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Figure 1: Examples of image editing results obtained using various pipelines, including our method.
Our approach enables accurate editing with precise detail preservation and sub-second processing
time.

ABSTRACT

Recent advances in diffusion-based image editing have achieved impressive re-
sults, offering fine-grained control over the generation process. However, these
methods are computationally expensive due to their iterative nature. While dis-
tilled diffusion models enable faster inference, their editing capabilities remain
limited - primarily because of poor inversion quality. High-fidelity inversion and
reconstruction are essential for precise image editing, as they preserve the struc-
tural and semantic integrity of the source image. In this work, we propose a sim-
ple, general framework that optimizes the diffusion model over the entire inver-
sion and generation trajectory and is compatible with arbitrary accelerated diffu-
sion backbones, enabling high-quality editing in under one second. We achieve
state-of-the-art performance across various image editing tasks, accelerated dif-
fusion models, and datasets, demonstrating that our method matches or surpasses
full-step diffusion models while being substantially more efficient.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Song et al., 2021) are widely adopted for text-to-
image generation, owing to their stable training dynamics, strong mode coverage, and high-fidelity,
diverse samples. Beyond their use in synthesis, diffusion models have been adapted to practical tasks
that span interpretability and controllability, personalized generation, and discriminative analysis
using diffusion-derived features. A key downstream task is text-guided image editing: given a source
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image and a textual description of the desired modification, the model generates an updated image by
steering the iterative sampling trajectory to apply fine-grained, prompt-conditioned changes while
preserving source content.

Full-step diffusion pipelines achieve strong image editing quality but require substantial inference
time. To address this latency, recent work explores distilled diffusion models. The backbones of
such methods can be broadly categorized into two groups: consistency-based (Song et al., 2023; Ren
et al., 2024) and fast generator-based approaches (Sauer et al., 2024; Yin et al., 2024). Consistency-
based methods preserve a solver-based view of diffusion dynamics by optimizing few-step solvers
for the underlying differential equation (e.g., Latent Consistency Models (Luo et al., 2023), Hyper-
SD (Ren et al., 2024), Invertible Consistency Distillation (Starodubcev et al., 2024)), whereas
generator-based models (e.g., SDXL-Turbo (Sauer et al., 2023)) train a neural network Gθ to map
standard Gaussian noise z directly to high-quality images in a few steps. Focusing on fast editing,
we observe that editing algorithms vary widely and exhibit strong backbone dependence. For ex-
ample, InfEdit (Xu et al., 2023b) demonstrates impressive results within consistency models but is
effectively restricted to LCM–DreamShaper (Luo et al., 2023) due to its reliance on a stochastic
consistency sampler. Meanwhile, an increasing number of consistency backbones adopt determinis-
tic, trajectory-segmented sampling (e.g., Hyper-SD (Ren et al., 2024)), which makes direct reuse of
the InfEdit design non-trivial. Consequently, existing fast editing methods generalize poorly across
accelerated backbones and often require additional adaptation.

Unlike full-step diffusion methods – where direct backpropagation through the entire inversion and
generation pipeline is computationally infeasible – our approach is expressly designed for few-step
models, and we demonstrate its effectiveness. In this work, we propose a simple and generaliz-
able framework for accelerated image editing, compatible with a broad range of distilled backbones,
without relying on backbone-specific internals or solver assumptions. Our approach builds on ex-
ternal forward consistency model training that approximates the noising dynamics of an accelerated
backbone. We further introduce a cycle-consistency loss to improve inversion quality and preserve
semantic details. We apply the framework to a broad set of different accelerated methods and eval-
uate its effectiveness on PIE-Bench. Our main contributions are as follows:

• We introduce a lightweight framework for accelerated image editing based on forward
Consistency Model training, easily adaptable to different distilled backbones.

• Our method enables robust and transferable editing across a wide spectrum of accelerated
diffusion models: DreamShaper-LCM (Luo et al., 2023), SDXL-Turbo (Sauer et al., 2023),
Hyper-SD (Ren et al., 2024), iCD (Starodubcev et al., 2024).

