d log 4d

α

k︸ ︷︷ ︸
core model error

+ σ

√
2 log

4n

α︸ ︷︷ ︸
random fluctuations

. (1)

This threshold is derived from a hypothesis test; for more details, see the appendix. Here k is the91

size of the data used to fit the model β̂ and n is the size of the training set. The inclusion labels92

ℓi are then computed as ℓi = 1{|yi − β̂⊤xi| ≥ ρα,n,N (xi)}. We define the set of rejected points93

Xrej = {xi ∈ X | ℓi = 1}.94

Phase 3: Roughly speaking, we “grow” a hyperrectangle which contains the core points. The sides95

of the hyperrectangle expand until each side ”hits” a rejected point, at which point we stop growing96

the region in this direction. Once all sides are supported by either a rejected point or a larger bounding97

region for all of the data, we stop and return this region. A more thorough explanation (along with98

pseudocode) can be found in the appendix.99

Combining Phases 1-3 gives DDGroup, an algorithm for automatic subgroup selection. Our main100

theoretical result shows that DDGroup precisely recovers R∗ given sufficient data.101

Theorem 1. main Assume that there is an axis-aligned box R∗ in which the linear model is well-102

specified, that the variance of y|x inside R∗ is not too large, and that the variability of y|x outside of103

R∗ is large enough. Then as n, k →∞ with k = o(n), there exist selections of the hyperparameters104

for DDGroup such that it returns R̂ with R∗ ⊆ R̂ with probability at least 1 − α. Furthermore,105

vol(R̂ \R∗)→ 0 for any fixed α > 0.106

4 Experiments107

In this section, we evaluate the performance of DDGroup on real-world medical datasets. Additional108

details plus experiments on synthetic data can be found in the appendix.109

Methods for comparision We compare DDGroup with both standard linear regression and linear110

model tree (LMT). 1) The standard linear regression — a linear model fit to the whole dataset — is111

used as a baseline comparison. It is equivalent to the situation where the selected region includes all112

of the data and it is the method employed by the original medical studies on the real-world datasets113

we consider. 2) We further compare DDGroup with linear model tree — decision tree with a linear114

regression model in each leaf [29, 24]. Though LMT is not designed for subgroup identification,115

we can still use its decision path as a way to select cohorts. In order to identify the most coherent116

subgroup, we pick the leaf of LMT with the smallest MSE.117

Datasets We evaluate our method on five real-world medical related datasets, where linear coeffi-118

cients were used for interpretation in their original publications: Brazil Health [6], China Glucose119

[30], China HIV [32], Dutch Drinking [3], and Korea Grip [31].120

Performance evaluation DDGroup correctly identifies a subgroup on which the linear model121

has low test error and consistently outperforms the baseline methods on all five real-world medical122
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Table 1: Performance of baseline (linear regression model on the whole data), linear tree model and
DDGroup on the real-world datasets. Here d denotes the dimension of the features and subgroup size
is the proportion of selected datapoints. We average the results for 10 runs of different random splits.

Dataset Task d
Test MSE Subgroup Size

Baseline LTM DDGroup LTM DDGroup

Brazil
Health

HF 6 0.80 ± 0.06 0.18 ± 0.01 0.04 ± 0.00 13% ± 1% 6% ± 0%
stroke 6 1.14 ± 0.22 0.17 ± 0.01 0.06 ± 0.00 15% ± 1% 6% ± 0%

China
Glucose

SUA-F 11 0.83 ± 0.02 0.72 ± 0.03 0.69 ± 0.06 33% ± 8% 21% ± 3%
SUA-M 11 0.94 ± 0.01 0.81 ± 0.03 0.81 ± 0.04 20% ± 5% 8% ± 1%

