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Abstract

Aligning large language models (LLMs) with
human preferences has become a critical step in
their development. Recent research has increas-
ingly focused on test-time alignment, where ad-
ditional compute is allocated during inference
to enhance LLM safety and reasoning capabili-
ties. However, these test-time alignment tech-
niques often incur substantial inference costs,
limiting their practical application. We are in-
spired by the speculative sampling acceleration,
which leverages a small draft model to effi-
ciently predict future tokens, to address the ef-
ficiency bottleneck of test-time alignment. We
introduce the reward-Shifted Speculative Sam-
pling (SSS) algorithm, in which the draft model
is aligned with human preferences, while the
target model remains unchanged. We theoret-
ically demonstrate that the distributional shift
between the aligned draft model and the un-
aligned target model can be exploited to recover
the RLHF optimal solution without actually ob-
taining it, by modifying the acceptance crite-
rion and bonus token distribution. Our algo-
rithm achieves superior gold reward scores at a
significantly reduced inference cost in test-time
weak-to-strong alignment experiments, thereby
validating both its effectiveness and efficiency.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in tasks such as instruction-
following (Lou et al., 2024), reasoning (Fei et al.,
2024), and coding (Wang et al., 2024a). However,
the practical deployment of LLMs is constrained
by concerns regarding the safety and helpfulness
of their outputs (Bai et al., 2022; Weidinger et al.,
2022; Deshpande et al., 2023). As a result, ef-
ficiently aligning LLMs with human preferences
becomes a critical challenge in LLM development.
While classical reinforcement learning from human
feedback (RLHF) (Christiano et al., 2017; Stiennon
et al., 2020; Ouyang et al., 2022) has shown great

potential, it often suffers from the high computa-
tional cost of RL training and is prone to instabil-
ity (Chen et al., 2024; Mohammadi, 2024).

To mitigate these issues, test-time align-
ment (Khanov et al., 2024; Li et al., 2024a; Qiu
et al., 2024) has emerged as a training-free alterna-
tive to RLHE, allocating more compute during in-
ference to improve alignment quality. Nevertheless,
most test-time alignment approaches require inter-
action between the LLM and an external reward
model (RM) throughout decoding, resulting in ei-
ther excessive LLM calls (best-of-/N and rejection
sampling) or too many RM calls (Deng and Raf-
fel, 2023; Khanov et al., 2024). Although recent
studies have recognized these inefficiencies and
proposed acceleration techniques (Li et al., 2024a;
Qiu et al., 2024; Sun et al., 2024), these methods
still rely on external RMs and require numerous
calls to large models.

We are inspired by the speculative sampling al-
gorithm (Chen et al., 2023; Leviathan et al., 2023),
which leverages a small “draft” model to efficiently
predict K future tokens and then uses a large “tar-
get” model to verify them in parallel. While spec-
ulative sampling has been widely used for accel-
erating LLLM inference, its potential for test-time
alignment remains under-explored. For example,
Nakshatri et al. (2024) applies speculative sam-
pling to accelerate the base model inference within
a reward-guided search framework. However, their
approach continues to rely on an external reward
model during inference, resulting in a pipeline that
remains both complex and latency-prone.

We hereby propose a novel combination of test-
time alignment and speculative sampling: aligning
the draft model to generate high-reward tokens,
while utilizing the target model for verification to
ensure fluency. This approach removes the depen-
dence on external reward models. We introduce
the reward-Shifted Speculative Sampling (SSS) al-
gorithm, which employs an aligned draft model



and an unaligned target model. Furthermore, we
revise both the acceptance criterion and the resid-
ual distribution for bonus tokens, ensuring that SSS
recovers the RLHF optimal solution. Extensive
experiments on test-time weak-to-strong alignment
tasks demonstrate that SSS achieves superior gold
reward scores compared to existing baselines at a
significantly reduced inference cost.

The main contributions of this paper are summa-
rized as follows:

* We redefine the objective of speculative sam-
pling from recovering the target model distri-
bution to recovering the RLHF optimal solu-
tion. This enables test-time alignment with a
reward-shifted draft model.

* As a test-time alignment method, SSS elimi-
nates the requirement for external reward mod-
els. To the best of our knowledge, this is the
first approach that implements test-time align-
ment using only a draft and a target model.