• We achieve state-of-the-art accelerated editing results on PIE-Bench, outperforming
backbone-specific approaches while being significantly faster and requiring no extra in-
ference as in Prompt-to-Prompt or MasaCTRL.

2 RELATED WORK

Diffusion-based approaches are widely used for image generation due to strong pretrained priors
that support diverse, high-quality semantics, which also makes them effective for text-guided image
editing. Editing methods balance incorporating information from a target prompt with preserving
alignment to the source content. They are often grouped into three (partly overlapping) categories:
optimization-based, attention manipulation, and guidance-driven methods.

Editing with full-step diffusion models Most full-step methods begin with inversion, i.e., ap-
proximating a latent state of the source image at a chosen timestep using a pretrained model. This
state then initializes a new, target prompt-conditioned sampling trajectory. Optimization-based
approaches (Miyake et al., 2024; Mokady et al., 2022) perform per-sample inversion optimiza-
tion, which involves additional, computationally expensive iterations during the editing process.
These methods improve inversion quality by optimizing prompt embeddings. Attention-based ap-
proaches (Cao et al., 2023; Hertz et al., 2022) demonstrate strong performance but may lack fine-
grained controllability. Prompt-to-Prompt operates on cross-attention by preserving maps for tokens
shared between source and target prompts and adjusting attention maps accordingly. For shared to-
kens, the original maps from the source inference are retained, for new tokens, the maps are updated
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LPIPS

Forward inversion
process

Backward
generation process

Figure 2: Diagram of our cycle-consistency loss. We optimize the forward consistency model by
backpropagating through the image reconstruction process. A patch-wise LPIPS loss is used to
enforce perceptual similarity between the original and reconstructed images

to reflect the target prompt. This method often requires carefully selected blend words to enable
effective editing.

Editing with accelerated diffusion models Distilled backbones reduce sampling cost but may
degrade trajectory fidelity, making standard inversion less reliable. In some cases, determinis-
tic inversion is not guaranteed under stochastic sampling or non-invertible updates. For instance,
InfEdit (Xu et al., 2023b), built on a DreamShaper-LCM backbone, adopts a virtual inversion
scheme that combines MasaCTRL (Cao et al., 2023) with Prompt-to-Prompt (Hertz et al., 2022).
GNRi (Samuel et al., 2025) and PostEdit (Tian et al., 2025) employ energy-based guidance during
editing, which introduces additional iterations and can erode the speedups. Invertible Consistency
Distillation (Starodubcev et al., 2024) trains separate forward and backward models for inversion
and generation, which are then combined with Prompt-to-Prompt to improve content preservation.
The method relies on joint distillation of two models, constraining training to a simple, fixed proce-
dure and thereby may limit compatibility of richer modern distillation methods such as Hyper-SD.
Finally, the diversity of distilled backbones has yielded a landscape of editing methods that are often
not directly compatible across backbones.

3 PRELIMINARIES

Diffusion model Our method builds on a latent diffusion text-to-image model (LDM) that encodes
images into a low-dimensional space with a variational autoencoder (VAE). Let z0 be the VAE latent
of an image, and let {αt}Tt=1 be a variance schedule with cumulative product ᾱt =

∏t
s=1 αs. The

forward noising process is

zt =
√
ᾱt z0 +

√
1− ᾱt ε, ε ∼ N (0, I).

The denoiser εθ is trained to predict the noise by minimizing: L(θ) = Et,z0,ε[∥εθ(zt, t, y) − ε∥22],
where the text condition y is injected via cross-attention. After training, samples are generated by
iteratively denoising from zT ∼ N (0, I) with the update

zt−1 =
√

ᾱt−1

ᾱt
zt + εθ(zt, t, y)

(√
1− ᾱt−1 −

√
ᾱt−1

ᾱt

√
1− ᾱt

)
(1)

Distilled diffusion models Since inference time remains the primary limitation of diffusion mod-
els, a wide variety of distillation techniques have been proposed. We group them into two cat-
egories: generator-based methods (e.g., SDXL-Turbo (Sauer et al., 2023)) and consistency-based
methods (e.g., LCM (Luo et al., 2023), Hyper-SD (Ren et al., 2024)). Generator-based methods
train a student that samples in a few steps to imitate a teacher that uses many steps via noise or x0
regression, sometimes with perceptual or adversarial components. Consistency-based methods view
sampling through the probability flow ODE and enforce self consistency across timesteps, so that
valid samples arise in 4− 8 steps.

