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ABSTRACT

Continual learning (CL) aims to efficiently learn and accumulate knowledge from
a data stream with different distributions. By formulating CL as a sequence pre-
diction task, meta-continual learning (MCL) enables to meta-learn an efficient
continual learner based on the recent advanced sequence models, e.g., Transform-
ers. Although attention-free models (e.g., Linear Transformers) can ideally match
CL’s essential objective and efficiency requirements, they usually perform not
well in MCL. Considering that the attention-free Mamba achieves excellent per-
formances matching Transformers’ on general sequence modeling tasks, in this
paper, we aim to answer a question – Can attention-free Mamba perform well
on MCL? By formulating Mamba with a selective state space model (SSM) for
MCL tasks, we propose to meta-learn Mamba as a continual learner, referred to as
MambaCL. By incorporating a selectivity regularization, we can effectively train
MambaCL. Through comprehensive experiments across various CL tasks, we also
explore how Mamba and other models perform in different MCL scenarios. Our
experiments and analyses highlight the promising performance and generalization
capabilities of Mamba in MCL.

1 INTRODUCTION

Continual learning (CL) aims to efficiently learn and accumulate knowledge in a non-stationary data
stream (De Lange et al., 2021; Wang et al., 2024) containing different tasks. Given a sequence of
data DT = ((x1, y1), ..., (xt, yt), ..., (xT , yT )) with a series of paired observations xi (e.g., images)
and targets yi (e.g., class labels) from different tasks, CL is usually produced to learn one model
Pϕt

(y|x) parameterized by ϕt that can perform prediction for any tasks corresponding to the seen
data Dt. For example, in class incremental learning (CIL) (Rebuffi et al., 2017; Zhou et al., 2023), a
widely studied CL scenario, DT consists of data with incrementally added classes, and Pϕt

(y|x) is
trained to recognize all previously seen classes. To ensure computational and memory efficiency, CL
methods are explored for learning from data streams while minimizing the storage of historical data
or limiting running memory growth, such as restricting the increase rate to be constant or sub-linear
(De Lange et al., 2021; Ostapenko et al., 2021). The main challenge in CL is to preserve performance
on previously seen tasks while continually updating the model parameters ϕt (De Lange et al., 2021;
Wang et al., 2024).

CL methods continually train/update the model Pϕt
(y|x) from seen sequence Dt at arbitrary step

t and perform predictions on any observation xtest (following seen data distribution) for the cor-
responding ytest. From this perspective, the whole learning and inference process in CL can be
seen as a sequence prediction (SP) problem, i.e., predicting ytest of a query xtest conditioning on
the seen data sequence and the testing input, i.e., (Dtrain

t ,xtest) ≡ (xtrain
1 , ytrain

1 , ...,xtrain
t , ytrain

t ,xtest)
(Lee et al., 2024; Bornschein et al., 2024). In conventional CL, the model parameter ϕt is
trained to maintain the states on the sequence, i.e., knowledge in the historical data, in a way of
ϕt+1 = optim-step(ϕt,xt, yt). This connection between sequence prediction and CL train-
ing process motivates us to investigate meta-learning a continual learner as a sequence prediction
model, for computation-and-data-efficient CL. Through meta-continual learning (MCL) framework
(Lee et al., 2024; Son et al., 2023), a continual learner fθ() parameterized by θ is trained via sequence
prediction on multiple CL episodes. A meta-learned fθ() can take a given sequence (Dt,xt+1) as
input and predict the label yt+1 = fθ((Dt,xt+1)), which is equivalent to a predictive model con-
ditioning on the seen data stream Pθ(y|x,Dt). The data stream can also be seen as a context of the
tasks for performing prediction for a new query.
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Transformers (Vaswani et al., 2017; Touvron et al., 2023) have shown strong sequence modeling
capabilities and next-token prediction performance in language modeling (LM), relying on self-
attention across per-step tokens and emergent in-context learning (ICL) ability (Brown et al., 2020;
Garg et al., 2022). It is thus straightforward to meta-learn a Transformer as the SP-based continual
learner (Lee et al., 2024; Son et al., 2023). Given a data stream in CL, a meta-learned Trans-
former generates a new key-value pair at each step and makes the prediction for each query based
on attention over the key-value pairs retained from all preceding training samples. Benefiting from
the retrieval-based modeling, Transformers can perform effectively in continual learning (CL) (Lee
et al., 2024; Bornschein et al., 2024). However, they require maintaining key-value pairs for all
seen training samples in a key-value cache, allowing the model to access all seen samples during
inference. It contradicts the principles and intended purpose of continual learning. Although the key-
value cache can be viewed as the hidden state of a recurrent neural network (RNN) (Katharopoulos
et al., 2020; Lee et al., 2024), analogous to the parameters of a learner, its size grows linearly with
the number of all seen tokens and suffers from increasing memory and computational demands over
time. Despite their advanced sequence modeling capabilities as in (Lee et al., 2024), Transformers
may not be an ideal choice for continual learning due to misalignment with the objectives of CL
and efficiency concerns. A series of attention-free models achieve efficiency by approximating the
softmax attention with kernel methods and linear operations, leading to constant hidden state sizes
and linear computation complexity, such as Linear Transformer (Katharopoulos et al., 2020) and
Performer (Choromanski et al., 2020). Although these efficient Transformers align better with the
purpose of CL, it is seen that they cannot perform well in MCL (Lee et al., 2024), due to limitations
in approximation and insufficient expressive power (Katharopoulos et al., 2020; Choromanski et al.,
2020; Tay et al., 2020).

