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Abstract001

Aligning large language models (LLMs) with002
human preferences has become a critical step in003
their development. Recent research has increas-004
ingly focused on test-time alignment, where ad-005
ditional compute is allocated during inference006
to enhance LLM safety and reasoning capabili-007
ties. However, these test-time alignment tech-008
niques often incur substantial inference costs,009
limiting their practical application. We are in-010
spired by the speculative sampling acceleration,011
which leverages a small draft model to effi-012
ciently predict future tokens, to address the ef-013
ficiency bottleneck of test-time alignment. We014
introduce the reward-Shifted Speculative Sam-015
pling (SSS) algorithm, in which the draft model016
is aligned with human preferences, while the017
target model remains unchanged. We theoret-018
ically demonstrate that the distributional shift019
between the aligned draft model and the un-020
aligned target model can be exploited to recover021
the RLHF optimal solution without actually ob-022
taining it, by modifying the acceptance crite-023
rion and bonus token distribution. Our algo-024
rithm achieves superior gold reward scores at a025
significantly reduced inference cost in test-time026
weak-to-strong alignment experiments, thereby027
validating both its effectiveness and efficiency.028

1 Introduction029

Large language models (LLMs) have demonstrated030

remarkable capabilities in tasks such as instruction-031

following (Lou et al., 2024), reasoning (Fei et al.,032

2024), and coding (Wang et al., 2024a). However,033

the practical deployment of LLMs is constrained034

by concerns regarding the safety and helpfulness035

of their outputs (Bai et al., 2022; Weidinger et al.,036

2022; Deshpande et al., 2023). As a result, ef-037

ficiently aligning LLMs with human preferences038

becomes a critical challenge in LLM development.039

While classical reinforcement learning from human040

feedback (RLHF) (Christiano et al., 2017; Stiennon041

et al., 2020; Ouyang et al., 2022) has shown great042

potential, it often suffers from the high computa- 043

tional cost of RL training and is prone to instabil- 044

ity (Chen et al., 2024; Mohammadi, 2024). 045

To mitigate these issues, test-time align- 046

ment (Khanov et al., 2024; Li et al., 2024a; Qiu 047

et al., 2024) has emerged as a training-free alterna- 048

tive to RLHF, allocating more compute during in- 049

ference to improve alignment quality. Nevertheless, 050

most test-time alignment approaches require inter- 051

action between the LLM and an external reward 052

model (RM) throughout decoding, resulting in ei- 053

ther excessive LLM calls (best-of-N and rejection 054

sampling) or too many RM calls (Deng and Raf- 055

fel, 2023; Khanov et al., 2024). Although recent 056

studies have recognized these inefficiencies and 057

proposed acceleration techniques (Li et al., 2024a; 058

Qiu et al., 2024; Sun et al., 2024), these methods 059

still rely on external RMs and require numerous 060

calls to large models. 061

We are inspired by the speculative sampling al- 062

gorithm (Chen et al., 2023; Leviathan et al., 2023), 063

which leverages a small “draft” model to efficiently 064

predict K future tokens and then uses a large “tar- 065

get” model to verify them in parallel. While spec- 066

ulative sampling has been widely used for accel- 067

erating LLM inference, its potential for test-time 068

alignment remains under-explored. For example, 069

Nakshatri et al. (2024) applies speculative sam- 070

pling to accelerate the base model inference within 071

a reward-guided search framework. However, their 072

approach continues to rely on an external reward 073

model during inference, resulting in a pipeline that 074

remains both complex and latency-prone. 075

We hereby propose a novel combination of test- 076

time alignment and speculative sampling: aligning 077

the draft model to generate high-reward tokens, 078

while utilizing the target model for verification to 079

ensure fluency. This approach removes the depen- 080

dence on external reward models. We introduce 081

the reward-Shifted Speculative Sampling (SSS) al- 082

gorithm, which employs an aligned draft model 083
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and an unaligned target model. Furthermore, we084

