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Abstract

Selecting task appropriate deep learning models is a resource intensive process; more so
when working with large quantities of high dimensional data that are encountered in medical
imaging. Model selection procedures that are primarily aimed at improving performance
measures such as accuracy could become biased towards resource intensive models. In
this work, we propose to inform and drive the model selection procedure using the carbon
footprint of training deep learning models as a complementary measure along with other
standard performance metrics. We experimentally demonstrate that increasing carbon
footprint of large models might not necessarily translate into proportional performance
gains, and suggest useful trade-offs to obtain resource efficient models.
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1. Introduction

Deep learning (DL) models continue to yield state-of-the-art performance in several do-
mains, including in medical image analysis. In addition to the development of novel the-
oretical frameworks, the success of these models can be attributed to the availability of
big data and powerful compute. This has led to wide ranging applications requiring in-
creasingly larger models on bigger datasets. The underlying hyperparameter tuning of
DL models makes them further more computationally demanding. As a consequence, the
carbon footprint of model selection of DL models is also on the rise.

In recent work, the trend of increasing carbon footprint of DL has been highlighted
in natural language processing (NLP) where some of the biggest models are being devel-
oped (Strubell et al., 2019; Henderson et al., 2020). Efforts towards sustainable DL with a
focus on low resource utilisation is also being investigated with dedicated research tracks
in academic conferences1. Similarly, initiatives are also being taken in the medical imaging
community to tackle the environmental impact of resource intensive computational meth-
ods.2 Furthermore, tools such as the experiment-impact-tracker (Henderson et al., 2020)
and Carbontracker (Anthony et al., 2020) provide ways to passively monitor the carbon
footprint of training DL models.

Model selection in DL is far more resource intensive process than during inference. This
can be attributed to the cost of specifying suitable network architectures by optimising
several hyperparameters. Model selection criteria are primarily aimed at improving some
form of performance measure without taking the associated environmental costs. In this
work, we propose to perform DL model selection that is driven by the training carbon
footprint along with relevant performance measures. Using a class of DL models for medical
image segmentation we investigate the trade-off between carbon footprint of training models
and their segmentation performance. We use Carbontracker3 (Anthony et al., 2020) to track
and estimate the carbon footprint.

1. Green and Sustainable Natural Language Processing
2. OHBM Sustainability and Environment Action Special Interest Group
3. https://github.com/lfwa/carbontracker/
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2. Experiments
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Figure 1: Test set accuracy of multiple U-net
models of increasing complexity obtained with
different initial filters F = [4, 8, 16, 24, 32, 48, 64]
along with the number of parameters and the
epoch of convergence are shown. On the horizon-
tal axis, the corresponding carbon footprint (in
gCO2eq) and the equivalent distance traveled by
car (in km) is reported. For a fixed carbon bud-
get of 100gCO2eq the two most complex models do
not converge and yield lower Dice accuracy (shown
along the dotted line at 100gCO2eq).

The experiments were designed to highlight
the trade-off between segmentation accu-
racy and the underlying carbon footprint of
training DL based segmentation models.
Data: We use the LIDC-IDRI dataset4

consisting of 1018 thoracic CT scans which
are processed to obtain 15096 patches of
size 128 × 128. Lesions present in these
patches are annotated by four raters. We
combine the four annotations to obtain a
single union segmentation mask per patch.
The dataset is split into training, validation
and test splits in the ratio 60:20:20.
Experiments: We use the popular 2D U-
net model in Ronneberger et al. (2015)
of increasing complexity (due to number of
parameters) achieved by varying the initial
convolution filters in seven configurations
F = [4, 8, 16, 24, 32, 48, 64]. All seven mod-
els were trained on an Nvidia RTX 3090
GPU with 24GB memory with a batch size
of 128 (maximum possible for the largest
model on this GPU), implemented in Py-
Torch and optimised using the Adam optimiser using an initial learning rate of 5 × 10−3.
Models were trained to minimize Dice loss and segmentation accuracy was computed using
the Dice coefficient. The carbon footprint was measured as the CO2 equivalent in weight
(gCO2eq) of training the models, and the equivalent distance traveled by car (in km)5 was
estimated using Carbontracker.
Results: Figure 1 summarizes the results from our experiments where the test set seg-
mentation accuracy of all the models are visualized along with their corresponding training
carbon footprint. Unsurprisingly, the smaller of the models (F = [4, 8]) incur lower cost
(≈ 10gCO2eq) compared to the more complex ones (F = [48, 64]) which incur close to 20
times the cost (180− 300gCO2eq). The segmentation accuracy does improve for the larger
models compared to F = [4, 8] models, by a small margin from 0.756 to 0.764 .

3. Discussion & Conclusions

The results in Figure 1 reveal some useful trade-offs when performing model selection.
Firstly, the relative increase in carbon footprint between the best performing model (F=64)
and the model with the smallest carbon footprint (F=4) is substantially more (≈ 1500%)
compared to the corresponding increase in Dice accuracy (≈ 1%). Notice also that due
to differences in convergence times, the most carbon intensive model is F=48 (Epoch:63)

4. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
5. Carbontracker provides the conversion between gCO2eq to distance traveled by car based on the average

CO2 emissions from newly registered motor vehicles in Europe in 2019
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and not F=64 (Epoch:26). This indicates that penalizing larger models solely based on the
number of parameters might not always be accurate.

In instances where access to compute resources is limited, practitioners could perform
model selection by limiting the carbon budget. This is demonstrated by limiting the carbon
budget to 100gCO2eq in Figure 1. Under this constraint the larger models (F=[48,64]) do
not converge; when predicted using these models, obtained after exhausting the 100gCO2eq
budget, the test accuracy is Dice=0.739 for F=48, Dice=0.727 for F=64 which are consid-
erably lower than all other converged smaller models (for F < 48: 0.752 ≤ Dice ≤ 0.762).

In this study we tracked the carbon footprint of models by running all the experiments.
However, if carbon costs are to factor in model selection, then training all the models and
choosing the model with the smallest carbon footprint is unreasonable. In such scenarios,
tools like Carbontracker can be used to reliably predict the estimated carbon footprint by
training the models for just a single epoch (Anthony et al., 2020). This can be used to
constrain the architecture search to be within classes of models that fall within a specified
carbon budget.

A natural extension to the idea of using carbon footprint for model selection is also to
perform network architecture search (NAS) that is driven by the carbon footprint. This
can be achieved by incorporating carbon emissions into the NAS minimization objective:

θ̂ = arg min
θ

(Lperf(·; θ) + β · Cco2(·; θ)) , (1)

where β is a weighting factor. The optimal model parameter θ̂ minimizes the combined
objective comprising performance measure Lperf(·) and the carbon footprint of training the
model Cco2(·).

Another important consequence of using carbon footprint driven model selection is to
provide fairer comparison of models. When comparing models that can be trained in parallel
on large clusters, carbon footprint is a more balanced measure of complexity than other
measures (like computation time) which can be reduced by scaling up resources.

In conclusion, we proposed to use carbon footprint as a complementary measure in DL
model selection for medical image analysis. We demonstrated that in some scenarios the in-
crease in computation complexity, and hence in carbon footprint of the model development,
might not be justified relative to the gains in performance. We hope this paradigm for
model selection will encourage practitioners to become aware of, and act on, the increasing
carbon footprint leading to further research into resource efficient DL models.
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