Diffusion Editing Diffusion editing comprises two stages: inversion and generation. Inversion
estimates a latent zT for the source image in the latent space of a diffusion model; generation then
applies the target prompt while using zT as the initial point for denoising. In practice, we perform
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inversion using the deterministic reverse DDIM (Song et al., 2022) update obtained by rearranging
Eq. 1 and resolving the implicit dependence via the standard adjacent-step approximation yields the
practical rule in Eq. 2.

zt ≈
√

ᾱt

ᾱt−1
zt−1 −

(√
ᾱt(1−ᾱt−1)

ᾱt−1
−

√
1− ᾱt

)
εθ(zt−1, t, y) (2)

The resulting representation zT then serves as the starting point for generation, conditioned on a tar-
get prompt that specifies the desired edits. Consequently, many full-step approaches regard inversion
as sufficiently accurate and optimize primarily the generation process. To improve editing quality,
various approaches have been proposed, including optimization-based techniques (Mokady et al.,
2022), attention manipulation methods (Cao et al., 2023; Hertz et al., 2022), and guidance-driven
strategies (Bansal et al., 2023; Titov et al., 2024).

Accelerated diffusion editing approaches Compared to full-step diffusion, few-step samplers
take large jumps along the teacher trajectory, so the adjacent-step assumption used by DDIM-style
inversion (zt ≈ zt−1) often breaks, turning inversion into a key bottleneck for high-quality edit-
ing. To adapt techniques originally developed for full-step pipelines, accelerated methods refine
the inversion stage in different ways. Existing fast editing approaches are highly diverse and pursue
quality through different mechanisms, which often makes them sensitive to the chosen backbone and
limits scalability. We categorize editing methods by the base model they are built on: On generator-
based backbones, GNRi (Samuel et al., 2025) and ReNoise (Garibi et al., 2024) refine the process of
inversion by adding per-sample optimization iterations, whereas TurboEdit alters the sampling via
time-shifting and a Delta Denoising score (Hertz et al., 2023) update, reducing reliance on explicit
inversion. As for consistency-based approaches, InfEdit adopts a Latent Consistency Model distilled
from DreamShaper (Luo et al., 2023) and generates images using a stochastic consistency sampler.
It also employs a virtual inversion framework, to enable editing without true inversion. The only
exception is Invertible Consistency Distillation(iCD) (Starodubcev et al., 2024), which distills from
a teacher that uses the full sampling schedule. It shares the same consistency-model formulation
but jointly trains a forward consistency model for inversion and a backward consistency model for
generation under a multi-step consistency objective. Since inversion is then provided by the for-
ward consistency model, the need for virtual inversion disappears. Consistency models approximate
a function fθ that maps a noisy point zt at any timestep t of the diffusion ODE trajectory to its
origin z0. Given a pretrained teacher diffusion model ϵη , this is achieved through the consistency
distillation objective:

LCD(θ) = E[d(fθ(ztn−1
, tn−1), fθ(ztn , tn))] → min

θ
, (3)

where ztn−1
is obtained by applying one solver step of the teacher model. This loss enforces the

self-consistency property: fθ(zt′ , t′) = fθ(zt, t); ∀t ∈ [t0, tN ]. Invertible Consistency distilla-
tion (Starodubcev et al., 2024) demonstrates that image inversion can be achieved using a forward
consistency model, which is trained jointly with a backward consistency model. The ODE trajectory
is divided into multiple segments: the forward model is trained to map any point within a segment
to its final boundary, while the CM maps it to the starting boundary. The consistency distillation
loss from Equation 3 is adapted for both the forward and backward consistency models training
objectives and is combined with additional symmetrical preservation losses for forward (Lf ) and
backward (Lr) models, defined as follows:

Lf (θ, ψ) = E [d (fθ(gψ(zst)), zst)] → min
θ

(4)

