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Abstract
For web agents to be practically useful, they must
adapt to the continuously evolving web environ-
ment characterized by frequent updates to user
interfaces and content. However, most existing
benchmarks only capture the static aspects of the
web. To bridge this gap, we introduce , an innova-
tive online evaluation framework for web agents
that effectively addresses the dynamic nature of
web interactions. contains three main components
to facilitate realistic assessments: (1) A novel
evaluation metric which reliably capture critical
intermediate actions or states necessary for task
completions while disregarding noise caused by
insignificant events or changed web-elements. (2)
A benchmark dataset called Mind2Web-Live, a re-
fined version of original Mind2Web static dataset
containing 542 tasks with 2439 intermediate eval-
uation states; (3) Lightweight and generalizable
annotation tools and testing pipelines that enables
the community to collect and maintain the high-
quality, up-to-date dataset. Building on , we open-
source an agent framework with extensible mod-
ules for reasoning, providing a foundation for the
community to conduct online inference and eval-
uations. Our best-performing agent achieves a
task success rate of 23.1% and a task comple-
tion rate of 48.8% on the Mind2Web-Live test
set. Additionally, we analyze the performance
discrepancies across various websites, domains,
and experimental environments. We encourage
the community to contribute further insights on
online agent evaluation, thereby advancing this
field of research.1

1. Introduction
Unlike text generation tasks that leverages built-in model
knowledge (Hendrycks et al., 2020; Chen et al., 2021; Cobbe

1Our platform, tool and dataset are publically avail-
able at https://www.imean.ai/web-canvas and
https://huggingface.co/datasets/iMeanAI/
Mind2Web-Live
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Figure 1: Illustration of how web tasks change over time
due to various factors, placing challenges in building bench-
marks in online web environment where changes can signif-
icantly alter task pathways and outcomes.

et al., 2021), agents require environmental observations and
feedback for context. Thus, dynamic, real-world environ-
ments are essential for agent evaluation. The World Wide
Web itself emerges as the most extensive arena for the as-
sessment of agents, offering an unparalleled complexity for
environmental interaction. However, the rapid evolution of
the web environment, driven by technological advancements
and evolving design trends, introduces significant data dis-
tribution shifts over time. Figure1 shows three common
patterns of web tasks shift over time. in the course of our
study, it was discovered that 12% of the tasks annotated
within the renowned benchmark dataset Mind2Web (Deng
et al., 2024) in May 2023 have become totally obsolete, and
an additional 38% have undergone modifications in their
completion logic and trajectories at the time of May 2024.
This data shift is fine as they are valid in the original setup,
but it has the potential to bring gaps between the offline
and online evaluation and development processes of real-
world web agents. Meanwhile, the accumulated knowledge
and training data of static websites leads to the saturation
of existing benchmarks, making it increasingly difficult to
compare models and reasoning frameworks fairly and rig-
orously. We found model trained in 2023 have already
had performance discrepancy between offline and online
evaluation as compared with close-sourced model such as
GPT-3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al.,
2023), which is discussed in §J.3.

1

https://www.imean.ai/web-canvas
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live


Submission and Formatting Instructions for ICML 2024

Operation Step Score

Score: 1

Action

URL

ElementAgent Web Browser

Click: button

Observation

Task Score

Completion Rate

Task Success Rate

Efficiency Score

Human Alignment

Agent’s Workflow

Annotation

1. Instruction

“Find top-rated upcoming adventure 
movies on Rotten Tomatoes”

2. Web Browser

3. Workflow 4. Key Nodes

i. Go to Rotten Tomatoes
ii. Click  “Coming soon to theater”
iii. ...

i. URL include match
ii. URL exact match
iii. ...

Platform

“Go to Airbnb and find a private
 room in New York for 2 adults”

“Find Dota 2 game and
add all DLC to cart on steam”

“Check out the most recent
 open issues on Gitlab”

Mind2WebMind2Web

Channel BChannel B

Channel AChannel A

Annotation

1. Instruction

“Find top-rated upcoming adventure 
movies on Rotten Tomatoes”

2. Web Browser

3. Workflow 4. Key Nodes

i. Go to Rotten Tomatoes
ii. Click  “Coming soon to theater”
iii. ...

i. URL include match
ii. URL exact match
iii. ...

Platform

“Go to Airbnb and find a private
 room in New York for 2 adults”

“Find Dota 2 game and
add all DLC to cart on steam”

“Check out the most recent
 open issues on Gitlab”

Mind2Web

Channel B

Channel A

“Find top-rated upcoming adventure movies on Rotten Tomatoes”
Instruction:

Path A

Goto: rottentomatoes.com

Click: Coming soon to theaters

Web page:

Movies Coming Soon

Genre: Adventure

Sort: Most Popular

Reached key nodes: 3

Path B

Goto: google.com

Search: upcoming movies on RT

Web page:

Movies Coming Soon

Sort: Most Popular

Genre: Adventure

Reached key nodes: 3

Step 1

2

Step 1

3

4

5

2

3

4

5

FinishFinish

Figure 2: Webcanvas framework. The left side depicts the annotation process addressing each task, while the right side
demonstrates the evaluation process during inference time, which involves collection of predicted actions, URLs, and
elements targeted for interaction in online web environment, allowing for dynamic assessment. The framework accounts for
the non-uniqueness of paths in online web interactions, with “Trophies” representing step scores earned upon successfully
reaching each key node. The process of data maintenance related to these activities is detailed in §2.4.2.

Motivated by these demands, previous works have attempted
human evaluation of web agents performance in online en-
vironment (Zheng et al., 2024; He et al., 2024), yet there
lacks an objective, quantitative and automated method for
evaluation. Thus, we introduce WebCanvas, a dynamic and
real-time framework designed for online evaluation of web
agents. WebCanvas is built on the following principles:

1. Key nodes annotation provides in-progress evaluation.
In the dynamic and open environment of online benchmarks,
traditional evaluation methods that focus solely on action
prediction accuracy (Deng et al., 2024; Zheng et al., 2024)
and the final state achievement (Zhou et al., 2023; Mialon
et al., 2023) could not effectively adapt to the complexities
of real-world web navigation. To address this gap, we in-
troduce a novel concept termed “key nodes” — essential
milestones that any task process must traverse, irrespective
of the path taken.

Implementing these key nodes allows for a detailed, step-
by-step analysis of agent behaviors during task execution,
thereby enhancing our understanding of the agent’s decision-
making strengths and weaknesses. Based on the key nodes
definition and evaluation metrics construction, we developed
the Mind2Web-Live dataset as a foundation benchmark
for the community. We sampled and annotated tasks from
Mind2Web (Deng et al., 2024), maintaining a collection of
542 web agent tasks, including 2439 intermediate evaluation

states.

2. Easy to Scale in Online Web Environment. WebCanvas
supports recording and annotation of web agent tasks and
their corresponding evaluation states through an advanced
recording browser plugin with transparent data access. Fur-
thermore, we have open-sourced an agent reasoning frame-
work that enhances the integration and customization of
various agent modules for online web tasks. This initiative
provided guidelines and toolkits for the community to ef-
fectively scale data for online evaluation within real-world
settings in their own scenario.