revise both the acceptance criterion and the resid-085

ual distribution for bonus tokens, ensuring that SSS086

recovers the RLHF optimal solution. Extensive087

experiments on test-time weak-to-strong alignment088

tasks demonstrate that SSS achieves superior gold089

reward scores compared to existing baselines at a090

significantly reduced inference cost.091

The main contributions of this paper are summa-092

rized as follows:093

• We redefine the objective of speculative sam-094

pling from recovering the target model distri-095

bution to recovering the RLHF optimal solu-096

tion. This enables test-time alignment with a097

reward-shifted draft model.098

• As a test-time alignment method, SSS elimi-099

nates the requirement for external reward mod-100

els. To the best of our knowledge, this is the101

first approach that implements test-time align-102

ment using only a draft and a target model.103

• We show that SSS is an efficient algorithm for104

test-time weak-to-strong alignment, which en-105

hances the alignment quality at a much lower106

computational cost compared to other test-107

time alignment methods.108

2 Preliminaries109

2.1 RLHF and Reward-Shifted Decoding110

The problem of LLM alignment has been mod-111

eled as a KL-constrained reward maximization pro-112

cess (Peters and Schaal, 2007; Korbak et al., 2022;113

Go et al., 2023; Rafailov et al., 2023), in which114

the reward r is maximized with the proximity con-115

straint from the reference model πref:116

max
θ

Ex∈Dp,y∼πθ(·|x)r(x, y)− λ ·KL(πθ∥πref).

(1)117

Here, the training data only contains a prompt118

set Dp, and the responses are generated by the119

LLM itself. The above process is the objective120

of reinforcement learning from human feedback121

(RLHF) (Christiano et al., 2017; Ouyang et al.,122

2022). We demonstrate in Section B.1 that the123

optimal solution of Eq. (1) is:124

π⋆(y|x) ∝ πref(y|x) · exp
(
1

β
r(x, y)

)
, (2)125

where the base model policy πref is slightly shifted126

to pursue higher reward.127

Built upon the above objective, another direct 128

approach is to sample multiple responses and only 129

keep the responses that satisfy the reward con- 130

straint, known as test-time alignment (Khanov 131

et al., 2024; Li et al., 2024a; Qiu et al., 2024). 132

Test-time alignment only modifies the decod- 133

ing process of base models to pursue higher 134

reward, namely a reward-shifted decoding pro- 135

cess. There are two basic approaches to reward- 136

shifted decoding: i) best-of-N , which generates 137

multiple candidates in parallel and selects only 138

the best one: maxy∼πref(·|x) r(x, y), and ii) rejec- 139

tion sampling, which continues generating pro- 140

posals until a reward threshold is met: y ∼ 141

πref(·|x), s.t. r(x, y) ≥ τr. These approaches 142

are often applied to different granularities (Khanov 143

et al., 2024; Li et al., 2024a) and even combined 144

together (Qiu et al., 2024; Sun et al., 2024) for 145

effective and efficient alignment. 146

2.2 Speculative Sampling 147

Speculative sampling is an inference acceleration 148

method for autoregressive models (Chen et al., 149

2023). It leverages a much smaller “draft” model 150

πdraft to sequentially sample candidate token se- 151

quences: ŷt:t+K ∼ πdraft(·|x, y<t), and requires a 152

larger and more powerful “target” model πref to 153

verify such candidates. Specifically, speculative 154

sampling accepts a draft token with the probability: 155

paccept(t) = min

(
1,

πref(ŷt|x, y<t)

πdraft(ŷt|x, y<t)

)
, (3) 156

where higher target model likelihoods lead to 157

higher chances of acceptance. The complete pro- 158

cedure of speculative sampling is summarized in 159

Algorithm 2. 160

Speculative sampling has an acceleration trick to 161

address the efficiency issue caused by a potentially 162

low acceptance rate, called bonus token. It addi- 163

tionally accepts one more token from the following 164

residual distribution: 165

πbonus(·|x, y<t) = (πref(·|x, y<t)− πdraft(·|x, y<t))+ ,
(4) 166

where (f(x))+ = max(0,f(x))∑
x max(0,f(x)) is the clamp nor- 167

malization operator. The bonus token distribution 168

ensures that speculative sampling recovers the tar- 169

get model distribution, as proved in Theorem 1 170

of Chen et al. (2023). This approach ensures that 171

speculative sampling accepts at least one token per 172

target model call, making it no slower than vanilla 173

decoding in most cases. The procedure of specula- 174

tive sampling is shown in Fig. 3. 175
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3 Methodology176