* We show that SSS is an efficient algorithm for
test-time weak-to-strong alignment, which en-
hances the alignment quality at a much lower
computational cost compared to other test-
time alignment methods.

2 Preliminaries

2.1 RLHF and Reward-Shifted Decoding

The problem of LLM alignment has been mod-
eled as a KL-constrained reward maximization pro-
cess (Peters and Schaal, 2007; Korbak et al., 2022;
Go et al., 2023; Rafailov et al., 2023), in which
the reward r is maximized with the proximity con-
straint from the reference model 7rpef:
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Here, the training data only contains a prompt
set D,, and the responses are generated by the
LLM itself. The above process is the objective
of reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ouyang et al.,
2022). We demonstrate in Section B.1 that the
optimal solution of Eq. (1) is:

(yle) o mrrlylz) - exp (;mx,y)) s

where the base model policy s is slightly shifted
to pursue higher reward.

Built upon the above objective, another direct
approach is to sample multiple responses and only
keep the responses that satisfy the reward con-
straint, known as test-time alignment (Khanov
et al., 2024; Li et al., 2024a; Qiu et al., 2024).
Test-time alignment only modifies the decod-
ing process of base models to pursue higher
reward, namely a reward-shifted decoding pro-
cess. There are two basic approaches to reward-
shifted decoding: i) best-of-/N, which generates
multiple candidates in parallel and selects only
the best one: maxyr (|z) r(x,y), and ii) rejec-
tion sampling, which continues generating pro-
posals until a reward threshold is met: y ~
Tret(-|x),  s.t. r(x,y) > 7. These approaches
are often applied to different granularities (Khanov
et al., 2024; Li et al., 2024a) and even combined
together (Qiu et al., 2024; Sun et al., 2024) for
effective and efficient alignment.

2.2 Speculative Sampling

Speculative sampling is an inference acceleration
method for autoregressive models (Chen et al.,
2023). It leverages a much smaller “draft” model
Tdraft tO sequentially sample candidate token se-
quences: Yp.i+x ~ Tdraft(|Z, y<¢), and requires a
larger and more powerful “target” model mef to
verify such candidates. Specifically, speculative
sampling accepts a draft token with the probability:
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where higher target model likelihoods lead to
higher chances of acceptance. The complete pro-
cedure of speculative sampling is summarized in
Algorithm 2.

Speculative sampling has an acceleration trick to
address the efficiency issue caused by a potentially
low acceptance rate, called bonus token. It addi-
tionally accepts one more token from the following
residual distribution:

paccept(t) = min <17
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where (f(x))s = % is the clamp nor-

malization operator. The bonus token distribution
ensures that speculative sampling recovers the tar-
get model distribution, as proved in Theorem 1
of Chen et al. (2023). This approach ensures that
speculative sampling accepts at least one token per
target model call, making it no slower than vanilla
decoding in most cases. The procedure of specula-
tive sampling is shown in Fig. 3.



3 Methodology

Most of test-time alignment methods require a
reward model as the signal of human prefer-
ence (Khanov et al., 2024; Li et al., 2024a; Qiu
et al., 2024). The additional computation induced
by such a two-model decoding process makes
test-time alignment not efficient enough for time-
intensive LLM serving (Wang et al., 2024b), which
calls for new frameworks to further accelerate the
reward-guided decoding process. We are inspired
by speculative sampling (Chen et al., 2023), which
accelerates autoregressive decoding via a draft-
then-verify procedure. We propose to shift the
small draft model to align with human preferences
(computationally cheap) and design a new specula-
tive sampling algorithm to simulate the distribution
of an aligned target model without actually obtain-
ing it. We also prove that the proposed algorithm
recovers the RLHF optimal solution.

