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a b s t r a c t

Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are
critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this
paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an
optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the
electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The
parameterization experiments were chosen to provide a trade-off between extensive experimental
characterization techniques and purely identifying all parameters using optimization techniques. The
model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed
technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-
average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demon-
strates the ability of the model to predict the cell voltage accurately with less than 2% error.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the past few years, automobile manufacturers have gone
through the initial adoption phase of electric mobility. The gradu-
ally increasing momentum behind electric vehicles (EV) adoption
suggests that electrified storage systemswill play an important role
in electric mobility going forward. Lithium ion batteries have
become one of the most attractive alternatives for electric vehicles'
energy storage systems due to their light weight, high specific en-
ergy, low self-discharge rate, and non-memory effect, etc. [1]. To
316-1280 Main Street West,
fully benefit from a lithium-ion energy storage system and avoid its
physical limitations, an accurate battery management system
(BMS) is required. In EV, the BMS is responsible for performance
management which includes -but is not limited to-state of charge
(SOC), state of health (SOH), and state of function (SOF) estimation
algorithms, as well as power management, thermal management,
and so forth. One of the key issues for successful BMS imple-
mentation is the battery model. A robust, accurate, and high fidelity
battery model is required tomimic the battery dynamic behavior in
a harsh environment.

In the literature, numerous battery models have been reported.
The choice between these models is a trade-off between model
complexity, accuracy, and parameterization effort. The models can
be classified into three categories of increasing complexity:
behavioral (or black-box) [2e5], equivalent circuit [6e9], and
finally detailed electrochemical (physics-based) models. Currently,
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the equivalent circuit models are commonly used in the BMS
because of their low computational complexity and acceptable
accuracy. However, they are not capable of describing the battery's
internal physical behavior.

Many approaches to model the electrochemical processes in the
battery have been proposed in the literature. Most of the models
are derived from the physics-based, electrochemical pseudo-two-
dimensional (P2D) model developed by Doyle-Fuller-Newman
model [10,11], which is based on the porous electrode and
concentrated solution theory. The primary gain of the rigorous
physics-based P2D model is the increased accuracy/precision ach-
ieved by modeling the electrochemical processes. Unfortunately, it
is high in complexity, computational time, memory allocations, and
real-time control. Therefore, simplification of the P2D model is
required. In the literature, numerous reduction methods have been
explored, all of which have the goal of reducing the computational
complexity involved in solving the physics-based electrochemical
model while maintaining acceptable accuracy.

These methods can be divided into two categories. The first one
is primarily focused on reducing the computational complexity
involved in solving for the concentration of lithium in the solid
particles of the electrodes, e.g. Subramanian et al. [12e14] devel-
oped a simplified model using the Liapunov-Schmidt technique,
perturbation techniques, volume averaging, and intuition-based
simplifications. Their approach works well at low-to-moderate
discharge rates but performs poorly for highly dynamic current
profiles such as those encountered in hybrid- and electric-vehicle
applications. Cai et al. [15] proposed an approach based on proper
orthogonal decomposition, which uses a two-step approximation
of the full order model; The first approximation is discretizing the
governing equations and the second is truncating the number of
orthogonal modes. The proposed reduced ordermodel proved to be
about seven times faster than the full order model. Forman et al.
[16] used quasi-linearization and Pad�e approximation. This
approach uses a quasi-linearized model of intercalation current to
solve the model algebraic equations, then a Pad�e approximation of
spherical diffusion is used to decrease the model complexity while
maintaining a high level of accuracy. Wang et al. [17] assumed a
parabolic concentration profile within the spherical particle
(cs ¼ a0 þ a1r þ a2r2) formulating a solid state diffusion submodel,
which correctly captures bulk dynamics and steady state concen-
tration gradient but otherwise neglects diffusion dynamics. It is,
therefore, valid for extended operation times and low C-rates, as its
inaccuracies become significant at higher C-rates. Smith et al.
[18,19] proposed a simplified model using the method of residue
grouping. They used a nonlinear optimization technique to mini-
mize the error in the frequency domain response between the ’full
order’ and ’reduced order’model. The derived transfer functions are
represented by a truncated series of grouped residues with similar
eigenvalues. Bhikkaji et al. [20,21] developed a simplified model
based on Chebyshev polynomial.

The second category of model simplification is focused on
reducing the electrochemical model as a whole. The primary
contribution pertains to avoiding the solution of large sets of
differential-algebraic equations (DAEs) of the Liþ concentration
distribution and the potential distribution of the electrolyte phase.
This provides a reduced model capable of computing in real-time.
However, this strategy for model simplification leads to loss of in-
formation. The performance reduces at higher C-rates in compari-
son to the full ordermodel. In general, the assumptions used for the
model reduction can lead to inaccuracies if a broad C-rate range of
operation is considered and if the model is not adjusted with
respect to the operating conditions of the battery. Examples of this
modeling approach, Haran et al. [22] originally developed the
single particle model (SPM) approach for the metal hydride battery,
and it was extended to the lithium system by Santhanagopalan in
Refs. [23,24]. In this model, the local volumetric current density jli is
constant across the electrode (anode or cathode) and equal to an

average value j
li
. Rahimian et al. [25] extended the SPM by

including a polynomial approximation of the electrolyte dynamics.
Domenico et al. [26] presented the electrode averaging model
(EAM). In literature, there are also other methodologies reported
for solving the original physics-based P2D model directly.