Most of test-time alignment methods require a177

reward model as the signal of human prefer-178

ence (Khanov et al., 2024; Li et al., 2024a; Qiu179

et al., 2024). The additional computation induced180

by such a two-model decoding process makes181

test-time alignment not efficient enough for time-182

intensive LLM serving (Wang et al., 2024b), which183

calls for new frameworks to further accelerate the184

reward-guided decoding process. We are inspired185

by speculative sampling (Chen et al., 2023), which186

accelerates autoregressive decoding via a draft-187

then-verify procedure. We propose to shift the188

small draft model to align with human preferences189

(computationally cheap) and design a new specula-190

tive sampling algorithm to simulate the distribution191

of an aligned target model without actually obtain-192

ing it. We also prove that the proposed algorithm193

recovers the RLHF optimal solution.194

3.1 Shifting Draft Models to Align with195

Human Preferences196

The first step of the proposed framework is obtain-197

ing a well-aligned draft model to reflect human198

preference. Following the settings of Tao and Li199

(2024), we start from a SFT checkpoint πSFT
draft fine-200

tuned on the chosen responses of preference data,201

and align this model via direct preference optimiza-202

tion (DPO) (Rafailov et al., 2023). We assume that203

the aligned draft model πr
draft follows the RLHF204

optimal solution for πSFT
draft:205

πr
draft(y|x) ≈ πSFT

draft(y|x) · exp
(
1

β
r(x, y)

)
. (5)206

However, shifting the draft model will enlarge207

its gap from the target model, and consequently208

lowers the acceptance rate (Hong et al., 2025). As209

visualized in Fig. 1, aligning draft models to hu-210

man preference is at the cost of a significant distri-211

butional shift. Directly applying the shifted draft212

model πr
draft to standard speculative sampling (Al-213

gorithm 2) would result in severe efficiency issues.214

This is because standard speculative sampling only215

recovers the unaligned target model’s distribution,216

leading to a low acceptance rate due to the distri-217

bution shift between the draft and target models,218

as shown in Table 1. This drawback motivates us219

to propose a new speculative sampling algorithm220

to raise the acceptance rate and ensure that gener-221

ated responses recover the aligned target model’s222

distribution without actually obtaining it.223

Figure 1: Shifted draft model reflects human prefer-
ences, but presents a gap from unaligned target model.

Table 1: Standard speculative sampling with a shifted
draft model suffers from low acceptance rate.

Target Model Draft Model Acceptance Rate

OPT-6.7B
OPT-125M 0.33
OPT-125M aligned 0.08 (↓ 76%)

OPT-13B
OPT-350M 0.42
OPT-350M aligned 0.13 (↓ 69%)

3.2 Speculative Sampling under Draft-Target 224

Distributional Shift 225

The aforementioned distributional shift caused by 226

aligning draft models to human preferences is a 227

critical problem in reward-shifted speculative sam- 228

pling. To resolve this, we propose a new specula- 229

tive sampling algorithm that utilizes such a distribu- 230

tional shift to recover the optimal solution of RLHF, 231

which is typically obtainable by training the target 232

model on preference data (Schulman et al., 2017; 233

Rafailov et al., 2023; Shao et al., 2024). We elimi- 234

nate the need for training target models and signifi- 235

cantly reduce the decoding cost compared with pre- 236

vious test-time alignment methods (Khanov et al., 237

2024; Li et al., 2024a; Qiu et al., 2024). 238

As discussed in Section 2.2, the bonus token sam- 239

pled from the residual distribution πbonus (Eq. (4)) 240

guarantees that standard speculative sampling re- 241

covers the distribution of target model πref (Chen 242

et al., 2023). Intuitively, it compensates for the in- 243

fluence of draft model distribution πdraft when draft 244

tokens are rejected. In our proposed new specula- 245

tive sampling algorithm, the acceptance probability 246

is modified as: 247

paccept(t) = min

(
1,

πref(ŷt|x, y<t)

πSFT
draft(ŷt|x, y<t)

)
, (6) 248

and the residual distribution for bonus tokens also 249
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has a new form:250

πr
bonus(·|x, y<t+K′)