3. Regular maintenance under optimized cost. Online
environment is continuously evolving, making maintain-
ing data validity a challenge. To address this, WebCanvas
employs an efficient maintenance strategy with scheduled
monitoring and automated alerts that quickly identify action
sequences and key nodes validity. When data shifts occur,
our test report with error messages guide data owner through
quick and effective data corrections. This approach allows
us to dynamically adjust our evaluation sets in response to
real-time changes in web content with acceptable cost.

Extensive comparisons show that GPT-4-turbo with memory
and ReAct (Yao et al., 2023) reasoning achieved the best task
success rate of 23.1%. In addition, our online evaluation
reveals discrepancies with offline settings, demonstrating
that models which perform competitively in static offline
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evaluations do not necessarily maintain their competency
in dynamic online environments. We further analyze the
impact of various factors specific to online evaluation, such
as IP location variability, and suggest maintaining a consis-
tent setup within our framework to ensure reliable results.
Finally, we investigate the use of key node annotations as a
form of intermediate reward. Our findings suggest that web
agents can benefit from human-provided key node annota-
tions, whereas even advanced models exhibit inaccuracies
when generating such intermediate progress indicators with-
out any reference. These inaccuracies subsequently impair
execution performance.

2. WebCanvas: An Online Evaluation
Framework for Web Agents

2.1. Problem formulation

The real-world web environment can be formulated as:
(S,A, T ,O) with state space S, action space A(Table 7),
deterministic transition function T : S × A −→ S and a
state observation space O(§3.1). Given a task instruction
i, current observation ot ∈ O and the action history at−1

1 ,
an agent issues an action at ∈ A. Consequently, after the
execution of the action, the environment transitions to a
new state st+1 ∈ S, and the corresponding observation up-
dates to ot+1 ∈ O. To measure the completion of tasks, we
have defined key nodes and evaluation metrics, which are
elaborated in §2.2 and §2.3.

2.2. Key nodes

The concept of “key nodes” is one of the pivotal ideas in our
work. Key nodes refer to indispensable steps in the process
of completing specific web tasks, meaning that regardless of
the path taken to accomplish a task, these steps are required.
These may involve navigation to certain webpages or the
performance of specific actions on web pages, such as filling
out forms or clicking buttons. This design philosophy not
only reflects the dynamic nature of the web environment
but also captures the diversity of paths present in real-world
web pages.

As illustrated in Figure 2, consider the task of “Find top-
rated upcoming adventure movies on Rotten Tomatoes” as
an example. Users might start directly at the Rotten Toma-
toes homepage or use a search engine to navigate straight
to the “New Movies Coming Soon” page of the Rotten
Tomatoes. Moreover, when filtering the movies, users might
choose to first apply a filter for the “adventure” genre and
then sort by popularity, or alternatively, sort by popularity
before applying the genre filter. Despite the availability
of different paths to achieve the goal, entering the specific
page and performing the genre and popularity sorting are
essential steps in accomplishing the task. Therefore, these

three steps are identified as “key nodes”.

In the dynamic and noisy real-world web environment, iden-
tifying these key nodes is challenging due to the potential
changes in page content and UI updates, which could render
element selector paths obsolete. Therefore, we preferred
to use URL state as identifiers for key nodes rather than
element interaction, which enhanced the Benchmark’s ro-
bustness against layout changes. Only element class meth-
ods are considered for key nodes that cannot be represented
by URLs. The detailed judgment method is described in
Appendix C.3. By defining key nodes, WebCanvas is able
to dynamically assess the execution capabilities of web
agents in real-world web environments, offering a practical
and flexible evaluation method for the development of web
agents.

2.3. Evaluation Metrics

The evaluation metrics of WebCanvas comprised of two
main components: step score and task score. The step
score evaluates the agent’s performance with regard to each
key node, defining three types of evaluation targets along
with three evaluation functions at each step. The task score
includes two functions to assess the task’s completeness and
overall execution efficiency.

2.3.1. STEP SCORE

Inspired by previous works (Zhou et al., 2023; Koh et al.,
2024), we introduced three evaluation targets in calculating
step score, allowing us to examine from different aspects:
(1) URL: The webpage’s URL, used for page location and
parameter retrieval. (2) Element Path: Selector to pinpoint
element location. (3) Element Value: The text content of
the target element.

We designed three evaluation functions for these targets: (1)
Exact Match: This function requires the agent’s output to
exactly match the reference answer, suitable for scenarios
requiring precise matches, such as specific URL parame-
ters or form fields like names. (2) Include Match: This
function scores the agent’s output as long as it contains
reference answer, suitable for keyword matching scenarios.
(3) Semantic Match: Utilizing LLM for semantic match-
ing scoring, this function is appropriate for complex tasks
requiring content understanding, like identifying product
information.

Each key node is bonded with a specific evaluation target
and evaluation function. One step score is awarded when
the agent reaches a key node and passes the associated eval-
uation function verification. Table 5 shows a list of possible
evaluation functions for reference. In the presentation of
experimental results, the “Completion Rate” will be used to
represent the proportional scoring of Step Scores.
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2.3.2. TASK SCORE

Task Finish Score Task Finish Score is awarded based
exclusively on the agent’s success in completing all the
designated key nodes within the task. To facilitate the pre-
sentation of experimental results, the Task Finish Score will
be represented by the “Task Success Rate”.

Efficiency Score Efficiency Score(ES) is devised to eval-
uate the resource utilization effectiveness during task exe-
cution, which is calculated based on the average number
of steps required for the agent to achieve each unit of the
step score, thereby encouraging maximal efficiency with
minimal resource expenditure.

2.4. Data

2.4.1. DATASET: MIND2WEB-LIVE

To develop a real-world online benchmark for web agents,
we introduce Mind2Web-Live, which is derived from tasks
present in the Mind2Web dataset. We employed WebCanvas
framework as a guidance for the sampling and re-annotation
of these tasks to ensure their adaptability. Consequently, we
selectively excluded all tasks that contained time-sensitive
descriptions, such as those involving specific dates or times.
From the training set, we randomly sample 601 tasks, along
with all 179 tasks from the cross-task subset of the test set.
These tasks are then re-annotated in the real-world online
environment.

The annotation process presented multiple challenges. No-
tably, due to updates in website content and operational
changes, we discovered 96 tasks that were no longer ap-
plicable and subsequently removed them from the dataset.
Additionally, 142 tasks were discarded due to ambiguous
task definitions and the difficulty in clearly defining key
nodes. To enhance the clarity and reliability of task execu-
tion, we revised the descriptions for 51 tasks.

After a rigorous annotation and review process, which is de-
scribed in Appendix B due to length limit, 542 high-quality
tasks were established for the Mind2Web-Live dataset, in-
cluding 438 of the training set and 104 of the test set. As
shown in Figure 1, Mind2Web-Live encompasses 2439 key
nodes and 4550 detailed annotation steps. The tasks in
the dataset cover a wide range of webpage types and op-
erations, designed to comprehensively evaluate the perfor-
mance of web agents in a dynamic and variable online envi-
ronment. The distribution of the Evaluation Function within
the dataset is illustrated in subsection C.2.