China HIV stigma 27 0.84 ± 0.01 0.88 ± 0.04 0.69 ± 0.04 39% ± 7% 21% ± 3%

Dutch
Drinking

inh 16 0.64 ± 0.01 0.50 ± 0.03 0.50 ± 0.02 23% ± 7% 11% ± 2%
wm 16 0.71 ± 0.01 0.56 ± 0.01 0.57 ± 0.02 20% ± 3% 9% ± 1%
sha 16 0.64 ± 0.01 0.46 ± 0.02 0.42 ± 0.02 13% ± 2% 10% ± 1%

Korea Grip strength 11 0.71 ± 0.02 0.88 ± 0.07 0.69 ± 0.04 36% ± 7% 20% ± 3%

datasets (Table 1). We demonstrate that there exists subgroups within the real-world population123

where linear model is a good proxy and should be used to enhance interpretability. Our current124

method focuses on finding the most coherent region within the dataset, thus it always identifies small125

subgroups with the strongest signal. If a larger subgroup is desired, one may enforce this by selecting126

the best region which includes e.g. at least a certain fraction of the validation set. In our case, we127

required that at least 5% of validation was selected. We also remark that DDGroup is computationally128

efficient. The average runtime for Algorithm 3 across one run of each dataset was 1.98 seconds on an129

AMD 7502 CPU, and no individual dataset took longer than 10 seconds.130

Case study Here we use China HIV Datase to illustrate how DDGroup can enhance understanding131

of the data. The original study analyzes how different HIV infection routes affect the internalized132

stigma by fitting a multivariate linear regression model with confounders [32]. In their main results,133

the blood transfusion route is found to have positive effect on internalized stigma (coefficient β larger134

than zero), but in low confidence with large p value. In our analysis, we observed similar behavior:135

after data standardization, the linear model on whole dataset predicts blood transfusion route to have136

positive effect on internalized stigma with β of 0.12, but low confidence level with p value of 0.67. In137

this case, DDGroup identifies a subgroup of 21% participants where blood transfusion route has the138

opposite effect on stigma (β = −1.71) with strong signal (p value = 0.006). The selected subgroup139

consists of younger participants with lower self-esteem, lower anxiety level, and less social support.140

The result indicates that while blood transfusion route seems not to associate with internalized stigma141

in the general population living with HIV, it is coherently associated with lower stigma in a certain142

subpopulation. This seems plausible, as the other infection routes include sex with stable partners, sex143

with casual partners, sex with commercial partners, and injecting drug use. Younger participants may144

have stronger feelings of shame associated with these activities than older participants. In general,145

interpretation of the learned selection rules could be of great interest in real applications.146

5 Conclusion147

In this paper, we considered a flexible formalization of the cohort selection problem. We proposed a148

general algorithmic framework and a specific instantiation, DDGroup, for solving the problem, and149

we proved that DDGroup recovers the correct subgroup given sufficient data. Experiments on both150

synthetic and real data verify our theory and show the practical usefulness of DDGroup.151

There are a number of important open questions which remain to be addressed. If a hyperparameter152

search is used with DDGroup to train a linear model (as we did with our real data experiments), further153

analysis is needed to give meaningful (but valid) p-values for the resulting model coefficients. (For154

any extensive hyperparameter search, a naive Bonferroni correction is likely to be too conservative.)155

Another important question is how to extend our framework to classification and survival analysis156

data.157
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A Related work cont’d.249

Our problem framework also has connections to list-decodable learning [7], specifically list-decodable250

linear regression [17, 25]. In the list-decodable setting, we assume that an α fraction of the data come251

from a “trusted” source which we are trying to model; this would correspond to the subset of our data252

belonging to the good region. The goal is to output a small list (polynomial in α−1) which contains a253

model that will perform well on the trusted data. While an algorithm for the list-decodable linear254

regression problem will return a model that performs well for the good region, it does not directly255

solve the problem of actually finding the good region itself.256

Our work is also similar in spirit to previous works on conditional linear regression [16, 5]. In this257

setting, the goal is also to find the largest possible subset of the data for which there is an accurate258

linear model. However, the subgroup identification is made in terms of pre-defined binary features,259

which are assumed to be provided with the data in addition to the regressor variables. While one260

could instantiate our problem by defining the binary inclusion variables as indicators of whether or261

not each regressor is above or below a certain threshold, doing so would result in exponentially many262

possible selection rules and will therefore be computationally intractable for our setting. One can263

also view our work as finding data-driven binary inclusion labels for the conditional linear regression264

problem.265

A core element of our problem setting is in selecting a region which avoids certain “bad” points.266