This paper contributes to the literature above by developing
three unique improvements to the reduced-order electrode average
electrochemical model presented by Domenico et al. [26]. The first
contribution is a continuous piecewise linearized (CPWL) tech-
nique that aids in efficiently running the model in real time ap-
plications. The second contribution is an optimal knot-placement
optimization technique for the continuous piecewise linearized
electrode averagedmodel (CPWL-EAM) using the genetic algorithm
(GA). The third contribution is a parameter-grouping approach that
helps in reducing the parameterization efforts for the EAM and the
CPWL-EAM. First, the optimal knot locations are obtained using the
GA to minimize the residual error. The CPWL-EAM parameters are
then identified in order to minimize the error between the model
terminal voltage output and the experimental data. The model is
then validated using battery voltage, current, and temperature
measurements against real-time driving cycles.

Paper structure. First, the full-order electrochemical model is
briefly introduced. Next, the continuous piecewise linearization
technique is presented. Then, the battery parameter identification
procedure and the experimental setup are illustrated. The model
validation against two different real-time driving cycles is then
shown. Finally, the results and discussion are presented.

2. Electrochemical battery modeling

2.1. Operating principles of lithium-ion batteries

A battery converts chemical energy into electrical energy and
vice versa. The basic setup of a battery cell consists of four main
parts: the positive electrode, the separator, the electrolyte, and the
negative electrode, as shown in Fig. 1.

The positive and negative electrodes are referred to as the
cathode and the anode. The battery is connected to an external load
using current collector plates. In the case of Li-ion cells, a copper
collector is used in the negative electrode while an aluminum
collector is used for the positive electrode.

The anode is the electrode capable of supplying electrons to the
load. The anode is usually made up of a mixture of carbon (e.g.
LixC6), the cathode is typically made of metal oxides (ex. LiCoO2 or
LiMn2O4), while the electrolyte can be made of a salt-containing
solvent mixture, polymer, or solid materials (e.g. LiPF6), polymer
or solid materials. In the case of solid or polymer materials, the
electrolyte will also act as a separator. The separator is a porous
membrane allowing the transfer of lithium ions between the
electrodes, but which serves as a barrier to electrons. It prevents the
occurrence of a short-circuit and thermal run away, while at the
same time offering negligible resistance to the flow of ions between
the electrodes.

2.2. Model mathematical formulation

2.2.1. Relationship between concentrations and currents
The mathematical equations governing the charge and mass

conservation in the solid and electrolyte phases is summarized in
this section.
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Mass transport in the solid phase. The electrodemodel is based on
the porous electrode theory, and the lithium-ion concentration in a
single spherical particle is described by Fick's law of diffusion [24].

vcn;ps ðx; r; tÞ
vt

¼ Ds

r2
v

vr

�
r2
vcn;ps ðx; r; tÞ

vr

�
(1)

where csðx; r; tÞ : ð0; LÞ � ð0;Rn;ps Þ � ðt0; tÞ/½0; cn;ps;max� is the concen-
tration of Liþ in the solid particles, as shown in Fig. 1. At the particle
surface, the rate at which ions exit or enter the particle is propor-
tional to the volumetric rate of chemical reaction jli, while at the
center of the particle the rate is equal to zero, written as the
boundary conditions (BC):

vcn;ps

vr

����
r¼0

¼ 0 and
vcn;ps

vr

����
r¼Rn;p

s

¼ �jli

DsasF
(2)

With initial conditions (IC):

cn;ps ðx; r; t0Þ ¼ cn;ps0 ðx; rÞ (3)

Mass transport in the electrolyte. The Liþ concentration in the
electrolyte changes due to the flow of ions and the current. It can be
described by Fick's law of diffusion along the coordinate between
the electrodes, with the mass transport between the electrodes
treated as being effectively homogeneous at all coordinates in the
plane normal to the inter-electrode coordinate.

vεeceðx; tÞ
vt

¼ v

vx

�
Deff
e
vceðx; tÞ

vt

�
þ 1� tþ0

F
jli (4)

where ceðx; tÞ is the concentration of Liþ in the electrolyte and εe
Fig. 1. Schematic representation of the Li-ion battery operation principles and the
single particle model simplification.
and Deff
e are domain-dependent parameters (anode, cathode,

separator). The Bruggeman's relation Deff
e ¼ De � ε

1:5
e accounts for

the tortuous path of Liþ transport through the porous electrodes
and separator. Ensuring zero flux at the current collector and
continuity of concentration and flux through the adjoining do-
mains within the cell, written as boundary conditions:

vcne
vx

����
x¼0

¼ 0 and
vcpe
vx

����
x¼L

¼ 0 (5)

With initial conditions:

ceðx; t0Þ ¼ ce0ðxÞ (6)
2.2.2. Relationship between potential and currents
Potential in the solid electrodes. The electrical potential in the

electrodes fs is derived from the extended Ohm's law:

v

vx

�
seff

v

vx
fsðx; tÞ

�
� jli ¼ 0 (7)

The potentials at the current collectors (x ¼ 0 and x ¼ L) are
proportional to the applied current, I and zero at the separator,
written as boundary conditions (where A is the cross-sectional area
of the cell):

�seff
v

vx
fsðx; tÞ

��
x¼0 ¼ �seff

v

vx
fsðx; tÞ

��
x¼L ¼

I
A

v
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fsðx; tÞ

��
x¼dn
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���
x¼dnþdsep

¼ 0
(8)