Recent advancements of the state space models (SSMs) on sequence modeling lead to a series of
attention-free models that are efficient in processing long sequences with nearly linear computa-
tion (Gu et al., 2021a;b). By integrating time-varying modeling into the SSM as a selective SSM,
Mamba (Gu & Dao, 2023; Dao & Gu, 2024) can achieve near state-of-the-art performances on se-
quence modeling tasks (e.g., LM tasks (Gao et al., 2020)). Given its exceptional performance as an
attention-free model with a constant hidden state size, which ideally aligns with the requirements
of MCL, rather than relying on Transformers Lee et al. (2024), we pose a concrete question: Can
the attention-free model Mamba perform well in MCL? In this paper, we investigate this question
by formulating the selective SSM and Mamba to handle MCL, referred to as MambaCL. We iden-
tify that it is not trivial to train the sequence prediction models, including Mamba, for MCL, due
to difficulty in convergence. To address the issue, we introduce a selectivity regularizer relying on
the connection across SSM/Mamba and Linear Transformers and Transformers, which guides the
behaviour of the generated time-variant parameters of the selective SSM during training. Relying
on the specifically designed regularization and customized designs, we achieve an effective Mam-
baCL model for MCL. Beyond the scope of the existing work (Lee et al., 2024) focusing on basic
MCL formulation and setting, we expand the formulation and studies to more realistic scenarios and
try to answer – how can different models (including Transformers and Mamba) perform in differ-
ent MCL tasks. Our experiments and analyses show that Mamba can perform well on most of the
MCL scenarios. Mamba performs significantly better than other attention-free methods, e.g., Lin-
ear Transformers; Mamba can match or outperform the performances of Transformers with fewer
parameters and computations. Specifically, on some challenging with more global structures across
the sequences (e.g., fine-grained data) and many challenging scenarios (e.g., domain shifts and long
sequences), Mamba can perform more reliably and effectively than Transformers, demonstrating
better generalization and robustness. Additionally, we analyzed the influence of the model design
and conducted preliminary studies to explore the potential of model variants of Mamba, e.g., Mamba
mixture-of-experts (MoE), in MCL.