=

(
πr

draft(·|x, y<t+K′)

(
πref(·|x, y<t+K′)

πSFT
draft(·|x, y<t+K′)

− 1

))
+

,

(7)251

where K ′ is the number of actually accepted draft252

tokens. The entire speculative sampling process is253

detailed in Algorithm 1. Compared to the standard254

version (Section 2.2), the condition and reactions255

for rejecting draft tokens are modified, and no addi-256

tional token is sampled from the target model once257

all draft tokens are accepted, since our objective is258

not the target model distribution.259

Our new speculative sampling handles inference260

acceleration and preference alignment simultane-261

ously. It leverages a shifted draft model πr
draft to262

generate human-preferred draft tokens, and uses263

a unaligned target model πref to ensure the flu-264

ency of responses. We also guarantee that the265

proposed algorithm recovers the RLHF optimal266

solution (Eq. (2)), as discussed in Theorem 1 and267

proved in Section B.2.268

Theorem 1 (SSS recovers RLHF optimal solution)269

Shifted speculative sampling (SSS) as demonstrated270

in Algorithm 1 recovers the RLHF optimal solution271

in Eq. (2). Specifically, assume a well-aligned draft272

model πr
draft(y|x) = πSFT

draft(y|x) · exp
(

1
β r(x, y)

)
,273

the probability that SSS generates response y given274

prompt x is:275

P(Y = y|x) ≡ π⋆(y|x).276

4 Empirical Results277

We provide comprehensive experimental results in278

Section C, to evaluate the alignment quality and279

efficiency of the propose method. Our method im-280

proves the gold reward at a significantly reduced281

inference cost compared to other test-time align-282

ment methods.283

5 Conclusion and Limitations284

This paper introduces a novel speculative sampling285

algorithm designed for efficient test-time alignment.286

Our approach involves shifting the draft model to287

align with human preferences, thereby intentionally288

creating a distributional shift between the draft and289

target models. This shift is leveraged to simulate290

the distribution of a well-aligned target model (i.e.,291

the RLHF optimal solution). We modify the stan-292

dard speculative sampling algorithm by introducing293

Algorithm 1 Shifted Speculative Sampling

Require: autoregressive target model πref and au-
toregressive r-shifted draft model πr

draft;
Require: initial prompt x and lookahead K > 0.

y ← ∅
t← 0
while t < max_length do

for k = 1 : K do
ŷt+k ∼ πr

draft(·|x, y<t, ŷt:t+k−1)
end for
πref(ŷt:t+K |x, y<t) ▷ Target Likelihoods
for k = 1 : K do

ϵ ∼ U [0, 1]
if ϵ < paccept(t) in Eq. (6) then

yt+k ← ŷt+k ▷ Accept
else

yt+k ← πr
bonus(·|x, y<t+k) in Eq. (7)

t← t+ k and break
end if

end for
if all draft tokens are accepted then

t← t+K
end if

end while

a new acceptance criterion and a new bonus token 294

distribution, ensuring that our algorithm recovers 295

the RLHF optimal solution. Compared to exist- 296

ing test-time weak-to-strong alignment methods, 297

our algorithm achieves superior alignment qual- 298

ity (measured by gold reward) while substantially 299

reducing inference costs. 300

Despite these promising results, the effective- 301

ness of our algorithm depends on the assump- 302

tion that the shifted draft model is well-aligned: 303

πr
draft(y|x) ≈ πr

draft(y|x) · exp
(

1
β r(x, y)

)
. This 304

assumption is sensitive to the post-training process 305

of the draft models. Accurately verifying this as- 306

sumption is also challenging due to the unknown 307

reward function, making the empirical performance 308

of our algorithm contingent on the tuning of hyper- 309

parameters during draft model post-training. Fur- 310

thermore, employing a small draft model to capture 311

human preferences may lead to generalization is- 312

sues: a draft model aligned for one task may not 313

perform well on others. We plan to address these 314

limitations in future works. 315
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Statement of Reproducibility316

The code used for inference experiments is in-317

cluded in the supplementary material. It will be318

publicly available upon acceptance.319

Statement of AI Assistant Usage320

The construction of the codebase partially relied on321

AI assistant for debugging, and the writing of this322

paper was polished by AI assistant.323
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A Related Work506