3.1 Shifting Draft Models to Align with
Human Preferences

The first step of the proposed framework is obtain-
ing a well-aligned draft model to reflect human
preference. Following the settings of Tao and Li
(2024), we start from a SFT checkpoint ﬂgrlgt fine-
tuned on the chosen responses of preference data,
and align this model via direct preference optimiza-
tion (DPO) (Rafailov et al., 2023). We assume that
the aligned draft model 7 follows the RLHF
optimal solution for ﬂ'gr}j}t:

1
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However, shifting the draft model will enlarge
its gap from the target model, and consequently
lowers the acceptance rate (Hong et al., 2025). As
visualized in Fig. 1, aligning draft models to hu-
man preference is at the cost of a significant distri-
butional shift. Directly applying the shifted draft
model 7y, to standard speculative sampling (Al-
gorithm 2) would result in severe efficiency issues.
This is because standard speculative sampling only
recovers the unaligned target model’s distribution,
leading to a low acceptance rate due to the distri-
bution shift between the draft and target models,
as shown in Table 1. This drawback motivates us
to propose a new speculative sampling algorithm
to raise the acceptance rate and ensure that gener-
ated responses recover the aligned target model’s
distribution without actually obtaining it.
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Figure 1: Shifted draft model reflects human prefer-
ences, but presents a gap from unaligned target model.

Table 1: Standard speculative sampling with a shifted
draft model suffers from low acceptance rate.

Target Model Draft Model Acceptance Rate
OPT-125M 0.33

OPT=6.7B o7 _1o5Maligned  0.08 (| 76%)

OPT-13B OPT-350M 0.42

OPT-350M aligned  0.13 (| 69%)

3.2 Speculative Sampling under Draft-Target
Distributional Shift

The aforementioned distributional shift caused by
aligning draft models to human preferences is a
critical problem in reward-shifted speculative sam-
pling. To resolve this, we propose a new specula-
tive sampling algorithm that utilizes such a distribu-
tional shift to recover the optimal solution of RLHF,
which is typically obtainable by training the target
model on preference data (Schulman et al., 2017;
Rafailov et al., 2023; Shao et al., 2024). We elimi-
nate the need for training target models and signifi-
cantly reduce the decoding cost compared with pre-
vious test-time alignment methods (Khanov et al.,
2024; Li et al., 2024a; Qiu et al., 2024).

As discussed in Section 2.2, the bonus token sam-
pled from the residual distribution mponus (Eq. (4))
guarantees that standard speculative sampling re-
covers the distribution of target model mr (Chen
et al., 2023). Intuitively, it compensates for the in-
fluence of draft model distribution 7y, When draft
tokens are rejected. In our proposed new specula-
tive sampling algorithm, the acceptance probability
is modified as:

m(%!w«)) s

paccept(t) = min <17 ~
Tt (Del, y<t)

and the residual distribution for bonus tokens also



has a new form:
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where K is the number of actually accepted draft
tokens. The entire speculative sampling process is
detailed in Algorithm 1. Compared to the standard
version (Section 2.2), the condition and reactions
for rejecting draft tokens are modified, and no addi-
tional token is sampled from the target model once
all draft tokens are accepted, since our objective is
not the target model distribution.

Our new speculative sampling handles inference
acceleration and preference alignment simultane-
ously. It leverages a shifted draft model 7y, to
generate human-preferred draft tokens, and uses
a unaligned target model 7 to ensure the flu-
ency of responses. We also guarantee that the
proposed algorithm recovers the RLHF optimal
solution (Eq. (2)), as discussed in Theorem 1 and
proved in Section B.2.

Theorem 1 (SSS recovers RLHF optimal solution)
Shifted speculative sampling (SSS) as demonstrated
in Algorithm I recovers the RLHF optimal solution

in Eq. (2). Specifically, assume a well-aligned draft

TS le) - exp (3r(z)),

the probability that SSS generates response y given
prompt T is:

model 7y, (y|z) =

P(Y = ylo) = 7 (yla).

4 Empirical Results

We provide comprehensive experimental results in
Section C, to evaluate the alignment quality and
efficiency of the propose method. Our method im-
proves the gold reward at a significantly reduced
inference cost compared to other test-time align-
ment methods.

5 Conclusion and Limitations

This paper introduces a novel speculative sampling
algorithm designed for efficient test-time alignment.
Our approach involves shifting the draft model to
align with human preferences, thereby intentionally
creating a distributional shift between the draft and
target models. This shift is leveraged to simulate
the distribution of a well-aligned target model (i.e.,
the RLHF optimal solution). We modify the stan-
dard speculative sampling algorithm by introducing

Algorithm 1 Shifted Speculative Sampling

Require: autoregressive target model 7 and au-
toregressive r-shifted draft model 7 ¢
Require: initial prompt 2 and lookahead K > 0.