2.4.2. DATASET MAINTENANCE

We have paid special attention to the dynamic nature of
the benchmark to adapt to the constantly changing web
environment. We recognize that updates and changes to

Table 1: Data distribution

Statistic Number

Total selected tasks 780
- Expired Tasks 96
- Unable to annotate 142
- Mind2Web-Live 542

- training set 438
- testing set 104

Annotate steps 4550
Avg. steps 8.39 / task
Eval functions 2439
Avg. Eval functions 4.5 / task

website content, such as UI updates, database changes, or
website close-down, are inevitable as time progresses. Such
changes may lead to the obsolescence of previously defined
tasks or key nodes.

We thus implemented a regular data maintenance schedule.
During data collection process, in addition to key nodes an-
notation, we recorded detailed information about workflow
execution, including action types, selector paths, element
value, and element coordinates at each step. We managed
to stably playback these stored action workflows by an ele-
ment matching strategy in our replaySDK2, and report any
invalidity in the workflows or the evaluation functions. We
periodically reassess key nodes by the above methods and
a human check to ensure that each task reflects the current
web environment, as illustrated in Table 3. An example of
regular testing report is shown in Appendix D.

3. Experiment
Inspired by previous work (Yao et al., 2023; Zhou et al.,
2023; Zheng et al., 2024), we introduce a universal agent
framework, as illustrated in Table 4, which includes four
key modules: Planning, Observation, Memory and Reward.
This framework is engineered to perform complex tasks
within real-world online web environments.3 Experimental
settings are detailed in Appendix I.

3.1. Agent Framework

Planning Integrates past states’ history, current observa-
tions, and task queries to plan future actions and deter-
mine operational values based on the ReAct (Yao et al.,
2023) reasoning framework. It can be formally expressed
as: Planning(ht

1,ot, i) −→ (zt,at), where ht
1 represents

history information until time t, ot is the observation at

2https://stellarrover.gitbook.io/replaysdk
3https://github.com/iMeanAI/WebCanvas
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time t, i is the task instruction, while the outputs zt and at
are the thought and action at time t respectively.

Observation Processes the current webpage’s source code
and screenshots, producing an accessibility tree (Zhou et al.,
2023) and visual observations as ot. Observation settings
are detailed in Appendix I.

Memory Responsible for storing the task description and
tracking the agent’s operational history, including thoughts
and actions history across states. It can be formally ex-
pressed as ht

1 = (zt1,a
t
1, r

t
1) within the framework, where

rt1 denotes the history of reward signal if presents.

Reward Utilizes a self-reflection structure (Shinn et al.,
2024), providing a series of reward signal, including a verbal
reflection and signal on whether the task is completed. This
can be formalized as Reward(ht

1, i,ot+1) → rt.

3.2. Main Results

In this study, we extensively explore the impact of various
combinations of planning models and reward models on the
performance of web agents in online web tasks. We employ
reward module to determine whether a process has been
completed. In experiments without a reward module, we set
a maximum execution step length of 1.2 times the annotated
task length. Table 2 indicates that while GPT-4 outperforms
other models in both effectiveness and efficiency in live
environment, overall performance across all models remains
considerable room for future enhancements. In Appendix,
we conduct a detailed qualitative and quantitative analysis,
in Appendix K and Appendix J respectively, to identify the
main obstacles faced by web agents in live environments,
and to analyse factors that influence web agent performance
and evaluation.

4. Related Works
Agent Benchmarks Early researches (Shi et al., 2017)
(Liu et al., 2018) provided relatively simple simulations
and assessment methods for web navigation tasks. However,
with the rise of Large Language Models, these methods have
become inadequate for assessing agents’ capability. Recent
studies have chosen to construct realistic simulated envi-
ronments (Yao et al., 2022) (Zhou et al., 2023) (Koh et al.,
2024) (Drouin et al., 2024), use offline saved datasets (Deng
et al., 2024) (Lù et al., 2024), or select relatively stable
answers to assess the capabilities of web agents (Mialon
et al., 2023). In terms of dynamic evaluation methods, many
studies (Kiela et al., 2021) (Ma et al., 2021) (Jain et al.,
2024) have proposed their own solutions. Moreover, beyond
network platforms, several initiatives have also been under-
taken on other platforms such as Android mobile devices,
operating systems, and databases (Rawles et al., 2024; Liu
et al., 2023; Xie et al., 2024). As shown in Table 3, WebCan-
vas aims to more comprehensively test agents’ capability in
the real world through key nodes and corresponding evalua-
tion functions.

Agent Frameworks In the area of reasoning frameworks,
several studies have achieved notable success in logical rea-
soning challenges (Wei et al., 2022; Yao et al., 2024; 2023;
Shinn et al., 2024; Sumers et al., 2024). Regarding web
agent reasoning frameworks, many researches has been con-
ducted to enhance the capabilities of web agents (Nakano
et al., 2021; Gur et al., 2023; Gür et al., 2023; Kim et al.,
2024; Lo et al., 2023; Lai et al., 2024). Some studies have
introduced multimodal modules that integrate visual and
semantic information, thereby enhancing the capabilities of
agents on web platforms (Zheng et al., 2024; Furuta et al.,
2023; He et al., 2024).
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Table 2: Performance of different models without the reward module on the Mind2Web-Live test set. The values are
accompanied by standard deviations from three experimental runs, denoted by the ± symbol. GPT-3.5 denotes gpt-3.5-
turbo-0125, and GPT-4 denotes gpt-4-0125-preview. Qualitative analysis of agent performance in online environment are
illustrated in Appendix K.

Model Completion Rate
(%)

Task SR (%) Efficiency Score

GPT-3.5 40.2(±0.38) 16.5(±2.00) 3.03(±0.28)
GPT-4 48.8(±3.04) 23.1(±1.11) 2.47(±0.28)

Claude-3-Opus 40.3(±1.46) 14.4(±1.47) 3.52(±0.10)
Gemini-Pro 35.3(±3.16) 13.4(±1.57) 4.69(±0.30)

DeepSeek-V2 41.2(±3.59) 18.3(±3.47) 4.44(±0.26)
Mixtral-8x22B 37.2(±1.51) 17.3(±4.00) 4.80(±0.49)

5. Conclusion
In this work, we have pioneered the development of frame-
work for online evaluation of web agents, and investigated
the challenges associated with online evaluation and the
difficulties faced by current web agent reasoning frame-
works in online inference. Simultaneously, we have con-
structed a community-driven platform that empowers web
agent researchers and developers to build datasets and eval-
uate their web agent frameworks and models in an online
environment while collecting feedback on dataset design,
data annotation quality, and data validity throughout the pro-
cess. We strongly encourage further work on online datasets,
web agents, and evaluation function designs. By fostering
a collaborative and iterative value to dataset creation and
evaluation, we eagerly anticipate the continued growth of
advancement of autonomous intelligence.

Impact Statement
Ethical Impact: The technologies developed in this re-
search could potentially enhance the capabilities of web
crawlers, thereby exacerbating issues related to personal
privacy and data security. To mitigate these potential risks,
we specifically avoid using websites that involve sensitive
information in designing our benchmark. We emphasize
using our technology in compliance with website usage
agreements and data protection regulations. Furthermore,
our benchmark does not include any processes that require
user login or involve personal information and avoids any
irreversible actions. The selection of websites and processes
is entirely transparent. Additionally, the widespread adop-
tion of web automation technology could alter the nature of
human work, substituting certain types of employment, thus
causing structural changes in the labor market.