Related problems have been extensively studied in the computational geometry community [12, 1, 13],267

but even approximate algorithms for solving related problems are not practical for high dimensions,268

and indeed even some seemingly simple region selection problems can be shown to be NP hard [2].269

We propose tractable alternatives and show that they have desirable properties both theoretically and270

empirically.271

B Detailed algorithm descriptions272

Here we provide the pseudocode for DDGroup and its components. We denote a dataset D = (X,Y )273

to be a collection of n feature vectors (collected in X ∈ Rn×d) and corresponding labels (collected274

in Y ∈ Rn). Here KNN(x, k,D) denotes the k nearest neighbors of x (and their corresponding275

labels) in the dataset D, OLS(D) denotes the output of ordinary least squares on feature matrix X276

and response vector Y , and MSE(β̂,D) denotes the mean squared error of linear model β̂ on the277

data X,Y . In addition, λmin(M) denotes the minimum eigenvalue of the PSD matrix M . Note that278

if the variance σ2 is not known, we can replace it with a standard unbiased estimate computed on the279

core group.280

Algorithm 1 Core group selection

procedure COREGROUP(k,D)
MSE∗ ←∞
for (x, y) ∈ D do

Dnbhd = (Xnbhd, Ynbhd)← KNN(x, k,D)

β̂ ← OLS(Xnbhd, Ynbhd)

if MSE(β̂,Dnbhd) < MSE∗ then
Dcore ← Dnbhd

MSE∗ ← MSE(β̂,Dnbhd)
end if

end for
return Dcore

end procedure

The GrowBox algorithm is somewhat opaque, so we offer additional explanation below. Let U ⊆ Rd.
We define the directed infinity norm ∥x∥U,∞ by

∥x∥U,∞ = max
u∈U

x⊤u.

We note that for many sets U , ∥ · ∥U,∞ may not be a norm, nor even a seminorm. In what follows,281

U will initially be defined as U = {±ei}di=1, in which case ∥ · ∥U,∞ = ∥ · ∥∞ coincides with the282
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Algorithm 2 Growing box

procedure GROWBOX(c,Xrej, U )
Xrej ← Xrej + {−c} ▷ Center the points at c. + denotes Minkowski sum.
R̂← ∅
while Xrej ̸= ∅ do

x∗ ← argminx∈Xrej
{∥x∥U,∞}

a∗ ← ∥x∗ + c∥U,∞ ▷ Define the constraints w.r.t. the uncentered points
u∗ ← argmaxu∈U{u⊤x∗} ▷ u∗ is the next support direction for the polytope
Add (u∗, a∗) to R̂
Remove u∗ from U
Xrej ← {x ∈ Xrej | x⊤u∗ < a∗}

end while
return R̂

end procedure

Algorithm 3 Data-driven subgroup selection

procedure DDSUBGROUP(α, k, U,D)
Dcore ← COREGROUP(k,D) ▷ Phase 1: Find a core group and fit a coarse model.
β̂ ← OLS(Dcore)

λmin ← λmin(
1
kX

⊤
coreXcore) ▷ Phase 2: Label which points should be excluded.

for i = 1, . . . , n do
ℓi ← 1{|yi − β̂⊤xi| ≥ ρα,k,n(xi)}

end for
Xrej ← {xi ∈ X | ℓi = 1}

c← MEAN(Xcore) ▷ Phase 3: Approximate the good region.
R̂← GROWBOX(c,Xrej, U)

return R̂
end procedure

usual infinity norm on Rd. We will then gradually remove directions which are no longer relevant to283

consider.284

The region will be described in terms of linear constraints. We will overload notation and use a set285