Potential in the electrolyte. The electrical potential in the elec-
trolyte fe is derived from the charge conservation law:

v

vx

�
keff

v

vx
feðx; tÞ

�
þ v

vx

�
keffD

v

vx
ln ce

�
þ jli ¼ 0 (9)

With boundary conditions:

v

vx
feðx; tÞ

��
x¼0 ¼ v

vx
feðx; tÞ

��
x¼L ¼ 0 (10)
2.2.3. Butler-Volmer kinetics equations
The volumetric rate of chemical reaction is governed by the

Butler-Volmer current density equation. This equation links the
reaction rate to the phase potentials and is described as:

jli ¼ asj0

�
exp

�
aaF
RT

h

�
� exp

�
� acF

RT
h

��
(11)

The overpotential h is defined as the difference between the
cell's overpotential and its charge/discharge voltage. It is respon-
sible for driving the electrochemical reaction, and can be calculated
as follows:

h ¼ fs � fe � UðcseÞ (12)

where UðcseÞ is the open circuit potential and the coefficient j0 is a
function of the surface electrolyte concentration cse according to
equation (13).

j0 ¼ ðceÞaa
�
cn;ps;max � cn;pse

�aa
�
cn;pse
�ac (13)
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2.2.4. Cell potential equations
The cell potential, V, across the cell terminals is determined as

follows:

V ¼ fsðx ¼ LÞ � fsðx ¼ 0Þ � Rf
I
A

(14)

The mathematical formulation, describing the full order elec-
trochemical model equations (1)e(14), is presented in Fig. 2.
2.3. Model reduction

The full-order model (FOM) is highly accurate; however it re-
quires extensive computational time and onboard memory allo-
cation, which limits its utility for real-time applications. Therefore,
reduction of the FOM has been carried out by simplifying the set of
FOM equations for ion concentration and potential in electrode and
electrolytes. In this section, some assumptions and simplifications
to the FOM are considered in order to obtain a Reduced Order
Model (ROM) as shown in Fig. 3.
2.3.1. Model reduction assumptions
The FOM equations represented in equations (1)e(14) are

simplified in order to be implemented in real-time applications.
The simplification assumptions are summarized in Table 1. As a
result of these reductions, a single particle from each electrode
(anode and cathode) can describe the diffusion dynamics.
2.3.2. Reduced-order model
The FOM set of equations is simplified due to the previous as-

sumptions. The reduced-order, electrode-averaged model (ROM) is
summarized in equation (15)e(19). Its terminal voltage can be
calculated by substituting equation (12) in equation (14), as derived
in Ref. [24]:

VðtÞ ¼
	
hp � hn



þ
	
f
p
e � f

n
e



þ �Up

�
qp
�� UnðqnÞ

�� Rf
I
A

(20)

where hp � hn is the difference between the positive and negative
electrode overpotentials, and can be calculated by substituting
equation (19) in (11) as shown below:
Fig. 2. Block diagram representations for the coupled nonlinear parti
hp � hn ¼ RT
aaF

ln
xp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ 1

q
xn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ 1

q where xn;p ¼ j
li
n;p

2asj0
(21)

f
p
e � f

n
e is the difference between the positive and negative

terminals electrolyte potentials, and can be represented as derived
in Ref. [24]:

f
p
e � f

n
e ¼ � I

2Akeff
�
dn þ 2dsep þ dp

�
(22)

Finally, UpðqpÞ � UnðqnÞ is the difference between the open cir-
cuit voltage for the positive and negative electrolyte. The stoichi-
ometry ratio qn;p is the normalized solid-electrolyte interface
concentration for the negative and positives electrodes
respectively.

qn;p ¼ cn;ps;e

cn;ps;max
(23)

where cn;ps is the average bulk concentration, and can be obtained
by calculating the total concentration volumetric average Vs.

cn;ps ðtÞ ¼ 1
Vs

ZRn;p

0

cn;ps ðr; tÞ dVs (24)
2.4. Capacity model mathematical formulation

In this paper, the battery nominal capacity Cnom is determined
by the mass of active material contained in a fully charged cell. It
can be measured by calculating the maximum number of ampere-
hours that can be drawn from the fully charged battery at room
temperature (293 K) and very low C-rate (C/25). The volumetric
averaged Li concentration can be determined by substituting
Vs ¼ 4pR3s =3 and dVs ¼ 4pr2dr in equation (24).

cn;ps ðtÞ ¼ 3
R3s

ZRs

0

r2cn;ps ðr; tÞ dr (25)

By using the boundary conditions in equation (2) and
al differential equations in the full order electrochemical model.
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substituting equation (19) into equation (2), the volumetric aver-
aged Li concentration dynamics in equation (25) become [27]:

cn;ps ðtÞ ¼ 3Ds

Rn;ps

h
R2n;p
s vcs

�
Rn;ps ; t

�i ¼ I
dn;pAε

n;p
s F

(26)

The state of charge is defined as

SOC ¼ 1
CnomðAhÞ

Zt
0

IðtÞ dt (27)

assuming the initial state of charge SOCðt ¼ 0Þ ¼ 0 and IðtÞ is the
applied current with I>0 during charge. SOC can be defined as

SOC ¼ qn;p � q0%
q100% � q0%

(28)

Using equations (26)e(28), the capacity is defined as

Cnom ¼ AFdn;pε
n;p
s cn;ps;max

�
qn;p100% � qn;p0%

�
3600

; ðAhÞ (29)
Table 1
Final set of reduced-order model equations and underlying assumptions.