2 RELATED WORK

Continual learning focuses on mitigating catastrophic forgetting, a significant challenge in model
training across sequential tasks (De Lange et al., 2021; Wang et al., 2024). The predominant ap-
proaches to continual learning are categorized into three main types: replay-based, regularization-
based, and architecture-based methods. Replay-based methods, such as maintaining a memory
buffer for old task data, effectively prevent forgetting but are constrained by buffer size and potential
privacy issues (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Buzzega
et al., 2020). Alternatively, generative models can approximate previous data distributions to pro-
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duce pseudo-samples (Shin et al., 2017; Rostami et al., 2019; Riemer et al., 2019). Regularization-
based strategies (Kirkpatrick et al., 2017; Zenke et al., 2017; Nguyen et al., 2017; Li & Hoiem, 2017;
Aljundi et al., 2018; Zhang et al., 2020) mitigate forgetting by penalizing changes to critical param-
eters of previous tasks and employing knowledge distillation to retain earlier knowledge. Lastly,
architecture-based methods (Yoon et al., 2017; Serra et al., 2018; Li et al., 2019; Yan et al., 2021; Ye
& Bors, 2023) allocate specific subsets of parameters to individual tasks, utilizing techniques like
task masking or dynamic architecture adjustment to minimize task interference.

Meta-learning is a learning paradigm where models improve their ability to adapt to new tasks by
leveraging limited data and prior experience. The bi-level optimization framework of meta-learning
is inherently suited for continual learning, as it focuses on balancing the fit for current tasks while
maintaining generalization across all previously encountered tasks (Riemer et al., 2018; Beaulieu
et al., 2020; Gupta et al., 2020; Wu et al., 2024). Meta-continual learning (MCL) deviates from
traditional continual learning settings by incorporating multiple continual learning episodes, struc-
tured into meta-training and meta-testing sets (Son et al., 2023). Lee et al. (2024) conceptualizes
MCL as a sequence modeling problem, aligning the continual learning objectives with autoregres-
sive models typical in language modeling. OML (Javed & White, 2019) employs a dual-architecture
approach, updating a prediction network while keeping the encoder static during training, then opti-
mizing both components in meta-testing for stability. MetaICL (Min et al., 2022) introduces a meta-
training framework for natural language in-context learning. MetaICL sharing a common mathe-
matical formulation with MCL, while the underlying functions to be fitted are distinct. Compared
to text sequences, the problems we address are inherently more complex, requiring the learning of
more intricate functions and making the learning process more challenging.

Transformer architecture is esteemed for its superior sequence modeling capabilities, largely at-
tributed to its attention mechanism (Vaswani et al., 2017). Decoder-only models like GPT (Brown
et al., 2020) and Llama (Touvron et al., 2023), which process inputs causally, have significantly
propelled the success of modern deep learning. Although Transformers employing softmax-based
attention benefit from efficient parallel training, they encounter challenges due to their quadratic
computational complexity relative to sequence length. This has prompted a shift towards more
RNN-like models capable of linear-time sequence modeling. As a viable alternative, linear at-
tention substitutes the traditional exponential similarity function with a simple dot product across
transformed key/query vectors, gaining traction through recent advancements (Katharopoulos et al.,
2020; Choromanski et al., 2020; Tay et al., 2020).

State Space Models (SSMs), inspired by traditional state-space models (Kalman, 1960), have re-
cently emerged as a promising architecture for sequence modeling (Gu et al., 2021a;b). Mamba
incorporates time-varying parameters into the SSM framework through a selective architecture and
enhances training and inference efficiency with a hardware-aware algorithm (Gu & Dao, 2023; Dao
& Gu, 2024). It is widely applied in various domains such as computer vision, natural language
processing, and speech, etc.

3 PROBLEM FORMULATION AND METHODOLOGY

In Continual Learning (CL), given a non-stationary data stream Dtrain
T =

((x1, y1), . . . , (xt, yt), . . . , (xT , yT )) as training data, where xt ∈ Xt and yt ∈ Yt. A pre-
dictive model gϕt() : X → Y is trained on the stream (at step t) as Pϕt(y|x) for a potential
testing set Dtest

T = {(xn, yn)}Nn=1, where xt ∈ Xt and yt ∈ Yt, with the same distribution as the
training set. A conventional continual learner is manually crafted for continual updating/optimizing
the model parameter ϕt. The data stream DT usually consists of the data from different tasks or
distributions, which is usually piecewise stationary within an interval of a task. In a general online
CL setting, each sample point can only be seen once; if the samples belonging to one task can be
held and accessed as a batch, it is an offline CL. We mainly consider the online CL setting.