+ oy« 0

t+< 0
while ¢ < max_length do
fork=1:Kdo
Qt-‘rk ~ 7-‘-Zi‘ral‘"t('|x’ Y<t, gt:t+k—1)
end for
Tret (Yot 4K |T5 Y<t)
fork=1:Kdo
e ~UI0,1]
if € < paccept(t) in Eq. (6) then
Ytk < Utk
else
Yit+k < 7-‘-gonus('|$7 y<t+k) in Eq (7
t < t + k and break
end if
end for
if all draft tokens are accepted then
t+—t+ K
end if
end while

> Target Likelihoods

> Accept

a new acceptance criterion and a new bonus token
distribution, ensuring that our algorithm recovers
the RLHF optimal solution. Compared to exist-
ing test-time weak-to-strong alignment methods,
our algorithm achieves superior alignment qual-
ity (measured by gold reward) while substantially
reducing inference costs.

Despite these promising results, the effective-
ness of our algorithm depends on the assump-
tion that the shifted draft model is well-aligned:

Thar(YlT) = Thn(ylx) - exp (%r(w, y)) This
assumption is sensitive to the post-training process
of the draft models. Accurately verifying this as-
sumption is also challenging due to the unknown
reward function, making the empirical performance
of our algorithm contingent on the tuning of hyper-
parameters during draft model post-training. Fur-
thermore, employing a small draft model to capture
human preferences may lead to generalization is-
sues: a draft model aligned for one task may not
perform well on others. We plan to address these
limitations in future works.
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A Related Work

A.1 Test-Time Alignment

Early alignment research focused on post-training LLMs with
techniques like RLHF (Ouyang et al., 2022), but the high
cost of policy optimization methods like PPO (Schulman
et al., 2017) and GRPO (Shao et al., 2024) has motivated
the test-time (or decoding-time) alignment approaches that
leave the LLMs’ parameters frozen. For example, best-of-
N (BoN) generates multiple complete responses and select
the highest-reward one; rejection sampling continues generat-
ing proposal responses until a reward threshold is met. Built
upon these 2 techniques, test-time alignment methods at vary-
ing granularities are developed. For example, token-level
reward-guided search (Deng and Raffel, 2023; Khanov et al.,
2024), segment-level rejection sampling (Li et al., 2024a), and
segment-level MC tree search (Qiu et al., 2024) have all been
explored. However, although they improve the efficiency of
test-time alignment, they still rely on external reward mod-
els to interact with the decoding process, which is the major
cause of the inefficiency. Our algorithm (SSS) jumps out of
the frameworks with reward models, and leverages a small
draft model to reflect human preference. The interaction be-
tween draft and target models are far more efficient than the
traditional LLM-RM framework.

A.2 Speculative Sampling

Orthogonal to test-time alignment, speculative decoding (Chen
et al., 2023; Leviathan et al., 2023) accelerates LLM gener-
ation by using a lightweight draft model to guess K future
tokens, which is then verified by a large target model in paral-
lel. Speculative sampling recovers the exact distribution of the
target model (Chen et al., 2023). Recent work has aimed to
further improve the efficiency of this draft—verify framework.
One major direction is increasing the number of candidate
tokens accepted by the target model. To this end, tree-based
methods (Miao et al., 2024; Li et al., 2024b; Fu et al., 2024)
generate multiple draft token paths in parallel, increasing the
likelihood of acceptance and reducing verification overhead.
Other studies enhance draft token quality through knowledge
distillation (Zhou et al., 2023; Liu et al., 2024), layer-skipped
decoding (Elhoushi et al., 2024; Zhang et al., 2024), or by
adding specialized speculative heads such as MEDUSA (Cai
et al., 2024) to improve token prediction and verification effi-
ciency. Some recent variants also explore using reward models
(RMs) as verifiers instead of target LLMs (Liao et al., 2025).
This change allows for higher token acceptance rates by re-
laxing fluency constraints. Nakshatri et al. (2024) applies
speculative sampling to accelerate constrained decoding, still
relying on external reward models to enforce the constraints.
Despite these advances, existing speculative decoding meth-
ods are primarily designed for computational acceleration and
assume an unaligned draft model. As a result, the question
of how to incorporate human preference alignment into the
speculative decoding process without sacrificing efficiency
remains largely under-explored.