R = {(ui, ai)}mi=1 of constraint directions and values to denote the region R = {x ∈ B : x⊤ui ≤286

ai}.287

The pseudocode for the growing box is provided in Algorithm 2. When U = {±ei}di=1, Algorithm 2288

begins expanding an ℓ∞ ball centered at c with each side growing at an equal rate. Whenever one of289

the sides runs into a rejected point, we add the corresponding linear constraint and continue growing290

the other sides of the box. (The directed infinity norm is what we use to measure which point will291

collide with the box next.) This continues until all sides of the box have a support point, or there are292

no points left to constrain the box.293

Note that the set U simply specifies the normal vectors to the sides of the constraint polytope. The294

lengths of these vectors effectively determine the speed at which the constraint region will grow in295

that direction. Thus, by changing U , this method can select polytopes of any desired shape. Since296

axis-aligned boxes provide easily interpretable inclusion criteria, we use such regions for all of our297

experiments.298

C Omitted proofs299

We restate the lemmas and theorems here for convenience. We make the additional assumption300

here that y|x is O(1) sub-Gaussian for all x. Let τ be a uniform upper bound on the sub-Gaussian301

parameter of y|x, independent of x. We make the following assumptions.302
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1. The samples (xi, yi)
iid∼ P for a probability distribution P on Z .303

2. The marginal distribution of x has a density f with respect to the Lebesgue measure.304

3. There is a region R∗ with vol(R∗) > 0 such that f(x) ≥ δ > 0 for all x ∈ X .305

4. Conditional on x ∈ R∗, y is generated according to the linear model.306

5. there exists a constant σ0 > σ
√
2 such that, for any collection of n independent data, we307

have308

E
[
max
1≤i≤n

|yi − E[yi|xi]|
∣∣∣∣ x1, . . . , xn

]
≥ σ0

√
log n, (2)

309

var

(
max
1≤i≤n

|yi − E[yi|xi]|
∣∣∣∣ x1, . . . , xn

)
≤ σ2

0

n
. (3)

310

Assumptions 2 and 3 ensure that the samples will cover the sample space (so that we can detect R∗),311

and Assumption 4 ensures that our model is well-specified on R∗. Finally, Assumption 5 ensures312

that R∗ is in fact the “best” region for us to select, namely, there is no other region where we can313

have better predictive power. It can be thought of as a “super-Gaussian” assumption on the noise in314

yi|xi, and it will hold e.g. if yi|xi is Gaussian with variance Cσ2
0 for some sufficiently large absolute315

constant C. This condition ensures that the random fluctuations in yi are large enough to be detected316

by the test. Also, note that (2) and (3) still hold if E[yi|xi] in each inequality is replaced by x⊤
i β̂ for317

any fixed β̂.318

Lemma 2. Let Zi be independent random variables with uniformly bounded fourth moments. Then

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi − EZi

∣∣∣∣∣ ≥ n−1/8

)
= O(n−3/2).

Proof. This is just a generalization of the standard Chebyshev inequality, and the proof proceeds in
the same way. By Markov’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi − EZi

∣∣∣∣∣ ≥ t

)
= P

( n∑
i=1

Zi − EZi

)4

≥ n4t4

 ≤ E[(
∑n

i=1 Zi − EZi)
4]

n4t4
.

Expanding (
∑n

i=1 Zi−EZi)
4 and taking expectation, by linearity of expectation and independence of

the Zi, the only terms which do not vanish are of the form (Zi−EZi)
4 and (Zi−EZi)

2(Zj−EZj)
2.

There are O(n2) of all of these terms, each with expectation bounded by O(1), so we obtain

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi − EZi

∣∣∣∣∣ ≥ t

)
= O

(
1

n2t4

)
.