For achieving efficient CL, Meta-Continual Learning (MCL) (Lee et al., 2024; Son et al., 2023)
is formulated to meta-learn a parameterized continual learner that can efficiently learn/update a
predictive model (in X → Y) from samples in a data stream (in X × Y). Considering that the
(continually) learned model from a sequence Dtrain

t is deployed for prediction given a testing sample
input xtest, i.e., Pθ(ytest|xtest,Dtrain

t ). Thus MCL is equivalent to learning a functional model of the
predictive model functions. And MCL can be treated as the task of learning a sequence prediction
model fθ() : (X × Y) × X → Y parameterized by θ. fθ() can continually take streaming data

3
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Figure 1: The overall framework of our proposed methods. We meta-train a Mamba Learner fθ()
to perform meta-continual learning (MCL) by processing an online data stream containing paired
(x, y) examples. Meta-learning of this continual learner is conducted across multiple CL episodes.
The model produces predictions by relying on the retained hidden state. Here, we demonstrate how
the Mamba learner recurrently processes input data at steps 0, 2, and t− 1, respectively.

Dtrain
t as input and make predictions for any testing samples in a Dtest conditioning on Dtrain

t via
ŷtest = fθ(xtest,Dtrain

t ). The learner updates internal hidden states to reflect the continually taken
data samples corresponding to a CL process. By giving multiple episodes with (Dtrain,Dtest), the
parameter θ of the learner can be learned in the meta-learning/updating process for optimizing the
performance on all Dtest. Note that the targets y in different episodes are independent, which are only
symbolic indicators without general semantic meaning across episodes. In this work, we focus on
MCL based on a parameterized sequence prediction model for general purpose, despite the existence
of other types of meta-learning scheme (Finn et al., 2017; Javed & White, 2019).
3.1 PRELIMINARIES: TRANSFORMERS, LINEAR TRANSFORMERS, AND SSMS

Transformers produce next-token predictions in sequence relying on a self-attention mechanism
(Vaswani et al., 2017). Given a sequence of N vectors in M -dimension denoted as Z ∈ RN×M , the
vanilla self-attention is formulate with a softmax attention method:

Q= ZWQ, K= ZWK , V= ZWV , ut =

N∑
j=1

exp
(
QtK

⊤
j /

√
d
)

∑N
j=1 exp

(
QtK⊤

j /
√
d
)Vj , (1)

where WQ ∈ RM×C , WK ∈ RM×C , WV ∈ RC×C are the projection weight matrices, ut ∈ RC

denote the output embedding, and C is the hidden dimension. Qt, Kj , and Vj denote the indexed
vectors in the corresponding matrices. The notation fonts are slightly abused to be consistent with
the literatures. Each input token generates a key-value pair, leading to a linearly increased key-
value cache size. Softmax attention measures the similarities between the query-key pairs, leading
to O(N2) complexity.

Linear Transformer (Katharopoulos et al., 2020) reduces the complexity relying a linear attention
method. By applying a feature representation function ϕ() corresponding to a kernel for Q and K,
the linear attention method replaces the softmax attention with a linear operation as:

ut =

N∑
j=1

QtK
⊤
j∑N

j=1QtK⊤
j

Vj =
Qt

(∑N
j=1K

⊤
j Vj

)
Qt

( ∑N
j=1K

⊤
j

) , (2)

where Q=ϕ(ZWQ), K=ϕ(ZWK), V= ZWV , ϕ(·) is set as ϕ(x) = elu(x)+1 in (Katharopou-
los et al., 2020). Performer employs ϕ(x) = exp

(
xWp − ∥x∥2/2

)
, with Wp comprising orthog-

onal random vectors (Choromanski et al., 2020). Through rearranging (QK⊤)V as Q(K⊤V)
according to associative property, the computational complexity is reduced to O(N).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In practice, the attention operations in Eq. (1) and (2) can be implemented in autoregressive models,
where calculation of ut can only see the proceeding tokens with j ≤ t. Specifically, with the causal
masking, the linear attention can be rewritten as:

ut =
Qt

(∑t
j=1 K

⊤
j Vj

)
Qt

( ∑t
j=1 K

⊤
j

) =
QtSt

QtGt
, St = St−1 +K⊤

t Vt, Gt = Gt−1 +K⊤
t , (3)

where St =
∑t

j=1 K
⊤
j Vj and Gt =

∑t
j=1 K

⊤
j . This enables recurrent computation of causal

linear attention by cumulatively updating St and Gt, which serve as internal hidden states.