Conservation Equation Assump

ROM-Ion concentration in the electrodes
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�
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ROM-Ion concentration in the electrolyte
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ROM-Butler-Volmer kinetics equation

j
li
n;p ¼ I

Adn;p
(19)

The lith
particle
the spa
2.5. Discretization method

The governing PDEs of the ROM constitute the building blocks of
the battery model. To be useful for control and systems engineer-
ing, the PDEs must be discretized in space to reduce them to
coupled multiple ordinary differential equations (ODEs) in the time
domain.
2.5.1. Finite difference method
The Finite Difference Method (FDM) is the simplest and the

most commonly used approach to the solution of the diffusion
equations found in battery models for real-time applications. By
using the central finite difference method for the radial dimension
r, it is possible to describe the spherical PDE by a set of ordinary
differential equations (ODE). Equation (15) can be written as

vcsðr; tÞ
vt

¼ Ds

 
v2cs
vr2

þ 2vcs
rvr

!
(30)

By using the CFDM, and discretizing the solid spherical particle
into Mr shells along the radial dimension r as shown in Fig. 1, such
that Rs ¼ Dr � ðMrÞ, and defining q ¼ 1;…:;Mr�1 equation (30)
becomes
tions

nly one particle is to be considered from the anode and the cathode,
imension has been ignored

ium concentration in electrolyte ce is assumed to be constant, uniform,
ual to an average value

ium concentration in electrolyte ce is assumed to be constant, uniform,
ual to an average value

ium concentration in electrolyte ce is assumed to be constant, and one
is to be considered from the each electrode. Hence,
tial dependence of the Butler-Volmer equation is removed
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By substituting with rq ¼ q� Dr and rearranging, equation (31)
becomes

_cn;ps

���
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¼ Ds
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q� 1
q

�
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���
q�1

� 2cn;ps

���
q
þ
�
qþ 1
q

�
cn;ps

���
qþ1

�
(32)

The boundary condition equation (2) can be rewritten
accordingly:
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��
1 (33)
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���
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þ Dr
�j

li

FasDs
¼ cn;pse (34)

By substituting with the boundary conditions equations (33)
and (34), and rearranging, equation (32) becomes
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8>>>>>>>><
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j
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(35)
where J ¼ Ds=Dr2 and Z ¼ 1=ðDr � as � FÞ. The lithium concen-
tration in the solid particle at the outer shell when r ¼ Mr is
referred to as the lithium concentration at the solid-electrolyte
interface cn;pse .
2.5.2. State space representation
With the above approximations for the mass conservation

equation and its boundary conditions, a state space representation
for equations (31)e(35) can be formulated as follows:

_cn;ps ¼ Acn;ps þ Bjli (36)

cn;pse ¼ cn;ps
��
Mr

¼ cn;ps
��
Mr�1 þ Djli (37)

The state space matrices, A, B, and D, are obtained as follows:
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B ¼ Z

2
66666666666664
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0

0

«

«

�qþ 1
q

3
77777777777775

(39)

D ¼ � Z
J

(40)

2.6. Model parameter grouping

The ROM battery voltage equation can be rewritten by
substituting equations (21)e(23) in equation (20) as shown below:

VðtÞ ¼ �Up
�
qp
�� UnðqnÞ

�þ w
n;p
h

�
qn;p; I

�� IKres (41a)
where Kres ¼ 1
A

�
Rf þ

�
dn þ 2dsep þ dp

�
2keff

�
(41b)

where Kres is a term that accounts for the increase in ohmic resis-
tance during a charge or discharge current pulse related to the poor
electronic conductivity of the cell chemistry.

By substituting an;ps ¼ 3εn;ps =Rn;ps , and aa ¼ ac ¼ 0:5 from Table 3,
equation (21) can be written as follows:

w
n;p
h

�
qp;n; I

� ¼ hp � hn ¼ RT
aaF

ln
xp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ 1

q
xn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ 1

q (42a)

where xn;p ¼ Un;p I	
cn;ps;maxc

n;p
se � cn;p

2

se


0:5 (42b)

and Un;p ¼ Rn;ps

6Adn;pε
n;p
s ðceÞ0:5

(42c)

where Un;p is a constant term which accounts for the variation of
the average electrolyte concentration.

After introducing Un;p and Kres, the new set of equations are
described in Fig. 3, where the blue-colored constants represent the
model parameters.

Equation (35), which describe the lithium-ion concentration
in a single spherical particle, are linear time-invariant (LTI). The
nonlinearity in the output equation (41) is due to the open circuit
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potential term ½UpðSOCpÞ � UnðSOCnÞ� and the overpotential dif-
ference term w

n;p
h ðqp;n; IÞ. The open circuit potential term is a

univariate, nonlinear function of the cell state of charge
Un;pðSOCn;pÞ. Reducing this term to a CPWL regions while main-
taining accuracy aids in reducing the computational complexity
of the model.
3. Continuous piecewise linearization

This sections will present the main contribution of this paper,
the use of piecewise linearization techniques to reduce the system
complexity.
3.1. Background

In the literature, Qingzhi et al. [28] used a cubic spline regression
model to fit the experimental open-circuit potential (OCP) curves of
two intercalation electrodes of a lithium-ion battery. In this paper, a
method is presented for constructing CPWL regions of the experi-
mentally measured OCP data using polynomials of the first order by
a stochastic global solution of the resulting mathematical problem.
Due to constraints in real time applications, the proposed technique
must maintain the continuity and smoothness of the OCP curve at
the knot positions.