Recent consistency-distilled backbones with deterministic, trajectory-segmented sampling (e.g.,
Hyper-SD (Ren et al., 2024)) are not plug-and-play for either InfEdit (Xu et al., 2023b) or iCD (Star-
odubcev et al., 2024): the first one relies on stochastic consistency sampling and virtual inversion,
whereas the second one presupposes joint training of forward and backward consistency models with
access to teacher. Consequently, porting these pipelines to a pretrained Hyper-SD checkpoint is fea-
sible in principle but operationally nontrivial. In practice, this typically requires sampler changes
(for InfEdit) or retraining bidirectional models (for iCD), which motivates a backbone-agnostic edit-
ing framework.
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4 METHOD

Our task is developing a universal training procedure for an image inversion model. In contrast to
iCD (Starodubcev et al., 2024), we train the noising (forward) model for any accelerated pretrained
backbone. Taking advantage of the fact that distilled models require far fewer model evaluations
than full-step teachers, we train efficiently through the entire inversion and generation loop with an
accelerated diffusion model, demonstrating accurate reconstructions and compatibility across back-
bones and schedules. Unlike prior approaches such as InfEdit or iCD, our framework does not
require stochastic samplers, internal solver access, or joint distillation of both forward and back-
ward modules. It supports both plug-in adapters (by training only forward consistency model) and
joint fine-tuning (by optimizing both forward and backward consistency models), depending on the
available backbone constraints.

We build our approach on the theoretical basis of consistency models. Since it preserves the ODE-
trajectory, that is important for inversion-nature of our task and can be easily adapted to any type
of backbones. We parametrize the forward fψ and backward gθ consistency models with LoRA
adapters, denoted ψ and θ, respectively. For the backward adapter θ, we use a lower rank and fewer
target modules, than for the forward adapter, resulting in a significantly smaller adapter.

4.1 GENERAL FRAMEWORK FOR IMAGE INVERSION

We discretize the trajectory into M noise levels t0 < t1 < · · · < tM , defining segments sm =
[tm−1, tm]. For each segment, we train two models:

• Forward consistency model approximates a function fψ(ztm−1
, tm−1, y) maps a latent at

timestep tm−1 to tm (noising).
• Backward consistency model approximates a function gθ(ztm , tm, y) maps a latent at

timestep tm to tm−1 (denoising).

Given an image x0, we obtain its latent z0 = enc(x0) via a pretrained VAE encoder. The forward
function Fψ applies the forward model M times to produce a final noised latent zM , while the
backward function Gθ denoises zM back to ẑ0 and reconstructs x̂0 using the VAE decoder. So, the
full inversion process is the following:

zt0 = enc(x0), ztm = fψ(ztm−1
, tm−1, y), m = 1, . . . ,M,

ztM = Fψ(x0, y) ≡ fψ

(
fψ
(
· · · fψ

(
enc(x0), t0, y

)
, t1, y

)
· · · , tM−1, y

)
. (5)

And the symmetric — generation process defined as follows:

ẑtM = ztM , ẑtm−1
= gθ(ẑtm , tm, y), m =M, . . . , 1,

x̂0 = Gθ(ztM , y) ≡ gθ

(
gθ
(
· · · gθ

(
ztM , tM , y

)
, tM−1, y

)
· · · , t1, y

)
. (6)

To ensure accurate inversion, we optimize fψ and gθ through the entire process of image recon-
struction since the number of steps M is sufficiently small, defining following cycle-consistency
loss:

Lrec(x0) = LPIPS(Gθ(Fψ(x0, ysrc), ysrc), x0) (7)

We also present the diagram our cycle-consistency loss in Figure 2. In addition, we incorporate
standard consistency distillation losses (Song et al., 2023) and forward preservity loss (Starodubcev
et al., 2024).

• LCD(θ) and LCD(ψ) (see Eq. 3) ensure each model approximates forward and backward
teacher ODE trajectories.

• A forward preservation loss Lf(θ, ψ) (see Eq. 4) for fψ encourages local compatibility
between forward and backward consistency models at each segment.