In the autoregressive process with causal masking, the softmax attention operation Eq. (1) in
Transformer can be seen as a recurrent process based on an accumulated set of key-value pairs
{(Kj ,Vj)}tj=1 as a hidden state (Katharopoulos et al., 2020).

Structured state space sequence models (SSM or S4) (Gu & Dao, 2023; Gu et al., 2021a; Dao
& Gu, 2024) are sequence models describing a system that maps input zt ∈ R to output ut ∈ R
through a hidden state ht ∈ RC×1 in a discrete sequence applied with neural networks. Specifically,
SSMs can be formulated with parameters A ∈ RC×C , B ∈ RC×1, C ∈ R1×C , and D ∈ R, as

ht = Aht−1 +Bzt, ut = Cht +Dzt. (4)

We directly formulate a discrete SSM in Eq. (4), where the A and B are transformed from a
continuous version A′ and B′ relying on a timescale parameter ∆ ∈ R, via A = exp(∆A′) and
B = A−1(A− I) ·∆B′. A and B perform the selection or gating in hidden state updating.

3.2 SSM AND MAMBA FOR META-CONTINUAL LEARNING

…
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Linear

Linear

Linear

Z B C
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Z UH
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𝜎

𝜎

×

…
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Figure 2: Illustration of the
designs of Mamba block.

Selective SSM & Mamba in MCL. The dynamics of the basic
SSM or S4 are time-invariant, restricting the model’s ability to han-
dle complex sequences. Mamba (Gu & Dao, 2023) incorporates
a selective SSM into the model by generating the input-dependent
SSM parameters to reflect the input/step-sensitive selection process.
The selective SSM can be written as:

ht = Atht−1 +Btzt, ut = Ctht +Dzt, (5)

where At, Bt, and Ct are produced in Mamba relying on the input
token at step t. Different from Transformers maintaining key-value
pairs for all input tokens (leading to linearly increasing state size),
Mamba compresses the context information in a fixed/constant-size
hidden state, matching the efficiency requirements and original ob-
jective of CL.

In our MCL tasks and other practical scenarios, we need Mamba to
handle the input sequence Z ∈ RN×M with each token as a vector
zt ∈ RM . Mamba applies the selective SSM to each dimension/channel independently:

Ht = [At,iht−1,i +Bt,izt,i]
M
i=1, ut = CtHt +D⊙ zt, (6)

where Ht ∈ RC×M is a concatenation of the hidden state corresponding to all M dimensions of the
input embedding, Ct ∈ R1×C , D ∈ R1×M , and ut ∈ R1×M . As shown in Fig. 2, the Mamba block
used in our work applies a 1-D convolution on the input tokens and then projects the representations
to obtain the input-dependent SSM parameters (Dao & Gu, 2024). Multiple Mamba blocks are
stacked homogeneously. Relying on the selective mechanism (Gu & Dao, 2023), Mamba’s ability
to handle complex MCL tasks can be stronger than other attention-free models and competitive or
better than Transformers with a key-value cache.

3.2.1 MCL WITH MAMBA AS A CONTINUAL LEARNER

We will train a Mamba model fθ() to perform CL by processing an online data stream containing
paired (x, y); the model can produce predictions relying on the retained hidden state, for all the seen
tasks. Meta-learning of such continual learner will be conducted on multiple CL episodes. Each CL
episode contains a training data stream Dtrain and a testing set Dtest from the same task distribution,
denoted as P(X ,Y) with (Dtrain,Dtest) ∼ P(X ,Y). For example, in ICL, all classes used for testing

5
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should have been seen in the preceding classes in the data stream. The objective of MambaCL is to
meta-learn the parameter of Mamba model, i.e., θ, to perform prediction ŷtest = fθ((Dtrain,xtest)) for
any (xtest

i ,ytest
i ) ∈ Dtest. The CL task can be treated as next token prediction problem in sequence:

(xtrain
1 ,ytrain

1 , ...,xtrain
T ,ytrain

T ,xtest
k ) → ytest

k . The meta-learning of a Mamba continual learner can be
performed by optimizing the sequence prediction task on a series of sampled CL episodes:

min
θ

E(Dtrain,Dtest)∼P(X ,Y)

∑
(xtest,ytest)∈Dtest

ℓ(fθ((Dtrain,xtest)), ytest), (7)

where ℓ(·, ·) denotes the proper loss function for different tasks, e.g., classification or regression.