Substituting t = n−1/8 completes the proof.319

The following lemma shows that the core group selection contains only “good” points.320

Lemma 3. Under Assumptions 1-5, the core group selected by Algorithm 1 has Xcore ⊆ R∗ with321

probability approaching 1 as n, k →∞ with k = o(n).322

Proof. Consider any group of k neighboring points. We apply Lemma 2 conditional on x1, . . . , xk.323

(Note that we must assume bounded 8th moments on yi|xi.) Since the data are independent, with324

9



probability at least 1−O(k−3/2), we have325

1

k

k∑
i=1

(x⊤
i β − yi)

2 =
1

k

k∑
i=1

(x⊤
i β − E[yi|xi])

2 +
2

k

k∑
i=1

(x⊤
i β − E[yi|xi])(E[yi|xi]− yi)

+
1

k

k∑
i=1

(yi − E[yi|xi])
2

≥ 1

k

k∑
i=1

(yi − E[yi|xi])
2 +

2

k

k∑
i=1

(x⊤
i β − E[yi|xi])(E[yi|xi]− yi)

≥ 1

k

k∑
i=1

var(yi|xi)− k−1/8 − 2k−1/8. (4)

The final inequality holds because E[(yi − E[yi|xi])
2|x1, . . . , xk] = var(yi|xi) and

E[(x⊤
i β − E[yi|xi])(E[yi|xi]− yi)|x1, . . . , xk] = 0.

Furthermore, note that this lower bound is independent of β.326

If we take k = n3/4, then a simple union bound over (at most) n different neighborhoods of k327

points shows that (4) holds for all of these neighborhoods simultaneously with probability at least328

1−O(n−1/8). Henceforth we will assume that we are on this high probability “good” event.329

Assumptions 1-3, along with k = o(n), imply that with probability approaching 1 as n→∞, there
exists a neighborhood of k points all of which lie in the interior of R∗ (say x1, . . . , xk). For this group
of points, we have E[yi|xi] = β⊤xi. Thus, setting β = β and using logic similar to the derivation of
(4), we have

1

k

k∑
i=1

(x⊤
i β − yi)

2 = σ2 + k−1/8.

Finally, fix ε > 0 and consider a set of k nearest neighbors x1, . . . , xk, at least εk of which do not
belong to R∗ (WLOG x1, . . . , xεk). By (4), for such a group, we have

1

k

k∑
i=1

(x⊤
i β − yi)

2 ≥ εσ2
0 + (1− ε)σ2 − 3k−1/8 = σ2 + ε(σ2

0 − σ2)− 3k−1/8 > σ2 + k−1/8

for k sufficiently large. Since Algorithm 1 returns a group with the smallest MSE, such a group will330

not be selected. We conclude that as n, k →∞, Algorithm 1 will return a group in which all but o(k)331

points belong to R∗.332

333

The next result states that if we have selected a good core group, then with high probability, we will334

not erroneously reject any points that actually belong to R∗.335

Lemma 4. Suppose that all of the core points belong to R∗. Then with probability at least 1− α,336

none of the points in Xrej belong to R∗.337

Proof. First, we show that β̂ is close to β with high probability. Let X ∈ Rk×d denote the design
matrix for the core group and Y ∈ Rk denote the response vector. Since all of the core points belong
to R∗, we have Y = Xβ + E, where E ∼ N (0, σ2Ik). It follows that

β̂ = (X⊤X)−1X⊤Y = (X⊤X)−1X⊤(Xβ + E) = β + (X⊤X)−1
k∑

i=1

εixi,

where εi are the individual error terms collected in E. It therefore follows that

∥β̂ − β∥ ≤

∥∥∥∥∥
(
1

k
X⊤X

)−1
∥∥∥∥∥
∥∥∥∥∥1k

k∑
i=1

εixi

∥∥∥∥∥ = σλ−1
min

∥∥∥∥∥1k
k∑

i=1

gixi

∥∥∥∥∥ ,
10



where gi
iid∼ N (0, 1) and λmin = λmin(

1
kX

⊤X). It remains to bound
∥∥∥ 1
k

∑k
i=1 gixi

∥∥∥ with high
probability. Observe that

P

(∥∥∥∥∥1k
k∑

i=1

gixi

∥∥∥∥∥ ≥ t

)
≤

d∑
j=1

P

(∣∣∣∣∣1k
k∑

i=1

gixij

∣∣∣∣∣ ≥ t√
d

)
.