A.1 Test-Time Alignment507

Early alignment research focused on post-training LLMs with508
techniques like RLHF (Ouyang et al., 2022), but the high509
cost of policy optimization methods like PPO (Schulman510
et al., 2017) and GRPO (Shao et al., 2024) has motivated511
the test-time (or decoding-time) alignment approaches that512
leave the LLMs’ parameters frozen. For example, best-of-513
N (BoN) generates multiple complete responses and select514
the highest-reward one; rejection sampling continues generat-515
ing proposal responses until a reward threshold is met. Built516
upon these 2 techniques, test-time alignment methods at vary-517
ing granularities are developed. For example, token-level518
reward-guided search (Deng and Raffel, 2023; Khanov et al.,519
2024), segment-level rejection sampling (Li et al., 2024a), and520
segment-level MC tree search (Qiu et al., 2024) have all been521
explored. However, although they improve the efficiency of522
test-time alignment, they still rely on external reward mod-523
els to interact with the decoding process, which is the major524
cause of the inefficiency. Our algorithm (SSS) jumps out of525
the frameworks with reward models, and leverages a small526
draft model to reflect human preference. The interaction be-527
tween draft and target models are far more efficient than the528
traditional LLM-RM framework.529

A.2 Speculative Sampling530

Orthogonal to test-time alignment, speculative decoding (Chen531
et al., 2023; Leviathan et al., 2023) accelerates LLM gener-532
ation by using a lightweight draft model to guess K future533
tokens, which is then verified by a large target model in paral-534
lel. Speculative sampling recovers the exact distribution of the535
target model (Chen et al., 2023). Recent work has aimed to536
further improve the efficiency of this draft–verify framework.537
One major direction is increasing the number of candidate538
tokens accepted by the target model. To this end, tree-based539
methods (Miao et al., 2024; Li et al., 2024b; Fu et al., 2024)540
generate multiple draft token paths in parallel, increasing the541
likelihood of acceptance and reducing verification overhead.542
Other studies enhance draft token quality through knowledge543
distillation (Zhou et al., 2023; Liu et al., 2024), layer-skipped544
decoding (Elhoushi et al., 2024; Zhang et al., 2024), or by545
adding specialized speculative heads such as MEDUSA (Cai546
et al., 2024) to improve token prediction and verification effi-547
ciency. Some recent variants also explore using reward models548
(RMs) as verifiers instead of target LLMs (Liao et al., 2025).549
This change allows for higher token acceptance rates by re-550
laxing fluency constraints. Nakshatri et al. (2024) applies551
speculative sampling to accelerate constrained decoding, still552
relying on external reward models to enforce the constraints.553
Despite these advances, existing speculative decoding meth-554
ods are primarily designed for computational acceleration and555
assume an unaligned draft model. As a result, the question556
of how to incorporate human preference alignment into the557
speculative decoding process without sacrificing efficiency558
remains largely under-explored.559

B Proofs 560

B.1 RLHF Optimal Solution 561

Starting from the RLHF objective as demonstrated in Eq. (1), 562
the KL-constrained reward maximization can be re-written as: 563

1

β
Ey∼πθ(·|x)r(x, y)−KL(πθ(·|x)∥πref(·|x))

=
∑
y

πθ(y|x) ·
(
log

πref(y|x)
πθ(y|x)

+
1

β
r(x, y)

)

=
∑
y

πθ(y|x) · log
πref(y|x) exp

(
1
β
r(x, y)

)
πθ(y|x)

∝ −KL(πθ(·|x)∥πref(y|x) exp
(
1

β
r(x, y)

)
).