Societal Impact: On the positive side, this research could
improve the efficiency of various online services, such as
online customer support and data retrieval, potentially en-

hancing overall economic efficiency and user experience.
However, this may also exacerbate the digital divide, as
technological advancements may initially benefit techni-
cally advanced organizations and individuals, widening the
gap with other societal groups.

We encourage community members and policymakers to
pay attention to these potential issues and adopt appropriate
regulatory measures when using our technology. Addition-
ally, our research provides open access to data and models,
promoting transparent and responsible scientific practices
to foster healthy development in this field.
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A. Case study of previous benchmarks
See Table 3.

Table 3: Case study of previous benchmarks

Benchmark Real-world
Intents

Dynamic
Environment

Keep Updated Intermediate
Env. State

Easy to Scale Disk Usage

MiniWoB++ ✗ ✓ ✓ ✗ ✗ < 1GB
WebShop ✗ ✓ ✗ ✗ ✗ ∼ 10GB

Mind2Web ✓ ✗ ✗ ✗ ✗ ∼ 10GB
WebArena ✓ ✓ ✗ ✗ ✓ > 100GB

VWebArena ✓ ✓ ✗ ✗ ✓ > 100GB
GAIA ✓ ✓ ✗ ✗ ✓ < 1GB

WEBLINX ✓ ✗ ✗ ✓ ✗ < 1GB
OmniACT ✓ ✗ ✗ ✓ ✗ < 1GB

WebCanvas ✓ ✓ ✓ ✓ ✓ < 1GB

B. Data Collection Details
B.1. Recording process

In the construction of Mind2Web-Live, the quality and reliability of the data are paramount. To this end, we have employed
the iMean Builder plugin4, an efficient tool for recording browser operations. This tool precisely captures browser interaction
from the users, covering a wide range of activities such as clicks and input actions. The recorded details include the type
of operation, execution parameters, target element’s selector path, element content, and its coordinates on the webpage.
Moreover, iMean Builder accompany each step with a webpage screenshot, not only facilitating process replication but
also providing a visual reference for workflow validation and review. This approach enables us to comprehensively record
all the steps required to complete specific tasks, forming the foundation of Mind2Web-Live. Upon completion of the data
recording, we meticulously annotated the key nodes of each process along with their corresponding Evaluation Functions.

B.2. Annotation process

In our study, the annotation process plays a pivotal role in ensuring data quality and task validity. To ensure the accuracy and
consistency of data annotations, we assembled an annotation team comprised of several authors of this paper and five senior
undergraduate students majoring in Computer Science. Not only do the members of the annotation team possess a solid
background in Computer Science, but they also received specialized training to ensure consistency in their understanding
and identification abilities in annotating key nodes.

During the annotation phase, we employed a comprehensive reward mechanism. Each annotator was compensated based on
the number of tasks they completed, with additional bonuses awarded for high-quality annotations to encourage precise and
consistent results. This combined reward system not only bolstered work enthusiasm but also enhanced the overall quality
of the annotation work, laying a solid foundation for the construction of an efficient web agent benchmark.

To guarantee the quality of annotations, we instituted a variety of strategies. Each task was annotated independently by
one annotator, followed by individual reviews by two other members to verify the accuracy of the key nodes. Throughout
the annotation process, we regularly organized discussion sessions for the annotation team to share their experiences and
challenges encountered, thereby improving the overall efficiency and quality of the team’s annotations.

4https://builder.imean.ai/
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Table 4: Example Annotations of the Evaluation Functions

State Title Annotation Details

Locate a large store in Washington that has kids’
and maternity products in uniqlo

Evaluation Function: Element value semantic match

Instructions: Decide Whether is searching for
Washington D.C.

Find parking in California city for Limos which
also offers free wi-fi in yelp

Evaluation Function: URL include match

Param: attrs
Value: WiFi.free

Find Dota 2 game and add all DLC to cart in steam Evaluation Function: Element path exact match

Selector: //*[@id="dlc_purchase_action"]/div[2]/a/span

C. Details of evaluation functions
C.1. Available evaluation functions

See Table 5

C.2. Evaluation Function distribution

See Figure 5

Table 5: Evaluation functions

Evaluate target Exact
match

Include
match

Semantic
match

URL ✓ ✓ ✓

Element path ✓ ✗ ✗

Element value ✓ ✓ ✓

319

1292

117

170

28

513

URL exact(319)

URL include(1292)

URL semantic(117)

Value exact(170)

Value include(0)

Value semantic(28)

Path exact(513)

Figure 5: Evaluation Function distribution.

C.3. How to define evaluation functions

For input operations on the page First, determine whether it is a necessary condition for task completion. If it is a
necessary condition, then judge whether the execution result can be reflected by the change of the URL. If so, simply take
the state after execution as the key node and select the evaluation function as URL exactly/included/semantic match.

If it cannot be reflected by changes in the URL, it needs to be defined as a key node based on click or input operations.
Select element path exactly match or element value exactly/included/semantic match for input operations (to determine
whether the content of the input element matches).

For click operations on the page Firstly, determine whether it is a necessary condition for completing the task. If it is a
necessary condition, then judge whether the execution result can be reflected by the change of the URL. If so, simply take
the state after execution as the key node and select the match rule as URL exactly/included/semantic match.

If it cannot be reflected by the change of URL, each click operation should be defined as a key node, and the match can be
selected as element element path exactly match or element value match.
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Figure 6: Guide to defining an evaluation function
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D. Data Validity Test Report
See Figure 7.

All 2 Passed 1  Failed 1 Flaky 0 Skipped 0

Add a new address to the account. The address is 2983 Marietta
Street, APT 2. Business name is Buck in instacart

chromium

Add a new address to the account. The address is 2983 Marietta Street, APT 2. Business name is Buck in instacart.spec.ts:18 5.3m

Errors

Error: Timeout waiting for finishProcessBlock API response

   at ../common/reward-service-worker-network.ts:96

  94 |       console.error("UserCase is Timeout");
  95 |       context.off("response", parseResponse); 
> 96 |       reject(new Error("Timeout waiting for finishProcessBlock API response"));
     |              ^
  97 |     }, timeout);
  98 |   });
  99 |

    at Timeout._onTimeout (/reward/common/reward-service-worker-network.ts:96:14)

800ms

1.9s

346ms

638ms

10.9s

11ms

4.1s

668ms

1ms

Test Steps

Before Hooks

page.goto(chrome-extension://dpdjeghbmcbakabpkgbpoekfamljhgdm/panel.html) — Add a new address to the account. The addres…

page.evaluate — ../common/reward-testinflux.ts:63

page.reload — ../common/reward-testinflux.ts:66

locator.getByPlaceholder('Type your needs').type(Add a new address to the account. The address is 2983 Marietta Street, APT 2. …

keyboard.press(Enter) — Add a new address to the account. The address is 2983 Marietta Street, APT 2. Business name is Buck in i…

response.text ✕ 13 — ../common/reward-service-worker-network.ts:35

After Hooks

Worker Cleanup

Screenshots

screenshot

screenshot

screenshot

Attachments

stdout

stderr

Failed to load: https://www.instacart.com/graphql?
operationName=UserAddressManagerModalViewLayout&variables=%7B%7D&extensions=%7B%22persistedQuery%22%3A%7B%22
Status code: 403
UserCase is Timeout