Pittman et al. [29] have proposed an algorithm that attempts to
stochastically find the global solution to an optimization problem
that not only minimizes the sum of squared errors (SSE) but also
chooses the optimal number of knots that maximizes the infor-
mation content in each knot. The algorithm proposed in the current
work is a modified form of Pittman's algorithm since the optimi-
zation problem being solved is more restrictive. First, the number of
knots must be known and specified in advance. Second, the knots
are not completely free on the fitting interval, but rather are
restricted to be unique and in order between the values in the finite
set of measurements.

A two-stage framework of knot placement is proposed. We start
with an outline of the algorithm, then the knot placement strategy
and the genetic algorithm (GA) optimization model are described,
respectively.
3.2. Problem formulation and implementation

The open circuit potential as a function of state of charge,
Un;pðSOCn;pÞ, is a univariate, nonlinear function where
SOCn;p2½SOC0%

n;p; SOC
100%
n;p �. This nonlinear function has N CPWL

functions uiðqÞ within its domain, where l is a pre-specified
number that represents the knot points. Each line segment can
be defined as follows:

uiðSOCÞ ¼
UðliÞ � Uðli�1Þ

li � li�1
ðSOC � li�1Þ þ Uðli�1Þ c li�1

� SOC � li

(43)

where li are knot points in ½SOC0%; SOC100%� and i ¼ 1;…:;N. The
first and the last knot points are fixed at the boundaries, that is,
l0 ¼ SOC0%; lN ¼ SOC100%. Also, the knot points are ordered and
unique: li > li�1 for i ¼ 1;…:;N. To find the optimal placements for
the knot points l1;…::; ln�1, such that the overall squared-
approximation error err is minimized. The optimization objective
function is defined as follows:
min
l1;……:lN�1

8><
>:err ¼

ZSOC100%

SOC0%

½UðSOCÞ � uiðSOCÞ�2dSOC

9>=
>; (44)

The optimization problem can be described as follows:

min
l1;…;lN�1

errðSOCÞ (45a)

s:t:
d

dSOC
ðerrðSOCÞÞ ¼ ½UðSOCÞ � uiðSOCÞ�2; err

	
SOC0%



¼ 0

(45b)

uiðSOCÞ ¼
UðliÞ � Uðli�1Þ

li � li�1
ðSOC � li�1Þ þ Uðli�1Þ for li�1 � SOC

� li

(45c)

l0 ¼ SOC0%; lN ¼ SOC100% (45d)

li � li�1 þ ε; i ¼ 1;…;N (45e)

The continuity constraint implies that uðliþ1Þ ¼ uðliÞ, and can
be written as:

li ¼ �UðliÞ � Uðli�1Þ
li � li�1

li�1 þ Uðli�1Þ (46)
3.3. Optimizing joint-points for continuous piecewise linearization

The proposed method for optimizing the joint-points uses the
genetic algorithm (GA), which is inherently stochastic in nature.
The GA is theoretically proven to eventually attain global conver-
gence, and its stochastic nature prevents any prediction or calcu-
lation of its rate of convergence. As a result, these routines can be
computationally expensive in real-time calculations.

Since the continuous piecewise linearization of the OCP will be
performed offline, the real-time calculation constraint does not
apply. Therefore, the problem can be solved to global optimality by
the GA, which guarantees that the resulting solution is globally
optimal within an epsilon tolerance.

The experimental procedure for obtaining the OCP curves will
be discussed in Section 5. As shown in Fig. 4, the anode OCP is
nearly constant. The OCP of the cathode is an order of magnitude
higher than that of the anode; therefore, the knot locations are
optimized for the cathode. The results of the optimization problem
described in equation (44) are shown in equation (47). Since the
nonlinear relation between the OCP and the cell SOC is chemistry
dependent. The optimized knot locations will differ according to
the lithium ion chemistry under consideration. In this experiment,
the optimized knot locations are at (6%, 23%, 49%, 78%) SOCp.
Round-off errors at lower SOC are avoided by choosing the first
piecewise-linear region interval away from the steep portion of the
cathode OCP curve.

l ¼ ½0:06;0:23;0:49;0:78;1� (47)

Fig. 4 shows the optimized knot locations and compares be-
tween the measurement and the piecewise-linear functions. In
both parts of the graphs, the x-axis represents the normalized
concentration, and the y-axis represents the OCP [V] and residuals
[V], in upper and lower figures, respectively. The residuals graph



Fig. 4. Comparison of the experimental OCP curves and the CPWL functions obtained
by optimizing the joint-points. (a) Cathode, (b) Anode, (c) Residual plot for Cathode
(red) and Anode (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Model parameters - constant parameters and formula-based parameters.

Symbol Value

Anode Separator Cathode

aa;ac 0.5 e 0.5
tþ0 0.363 0.363 0.363

s 1 e 0.1

seff seff ¼ ε
n;p
s s e seff ¼ ε

n;p
s s

an;ps ans ¼ 3εn;ps
Rs

e aps ¼ 3εn;ps
Rs

Deff
e Deff

e ¼ ε
1:5
e De

k k ¼ 0:0158ceeð0:85c
1:4
e Þ

keff keff ¼ ε
n;p
s k

keffD keffD ¼ 2RTkeff
F ðtþ0 � 1Þ
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shows the accuracy of the piecewise-linear functions with respect
to the nonlinear function; the coefficient of determination of the
fitted functions is equal to 0.9997.

