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Figure 1: PAWS expands the affordance model’s training data well beyond the original images by
using the learned radiance field to generate novel views of the scene. Affordance labels are generated
by comparing DINOv2 features near foot poses to other parts of the scene.

Abstract: Learning reliable affordance models which satisfy human preferences is
often hindered by a lack of high-quality training data. Similarly, learning visuomo-
tor policies in simulation can be challenging due to the high cost of photo-realistic
rendering. We present PAWS: a comprehensive robot learning framework that uses
a novel portable data capture rig and processing pipeline to collect long-horizon
trajectories that include camera poses, foot poses, terrain meshes, and 3D radiance
fields. We also contribute PAWS-Data: an extensive dataset gathered with PAWS
containing over 10 hours of indoor and outdoor trajectories spanning a variety of
scenes. With PAWS-Data we leverage radiance fields’ photo-realistic rendering to
generate tens of thousands of viewpoint-augmented images, then produce pixel af-
fordance labels by identifying semantically similar regions to those traversed by
the user. On this data we finetune a navigation affordance model from a pre-
trained backbone, and perform detailed ablations. Additionally, We open source
PAWS-Sim, a high-speed photo-realistic simulator which integrates PAWS-Data
with IsaacSim, enabling research for visuomotor policy learning. We evaluate the
utility of the affordance model on a quadrupedal robot, which plans through af-
fordances to follow pathways and sidewalks, and avoid human collisions. Project
resources are available on the website.
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Figure 2: PAWS proposes a data capture pipeline consisting of three cameras positioned on the
shoulders (1, 2) and facing down (3), as well as a fiducial marker attached to each foot (4). RGB and
depth streams are processed with SLAM to estimate camera poses while fiducial markers provide
foot poses. The processed data is then used to extract terrain meshes and train 3D Gaussian radiance
fields with Splatfacto. We utilize the processed dataset to train a powerful locomotion affordance
model and develop a fast and photo-realistic simulator.

1 Introduction

Ensuring that robots navigate in the wild while satisfying human preferences is crucial to ensure safe
deployment. Without considering navigation affordances, our robots may perilously ignore cross-
walks, stray off of sidewalks, trespass on forbidden ground, or damage themselves on hazards. How-
ever, current algorithms for learning affordances and training visuomotor policies often suffer from a
lack of high-quality training data. Additionally, defining effective affordance labels from human data
is challenging, as the naive approach of assigning high affordances solely to traversed areas leads to
sparse labels with many false negatives. Further, simulators for training visuomotor policies tend to
provide low-fidelity renders.

In this work we propose PAWS, a method for instrumenting a person with cameras to capture ego
view of natural human locomotion in the wild for affordance model training. PAWS can record
long-horizon trajectories of indoor or outdoor scenes and process them to obtain camera poses, foot
positions, radiance field reconstructions, and terrain meshes. Using this method we contribute PAWS-
Data, a dataset of over ten hours of the aforementioned data spanning diverse scenes including hikes,
cityscapes, and indoor environments. We also integrate PAWS-Data with IsaacSim (Mittal et al.,
2023) to develop a fast and realistic simulator which can generate thousands of photo-realistic images
per second across thousands of environments.

Neural Radiance Fields have exploded in popularity as a photo-realistic reconstruction
method (Mildenhall et al., 2020), however they are prohibitively expensive to train and render at scale.
Recently, Gaussian Splatting (Kerbl et al., 2023) significantly reduces the cost of rendering by elim-
inating the need for expensive ray casting operations, opening the door for real-time photo-realistic
reconstruction in robot data pipelines. We take advantage of this fact to reconstruct photo-realistically
renderable environments from human locomotion data.

We utilize the PAWS-Data radiance fields to train a Locomotion Affordance Model (PAWS-LAM) on
a large augmented dataset by rendering from novel views while retaining visual fidelity. Affordance
labels are generated using DINO features to label parts of the scene which are semantically similar
to areas traversed by the user. In our experiments, we demonstrate that viewpoint augmentation
significantly enhances the prediction accuracy for trained models, while semantic-aware affordance
labels accurately capture human preferences for navigation. We also find that a foundation model
backbone enables generalization to different environments beyond the training data. We apply PAWS-
LAM to a quadruped navigation task, and combine PAWS-LAM with a simple planner to produce
robot trajectories which are safe and efficient.