Run

2024/5/22 18:26 Playwright Test Report

https://devops-files.imean.tech/imean-e2e/05067/#?testId=12ed12020ed641410ec5-3cd2adc476dfcd277eb2 1/2

Figure 7: Data Validity Test Report
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E. Additional Evaluation Metrics
Human Alignment Score The Human Alignment Score(HAS) assesses how well an agent’s workflow aligns with human
behavior. It’s crucial for agents not just to be efficient, but to operate in ways that resemble human actions. The evaluation
of this aspect is conducted by contrasting the agent’s task completion signal with the ground truth annotations provided
by humans, to gauge the level of consistency. An agent that accurately issues a completion signal upon task completion is
deemed to exhibit a high degree of alignment with human behavior, thus earning a full score of one point. Conversely, a
delay in issuing the completion signal upon task completion results in a deduction of 0.05 points from the full score as a
penalty for decision latency. In instances where an agent stops its operation before accomplishing all the task objectives, the
score is determined by the ratio of the step score attained to the maximum step score achievable for that task. Furthermore,
if a task is not fully completed and the system forcibly terminates the process due to reaching the maximum step limit, the
score awarded is 0.8 times the proportion of the step score attained. The specific algorithm is shown in the formula, where
P represents achieved step scores, Pmax denotes the max step scores of the task.

HAS =


1 if task is completed with completion signal
0.95 if task is completed without completion signal

P
Pmax

if task is incomplete but completion signal
0.8× P

Pmax
if task is incomplete and is terminated

(1)

F. Comparison of the Mind2Web-Live and Mind2Web Datasets
See Table 6.

Table 6: Comparison of the Mind2Web-Live and Mind2Web Datasets. “Ele.” indicates “Element”, “Op.” indicates “Option”
and “SR” indicates “success rate”.

Attributes Mind2Web-Live Mind2Web

Dataset Size 438 2350
Evaluation Environment Real-world Online Offline

Evaluation State Key Nodes Each Step
Target Element Element, URL Element, Option

Evaluation Metrics Step Score & Task Score Step(Ele., Op.) SR & Task SR
Avg. Steps 8.51 / task 7.3 / task

G. Agent Framework
G.1. Action Space

See Table 7.

Table 7: Action Space

Action Operation value

Goto Value
Google Search Value

Click Target id
Hover Target id

Fill Form Target id, value
Fill Search Target id, value
Switch Tab Target id
Go Back /
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G.2. Diagram of Agent Framework

See Figure 4.

H. Diagram of Data Maintenance
See Figure 3.

I. Experimental Settings
I.1. Observation Space

Accessibility Tree We employ an accessibility tree-based approach to extract the fundamental textual feature representation
from the web environment. The accessibility tree serves as an abstract representation of the structure of a web page, detailing
the characteristics of each element within the page. However, the accessibility tree contains a significant amount of redundant
information, necessitating the use of a stringent set of filtering criteria to select interactive elements. These filtering criteria
include the element’s tag, visibility, usability, as well as textual or image content. Concurrently with the construction of the
accessibility tree, we annotate each filtered interactive element, providing information such as element ID, tag, and content.
For example, ([1] input ’search’, etc.). This annotation method facilitates the precise generation of corresponding CSS
selector paths during subsequent LLM prediction and execution phases, thereby accurately locating the required elements.

Screenshot We capture screenshots of the current web page to obtain its visual representation and provide this visual
context to visual language models, such as GPT-4V. This input method mimics human visual perception, allowing the model
to gather the most comprehensive information from the web page. Compared to relying solely on the accessibility tree,
using screenshots enhances the ability to identify the layout, appearance, and positioning of web elements more effectively.
Additionally, it captures interactive elements and other crucial page information that the accessibility tree might miss. To
balance inference costs and recognition effectiveness, the original resolution of the screenshots is set to 1080 x 720, though
users can define the screenshot resolution according to their specific needs in practical applications.

J. Quantitative Analysis of Experiments
J.1. Planning with Golden Reward Reference

We contemplated the impact of the quality of the reward signal on the web agent performance, raising a natural question
- Can high-quality reward signals lead to better agent performance? In our study, we introduced a reward module with
golden reference. The experimental results on Mind2Web-Live, which confirm our hypothesis, are detailed in Table 8.

From the original data, we extracted post-action URLs, action types, CSS selector paths, and key nodes functions as metadata
for our golden reference synthesis. We then employed a carefully designed prompt (available in Appendix O, using GPT-4
to generate a structured linguistic guidance for task progress estimation for each task. This guidance includes the overall
goal of the current task and task completion criteria (specifically highlighting all key nodes that must be met for the task to
be considered fully completed). We then integrate the content of the current task’s golden reference with the original design
of history and current observation for reward reasoning.

J.1.1. RESULTS

We found that in the complex web environment, the capability of language models to utilize self-generated feedback is
limited. The integration of a reward module does not enhance agent performance and may even lead to a decline in Task
Success Rate and Task Completion Rate. This is often due to the models prematurely concluding the tasks, whether with
textual or visual observations. This finding aligns with findings in (Shinn et al., 2024) about the effect of self-reflection
modules in web agent tasks.

Regardless of the planning model used, whether GPT-3.5 or GPT-4, the performance of model inference improves with the
integration of a reward module with golden reference, particularly in terms of Task Completion Rate and Task Efficiency
Score. This enhancement is primarily due to the reward model’s better alignment with human understanding of task
completion.

14
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Table 8: Experiments on implementation of reward module. “(+)” indicates the inclusion of a reward module with golden
reference. Model notation follows Table 2, except for gpt-4-vision-preview(GPT-4V). Human Alignment score represents
agents’ alignment with human decision on task completion, while the larger indicates better alignment, detailed in Appendix
E.

Planning Model Reward Model Completion
Rate

Task Success
Rate

Efficiency
Score

Human
Alignment

GPT-3.5 / 34.2% 13.0% 5.29 /
GPT-4 / 48.3% 16.7% 3.77 /
GPT-4 GPT-3.5 42.9% 14.6% 3.28 0.440
GPT-4 GPT-4 41.7% 12.3% 3.10 0.426

GPT-3.5 GPT-4 36.6% 10.8% 3.73 0.385
GPT-4 GPT-4V 42.4% 8.3% 3.42 0.419

GPT-3.5 GPT-4(+) 43.6% 13.8% 3.28 0.452
GPT-4 GPT-4(+) 52.3% 12.5% 3.27 0.506
GPT-4 GPT-4V(+) 51.3% 12.5% 2.71 0.502

J.2. Task Complexity & Task Difficulty

In this section, we investigate the factors influencing the agent performance and their correlation with agent performance.
Our analysis primarily focuses on the relationship between the complexity of a task, as quantified by the number of steps
annotated(step count) and the number of key nodes needed to complete the task, and the performance metrics of agent
completion and success rates.

Figure 8A and Figure 8B highlights a discernible trend: as the step count and the number of key nodes increases, there is a
notable decline in both the task completion rate and the success rate, suggesting that tasks involving more steps and more
key nodes are inherently more challenging.