By substituting equation (47) in equation (43),

u
�
SOCn;p

�¼
8>><
>>:
0:82SOCp�0:05SOCnþ3:42 :0:06� SOCp �0:23
0:31SOCp�0:05SOCnþ3:53 :0:23� SOCp �0:49
0:69SOCp�0:03SOCnþ3:34 :0:49� SOCp �0:78
1:08SOCp�0:02SOCnþ3:09 :0:78� SOCp �1:00

(48)

The CPWL-EAM terminal voltage can be calculated by
substituting equations (21), (22) and (48) in equation (20):

VðtÞ ¼ u
�
SOCn;p

�þ RT
aaF

ln
xp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ 1

q
xn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ 1

q � IKres (49)
3.4. Comparison with existing models

A well-determined model for the nonlinear relation between
the OCP and the cell SOC is indispensable for the model perfor-
mance. The proposed method is compared against six different
models summarized byWeng et al. in Ref. [30] and listed in Table 2.
The OCP data shown in Fig. 4-a is used to fit the models presented
Table 2
Comparison between different open circuit potential models.

# Model (x ¼ SOC, y ¼ OCP(SOC))

1 y ¼ k0 � k1
x � k2xþ k3lnðxÞ þ k4lnð1� xÞ

2
y ¼ k0 þ k1ð1� e�a1	xÞ þ k2

0
@1� e

�a2
1�x

1
Aþ k3x

3 y ¼ k0 þ k1e�a1ð1�xÞ þ k2
x

4 y ¼ k0 þ k1e�a1x þ k2xþ k3x2 þ k4x3

5 y ¼ k0 þ k1xþ k2x2 þ k3x3 þ k4x4 þ k5x5 þ k6x6

6 y ¼ k0 þ k1 1
1þea1 ðx�b1 Þ þ k2 1

1þea2 ðx�b2 Þ þ k3 1
1þea3 ðx�1Þ þ k4 1

1þea4 ðxÞ
þ k5x

7 Continuous Piecewise Linear Model (CPWL), equation (48)
in Table 2 using the Matlab curve fitting toolbox.
The RMS error and CPU time for the models' fitting results are

shown in Table 2. The proposed continuous piecewise-linear model
has the lowest CPU run time and the third highest accuracy when
compared to the other models.

It should be noted that none of the other six models in Table 2
reduces the model to a linear form. The benefit of the piecewise
linearization is the ability to incorporate optimal SOC estimation
techniques such as Kalman Filter. Linear estimation strategies are
simpler, computationally more efficient, more robust and more
accurate for linear or piecewise linear systems compared to non-
linear estimation techniques.
4. Experimental setup

In this paper, parameterization and validation data sets have
been gathered experimentally using a prismatic lithium-ion battery
cell suitable for high-power applications like PHEVs, HEV, and EV.
The battery positive electrode material is NMC-based, and the
anode is graphite-based.

The tests are done on a Scienlab battery test bench. The voltage
accuracy is ± 0.05% (x± 1 mV) of the measured value, the current
accuracy is ± 0.05% (x± 20 mA) of the measured value. The sensors
are integrated to the test bench. During testing, the cells are placed
in a climate chamber with a continuously controlled ambient
temperature of 25� C.

The cycler has 12 channels; four different current profiles were
tested on 12 cells (one cell per channel). In order to account
for any cell manufacturing variations, each test was conducted on
a cluster of three cells of the same type and under the same con-
ditions. The cluster output was averaged to obtain the measure-
ment variables. The cell voltages, currents, and temperature are
sampled every 100 ms. The measured variables are used as input
data for the presented algorithm in the MATLAB/Simulink
environment.
RMSE (mV) CPU time (ms) Ref

5.68 0.384 [2]

6.40 0.396 [31]

3.20 0.226 [32]

4.69 0.287 [7]
1.23 0.606 [33]
1.03 0.960 [30]

3.16 0.124



Table 4
Capacity-related parameters lower and upper bounds.

Symbol Unit Anode Cathode

LB UB LB UB

cn;ps;max mol cm�3 1e�4 1 1e�4 1

q0% e 0 1 0 1
q100% e 0 1 0 1
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5. Parameter identification procedure

This section presents the procedure for identifying the model
parameters. The reduced-order, electrode-averaged model requires
fewer parameters than the full-order model; however the number
of parameters is still relatively high, if all of the parameters values
are considered as unknowns. These parameters represent
geometrical, physical, or chemical properties. In order to decrease
the number of parameters to be identified, the parameterization
process will be divided into two steps.

In step one, the battery cell is operated within [C=30 to C=50]
range of operation using experimental inputs so as to limit the
number of parameters which impact the output voltage. The pa-
rameters are identified using experimental data. In step two, the
battery cell is excited with a signal that is rich in the frequency
range necessary to identify the rest of the parameters. This
approach has the advantage of providing a trade-off between
extensive experimental characterization techniques and purely
identifying all of the parameters using nonlinear techniques.
Table 3 summarizes the model constants or formula-based pa-
rameters [24].

The solid concentrations inside the electrodes and the correla-
tion function between the electrodes' solid concentrations and
their OCP are obtained from OCV data. This step relies mostly on
utilizing half-cell OCV curves. Next, the rest of parameters are
optimized using the GA. Lastly, the model is compared to experi-
mental results.