(8) 564

Optimizing a model πθ with RLHF is equivalent to mini- 565
mizing its KL-divergence from a new policy: π⋆(y|x) = 566

πref(y|x) exp
(

1
β
r(x, y)

)
, which we call the RLHF optimal 567

solution. 568

B.2 Theorem 1 569

The following proof is inspired by Theorem 1 of Chen et al. 570
(2023). We start by considering the probability of generating 571
a token x, and ignore the prompt and previously generated 572
tokens for simplicity. In our shifted speculative sampling as 573
demonstrated in Algorithm 1, a token can be generated in two 574
cases: i) it is a draft token and is accepted, and i) draft token 575
is rejected and it is sampled as a bonus token. We show these 576
two case in the following formula: 577

P(X = x)

= πr
draft(x̂ = x) ·P(x̂ accepted|x̂ = x)

+P(x̂ rejected) ·P(X = x|x̂ rejected).
(9) 578

The left half can be re-written as: 579

πr
draft(x̂ = x) ·P(x̂ accepted|x̂ = x)

= πr
draft(x̂ = x) ·min

(
1,

πref(x)

πSFT
draft(x)

)
= πr

draft(x̂ = x) ·min

(
1,

π⋆(x)

πr
draft(x)

)
= min (πr

draft(x), π
⋆(x)) .

(10) 580

For the right half, we first transform the probability of rejection 581
to be: 582

P(x̂ rejected) = 1−P(x̂ accepted)

= 1−
∑
x′

P(x̂ = x′, x̂ accepted)

= 1−
∑
x′

min
(
πr

draft(x
′), π⋆(x′)

)
=

∑
x′

π⋆(x′)−min
(
πr

draft(x
′), π⋆(x′)

)
=

∑
x′

max
(
0, π⋆(x′)− πr

draft(x
′)
)
.

(11) 583
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Then, the probability of generating x after draft token rejection584
is:585

P(X = x|x̂ rejected) = πr
bonus(x)

=

(
πr

draft(x)

(
πref(x)

πSFT
draft(x)

− 1

))
+

= (π⋆(x)− πr
draft(x))+

=
max (0, π⋆(x)− πr

draft(x))∑
x′ max (0, π⋆(x′)− πr

draft(x
′))

,

(12)586
where (f(x))+ = max(0, f(x))/

∑
x max(0, f(x)) is the587

clamp normalization operator. Finally, taking all above to-588
gether, the token generation probability is:589

P(X = x)

= min (πr
draft(x), π

⋆(x)) + max (0, π⋆(x)− πr
draft(x))

= π⋆(x),
(13)590

always equivalent to the RLHF optimal solution.591

C Experiments592

In this section, we present the experimental settings and empir-593
ical results. We first discuss the configurations of experiments594
in Section C.1, then show the main empirical results in Sec-595
tion C.2, and finally have ablation studies on the draft model596
selection and alternative algorithm options in Section C.3.597

C.1 Experimental Settings598

All experiments in this paper are based on the HH-RLHF599
dataset (Ganguli et al., 2022), which contains paired conversa-600
tional data on helpfulness and harmlessness to reflect human601
preference. To ensure that draft models and target models602
share the same vocabulary and have similar distributions, we603
choose the 3 model pairs as shown in Table 2. For the gold re-604
ward in response evaluation, we choose a large reward model605
trained on HH-RLHF with Llama-7B backbone (argsearch,606
2024).607

Table 2: Base model choices for draft and target models.

Draft Model Target Model

Qwama-0.5B Llama-3-8B
OPT-125M OPT-6.7B
OPT-350M OPT-13B

For post-training draft models, we use the TRL library1 for608
supervised fine-tuning (SFT) and direct preference optimiza-609
tion (DPO) (Rafailov et al., 2023) with the hyper-parameters610
in Table 3. These hyper-parameter choices are based on the set-611
tings of Tao and Li (2024) and adjusted for better performance612
by grid search.613

For inference experiments, we use the Transformers li-614
brary2 with a temperature of 0.8 and a maximum sequence615
length of 128 tokens. These settings are standard in previous616
works (Chen et al., 2023; Khanov et al., 2024; Li et al., 2024a).617

Additionally, due to the small size of draft models, all618
experiments can be conducted on one NVIDIA L40S GPU3.619

1https://github.com/huggingface/trl.
2https://github.com/huggingface/

transformers.
3https://www.nvidia.com/en-us/

data-center/l40s.

Table 3: Hyper-parameters for fine-tuning and post-
training draft models on preference data.