Figure 8: The relationship between task complexity and task difficulty. The “step count” refers to the length of the action
sequence in the annotated data, which, along with the number of key nodes, serves as a reference for task complexity.

J.3. Discrepancy between Offline and Online Evaluation

The settings of evaluation on offline datasets that reflect real-world intents, such as Mind2Web (Deng et al., 2024), are
inherently different from WebCanvas framework. Nevertheless, we managed to compare the experimental results between
offline and online testing. During online inference, we attempted to reproduce the setting of the MindAct model, which was
trained and evaluated on the offline dataset, as proposed in the Mind2Web paper. It is important to note that the evaluation
metrics used in offline evaluation differ from those proposed in our online evaluation framework. The Step Success Rate in
offline testing assesses the accuracy of single-step action prediction, and for the entire task dimension, a positive reward is
given only when all single-step actions are correctly predicted (which is not the case in online evaluation, as we evaluate the
intermediate state, not the referenced action). As shown in Table 9, we have two main findings:
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1. The model trained on the Mind2Web training set does not generalize well to the online environment one year later. The
comparative relationship between the results of MindAct-Large (Deng et al., 2024), GPT-3.5, and GPT-4 is the opposite of
that in offline testing.

2. The metrics used in offline testing only evaluate the accuracy of action prediction and do not consider the complexity of
the decision space in the real-world environment. Consequently, the Task Success Rate of GPT-3.5 and GPT-4 in offline
testing is inconsistent with the results in online testing.

Table 9: Comparison of web agent performance in online and offline evaluations. We sampled 40 instances from the
Mind2Web test set and annotated them according to the WebCanvas framework to define key nodes. These were then tested
in both online and offline settings. ‘Task SR(0)’ and ‘Task SR(1)’ denote the Task Success Rates with zero tolerance and
tolerance for error at one step (or key node), respectively.

Model Offline Online
Step

SR(%)
Task

SR(0)(%)
Task

SR(1)(%)
Completion

Rate(%)
Task

SR(0)(%)
Task

SR(1)(%)

MindAct 44.3 10.0 25.0 25.5 7.50 12.5
GPT-3.5 15.5 2.50 7.50 35.4 10.0 17.5
GPT-4 28.4 5.00 22.5 41.1 10.0 25.0
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K. Qualitative Analysis of Experiments
In this section, we conducted a qualitative analysis of error cases in our experimental results. Typical errors include: local
optima, premature termination of tasks, and information loss during inference.

K.1. Local Optima

In our online environment experiments, the result data shows that a task may involve multiple constraints or requirements,
or it may require navigating through multiple web states within a specific domain. Web pages often contain numerous
clickable links, and frequently feature interactable elements with similar or even identical names. This complexity demands
that web agent faces an almost exponential growth in the decision space as the number of steps increases, while precisely
selecting the web element that can complete the task and appropriately advancing the fulfillment of multiple constraints.
Specifically, our web agent tends to operate on an unidirectional forward path (described in K.3), making it difficult to revert
to an intermediate state within a limited number of steps. Furthermore, due to a lack of prior knowledge about the web
domain associated with current task and confusion caused by similar elements, the planning module’s local decision-making
for the current web state is not always accurate, and it also lacks proactive thinking to explore alternative paths. This is one
of the main reasons for the low task success rate. As shown in Table 10, in the task “Check the rating and user reviews for
the game ‘Deathloop’ on IGN”, the web agent ended up at the review article page for ‘Deathloop’ on IGN due to incorrect
path selection from the Google search results, rather than the expected page for ratings and user reviews.

K.2. Premature Termination of Tasks

In the experiments, we also discovered that the web agent sometimes only partially completes tasks. This typically indicates
that web agent sometimes prematurely judges itself as having finished the task. The reasons for premature termination are
varied. For instance, the agent might hallucinate during inference (such as simplifying a task of reaching a page and filling
out content to just reaching the page), leading it to self-judge the task as complete after only finishing intermediate steps and
not continuing further. In other instances, it may have the right thought process in earlier steps, but fails to deliver the correct
action input or effectively execute the action on the page, yet in subsequent steps, it “reads” this thought and mistakenly
believes the action has been executed. Lastly, when it is difficult to continue along the current path, the agent might lower its
standards for task completion and erroneously judge the task as complete, thus terminating the task prematurely. As shown
in Table 10, in the task “Track the status of a rebate for Monty Lue, house number 4847, zip code 10019 in Menards”, the
web agent reached the “Track Your Rebate” page but did not continue to complete the form, instead prematurely deciding
the task was complete and ending the task.

Table 10: Case Study of Failure Trajectories

State Task Title Agent’s Thought

Check the rating and user reviews
for the game “Deathloop” in ign

To view the full review and user comments for ‘Deathloop’ on IGN, I need to click on the IGN
review link provided in the search results.

Track the status of a rebate for
Monty Lue, house number 4847,
zip code 10019 in menards

After navigating through various steps and overcoming challenges related to the website’s
interaction model, we’ve successfully reached the point where the ’Track Your Rebate’ form is
ready for Monty Lue’s information. The task is marked as ’finished’ because the user has been
guided to the correct section for submission, aligning with the goal of tracking the rebate status.

K.3. Information Loss during Inference

Element Mapping The relationships between web elements are varied and complex. Often, the essential information
of an element is not contained within the element itself but is instead found within its child elements, parent, or even
sibling elements. For instance, a button tag might not always contain useful attributes; sometimes, they are empty or
irrelevant. Based on our understanding of the DOM tree on the web, we map information from specific elements (like span)
to interactive elements such as buttons. Due to the diversity of these mapping relationships, our framework currently only
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considers mapping valuable information from certain special elements to their parent elements, recursively iterating until
an interactive element is identified, as shown in Figure 9 in Appendix L. If this recursive search fails to find an interactive
element or reaches the recursion limit, the element is discarded, as illustrated in Figure 10 in Appendix L. Given the
complexity of webpage elements, our initial implementations focus predominantly on parent-child mapping relationships.
Future work will delve deeper into inter-element mappings to ensure the accuracy and correctness of element mappings.

Unidirectional Execution Actions planned web agents depend on the attributes fetched from the network environment.
However, our analysis of the execution process reveals that these planned actions are often tied to specific web page elements.
When these actions are executed, such as clicking a link, the page may redirect to unpredictable pages, leading to several
issues during the execution. Our analysis has identified two primary types of problems:

1. Pages may load to irrelevant sites due to network issues, access restrictions, or login requirements, resulting in
navigation to pages like blank screens or CAPTCHA verification, exemplified in Figure 11B.

2. Although an action may lead to a reasonable page, extracting relevant information from this page can be challenging.
As shown in Figure 11A, without additional vision or OCR processing, the action sequence stalls.

The limitations of browser automation tools currently prevent the complete restoration of a web page to its state before action
execution. Meanwhile, memory management of web agents also could not eliminate the effect of past incorrect trajectories.
Therefore, task completion often falls into a loop state. Despite efforts to selectively remove ineffective or infeasible actions
from the historical trajectory, these problems persist, highlighting the challenges of autonomous web interaction.