Standard Gaussian concentration results (see e.g. [27]) show that the RHS is bounded by338

2d exp
(

−ct2k
d

)
for some universal constant c. Setting this bound equal to α/2 and solving for339

t, we see that ∥β̂ − β∥ ≤ Cσλ−1
min

√
d log 4d

α

k with probability at least 1 − α/2 for some universal340

constant C.341

Next, we look at |yi − x⊤
i β̂| for a point xi ∈ R∗. In this case, applying the triangle inequality and

Cauchy-Schwarz, we have

|yi − x⊤
i β̂| = |x⊤

i β − x⊤
i β̂ + εi| ≤ ∥β − β̂∥∥xi∥+ |εi|.

Since our dataset contains n points, there are at most n points in R∗. Thus again by standard

Gaussian concentration results and a union bound, we have that |εi| ≤ σ
√

2 log 4n
α for all xi ∈ R∗

simultaneously with probability at least 1− α/2. A final union bound shows that

|yi − x⊤
i β̂| ≤ Cσλ−1

min

√
d log 4d

α

k
+ σ

√
2 log

4n

α

for all xi ∈ R∗ with probability at least 1− α, as desired.342

We remark that although Lemma 3 does not guarantee that all of the core points will belong to R∗,
the threshold used for Lemma 4 will remain the same up to lower order correction terms. This can be
shown in a straightforward manner by comparing1

k

∑
i:xi∈R∗

xix
⊤
i +

1

k

∑
i:xi ̸∈R∗

−1

vs.

(
1

k

∑
i:xi∈R∗

xix
⊤
i

)−1

via the Sherman-Morrison formula. Using the closed-form expression for β̂ will then show that we343

get the same error as in Lemma 4 up to a bias of order O((# core points not in R∗)/k) = o(1). For344

brevity, we omit the complete details.345

Theorem 5 (Formal version of Theorem 1). Assume that Assumptions 1-5 hold and further suppose346

that R∗ is an axis-aligned box. Then as n, k → ∞ with k = o(n), there exist positive scalars347

{s±j }dj=1 (which may depend on the dataset) such that with U = {s+j ej ,−s
−
j ej}dj=1, Algorithm 3348

returns R̂ with R∗ ⊆ R̂ with probability at least 1− α. Furthermore, vol(R̂ \R∗)→ 0 for any fixed349

α > 0.350

Proof. By Lemma 3, all but an o(1) fraction of the core points belong to R∗, thus their average351

(and therefore the point from which we begin growing the box in Algorithm 2) lies in the interior352

of R∗. Let c be the average of the core point features, and let ∂R∗ denote the boundary of R∗. For353

each j = 1, . . . , d, denote by ∂R∗
j,+ the face of ∂R∗ which upper bounds the j-th dimension, and354

let ∂R∗
j,− be the opposite face which lower bounds the j-th dimension. Let s±j = d(c, ∂R∗

j,±) be355

the distance from the center to the appropriate face of R∗. Note that Algorithm 2 with these speeds356

and this center is equivalent to running the algorithm from the origin and with uniform speeds, after357

shifting the data so that c lies at the origin and then rescaling each axis by s±j . In this case, R∗ is358

transformed into a ℓ∞ ball of radius 1 centered at the origin.359

By Lemma 4, R∗ contains no rejected points with probability at least 1− α. (Note that the transfor-360

mations we performed above preserve this fact.) Since the region returned by Algorithm 2 returns a361

region which contains the largest centered ℓ∞ ball with no rejected points in it, and R∗ is a centered362