The final training objective becomes:

L = Lrec + LCD(ψ) + LCD(θ) + Lf(θ, ψ) (8)

5
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4.2 TRAINING REGIMES ACROSS BACKBONES

Depending on the backbone, we either fix ψ (e.g., for pretrained iCD) or jointly optimize θ and ψ
(e.g., for SDXL-Turbo and Hyper-SD). This flexibility enables our method to scale across pretrained
diffusion models without requiring architectural changes or retraining from scratch. We also define
a pretrained teacher model εη , which we use in the consistency distillation losses LCD.

DreamShaper-LCM.

Initialization: fψ = DreamShaper-LCM; gθ = DreamShaper-LCM; εη = DreamShaper.

Both the forward and backward models are initialized from a pretrained DreamShaper-LCM check-
point and fine-tuned jointly under our objective 8. The original DreamShaper model serves as the
teacher. While DreamShaper-LCM was originally designed for stochastic sampling, we adapt it to
deterministic, trajectory-segmented inference, enabling compatibility with our framework.

SDXL-Turbo.

Initialization: fψ = SDXL-Turbo; gθ = SDXL-Turbo; εη = SDXL Base.

Although SDXL-Turbo lacks a formal ODE trajectory, we find that its generative distribution is suf-
ficiently structured to allow training of an forward consistency model. We fine-tune both fψ and gθ
using SDXL Base as the teacher, demonstrating that our method is applicable even to adversarially-
distilled models.

Hyper-SD.

Initialization: fψ = Hyper-SD; gθ = Hyper-SD; εη = Hyper-SD.

As no inversion-compatible methods exist for Hyper-SD, we apply our full joint training pipeline.
All models (fψ , gθ and teacher ϵη) are initialized from the same pretrained Hyper-SD checkpoint.
The fine-tuned fψ enables faithful inversion and editability without sacrificing generation quality.

SD v1.5 (iCD).

Initialization: fψ = iCD-forward; gθ = iCD-backward; εη = SD v1.5.

We initialize both fψ and gθ from public iCD checkpoints. Because fψ and gθ are already an ac-
celerated, pretrained consistency-model pair, it suffices to fine-tune only fψ to achieve high-fidelity
inversion. At the same time, to preserve generation quality, the backward model is frozen.

4.3 EDITING PROCEDURE

Once trained, our framework supports efficient editing without additional components (e.g., Prompt-
to-Prompt (Hertz et al., 2022), MasaCTRL (Cao et al., 2023), or guidance-based optimization (Titov
et al., 2024)). Given an image x0, source prompt ysrc and target prompt ytrg:

ztM = Fψ(x0, ysrc); xedited = Gθ(ztM , ytrg)

This simple noising-denoising pipeline achieves high-quality, semantically consistent edits while
operating in a few steps. In our experiments, it consistently surpasses competing methods built on
the same backbone, while being significantly faster, as it avoids additional optimization inferences
and uses only a few model calls per edit. Despite the absence of Prompt-to-Prompt blending, our
approach improves inversion fidelity and enables high-quality editing. In comparison with baseline
iCD method, our approach eliminates the need of additional P2P (see Figure 11).

5 EXPERIMENTS

Fine-tune setup Cycle-consistency loss (see Eq. 7) is performed by optimizing the LPIPS objec-
tive with a VGG-16 backbone (Simonyan & Zisserman, 2015; Zhang et al., 2018), as it captures

6
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Figure 3: Visual comparison of results produced by our fine-tuned model and the baseline. Our
method significantly improves image reconstruction, providing samples that are consistent with the
original image.

Original DDIM GNRi ReNoise iCD Ours

Figure 4: Examples of image reconstruction obtained from our method and from other approaches.
Cycle-consistency loss facilitates accurate image reconstruction, maintaining both global facial
structure and local detail.

structural and perceptual differences relevant to image reconstruction. Images are divided into nine
224x224 patches to match the VGG-16 training setup. We optimize ψ and θ (if it is required by
backbone) parameters. To keep local consistency properties within each segment, we also retain the
forward preservation loss Lf , along with the consistency distillation loss, to enforce the consistency
properties of a forward model. In setups where the backward model is also fine-tuned, we addition-
ally include a reverse-consistency loss LCD(ψ) and update ψ jointly. Fine-tuning is conducted on
the training split of MS-COCO (Lin et al., 2015) and evaluated on the validation split.