Base Model Pipeline Learning
Rate

Batch
Size Epochs

Qwama-0.5B
SFT 2e-4 32 1.00
DPO 1e-5 16 0.57

OPT-125M
SFT 2e-6 32 1.00
DPO 5e-5 16 1.00

OPT-350M
SFT 2e-6 32 0.57
DPO 5e-5 16 1.00

Time measurements are obtained from the time.time() 620
API in Python4. 621

C.2 Alignment Quality and Inference 622

Efficiency 623

Table 4 demonstrates the performance advantages of our 624
method (SSS) across different model pairs on HH-RLHF for a 625
single run. We compare against a range of test-time alignment 626
baselines, including Best-of-N (BoN), TreeBoN (Qiu et al., 627
2024), and CARDS (Li et al., 2024a). We keep the reward 628
model sizes used in these baselines the same as draft models 629
for fair comparison. The baseline choices represent a spectrum 630
of test-time alignment strategies balancing alignment quality 631
and computational efficiency. We also include comparisons 632
with a standard speculative sampling (SS) approach. 633

Our method, SSS, consistently achieves the best trade- 634
off between gold reward and efficiency. For example, on 635
OPT-6.7B, SSS achieves the highest gold reward (3.88) 636
while requiring only 115 LLM calls and 7.8 seconds 637
per response, which has a 2.9× speedup over BoN. On 638
Llama-3-8B, SSS reduces inference time by over 5× com- 639
pared to BoN, while maintaining competitive gold reward. 640
Compared to CARDS and TreeBoN, SSS offers significantly 641
lower inference cost and latency, with high alignment quality. 642
Among all baselines, our method achieves the highest gold 643
reward on OPT-13B, reaching 4.06 while also delivering a 644
5.1× speedup over BoN, highlighting its strong alignment 645
quality and inference efficiency. 646

C.2.1 Why SSS achieves alignment quality 647

and inference efficiency simutenously? 648
As shown in Table 4, our proposed method (SSS) consistently 649
outperforms existing test-time alignment approaches in both 650
alignment quality and decoding efficiency. This is achieved 651
through two key design choices: 652

• Draft model alignment reduces reward evaluation 653
cost. By aligning a small draft model to human pref- 654
erence using DPO (Rafailov et al., 2023), SSS avoids 655
frequent reward model queries during decoding, signif- 656
icantly lowering computational overhead compared to 657
segment-level or prefix-level alignment methods like 658
CARDS (Li et al., 2024a) and TreeBoN (Qiu et al., 659
2024). 660

• Speculative sampling is adapted for alignment. Stan- 661
dard speculative decoding accelerates generation but 662
lacks alignment. SSS modifies the acceptance rule and 663
residual distribution to account for the distributional 664
shift caused by draft model alignment, enabling effi- 665
cient decoding while preserving preference consistency. 666

4https://docs.python.org/3/library/
time.html.
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Table 4: Comparison of test-time weak-to-strong
alignment methods in terms of gold reward, number
of LLM calls, and inference time. “Gold R” refers to
the average score assigned by the gold reward model, “#
Calls” indicates the number of forward passes through
the target model πref (a proxy for computational cost),
and “Time” is the actual wall-clock inference time per
response. “Speedup” is computed relative to the BoN
baseline for each method.

Method Gold R # Calls Time (s) Speedup

L
l
a
m
a
-
3
-
8
B Vanilla 5.63 128.0 6.5 –

BoN-10 6.37 1280 58.0 1.0×
TreeBoN 6.44 841.4 48.1 1.2×
CARDS 6.41 790.7 45.7 1.3×
Vanilla SD 5.74 58.6 7.6 7.6×
SSS (our) 6.14 86.2 10.7 5.4×

O
P
T
-
6
.
7
B

Vanilla 3.21 128.0 5.5 –
BoN-5 3.28 640.0 22.7 1.0×
TreeBoN 3.27 801.6 25.6 0.9×
CARDS 2.93 414.1 12.9 1.8×
Vanilla SD 2.00 41.7 3.1 7.4×
SSS (our) 3.88 115 7.8 2.9×

O
P
T
-
1
3
B

Vanilla 3.13 128.0 9.5 –
BoN-5 3.49 640.0 69.4 1.0×
TreeBoN 3.61 968.6 69.4 1.0×
CARDS 3.35 741.9 50.1 1.4×
Vanilla SD 3.85 108.5 14.9 4.7×
SSS (our) 4.06 112.5 13.6 5.1×