5.1. Identification of capacity-related parameters

This step identifies the solid concentrations inside the elec-
trodes and is used to obtain the correlation function between the
electrodes' solid concentrations and their OCP. This step makes
SOC-dependent and rate-dependent parameters easier to identify
by sweeping through the full range of battery states of charge at
different charge/discharge rates. The correlation between the
negative electrode active material solid concentration and its open
circuit potential has been measured in the laboratory.

Anode OCP UnðqnÞmeasurements were made using a composite
graphite film (x 140 mm thickness; MTI Corporation) mounted on
Fig. 5. Open circuit potential versus normalized concentration for (a) positive elec-
trode, (b) negative electrode, and (c) open circuit potentials, experimental versus
model.
copper foil in a half-cell versus a solid lithiummetal electrode with
a standard, commercial electrolyte consisting of 1.0 M LiPF6 in EC/
DEC, 1:1 (v/v) (Novolyte Corporation). A coin cell geometry was
used, and the cells were assembled under argon atmosphere in a
glove box. They were then cycled at C/50 on a BT2000 multi-
channel cycler (Arbin Instruments), and the 3rd cycle was used to
construct the OCP curve, to allow for SEI formation (Coulombic
efficiency was in excess of 99% by this cycle). Both the charge and
discharge curves exhibit the characteristic plateaus and stoichio-
metric phase transitions associated with Li intercalation into
graphite, and the inserted and extracted specific capacity is
approaching the theoretical specific capacity for graphite of 372
mAh/g as shown in Fig. 5-a.

The Cathode OCP UpðqpÞ is calculated by adding the measured
battery open circuit voltage Vocv to the Anode OCP UnðqnÞ.
Fig. 6. Parameterization Cycle - (a) Current profile, (b)frequency distribution of the
current profile, (c,d) voltage response, and (e) voltage error.



Table 5
Diffusion-related parameters lower and upper bounds.

Symbol Unit Anode Cathode

LB UB LB UB

ε
n;p
s � 1e�4 1 1e�4 1
De cm2s�1 1e�14 1 1e�14 1

Rn;ps cm dn
20

dn dp
20

dp

ce mol cm�3 ½1e�4 � 1e4�
Rf Ucm2 ½1e�4 � 1e4�
A cm2 ½7e3 � 9e3�
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Up
�
qp
� ¼ Vocv þ UnðqnÞ (50)

The obtained Cathode OCP UpðqpÞ is shown in Fig. 5-b. The open-
circuit potential for the positive electrode UpðqpÞ and the negative
electrode UnðqnÞ, along with the OCV ðVocvÞ relationship are shown
in Fig. 5-c. The capacity-related parameters with their lower
bounds (LB) and upper bounds(UB) are summarized in Table 4.
Fig. 7. Validation Cycle (FTP72) - (a) Current profile, (b,c) voltage response, and (d)
voltage error.
5.2. Identification of diffusion-related parameters

The objective of this step is to identify the parameters associated
with the battery transient response in each CPWL region. A
parameterization cycle that contains charge-sustaining and charge-
depleting phases is chosen, as shown in Fig. 6-a. The cycle fre-
quency content makes it easier to identify the cell parameters, as
illustrated in Fig. 6-b. The test starts with a fully charged battery
and then a current profile is applied to discharge the battery until
the SOC specified in equation (47) is reached. Then, the cell is left to
rest at this SOC to allow for full cell relaxation. Finally, the cycle is
repeated in each CPWL region until the battery is fully discharged.

The diffusion-related parameters, with their lower and upper
bounds, are summarized in Table 5. After the identification pro-
cedure by the GA, the model shows an accurate voltage prediction,
with an approximate Root Mean Square Error (RMSE) of 0.022 [V]
and Mean Absolute Error (MAE) of 0.020 [V]. The identified
parameter set is listed in Table 6.

Under the parameterization cycle, the model shows an accurate
voltage prediction during both the steady and transient phases, as
shown in Fig. 6-c and 6-d. The gray-solid line represents the
experimental battery voltage, while the blue-solid and green-
dotted lines represent the EAM and CPWL-EAM responses,
respectively. The lower part of the figure shows the error between
the measured voltage and the calculated voltage of the models.
Since the error is determined by subtracting the measured voltage
from the estimated voltage; the positive error implies under-
Table 6
Identified model parameters.

Symbol Unit Identified values

Anode Cathode

cn;ps;max mol cm�3 0.072 0.080

q0% � 0.428 0.824
q100% � 0.774 0.483

ε
n;p
s � 0.958 0.950

Rn;ps cm 0.00026 0.000475
A cm2 8833.9

ce mol cm�3 [3.13, 3.11, 3.11, 2.07]� 1e2
Rf Ucm2 [1.73, 1.93, 1.97, 2.81]� 1e-7
Dn
e cm2s�1 [7.45, 7.45, 7.45, 7.45]� 1e-10

Dp
e cm2s�1 [8.43, 7.38, 5.21, 4.87]� 1e-10

Fig. 8. Validation Cycle (WLTP- case 3) - (a) Current profile, (b,c) voltage response, and
(d) voltage error.



Table 7
Model results for different cycles (a) RMSE andMAE [V], (b) Computation time [sec].

a EAM CPWL-EAM

RSME MAE RSME MAE

Parameterization cycle 0.023 0.021 0.022 0.020
Validation cycle - FTP72 0.020 0.015 0.019 0.014
Validation cycle - WLTP 0.019 0.015 0.018 0.015
Mean 0.020 0.017 0.020 0.016

b EAM CPWL-EAM
CPU time (sec) CPU time (sec)

Parameterization cycle 4.23 3.82
Validation cycle - FTP72 1.11 1.02
Validation cycle - WLTP 1.01 0.09
Mean 2.12 1.64
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calculation, while the negative error indicates over-calculation.