B Proofs

B.1 RLHF Optimal Solution

Starting from the RLHF objective as demonstrated in Eq. (1),
the KL-constrained reward maximization can be re-written as:

%Eyweumr<x, y) — KL (o (-|) | mer (]2))

_ , mer(ylz) | 1
= S mlole) (10 =22 1 Zr(e.)
Tret (y|2) exp (%r z,y ) ©

= ?re(ym log O

o ~KL(mo(-|2) [ er(y]2) exp (%rm))»

Optimizing a model mg with RLHF is equivalent to mini-
mizing its KL-divergence from a new policy: 7*(y|z) =

et (y| ) exp (%r(:@ y)) , which we call the RLHF optimal
solution.

B.2 Theorem 1

The following proof is inspired by Theorem 1 of Chen et al.
(2023). We start by considering the probability of generating
a token z, and ignore the prompt and previously generated
tokens for simplicity. In our shifted speculative sampling as
demonstrated in Algorithm 1, a token can be generated in two
cases: 1) it is a draft token and is accepted, and i) draft token
is rejected and it is sampled as a bonus token. We show these
two case in the following formula:

P(X =x)
= Tar(Z = ) - P(% accepted|z = z) 9)
+ P(& rejected) - P(X = z|Z rejected).

The left half can be re-written as:

Tt (& = x) - P (& accepted|& = x)
roa . Trref ()
= T (& = x) - min <17 )
‘ (@)

10)

= min (Wgrafl(m)7 ﬂ*(m)) .

= 7I_zlﬂraft(i: = $) - min (

For the right half, we first transform the probability of rejection
to be:

P (& rejected) = 1 — P (& accepted)
=1- ZP & = ', & accepted)

=1- Zmln 7Tdrafl )77r ('Z‘/)>
= Zﬂ' (z
= Zmax (O,ﬂ*(ml) -

— min (ﬂ'draﬂ(x/)’ ﬂ-* (I/))

ﬂ—graft(z/)) .
an



Then, the probability of generating x after draft token rejection
is:

P(X = 1‘|Li‘ rejected) = Wkronus (ZB)

= (77(x) — Tguare(®) )+
max (0, T (SU) - ﬂ-graf[(x))

T max (0, 74 (z7) — mh g (2))
(12

where (f(z))+ = max(0, f(z))/ >, max(0, f(x)) is the
clamp normalization operator. Finally, taking all above to-
gether, the token generation probability is:

P(X =x)
= min (ﬂ—graﬂ(m)7 ﬂ—* (.’L’)) -+ max (Oa 71'*(:17) - 7Tt':lrmfl(:c))
=7"(z),
13)
always equivalent to the RLHF optimal solution.

C Experiments

In this section, we present the experimental settings and empir-
ical results. We first discuss the configurations of experiments
in Section C.1, then show the main empirical results in Sec-
tion C.2, and finally have ablation studies on the draft model
selection and alternative algorithm options in Section C.3.

C.1 Experimental Settings

All experiments in this paper are based on the HH-RLHF
dataset (Ganguli et al., 2022), which contains paired conversa-
tional data on helpfulness and harmlessness to reflect human
preference. To ensure that draft models and target models
share the same vocabulary and have similar distributions, we
choose the 3 model pairs as shown in Table 2. For the gold re-
ward in response evaluation, we choose a large reward model
trained on HH-RLHF with L1ama~-7B backbone (argsearch,
2024).

Table 2: Base model choices for draft and target models.

Draft Model Target Model
Qwama-0.5B Llama-3-8B
OPT-125M OPT-6.7B
OPT-350M OPT-13B

For post-training draft models, we use the TRL library' for
supervised fine-tuning (SFT) and direct preference optimiza-
tion (DPO) (Rafailov et al., 2023) with the hyper-parameters
in Table 3. These hyper-parameter choices are based on the set-
tings of Tao and Li (2024) and adjusted for better performance
by grid search.

For inference experiments, we use the Transformers li-
brary2 with a temperature of 0.8 and a maximum sequence
length of 128 tokens. These settings are standard in previous
works (Chen et al., 2023; Khanov et al., 2024; Li et al., 2024a).