Inversion and editing setup We evaluate inversion and editing performance on multiple datasets.
For inversion experiments, we use Pie-Bench (Ju et al., 2023) for qualitative evaluation, and more
than 2700 high-resolution images from the MS-COCO (Lin et al., 2015) for quantitative evalua-
tion. For image reconstruction, we use classifier-free guidance equal to zero for all methods (see
Appendix A.2). We use samples from MS-COCO for quantitative evaluation, as it contains a large
amount of labeled data at various scales, enabling the detection of significant differences between
methods. For editing experiments, we use 420 images from publicly available Pie-Bench, follow-
ing Starodubcev et al. (2024), which includes a broad range of edit types for qualitative and quanti-
tative evaluation. Like iCD (Starodubcev et al., 2024), we adopt a dynamic classifier-free guidance
(CFG), and disable CFG at the first step. We found that guidance should be enabled during the
early steps to support structural edits. Our method does not rely on blend words or any additional
optimization techniques. All baseline methods were run with their default settings as provided by
the authors or official implementations.

7
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Figure 5: Examples of image editing results obtained using our method with guidance and other
approaches. The proposed method provides fine-grained control over the trade-off between applying
edits and preserving image content.

5.1 IMAGE INVERSION

We compare our method with iCD (Starodubcev et al., 2024), GNRi (Samuel et al., 2025), DDIM
inversion (Song et al., 2022) and ReNoise SDXL-Turbo (Garibi et al., 2024) on the image recon-
struction task.

Qualitative evaluation We find that our method performs significantly better on well-defined Pie-
Bench prompts. A subset of our results, obtained by iCD backbone, is shown in Figure 4, where our
approach outperforms other methods, including full-step DDIM, in terms of structural consistency
and detail preservation (see Appendix A.3 for more examples with other backbones).

Quantitative evaluation We evaluate image reconstruction quality using mean-squared error
(MSE), ImageReward and LPIPS. In Table 1 and in Figure 6, we demonstrate that our method out-
performs all competing methods and even full-step DDIM inversion, demonstrating that the result is
precisely accurate for an accelerated approach.

5.2 TEXT-GUIDED IMAGE EDITING

To validate our approach, we compare it with leading fast methods (iCD Starodubcev et al. (2024),
TurboEdit Deutch et al. (2024), InfEdit (Xu et al., 2023b), ReNoise SDXL-Turbo Garibi et al.
(2024)) and full-step diffusion-based methods (NTI Mokady et al. (2022), NPI (Miyake et al., 2024),
Guide-and-Rescale (Titov et al., 2024)). Across all backbones, our method consistently outperforms
accelerated methods in image fidelity, achieves performance on par with the strongest full-step base-
lines, and remains the fastest approach in our comparison.

Qualitative evaluation We present a subset of our results, obtained with iCD backbone, in Fig-
ure 5. As can be seen, our method enables precise edits while preserving the context and details of
the original image. Despite the strong influence of the target prompt, ReNoise and TurboEdit exhibit
a low level of content preservation, iCD outputs often contain artefacts and fail to maintain subject
identity. InfEdit significantly reduces editability while strongly preserving the original image. Some
images show no visible edits at all, while others exhibit incomplete or minimal changes (see Ap-
pendix A.4 for more examples with other backbones). For NPI and NTI, our approach provides
more precise edits. Furthermore, it achieves results comparable to those of full-step diffusion-based
models.

Quantitative evaluation We evaluate results using ImageReward (Xu et al., 2023a), DI-
NOv2 (Oquab et al., 2024), LPIPS, and CLIP (Hessel et al., 2022). Most accelerated models tend

8
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Table 1: Evaluation metrics for image reconstruction
using our method and competing approaches on the
MS-COCO validation set. Our method achieves higher
reconstruction quality compared to accelerated base-
lines.