ℓ∞ ball with no rejected points, we must have R∗ ⊆ R̂ as desired.363
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Since we have assumed that R∗ is an axis-aligned box, we can write R∗ = {x | ℓj < xj < uj} for
some lower and upper bounds ℓj , uj , j = 1, . . . , d. Fix ε > 0 and let

∂R∗
ε,j,+ = {x | uj ≤ xj ≤ uj + ε, ℓm < xm < um,m ̸= j}

∂R∗
ε,j,− = {x | ℓj − ε ≤ xj ≤ ℓj , ℓm < xm < um,m ̸= j}.

(These are just the sets of points which are at most ε “above” the upper dimension j face of R∗ and364

“below” the lower dimension j face of R∗, respectively.) By Assumptions 1-3, there is some constant365

cε > 0 (depending on ε) such that at least cεn points lie in ∂R∗
ε with probability approaching 1 as366

n→∞.367

Apply the conditions to the cεn points in ∂R∗
ε,j,±. Chebyshev’s inequality implies that

max
xi∈∂R∗

ε,j,±

|x⊤
i β̂ − yi| ≥ σ0

√
log cεn−

σ0√
cεn

t

with probability at least 1− 1/t2. Setting t =
√
n, and since σ0 > σ

√
2, for n large enough we have

σ0

√
log cεn−

σ0√
cε

> Cσλ−1
min

√
d log 4d

α

k
+ σ

√
2 log

4n

α

provided that λ−1
mink

−1/2 = o(log n) and for any fixed α, with probability at least 1−1/n. The means368

that Algorithm 2 will stop growing the (j,±) side of R̂ at some point in ∂R∗
ε,j,±. It follows that369

R̂ ⊆ R∗
ε . Since ε was arbitrary (but can be made smaller as n→∞), this completes the proof.370

D Experiments cont’d.371

D.1 Experiment details for the real datasets372

Below, we give a more detailed explanation of the real datasets we used.373

1. Brazil Health Dataset [6] is from a longitudinal ecological study for 645 municipalities in374

the state of São Paulo, Brazil. The study uses a linear model to identify key features for375

hospitalization of heart failure (HF) and strokes.376

2. China Glucose Dataset [30] consists of 5,726 female (F) and 5,457 male (M) Chinese individuals377

with normal glucose tolerance. The study uses linear model to describe the relationship between378

fasting plasma glucose and serum uric acid levels (SUA).379

3. China HIV Dataset [32] consists of 2,987 participants living with HIV from Guangxi province,380

China. The study uses linear regression to study how routes of HIV infection affects the HIV381

internalized stigma scale, adjusted by patients characteristics.382

4. Dutch Drinking dataset [3] consists of the individual life survey data of alcohol use among 2,230383

Dutch adolescents. The study uses linear regression to analyze how drinking affects adolescents’384

inhibition (inh), working memory (wm) and shift attention (sha).385

5. Korea Grip Dataset [31] is for the Dong-gu study of 2,251 Korean adults with osteoarthritis386

(OA). The study uses linear regression to explore the associations between grip strength and387

individual radiographic feature scores of OA.388

Experiment setup For the real-world datasets, we randomly split them into training, test and389

validation set, with ratio 50%, 30% and 20%. In the experiment, we fit the models on the training set390

with a grid search over hyperparameters and select the region with lowest validation MSE. We then391

refit the linear model on the training points in the selected region and evaluate its performance on392

the test set. For DDGroup, the value λmin in (1) was very small in many of the real-world datasets,393

leading to a very high rejection threshold. Instead, we used a more general form of the threshold394