6. Model validation under different driving profiles

In this section, the model performance is compared with
experimental data to demonstrate the effectiveness of the pre-
ceding methodology. The validation cycles in this section are
different from those utilized for the purpose of identification. The
two validation cycles used are the US Federal Test Procedure (FTP-
72) cycle, also called the Urban Dynamometer Driving Schedule
(UDDS), and the Worldwide Harmonized Light Vehicles Test Pro-
cedure (WLTP). The two error quantitative matrices are the RMSE
and MAE.

6.1. Results under FTP72

The first set of validation data is the FTP-72 cycle as shown in
Fig. 7-a. Under the FTP-72 cycle, the calculated voltages of the EAM
and the CPWL-EAM are compared against the measured voltage in
Fig. 7-b and 7-c, with the voltage error shown in Fig. 7-d. The gray-
solid line represents the experimental battery voltage, while the
blue-solid and green-dotted lines represent the EAM and CPWL-
EAM responses, respectively. The RMSE between the modeled
voltage and the measured voltage over five consecutive cycles with
10 min rest between cycles is 0.019 V, and the MAE is 0.014 V.

6.2. Results under WLTP-Case 3

The second set of validation data is Case 3 of the WLTP. Case 3
stands for high-power vehicles with Power to Weight ratio (PWr)
> 34. This driving cycle consists of four parts Low, Medium, High,
and Extra High-speed as shown in Fig. 8-a.

Under the WLTP cycle, the calculated voltages of the EAM and
the CPWL-EAM are compared against measured voltage in Fig. 8-b
and 8-c with the voltage error shown in Fig. 8-d. Here again, The
gray-solid line represents the experimental battery voltage, while
the blue-solid and green-dotted lines represent the EAM and
CPWL-EAM responses, respectively. The RMSE between the
modeled voltage and the measured voltage over four consecutive
cycles with 10 min rest between cycles is 0.018 V, and the MAE is
0.015 V.

7. Results and comparison

By comparing the voltage error under the various different
discharge currents in Figs. 6-c, 7-b, and 8-b, it is clear that the
CPWL-EAM exhibits accurate voltage prediction during the steady
and transient phases of cycling. The proposed model was able to
maintain the voltage prediction accuracy, while decreasing the
mean CPU time as shown in Table 7. The reduction in the CPU run-
time by around 20% (from 2.12 s to 1.64 s), due to the reformulation
of the nonlinear OCP equation as a four-point lookup table, where
the voltage values falling between the points are calculated using
onboard linear interpolation. The CPU times presented in this
publicationwere run on a 2.30 GHz Intel processor with 16 GB RAM.

8. Conclusion

In conclusion, a continuous, piecewise-linear, electrode-average
model is presented, which exhibits high accuracy and reduced CPU
runtime compared with the reduced-order, electrode-average
model (EAM). The proposed CPWL-EAM linearizes the univariate,
nonlinear relation between the OCP and the cell SOC, while
maintaining the continuity and smoothness of the OCP curve. The
piecewise-linear regions were identified using a novel optimal
knot-placement techniquewhich uses GA to determine the optimal
knot-locations, while maintaining the continuity constraints. The
model is parametrized using a new technique that provides a trade-
off between extensive experimental characterization techniques
and purely identifying all parameters using nonlinear techniques.
The accuracy of the CPWL-EAM is validated through comparison
with experimental data and the EAM under the real-time driving
profiles FTP-72 and WLTP. The calculated RMSE and MAE are
0.020 V and 0.016 V respectively. Since the CPWL-EAM model
shows accurate voltage prediction, while reducing the running
time by 20%, the proposed model can be easily implemented on-
board in a real-time BMS. Future work will focus on incorporating
optimal state of charge estimation techniques (e.g. Kalman Filter),
along with model parameterization and validation under different
temperature and aging conditions through changing of the knot-
location.
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Nomenclature
Acronyms
A State matrix in linear state model state equation, �
B Input matrix in linear state model state equation, �
D Input matrix in linear state model output equation, �
A Electrode plate Area, cm2

as Active surface area per electrode unit volume, cm2cm�3

c Concentration of lithium ions, mol cm�3

D Diffusion coefficient of lithium species, cm2s�1

F Faraday's Constant (F ¼ 96,487), C mol�1

I Applied current, A
jli Butler-Volmer current density, A cm�3

q Discretization step, �
R Universal gas constant (R ¼ 8.3143), J mol�1K�1

r Radial coordinate, cm
Rf Film resistance on the electrodes surface, Ucm2

Rn;ps Solid active material particle radius, cm
T Absolute Temperature, K
t Times
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tþ0 Transference number of lithium ion, �
x Cartesian coordinate, s

Greek Symbols
aa;ac Anodic and cathodic charge transfer coefficients, �
d Thickness, cm
h Surface overpotential of an electrode reaction, V

k Electrolyte phase ionic conductivity, U�1cm�1

kD Electrolyte phase diffusion conductivity, U�1cm�1

f Volume averaged electrical potential, V

s Conductivity of solid active material, U�1cm�1

q Reference stoichiometry, �
εe Electrolyte phase volume fraction, �
εs Active material volume fraction, �

Superscripts
eff Effective, �
n Anode, �
p Cathode, �
sep Separator, �

Subscripts
e Electrolyte phase, �
s Solid phase, �
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