2 Approach

In this section we discuss the three contributions that make up our method: PAWS: a data collection
system for capturing and processing a large quantity of trajectories, PAWS-LAM: A robotic locomo-
tion affordance model that leverages learned radiance fields and semantic features to produce high2
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Figure 3: PAWS-Data provides many data products derived from the original RGB, Depth, and IMU
streams, including scene meshes (1), pointclouds (2), camera poses (3), and foot positions (4).

quality affordance predictions, and PAWS-Sim: which leverages the PAWS-Data dataset and a mas-
sively parallel simulators to achieve fast photo-realistic rendering across thousands of environments.

2.1 Data Collection

PAWS uses three cameras mounted on the user’s torso to capture three stereo camera streams. Two
cameras are mounted on the shoulder and angled such that they capture a wide field of view while
attending to the terrain ahead. A third camera is pointed directly down towards the user’s feet, and is
used for two functions: to track the fiducial markers placed on the user’s shoes, and to provide a clear
top down view of the terrain for later use when training 3D Gaussian radiance fields. Figure 2 demon-
strates an overview of the camera setup and our data processing steps. We use DROID-SLAM (Teed
and Deng, 2021) to provide an estimate of the camera poses and to generate a colored point cloud of
the environment. Importantly, we find that initializing DROID-SLAM disparities with stereo depth
values significantly improves the quality of estimated poses. We also compute human segmentation
masks with Mask2Former (Cheng et al., 2022) to mask out humans for later processing steps. Given
the estimated camera poses, we can estimate foot poses in the global frame using the relative poses
provided by the fiducial markers (Olson, 2011). Re-projecting depth from the known camera poses
allows us to generate an accurate mesh of the environment, capturing details such as stairs and rough
terrains. Finally, the RGB, Depth, camera poses, and point cloud are used to train a 3D Gaussian
splatting model of the scene using Splatfacto (Ye et al., 2023; Tancik et al., 2023). Figure 3 visualizes
the data products produced by PAWS. PAWS-Data consists of 10 hours of diverse indoor and outdoor
trajectories, a subset of which are visualized in Figure 6.

2.2 Locomotion Affordance Model

Dataset Augmentation Given a dataset consisting of radiance fields and camera poses, we signifi-
cantly expand the dataset size by rendering from novel viewpoints, a process we refer to as Viewpoint
Augmentation. Namely, we sample a batch of new camera poses by perturbing the positions and
orientations of the original camera poses by up to 3 meters and 30 degrees, respectively. We then ras-
terize images from the sampled camera poses using the learned 3D Gaussian radiance fields, which
allow for fast batch rendering. Figure 1 visualizes a radiance field along with the original camera
poses, augmented poses, and affordance labels defined in the next section.

Affordance Label Generation Given a dataset of camera images, camera poses, and foot positions,
a naive approach to generate labels would be to simply project the foot position into the camera image.
While these labels accurately capture where the human navigated, they are sparse and falsely label
possibly navigable areas as having low affordance. Instead, we propose to label regions which are
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Figure 4: PAWS-Sim is a fast, photo-realistic environment suite which leverages the 3D Gaussian
radiance fields, terrain meshes, and poses from PAWS-Data to generate thousands of high-fidelity
renders per second.

semantically similar to those traversed by the human. We do so by computing DINOv2 features
(Caron et al., 2021) for the M patches the human stepped on in the scene. We then compute a
M × N × N cosine similarity matrix, comparing all M traversed ground features to the N × N
features in the input image. We take the minimum along the footstep feature dimension and threshold
by a cDINO to get affordance patches, and upsample with bi-linear sampling to obtain affordance
labels. Figure 5 compares the naive dilated sparse affordance labels to the affordance labels produced
by PAWS.

Figure 5: Naive v.s. PAWS affor-
dance labels

Model Architecture Given the affordance dataset from the
previous section, we fine-tune a foundation model backbone
on the task of affordance prediction. Specifically, we attach a
simple token projection head to a pre-trained DINOv2 (Caron
et al., 2021) model and train the model to minimize the cross
entropy loss against the affordance labels. In Section 3.1 we
evaluate different choices of backbone and model size.