ργ1,γ2
(xi) = σγ1∥xi∥+ σγ2 and tuned γ1 and γ2 as additional hyperparameters. Specifically, the395

algorithm works well by simply setting γ2 = 0 and tuning γ1 ∈ {2−4, 2−3, . . . , 25},. We also set the396

size k of the core group equal to p times the size of the training set, where p was selected from within397

{0.01, 0.05, 0.1, 0.15, 0.2}. We also tried two different “speed” settings for Algorithm 2: the sides of398

the box either grow all at the same rate, or each side grows at a rate proportional to the length of the399

bounding box in that dimension. For LMT, the tree depth is an important paramter and is scanned400

from 1 to the dimension of the data for the best performance.401
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(a) Region selected by DDGroup.
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Figure 1: Demonstration on synthetic dataset. (a, b) The region selected by (a) DDGroup and (b)
linear model tree. The grey shaded area denotes the correct subgroup and the green box corresponds
to the learned boundary. Here the depth of LMT is searched from 1 to 10, and the best performance
is reported in (b). (c) Robustness of DDGroup to core group misspecification. Shaded region shows
standard error of the mean over 50 trials. The black dashed line denotes the point at which “bad"
points are included in the core region. The red dashed line denotes the point at which the center of the
supplied core set is outside of R. The y-axis records precision, recall, and F1 score (higher is better).

D.2 Evaluation on synthetic data402

To visualize our method and test its performance in a well-specified setting, we construct a synthetic403

dataset where the desired region to be selected is known. Let B ⊆ Rd be the feature space, and let404

R∗ ⊆ B be the “true” region that we wish to recover. The data are generated as follows. We first405

sample the features x ∼ Unif(B). If x ∈ R∗, set y = β⊤x + εin. Else if x ̸∈ R∗, set y = εout.406

Here β ̸= 0 ∈ Rd are the fixed true model weights for the region R∗. The error terms εin and εout407

follow εin ∼ N (0, σ2
in) and εout ∼ N (0, σ2

out) with σin < σout. We set the dimension d = 3 so that408

the selected region can be easily visualized. (The third dimension just allows us to incorporate a409

bias term, so we will only visualize two dimensions.) We define the bounding box for the features410

B = [−1, 1]2 × {1} and the true region R = [−1/3, 1/3] × [−2/3, 2/3] × {1}, and we generate411

n = 1000 data points.412

Figure 1a shows the results of running Algorithm 3 on this synthetic data. The gray shaded region413

is R∗. The red “x” (resp. blue “o”) markers denote points that were rejected (resp. not rejected) by414

the threshold (1), and the red rectangle shows the boundary of R̂ returned by DDGroup. There is a415

nearly perfect overlap between R∗ and R̂, meaning DDGroup is able to precisely recover the true416

region. In contrast, the red rectangle in Figure 1b shows the region selected by LMT. While LMT417

doesnt select a region which contains R∗, it suffers from much lower precision than DDGroup and418

erroneously selects points outside of R∗ as well.419

Figure 1c shows the robustness of DDGroup to a misspecified core group. We replace the output420

of Algorithm 1 with a manually supplied set of points. We start by providing a core group whose421

center coincides with that of R∗. The x-axis of the plot denotes the offset of this initial core group:422

at position x on the plot, the center of the core group has been shifted by (x, x). Because we grow423

the sides of R̂ at the same speed, it becomes harder to recover the full R∗ when the center of the424

core group is closer to the edge of R∗ (larger x value on the plot). The horizontal dashed black425

line denotes the point at which the core group starts to include points which do not belong to R∗.426

The horizontal dashed red line denotes the point at which the center of the core group (and thus the427

base point from which we grow R̂) lies outside of R∗. We see that DDGroup is quite robust to the428

location of the core group within R∗. However, once “bad” points are included in the core group, the429

performance (in particular the recall) begins to drop sharply. The precision is more robust to core430

group misspecification, remaining well above the baseline of 0.22 (which is equivalent to selecting431

the whole region) even when the core group is more than 50% misspecified.432
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