Model MSE ↓ ImageReward ↑ LPIPS ↓
DDIM (SD) 0.077 0.104 0.34

iCD (SD) 0.034 -0.028 0.307
Inverse-and-Edit (DreamShaper-LCM) 0.017 0.304 0.225
Inverse-and-Edit (iCD) 0.021 0.344 0.228
Inverse-and-Edit (SDXL-Turbo) 0.049 0.515 0.34
Renoise (SDXL-Turbo) 0.1 0.367 0.402
Inverse-and-Edit (Hyper SD) 0.019 0.3 0.229

0.25 0.30 0.35 0.40
LPIPS 

0.02

0.04

0.06

0.08

0.10

M
SE

 

Model
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Figure 6: Quantitative evaluation on the
MS-COCO validation set. Our method
enables efficient and perceptually faith-
ful image reconstruction, making it suit-
able for real-time applications.

Table 2: Metrics for edited images produced by our
method and other baselines. Our approach significantly
surpasses accelerated methods across all backbones in
terms of image fidelity, while still supporting a high de-
gree of editability. At the same time, method achieves
results comparable to full-step baselines.

Model DINOv2↑ LPIPS↓ CLIP↑ IR↑ Sec. per edit

NPI (SD v1.5) 0.632 0.302 0.302 0.22 9
NTI (SD v1.5) 0.795 0.25 0.294 -0.03 115
ReNoise (SD v1.5) 0.504 0.446 0.315 0.36 9.19
GaR (SD v1.4) 0.721 0.277 0.307 0.25 19.73

InfEdit (DreamShaper-LCM) 0.781 0.236 0.298 0.16 3.48
Inverse-and-Edit (DreamShaper-LCM) 0.82 0.236 0.3 0.16 0.6

TurboEdit (SDXL-Turbo) 0.663 0.358 0.307 0.54 1.04
GNRi (SDXL-Turbo) 0.685 0.394 0.298 0.2 0.6
ReNoise (SDXL-Turbo) 0.561 0.426 0.307 0.37 3.09
Inverse-and-Edit (SDXL-Turbo) 0.682 0.35 0.309 0.54 0.6

iCD (SD v1.5) 0.701 0.323 0.302 0.1 1.05
Inverse-and-Edit (iCD) 0.719 0.312 0.304 0.31 0.57

Inverse-and-Edit (Hyper-SD) 0.68 0.34 0.302 0.12 0.59
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Figure 7: Quantitative evaluation on
the Pie-Bench dataset. Our approach
achieves similar results to full-step
methods with less inference time.

to achieve stronger edit impact at the cost of content preservation. Elevated DINOv2 cosine dis-
tances and LPIPS metrics reflect the difficulty accelerated diffusion models encounter in preserving
structural and visual detail. Our methods outperform all accelerated approaches across backbones in
preserving image content and editing performance, achieving results comparable to full-step meth-
ods. In comparison with full-step methods, our method outperforms NPI and NTI, and achieves
results comparable to Guide-And-Rescale. While the CLIP is lower, ImageReward is higher, show-
ing that the edits are more aligned with human preferences despite being less favored by CLIP-based
evaluation. Our LPIPS scores are higher, while DINOv2 cosine similarity is better. This suggests
that our method preserves semantic and structural content more effectively, even though perceptual
similarity appears lower. Overall results we present in Table 2 and in Figure 7.

Our approach demonstrates strong performance across both settings, enabling a smooth trade-off
between fidelity and content preservation.

6 CONCLUSION

We propose a novel approach to training lightweight adapters that leverages the prior knowledge of
arbitrary accelerated models for image-editing tasks. We show that simple end-to-end optimization
over the entire image reconstruction process in accelerated diffusion models is effective, and we
introduce a broad set of techniques for fast editing.