2.3 Fast and Photo-realistic Simulation

PAWS-Data provides camera poses, foot poses, meshes, and radiance fields that accurately match the
scale of objects in the real world. Additionally, 3D Gaussian radiance fields allow for fast rendering,
allowing for thousands of renders per seconds. We integrate these features into IsaacSim (Mittal
et al., 2023) to develop an open source photo-realistic gym environment for running robots which
can be adapted to any desired reward signal or user-captured scene. Namely, we create a convex
decomposition of the 3D terrain mesh to allow for stable physics simulation. In env.step, we
query the 3D Gaussians for each scene with a batch containing each robot’s camera pose, camera
intrinsics, and image resolution to obtain thousands of renders per second. While 3D Gaussian splats
provide high-fidelity renders for a large portion of poses within the scene, deviating significantly
from the original camera poses can lead to highly distorted and unrealistic renders. To combat this,
we initialize the robots near the original camera poses, and terminate the episode once the camera
pose has deviated significantly from the set of original camera poses, while still bootstrapping values.

3 Experiments

In this section we evaluate PAWS-LAM and assess it’s utility in a practical robotics setting. Specifi-
cally, we aim to answer the following research questions:

4



Figure 6: Example scenes in PAWS-Data. Aside from radiance fields, the PAWS dataset also contains
terrain meshes, foot positions, and affordance labels. Artifacts in aerial renders can be attributed to
the extreme viewing angle.
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• How does PAWS-LAM compare to alternative approaches to affordance learning?
• How well does PAWS-LAM generalize to unseen environments?
• Does PAWS-LAM learn affordances that facilitate safe quadruped navigation?

3.1 Locomotion Affordance Model Evaluation

We ablate different design decisions, including training with viewpoint augmentation and different
backbone sizes. In Table Figure 7b, we ablate PAWS-LAM trained with and without viewpoint
augmentation. We find that disabling viewpoint augmentation drastically reduces performance on
the validation set, as measured by pixel accuracy and mean intersection over union (mIoU). We
attribute this to the decreased dataset size, as well as a smaller set of distinct camera poses, which
both contribute to overfitting. Figure 7a visually demonstrates the failure modes of training without
viewpoint augmentation. Specifically, models trained without viewpoint augmentation fail to capture
the nuanced human preferences encountered in complex scenarios, such as predicting the entire road
as navigable while only sidewalks or crosswalks should be traversed. Additionally, increasing the
size of the pre-trained backbone from 21M parameters (ViT-S/14) to 86M parameters (ViT-B/14)
significantly enhances model performance.

Additionally, in Table Figure 7c we evaluate PAWS-LAM’s ability to generalize to environments
unseen during training. We evaluate a model trained solely on outdoor data on a held-out dataset
of indoor trajectories and find that PAWS-LAM generalizes favorably, displaying a slight decrease in
performance. Further, models trained without viewpoint augmentation generalize poorly to the indoor
dataset, which we hypothesize is due to the model overfitting to a small set of DINOV2 features which
do not generalize to indoor environments.

Original Image LAM w/o 
Viewpoint Aug

Locomotion 
Affordance Model

(a) Locomotion Affordance Model (LAM) predic-
tions on exemplary held-out test images.

Method mIoU Pix Acc
LAM w/o View Aug 0.61± 2.6 0.72± 2.9

LAM (ViT-S/14) 0.76± 1.5 0.84± 1.5

LAM (ViT-B/14) 0.83± 1.8 0.91± 1.7

(b) Locomotion affordance model ablations.

Method mIoU Pix Acc
LAM w/o View Aug 0.38± 1.2 0.44± 1.4

LAM (ViT-S/14) 0.69± 2.3 75± 2.1

LAM (ViT-B/14) 0.73± 1.9 0.81± 2.1

(c) Locomotion affordance model generalization perfor-
mance on held-out indoor dataset. Model was only trained
on outdoor data.

Figure 7: Locomotion Affordance Models trained with viewpoint augmentation more accurately cap-
ture human navigation preferences such as staying on crosswalks and sidewalks and not hitting ob-
stacles.

3.2 Robotic Navigation

We now propose one potential downstream application of our data collection interface and splat-
based rendering pipeline: learning affordance models that transfer across embodiments, from human
data to robot locomotion. We propose a simple pipeline using our affordance model to optimize a
robot’s high-level plan to ensure that it is physically reasonable and matches human affordances such
as sticking to marked paths or avoiding other humans.