Additionally, due to the small size of draft models, all
experiments can be conducted on one NVIDIA L40S GPU?.

"https://github.com/huggingface/trl.

https://github.com/huggingface/
transformers.

*https://www.nvidia.com/en-us/
data-center/140s.

Table 3: Hyper-parameters for fine-tuning and post-
training draft models on preference data.

Base Model  Pipeline Leﬁ::ing Bsaitzih Epochs
Quana=0.SE ppo | jes 16 057
e o | E5 b Im
R

Time measurements are obtained from the time.time ()
API in Python*.

C.2 Alignment Quality and Inference
Efficiency

Table 4 demonstrates the performance advantages of our
method (SSS) across different model pairs on HH-RLHF for a
single run. We compare against a range of test-time alignment
baselines, including Best-of-N (BoN), TreeBoN (Qiu et al.,
2024), and CARDS (Li et al., 2024a). We keep the reward
model sizes used in these baselines the same as draft models
for fair comparison. The baseline choices represent a spectrum
of test-time alignment strategies balancing alignment quality
and computational efficiency. We also include comparisons
with a standard speculative sampling (SS) approach.

Our method, SSS, consistently achieves the best trade-
off between gold reward and efficiency. For example, on
OPT-6.7B, SSS achieves the highest gold reward (3.88)
while requiring only 115 LLM calls and 7.8 seconds
per response, which has a 2.9x speedup over BoN. On
Llama-3-8B, SSS reduces inference time by over 5x com-
pared to BoN, while maintaining competitive gold reward.
Compared to CARDS and TreeBoN, SSS offers significantly
lower inference cost and latency, with high alignment quality.
Among all baselines, our method achieves the highest gold
reward on OPT-1 3B, reaching 4.06 while also delivering a
5.1x speedup over BoN, highlighting its strong alignment
quality and inference efficiency.

C.2.1 Why SSS achieves alignment quality
and inference efficiency simutenously?

As shown in Table 4, our proposed method (SSS) consistently
outperforms existing test-time alignment approaches in both
alignment quality and decoding efficiency. This is achieved
through two key design choices:

* Draft model alignment reduces reward evaluation
cost. By aligning a small draft model to human pref-
erence using DPO (Rafailov et al., 2023), SSS avoids
frequent reward model queries during decoding, signif-
icantly lowering computational overhead compared to
segment-level or prefix-level alignment methods like
CARDS (Li et al., 2024a) and TreeBoN (Qiu et al.,
2024).

¢ Speculative sampling is adapted for alignment. Stan-
dard speculative decoding accelerates generation but
lacks alignment. SSS modifies the acceptance rule and
residual distribution to account for the distributional
shift caused by draft model alignment, enabling effi-
cient decoding while preserving preference consistency.

*https://docs.python.org/3/library/
time.html.


https://github.com/huggingface/trl
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.nvidia.com/en-us/data-center/l40s
https://www.nvidia.com/en-us/data-center/l40s
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

Table 4: Comparison of test-time weak-to-strong
alignment methods in terms of gold reward, number
of LLM calls, and inference time. “Gold R” refers to
the average score assigned by the gold reward model, “#
Calls” indicates the number of forward passes through
the target model 7 (a proxy for computational cost),
and “Time” is the actual wall-clock inference time per
response. “Speedup” is computed relative to the BoN
baseline for each method.

| Method | Gold R #Calls Time (s) Speedup
8 Vanilla 5.63 128.0 6.5 -

I | BoN-10 6.37 1280 58.0 1.0x
T | TreeBoN 6.44 841.4 48.1 1.2x
g CARDS 6.41 790.7 45.7 1.3x%
| Vanilla SD 5.74 58.6 7.6 7.6x
| SSS (our) 6.14 86.2 10.7 5.4x
0 Vanilla 3.21 128.0 5.5 -
~ | BoN-5 3.28 640.0 22.7 1.0x
o | TreeBoN 3.27 801.6 25.6 0.9x
&, | CARDS 293 4141 12.9 1.8x
& | VanillaSD | 2.00 41.7 3.1 7.4%

SSS (our) 3.88 115 7.8 2.9x

Vanilla 3.13 128.0 9.5 -
A | BoN-5 3.49 640.0 69.4 1.0x
i TreeBoN 3.61 968.6 69.4 1.0x
E CARDS 3.35 741.9 50.1 1.4x
O | Vanilla SD 3.85 108.5 14.9 4.7x

SSS (our) 4.06 112.5 13.6 5.1x

As a result, SSS achieves fast and well-aligned generation
without requiring an aligned target model, and effectively
recovers the RLHF optimal solution.