L. Additional Examples on Case Study
See Figure 9, Figure 10, Figure 11

Figure 9: Example on parent-child element mapping strategy(1).
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Figure 10: Example on failure case of parent-child element mapping strategy(2).

Figure 11: Examples on unidirectional failure case.
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M. Examples of More Annotated Samples
See Figure 12, Figure 13.

Link type

Open Application

Unknown

Public link

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Type playstation 5 digital edition Edit

Matching rule AutoRestore Match Edit

Input playstation 5 digital edition

Add a description

Action rule Press Enter Edit

Matching rule AutoRestore Match Edit

Press Enter

Add a description

Action rule Press Enter Edit

Matching rule AutoRestore Match Edit

Press playstation 5 digital edition

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

End

Add a description

AI mode Preview Playback Settings SaveGo to gamestop and find Playstation 5 digital edition

 

Figure 12: Example on the Annotated Interface and Evaluation Function for the Task “Go to GameStop and Find PlayStation
5 Digital Edition”
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Link type

Open Application

Unknown

Public link

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click Store Locator

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Type Edit

Matching rule AutoRestore Match Edit

Input String,TX

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click

Add a description

Action rule Click Edit

Matching rule AutoRestore Match Edit

Reward

Click Spring

Add a description

AI mode Preview Playback Settings SaveLocate a store in spring, Texas in kohls
 

Figure 13: Example on the Annotated Interface and Evaluation Function for the Task “Locate a store in spring, Texas in
kohls”
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N. Limitations & Future works
Developing a suitable evaluation framework is a fundamental component in the advancement of autonomous web agents.
This research addresses the challenge of live evaluation in a real-world web environment. Among these are the need to
define key nodes in a completely open environment, unify the inference processes across different digital autonomous agents,
and reduce the maintenance costs associated with real-time data and evaluation functions. Through our efforts, we have
made significant strides toward establishing a robust and accurate online evaluation system for web agents.

However, the transition to live, dynamic evaluations in unpredictable online environments introduces new complexities not
present in controlled, offline settings. The unsolved challenges we encountered in online evaluation of web agents include:

1. Network Instability: The variability in network conditions can lead to discrepancies between the results obtained
from online real-time evaluations and those from closed environments. For instance, issues such as CAPTCHAs, network
outages, or inconsistencies across different IPs can influence outcomes. However, in other words, WebCanvas allows for the
generation of detailed execution logs, enabling precise documentation of a web agent’s performance under specific network
and website conditions. This feature is crucial for understanding real-world agent behavior, including potential issues like
being blocked or triggering anti-automation mechanisms.

2. Complex Task Pathways: The diversity of potential execution paths for a given task may not be completely identified by
human annotators. This oversight can lead to a misalignment between the defined key nodes and the essential components
of task completion, inadvertently penalizing correct processes. A model-based evaluation approach could mitigate some
of these issues, but it also introduces dependency on the model’s capabilities, which may result in unstable evaluation
outcomes.

3. Static Evaluation Functions: The current static nature of our evaluation functions does not accommodate changes in
task instructions based on environmental variables such as time, location, or weather conditions. For example, a task might
involve booking a flight to Hawaii next month if the weather is favorable. Ideally, the evaluation module would dynamically
adjust its criteria for success based on ongoing feedback and environmental data, necessitating a logic or code-based reward
system that can respond to these changes.

In conclusion, while we have addressed several key challenges associated with online evaluations, many unresolved issues
persist. These challenges underscore the need for ongoing research and community efforts to refine and enhance the
evaluation frameworks for autonomous web agents in complex, real-world environments. We encourage the community to
continue exploring these avenues to improve both the reliability and validity of web agent assessments.
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O. Prompts of Planning and Reward Module

Planning Prompt

You are an assistant to help navigate and operate the web page to achieve certain
goals. Answer the following questions as best as you can.

There are key information you will get:
**Key Information**:

- Previous trace: all thoughts, actions and reflections you have made
historically.

- Accessibility tree: characteristic expression of the current web page.

**Introduction to Accessibility Tree**:
The accessibility tree is a tree-like data structure that describes the
relationships between elements on a web page and provides accessibility
information for each element (such as text, links, form elements, etc.).

- **Accessibility Tree Example**:
Here is an example of an accessibility tree:
‘‘‘
current web tab name is ’Google’

[40] link ’About’
[41] link ’Store’

[186] link ’Gmail’
[187] link ’Images’
[163] textarea ’Search’
[236] button ’See more’

‘‘‘
In this example, each row represents the characteristic representation of a web page

element. It has three attributes: ’[40]’ for the element’s element_id, ’link’
indicates the element is a link, and ’About’ for the content of the element.

Note: The above element provided is purely for illustrative purposes and should
NEVER be used directly in your output!

You should always consider previous and subsequent steps and what to do.
**Thought Space**:

- What action do you think is needed now to complete the task?
- What’s the reason of taking that action?

You have access to the following tools(helpful to interact with web page):
**Execution Action Space**:

- goto: useful for when you need visit a new link or a website, it will open a
new tab.
- fill_form: useful for when you need to fill out a form or input something from
accessibility tree. Input should be a string.

- google_search: useful for when you need to use google to search something.
- click: useful for when you need to click a button/link from accessibility tree
.
- select_option: useful for when you need to select a drop-down box value. When
you get (select and option) tags from the accessibility tree, you need to
select the serial number(element_id) corresponding to the select tag, not the
option, and select the most likely content corresponding to the option as Input
.
- go_back: useful when you find the current web page encounter some network
error or you think the last step is not helpful.

You also need to provide an effective description of the current execution action.
A proper description contains:

- What website it is;
- Which action you choose;
- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

You have to follow the instructions or notes:
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**Important Notes**:
- Under the following conditions, you are restricted to using the ’google_search
’ or ’goto’ tools exclusively:

1. In the initial step of a process or when there’s no preceding interaction
history (i.e., the previous trace is empty).

2. In situations where the accessibility tree is absent or not provided.
- Your action should not be the same as last step’s action.
- The ’element_id’ should be an integer accurately representing the element’s ID

in the accessibility tree.
- AVOID using the provided example’s element_id as your output.
- The output JSON blob must be valid; otherwise, it cannot be recognized.

**Special Circumstances Guidelines**:
- When performing a search on a website, if you find the search results do not
display sufficient content, consider simplifying or modifying your search query
. Reducing the complexity of your search query or altering keywords may yield
more comprehensive results.

Please ensure the accuracy of your output, as we will execute subsequent steps based
on the ’action’, ’action_input’ and ’element_id’ you provide.

**Output Requirements**:
- Ensure your output strictly adheres to the JSON blob format outlined below:

‘‘‘
{

"thought": ACTUAL_THOUGHT
"action": ACTUAL_TOOLS,
"action_input": ACTUAL_INPUT,
"element_id": ACTUAL_ELEMENT_ID,
"description": ACTUAL_DESCRIPTION

}
‘‘‘

- A VALID JSON BLOB EXAMPLE AS FELLOWS:
‘‘‘
{

"thought": "In order to complete this task, I need to go to the Google home
page",

"action": "click",
"action_input": "button",
"element_id": "236",
"description": "Now I\’m on Google\’s main page. I\’m now clicking the
button with element_id [236] to see more information."