We use a Unitree GO1 quadruped as our target platform, equipped with two depth cameras to capture
a wide field of view of the scene. For each camera, we compute visual affordances using PAWS-LAM,
then project the predicted affordance probabilities directly onto point clouds from the depth cameras.
This map is then flattened and used as a 2-dimensional cost map, through which any planner can be
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used to to generate a high-level plan. For simplicity, we use a grid-based Dijkstra’s algorithm, but the
generally proposed method is applicable to any sufficiently flexible planning mechanism. Figure 8a
visualizes an example plan through the affordance map.

As shown in Figure 8, we find that the resulting system is able to match human affordances in an in-
tuitive manner, sticking to paths whenever possible and following forks in the road. Importantly, the
robot’s camera perspective is not contained in the initial dataset. Suggesting that the viewpoint aug-
mentation used for PAWS-LAM helps to obtain high downstream performance on a non-humanoid
embodiment. Please see our supplementary materials for a reference implementation of the planning
algorithm and videos of our robot following human-interpretable affordances.

RGB PCL Aff. + Plan

(a) Fork in the road (b) Human avoidance (c) Turn

Figure 8: Planning through learned affordances enables the quadrupedal robot to navigate safely
without violating human preferences over navigation.

4 Related Work

4.1 Large Scale Photo-realistic Reconstruction

Scene reconstruction has long been studied, classically in the context of SLAM or SfM reconstruc-
tion (Newcombe et al., 2011; Schönberger and Frahm, 2016; Mur-Artal et al., 2015). More recently,
advances in neural rendering have drastically improved the capabilities of these systems for rendering
visual outputs. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) can render highly photo-
realistic images from novel views, and an explosion of extensions expand on the speed (Müller et al.,
2022), quality (Barron et al., 2021; 2022; 2023), scene scale (Tancik et al., 2022), and tooling (Tan-
cik et al., 2023). Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) proposes a method
of representing a scene with a collection of oriented 3D Gaussians, which can be rasterized onto an
image quickly with modern GPU hardware. This work uses 3DGS to reconstruct the surroundings of
human capture trajectories for fast rendering at volume.

4.2 Learning Affordances for Robot Locomotion

For mobile robots to efficiently navigate the world while respecting both the laws of physics and so-
cial rules, it is important that they have some notion of affordances describing which states they can
enter and which actions they can perform. Traditional legged locomotion policy learning architec-
tures learn these affordances in simulation with domain randomization (Feng et al., 2023; Lee et al.,
2020; Margolis et al., 2023) relying on either blind models (Kumar et al., 2021) or depth information
(Agarwal et al., 2023). However, many more subtle cues cannot in fact be recovered by depth infor-
mation alone: a concrete road and a sand pit might appear identical when viewed as a depth image
(Loquercio et al., 2023), and they have difficulty resolving transparent or translucent objects. Further-
more, using RGB cameras instead of depth can allow socially-compliant behavior rather than purely
physical behavior: walking on paths and in crosswalks rather than through a grass field, for example.
Terrestrial navigation research has also studied the problem of traversability estimation from visual
data, particularly in the off-road driving case (Jung et al., 2024). In contrast to these works, we do
not require hand-tuned heuristics nor are our learned affordances limited to only physical parameters:
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PAWS can learn rich, interpretable human affordances from features in in both dense urban environ-
ments and outdoor settings, and can be used to provide a dense traversability score rather than just a
0-1 traversability map if desired.

4.3 Photo-realistic Simulators

Developing high-fidelity simulators is a large and active area of research, spanning applications in
autonomous driving (Amini et al., 2021; Dosovitskiy et al., 2017), UAV research (Shah et al., 2017;
Guerra et al., 2019), and robotics (Mittal et al., 2023; Gan et al., 2020). While these simulators
can achieve high-quality renders, they often require high compute budgets which decreases sample
throughput. Additionally, designing simulation can be time consuming, and even the highest qual-
ity simulators may not fully overcome the simulation to reality (Sim2Real) gap. These challenges
have spurred researchers to find new solutions to the challenges of overcoming the Sim2Real gap.
Bousmalis et al. and Shrivastava et al. explored pixel-level domain adaptation by training networks
to post-process the simulated render to appear more realistic. While exciting, these approaches are
difficult to train due to a lack of paired training data and can suffer from unwanted hallucinations.
Tirumala et al. leverage Neural Radiance Fields (NeRF) to generate photo-realistic renders for an
indoor robot soccer environment. While promising, rendering with NeRFs requires expensive ray
tracing operations, which can be prohibitively slow when compared to rasterization, and NeRFs to
not allow for efficient batch rendering. Additionally, they limited their focus to one particular environ-
ment. In contrast, PAWS-Sim utilizes 3DGS as a rendering backbone, which enable batch rendering
at speeds that are multiple orders of magnitude higher, while retaining high visual fidelity. Addition-
ally, PAWS-Sim support the over 10 hours of scenes present in PAWS-Data, spanning a wide variety
of environments.