As a result, SSS achieves fast and well-aligned generation667
without requiring an aligned target model, and effectively668
recovers the RLHF optimal solution.669

C.3 Ablation Studies670

C.3.1 How to select a good draft model?671

Table 5 presents the ablation studies comparing the key indica-672
tors of draft model training across three models. We evaluate673
each draft model using chosen/rejected/generated likelihoods,674
implicit reward accuracy, and gold reward. Pretrained draft675
models tend to achieve higher implicit reward accuracy, es-676
pecially on OPT-125M and OPT-350M, but often produce677
lower gold rewards, indicating misalignment with human pref-678
erences despite higher token-level likelihood. SFT models679
sometimes yield stronger gold rewards (e.g., on OPT-350M),680
but the results are not always consistent across models. DPO681
consistently delivers the best trade-off across all checkpoints.682
This highlights that no single metric fully captures alignment683
quality, and selecting a good draft model requires balancing684
alignment quality, generation fluency, and reward supervision.685

C.3.2 Practical tricks to handle the gap686

between DPO draft models and the687

desired well-aligned draft model688

The proposed algorithm relies on the assumption that we689
have a well-aligned draft model πr

draft(y|x) ≈ πSFT
draft(y|x) ·690

exp
(

1
β
r(x, y)

)
. However, this is often hard to obtain and691

verify since we do not have access to the reward score r(x, y).692
We find that, even for imperfect shifted reward models, we can693
still have outstanding alignment quality by slightly modifying694

Table 5: Performance of different draft model
training methods using HH-RLHF. "Lik(Chosen)",
"Lik(Rej)", and "Lik(Gen)" denote the average likeli-
hood of the chosen, rejected, and generated responses,
respectively. "Imp. Rw" refers to implicit reward accu-
racy, and "Gold Rw" denotes the average reward from a
gold reward model.

Method Lik(Chosen) Lik(Rej) Lik(Gen) Imp. Rw Gold Rw

Qwama-0.5B

DPO 0.5428 0.4984 0.6809 0.43 3.75
SFT 0.4973 0.4607 0.6314 0.43 3.49

Pretrained 0.3448 0.3314 0.5402 0.42 4.29

OPT-125M

DPO 0.3944 0.3999 0.6285 0.54 3.18
SFT 0.3542 0.3546 0.6282 0.57 3.55

Pretrained 0.3071 0.3003 0.6156 0.59 3.46

OPT-350M

DPO 0.3251 0.3139 0.5622 0.62 3.45
SFT 0.3875 0.3881 0.6343 0.55 3.59

Pretrained 0.3307 0.3226 0.6174 0.58 3.35

Eq. (7) to be: 695(
πr

draft(·|x, y<t+K′)γ
(

πref(·|x, y<t+K′)

πSFT
draft(·|x, y<t+K′)

− 1

))
+

,

(14) 696
where γ = 1 is exactly the original version. We test a set of γ 697
values and find that the optimal γ is below 0.5, as shown in 698
Fig. 2.
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Figure 2: Effect of hyper-parameter gamma to the gold
reward on OPT-13B/OPT-350M model. The optimal
γ is below 0.5.
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Figure 3: Inference procedures of best-of-N (traditional test-time alignment) and speculative sampling (our new
algorithm). Speculative sampling leverages a small draft model to efficiently guess future tokens, which has the
potential to be shifted to human preference.

Algorithm 2 Speculative Sampling

Require: autoregressive target model πref and au-
toregressive draft model πdraft;

Require: initial prompt x and lookahead K > 0.
y ← ∅
t← 0
while t < max_length do

for k = 1 : K do
ŷt+k ∼ πdraft(·|x, y<t, ŷt:t+k−1)

end for
πref(ŷt:t+K |x, y<t) ▷ Target Likelihoods
for k = 1 : K do

ϵ ∼ U [0, 1]
if ϵ < paccept(t) in Eq. (3) then

yt+k ← ŷt+k ▷ Accept
else

yt+k ← πbonus(·|x, y<t+k) in Eq. (4)
t← t+ k and break

end if
end for
if all draft tokens are accepted then

yt+K+1 ∼ πref(·|x, y≤t+K)
t← t+K + 1

end if
end while
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