C.3 Ablation Studies
C.3.1 How to select a good draft model?

Table 5 presents the ablation studies comparing the key indica-
tors of draft model training across three models. We evaluate
each draft model using chosen/rejected/generated likelihoods,
implicit reward accuracy, and gold reward. Pretrained draft
models tend to achieve higher implicit reward accuracy, es-
pecially on OPT-125M and OPT-350M, but often produce
lower gold rewards, indicating misalignment with human pref-
erences despite higher token-level likelihood. SFT models
sometimes yield stronger gold rewards (e.g., on OPT-350M),
but the results are not always consistent across models. DPO
consistently delivers the best trade-off across all checkpoints.
This highlights that no single metric fully captures alignment
quality, and selecting a good draft model requires balancing
alignment quality, generation fluency, and reward supervision.

C.3.2 Practical tricks to handle the gap
between DPO draft models and the
desired well-aligned draft model

The proposed algorithm relies on the assumption that we
have a well-aligned draft model T (y|x) ~ Touw(y|T) -

exp (%r(m, y)) However, this is often hard to obtain and

verify since we do not have access to the reward score 7(z, ).
We find that, even for imperfect shifted reward models, we can
still have outstanding alignment quality by slightly modifying

Table 5: Performance of different draft model
training methods using HH-RLHF. "Lik(Chosen)",
"Lik(Rej)", and "Lik(Gen)" denote the average likeli-
hood of the chosen, rejected, and generated responses,
respectively. "Imp. Rw" refers to implicit reward accu-
racy, and "Gold Rw" denotes the average reward from a
gold reward model.

Method \Lik(Chosen) Lik(Rej) Lik(Gen) Imp.Rw Gold Rw

Qwama-0.5B

DPO 0.5428 0.4984  0.6809 0.43 3.75

SFT 0.4973 0.4607  0.6314 0.43 3.49

Pretrained 0.3448 03314 0.5402 0.42 429
OPT-125M

DPO 0.3944 03999  0.6285 0.54 3.18

SFT 0.3542 0.3546 0.6282 0.57 3.55

Pretrained 0.3071 03003  0.6156 0.59 3.46
OPT-350M

DPO 0.3251 03139 0.5622 0.62 3.45

SFT 0.3875 0.3881 0.6343 0.55 3.59

Pretrained 0.3307 03226  0.6174 0.58 3.35

Eq. (7) to be:

- Re M_l)) 7
< dmﬂ( | Y<t+K ) (7732-{[(‘|$7y<t+1(’) .
14
where v = 1 is exactly the original version. We test a set of ¥
values and find that the optimal +y is below 0.5, as shown in

Fig. 2.
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Figure 2: Effect of hyper-parameter gamma to the gold

reward on OPT-13B/0PT~-350M model. The optimal
v is below 0.5.
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Figure 3: Inference procedures of best-of-V (traditional test-time alignment) and speculative sampling (our new
algorithm). Speculative sampling leverages a small draft model to efficiently guess future tokens, which has the

potential to be shifted to human preference.

Algorithm 2 Speculative Sampling

Require: autoregressive target model 7. and au-
toregressive draft model 7g;afi;
Require: initial prompt = and lookahead K > 0.
y 0
t+0
while ¢t < max_length do
fork=1:Kdo
Utk ~ 7Tdraft('|f13, Y<t, @t:tJrkfl)
end for
Tret(Jt:t+ K| T, y<¢) > Target Likelihoods
fork=1:Kdo
e ~U0,1]
if € < paccept(t) in Eq. (3) then
Yt+k < Utrk > Accept
else
Ye+k < 71—bonuS("xv y<t+k) in Eq. (4)
t < t + k and break
end if
end for
if all draft tokens are accepted then
Yer K1 ~ Tret (T, Y<t+ k)
t—t+K+1
end if
end while
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