5 Discussion

We present PAWS, a self-supervised data collection method for obtaining large datasets of scenes
from human captured data. Accompanying PAWS is PAWS-Data, a dataset of over 10 hours of in-
door and outdoor trajectories gathered with PAWS, containing RGB + Depth, camera poses, foot
poses, terrain meshes, and radiance fields. We also introduces PAWS-LAM, which leverages PAWS-
Data to train a locomotion affordance model capable of modeling the nuanced human preferences
of outdoor navigation. We ablate PAWS-LAM and show that it benefits from our novel affordance
dataset augmentation approach, our proposed affordance label generation method which drastically
reduces false negatives, and the use of a foundation model backbone. Additionally, PAWS-LAM
generalizes well to unseen environments, which we showcase by evaluating on indoor scenes using a
model trained solely on outdoor data. We show how PAWS-LAM can be used for robotic navigation
by using the affordance model to optimize a high-level plan to ensure the robot’s trajectory satisfies
human navigation preferences. PAWS-LAM generalizes to the robot’s distribution of observed im-
ages, showcasing favorable generalization across embodiments. Finally, we introduce PAWS-Sim, a
fast and photo-realistic simulator which integrates PAWS-Data IsaacSim to enable fast visuomotor
policy learning.

Limitations & Future Work While PAWS can gather complete trajectories for the camera pose,
the foot goes out of frame for roughly half the user’s gait, thereby limiting foot position estimation
for that duration. Additionally, fast motions can produce motion blur, making it difficult to detect
the fiducial marker. Approaches such as SelfPose (Tomè et al., 2020) estimate body positions from
a headmounted camera and a pose detection network. Such approaches would potentially increase
foot position availability and decrease hardware complexity. Further, integrating terrain dynamics
estimation with our method would increase the physical fidelity of the simulator, further reducing the
Sim2Real gap.
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A Gaussian Splatting Details

We initialize the 3DGS start points with points deprojected from DROID-SLAM disparity, de-
duplicated. To accomodate small amounts of SLAM drift, we enable camera optimization, similar
to (Seiskari et al., 2024; Zhao et al., 2024), which refines poses during 3DGS training. To deal with
the large scene scale in our captures, we need to modify a few important hyperparameters inside
Splatfacto, which was primarily tuned for use with object-centric captures. We use the AbsGS split-
ting heuristic introduced by (Ye et al., 2024) with a gradient threshold of 0.0006 as well as lowered
learning rate on the Adam optimizer controlling 3DGS means to 5e− 5 as recommended by the orig-
inal implementation. We also extend the length of the culling/splitting portion of 3DGS training from
15000 to 25000 steps, and lower the densify size threshold to 0.1% from 1%, ensuring fine details
are reconstructed.

B Hardware Specifications

The PAWS data collection system consists of three cameras, one on each shoulder, and a third camera
pointed at the feet. The shoulder-mounted cameras are stereo ZedX Mini cameras, while the down-
ward facing camera is a stereo Zed Mini. For depth estimation we opt for the provided neural depth
model, which is slightly less accurate than RAFT-Stereo (Lipson et al., 2021) yet considerably faster.
The three cameras are connected to a rigid plate attached to the chest, and their precise transforms
are derived from the CAD model. All three cameras are connected to a NVIDIA Jetson AGX Orin
Developer Kit which hardware encodes and saves the three camera streams for later processing.

C Rendering Performance Analysis

3D Gaussian Splatting models support fast batch rendering, capable of rendering thousands of frames
per second at certain resolutions.

Resolution FPS (RGB + Depth)
64× 64 1487± 12

96× 96 1023± 9

256× 256 756± 9

512× 512 431± 6

1024× 1024 185± 3

Figure C.1: Rendering frames per second for various resolutions. Reported times are for computing
both RGB and Depth values from the 3DGS.
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