}
‘‘‘

Reward Prompt

You are an assistant to help navigate and operate the web page to achieve certain
task.

Your goal is to evaluate the previous series of traces(thoughts and actions) and
think about what key steps are needed to complete the task in the future.

There are key information you will get:
**Key Information**:

- Previous trace: all thoughts, actions and reflections you have made
historically.

- Accessibility tree: characteristic expression of the current web page.
- Screenshot: visual information of the current web page (may include).
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You also need to combine the previous trace to give the completion status of the
current task.

**Status Of Task Completion**
- doing: You have completed the intermediate steps of the target task but not
entirely finish the target task.

- finished: You are entirely certain about completing the target task.
- loop: You find that the the last two steps of previous actions are the same,
it is determined that the process is stuck in a local optimum solution.

You will judge and score the task completion and reasonableness of previous actions.
The score ranges from 1-10, but the score you give can only be selected from [1,

3, 7, 9, 10].
**Judging and Scoring Criteria**:

- score = 1: You find that the status of the task is stuck in a loop by
analyzing the previous trace.

- score = 3: You find that performing the previous trajectories(thoughts and
actions) is not likely helpful in completing target task and you need to adjust
the direction of your planning and action or start over from beginning.

- score = 7: You find that performing the previous trajectories(thoughts and
actions) are helpful in completing the target task.

- score = 9: You find that performing the previous trajectories(thoughts and
actions) are a very critical intermediate step to complete this task.

- score = 10: You find that performing the previous trajectories(thoughts and
actions) have completed the task perfectly.

You need to provide an effective evidence of scoring for the series of the previous
trace.

- Why do you give this score?
- What is the reason?

You also need to provide an effective description or summary of the above
requirements through key information and characteristics of the current web page.

**A proper description contains**:
- What is the current completion status of the task? (IMPORTNAT)
- What is your overall plan for completing your goal and target task in the
future? (IMPORTNAT)

- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

**Output Requirements**:
- Ensure your output strictly follows this format:

‘‘‘json
{

"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}
‘‘‘

- A VALID JSON BLOB EXAMPLE AS FELLOWS:
‘‘‘
{

"status": "doing",
"score": "3",
"reason": "You need to complete a search for camping tents that can
accommodate 2 people and sort the results in rei by price from low to high.
According to your previous trajectory, you navigated to the rei official

website and clicked the 2-person button, which are correct actions. But
when you complete the final step of sorting prices, you actually click on a
link to a tent product. This is a completely unreasonable action. So I

give it 3 points. Maybe you need to return to the previous interface to re-
plan and select the ’sort by’ button"

"description": "According to the current web page information, you can know
that this is the homepage of a tent product, which is not very consistent
with the purpose of the target task. The next overall plan to complete this
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task is to return to the previous page and select the sort by button."
}
‘‘‘

Reward Prompt - With Golden Reference

You are an assistant to help navigate and operate the web page to achieve certain
task.

Your goal is to evaluate the previous series of traces(thoughts and actions) and
think about what key steps are needed to complete the task in the future.

There are key information you will get:
**Key Information**:

- Previous trace: all thoughts, actions and reflections you have made
historically.

- Current Webpage Information:
- Accessibility tree: characteristic expression of the current web page.
- Screenshot: visual information of the current web page. (may include)

- Reference Guide: detailed and step-by-step reference guide for completing the
target task, serving as a benchmark for evaluating progress and strategizing
the necessary actions.

**Notes to Reference Guide**:
- The Reference Guide plays a crucial role in aiding the evaluation of the
current Status of Task Completion. The ’Completion Verification’ section within
the Reference Guide is instrumental in determining whether a task can be

classified as ’finished.’
- Furthermore, for a task to be considered fully completed, all **key conditions
** must be met as specified.

You also need to combine the previous trace to give the completion status of the
current task.

**Status of Task Completion**
- doing: You have completed the intermediate steps of the target task but not
entirely finish the target task.

- finished: You are entirely certain about completing the target task.
- loop: You find that the the last two steps of previous actions are the same,
it is determined that the process is stuck in a local optimum solution.

You will judge and score the task completion and reasonableness of previous actions.
The score ranges from 1-10, but the score you give can only be selected from [1,

3, 7, 9, 10].
**Judging and Scoring Criteria**:

- score = 1: You find that the status of the task is stuck in a loop by
analyzing the previous trace.

- score = 3: You find that performing the previous trajectories(thoughts and
actions) is not likely helpful in completing target task and you need to adjust
the direction of your planning and action or start over from beginning.

- score = 7: You find that performing the previous trajectories(thoughts and
actions) are helpful in completing the target task.

- score = 9: You find that performing the previous trajectories(thoughts and
actions) are a very critical intermediate step to complete this task.

- score = 10: You find that performing the previous trajectories(thoughts and
actions) have completed the task perfectly.

You need to provide an effective evidence of scoring for the series of the previous
trace.

- Why do you give this score?
- What is the reason?

You also need to provide an effective description or summary of the above
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requirements through key information and characteristics of the current web page.
**A proper description contains**:

- What is the current completion status of the task? (IMPORTNAT)
- What is your overall plan for completing your goal and target task in the
future? (IMPORTNAT)

- REMEMBER DO NOT LEAVE THE DESCRIPTION EMPTY!

**Output Requirements**:
- Ensure your output strictly follows this format:

‘‘‘json
{

"status": "ACTUAL_STATUS",
"score": "ACTUAL_SCORE",
"reason": "ACTUAL_REASON",
"description": "ACTUAL_DESCRIPTION"

}
‘‘‘

- A VALID JSON BLOB EXAMPLE AS FELLOWS:
‘‘‘
{

"status": "doing",
"score": "3",
"reason": "You need to complete a search for camping tents that can
accommodate 2 people and sort the results in rei by price from low to high.
According to your previous trajectory, you navigated to the rei official

website and clicked the 2-person button, which are correct actions. But
when you complete the final step of sorting prices, you actually click on a
link to a tent product. This is a completely unreasonable action. So I

give it 3 points. Maybe you need to return to the previous interface to re-
plan and select the ’sort by’ button"

"description": "According to the current web page information, you can know
that this is the homepage of a tent product, which is not very consistent
with the purpose of the target task. The next overall plan to complete this
task is to return to the previous page and select the sort by button."

}
‘‘‘

Semantic Match Prompt

Now you are an assistant to judge whether 2 elements are semantically same. I’ll
provide a judge rule and an answer.

If they are the same, you should return 1. If they are not related, you should
return 0.

If they are related but not identical, return a decimal (two decimal places) between
0 and 1 of the degree of relevance you think.

For example, the judge rule is: Decide whether the place is New York. The score of "
new york" and "New York" are both 1, "Brooklyn" should be 0.

However, if the judge rule is: Decide whether the place is in New York. The score of
"new york" and "New York" and "Brooklyn" are all 1.

Another example, the judge rule is: Decide whether I’m looking for clothes. The
score of "red Clothes" and "green jacket"should also be 1.

However, if the judge rule is: Decide whether I’m looking for red clothes. the score
of "bright red Clothing" could be 0.85(red include bright red but they are not the
same), the score of "green Clothes"should be 0.5(red is not green).

Remember, you should return a number with " and an explanation. Like output: "1", (
your explanation)
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