Limitations Our approach requires additional fine-tuning iterations and is data-dependent. Since
the LPIPS backbone is trained to operate in pixel space, the proposed approach requires additional
backpropagation through a VAE decoder, which increases the overall computational cost of opti-
mization.
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7 REPRODUCIBILITY

Details required to reproduce our method can be found in Method section 4, Experiments section 5
and in the Appendix A.2.
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A APPENDIX

A.1 FINE-TUNE SETUP

We utilize LPIPS as the cycle-consistency loss since other latent-based variants (Huber, L2) do not
perform well and often result in structural and visual mismatches. Our hyperparameters slightly
differ across backbones: the learning rate is fixed to 1e− 6 and the forward preservation coefficient
to 1.5. We also match schedules to make Fψ symmetrical to Gθ. For DreamShaper-LCM and
SDXL-Turbo we choose the same target modules: to_q and to_v with different ranks: r = 1 for
DreamShaper-LCM and r = 32 for SDXL-Turbo. The cycle-consistency coefficient is set to 0.5.
Both models reach convergence after 3500 steps. For the Hyper-SD model we initialize fψ and gθ
from an SDv1.5 LoRA-checkpoint with 4 steps and internal guidance, then fine-tune all inner LoRA-
weights for 1000 steps with the cycle-consistency loss set to 0.05. For the iCD model we initialize
fψ and gθ from publicly available checkpoints of forward and backward consistency models, which
were distilled jointly. The cycle-consistency loss coefficient is set to 0.5.

Fine-tuning is performed using four H100 GPUs. Classifier-free guidance (CFG) is disabled during
fine-tuning in order to preserve the model’s ability to respond sensitively to editing operations.

A.2 EDITING AND INVERSION SETUP

For inversion we disable CFG for all steps and use the source prompt for inversion and generation
processes. We apply the procedure, which discussed in Section 4.3. Additionally, we employ a
classifier-free guidance (CFG) (Ho & Salimans, 2022), which strengthens adherence to the prompt
by::

ε̂θ(zt, t, y) = εθ(zt, t,∅) + ω · (εθ(zt, t, y)− εθ(zt, t,∅)) (9)
For SDXL-Turbo ω is set to 4.0, for Hyper-SD ω is set to 2.5, for DreamShaper-LCM we set ω to
2.2 and disable it for the first step. For the iCD we use dynamic CFG schedule since it is guidance
distilled model. Specifically, we start with zero CFG at the first step, increase it to 7 at the second
step, to 11 at the third step, and to 19 at the final step. We found that guidance should be enabled
during the early steps to support structural edits. However, a high level can result in supersaturated
images.

A.3 RECONSTRUCTION RESULTS

We present examples of image reconstruction by the proposed approach in Figure 8, which demon-
strate that our backbones consistently produce accurate and visually faithful results. The method
remains robust in preserving details and background structure across a variety of image types.

A.4 EDITING RESULTS

We present results separately for SDXL-Turbo in Figure 9 based models and for other approaches in
Figure 10. The edited images highlight the effectiveness and the scalability of the proposed frame-
work for accurate and semantically consistent edits that respect the original structure and context.
Although Hyper-SD does not outperform all baselines on quantitative metrics, it produces visually
high-quality images in comparison to other methods.

A.5 ABLATIONS

Editing. As shown in Figure 11, our method does not require an additional P2P framework com-
pared to the iCD approach and achieves good results while better preserving the original content.

Fine-tune. As shown in Table 3, our method significantly improves reconstruction on the val-
idation set while maintaining stronger image-generation metrics for the DreamShaper-LCM and
Hyper-SD backbones.
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Original DreamShaper-LCM SDXL-Turbo Hyper-SD iCD

Figure 8: Examples of image reconstruction obtained using our method for different backbones.
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A horse
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horse

Figure 9: Examples of image editing results obtained using our method based on the SDXL-Turbo
based backbone and other approaches.
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Figure 10: Examples of image editing results obtained using our method based on the SD based
backbone and other approaches.
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(a) (b)

Figure 11: (a): Visual comparison of results produced by our fine-tuned model based on iCD method
and the baseline. While P2P is primarily required for iCD to preserve the input image, our method
maintains high editing quality without relying on additional components. (b): Quantitative eval-
uation of the editing results. Our method demonstrates clear improvement with respect to image
aesthetics and perceptual similarity.

Method CLIP ↑ IR ↑ MSE ↓
DreamShaper-LCM

iCD without cycle-consistency 0.21 -0.92 0.035
Ours 0.24 -0.25 0.03

Hyper-SD

iCD without cycle-consistency 0.21 0.26 0.09
Ours 0.3 0.03 0.008

Table 3: Ablation of suggested methods of fine-tune
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