On the data stream, the meta-learned Mamba fθ() recognizes the association relationship between
x and y through the sequence, and then recurrently updates the hidden state Ht, which can used
for prediction, as shown in Fig. 1. This efficient online CL process selects and compresses the
knowledge in the data stream in a time-variant and content-aware selective manner. To further
validate the extension ability of Mamba in MCL, we also explore the potential of incorporating
mixture-of-expert (MoE) architecture into Mamba model (Fedus et al., 2022; Pioro et al., 2024) for
learning and mixing multiple learners.

Target token embeddings. The value of the target y is essentially a symbol with consistent indica-
tion meaning for x within each episode, which does not take any global meaning across the episode.
The model is thus trained to handle arbitrary CL episodes with the ability to generalize to different
domains. Instead of pre-defining a small and fixed feasible set of candidate targets e.g., classes,
and a restricted prediction head, we conduct token embeddings for targets based on a universal and
large vocabulary (Lee et al., 2024), inspired by the tokenization in LMs (Sennrich, 2015; Devlin
et al., 2019). For each episode, a subset of unique codes is randomly picked from the vocabulary to
indicate different classes; in inference, the sequence model produces the probability of the next step
for all possible tokens in the vocabulary. Instead of conducting experiments of meta-training and
meta-testing with the same number of classes Lee et al. (2024), we conduct generalization analyses.

3.2.2 REGULARIZING SELECTIVITY OF MAMBA FOR META-TRAINING

It is non-trivial to meta-learn the continual learner for associating the input and target by seeing
a data stream, for both Transformers and attention-free models. The meta-training can be slow to
converge or hard to find an optimal solution. We thus consider giving additional guidance in meta-
training, by enhancing the association between the query tokens (i.e., testing input) with correlated
preceding tokens. During training, for an input x (corresponding to a pair (x, y)) in the stream at
the step 2t + 1 after 2t tokens of t samples, its association relationship with preceding tokens can
be represented as p2t+1 = [1y2t+1(y1),1y2t+1(y1), ...,1y2t+1(yt),1y2t+1(yt)] with p ∈ {0, 1}2t,
where 1y(y

′) is an indicator function with 1y(y
′) = 1, if y = y′, and 1y(y

′) = 0, if y ̸= y′. We
hope the meta-learned learner can also identify and use this pattern in CL (i.e., meta-testing).

Transformers maintain the key-value pairs for all samples as the state. For prediction at a step,
attention is applied to all the stored keys through a query, retrieving the learned information. As
shown in Eq. (1), for the token at step 2t+ 1, the attention weights/patterns to previous-step tokens
can be denoted as qTrans

2t+1 = [Q2t+1K
⊤
j ]

2t
j=1 ∈ R2t. Note that we omit the normalization terms

in attention weights to simplify the presentation. The meta-learning guidance can be applied by
encouraging the similarity between qTrans

2t+1 and p2t+1.

Mamba and other attention-free methods (e.g., Linear Transformer) compress knowledge in a hidden
state at each step, as shown in Eq. (3) and (5). Specifically, Mamba applies an input-dependent
selection and gating at each step. Although there are no explicit attention weights produced in
Mamba, we formulate the regularization for the selectivity of Mamba by bridging the selective SSM
(in Eq. (5) and (6) ) with linear attention (in Eq. (3)) and the softmax attention (in Eq. (1) ). As
shown in Eq. (3), Linear Transformer updates the state S (and the normalization term G) using
kernel-based K and V, and performs prediction based on Q. Considering that the K, V, and Q in
linear attention share the same meaning as in the softmax attention, we still can obtain qLNTrans

2t+1 =

[Q2t+1K
⊤
j ]

2t
j=1 by storing the Kj of intermediate tokens only during training for regularization.

By examining the duality relationship between the SSM in Eq. (5) and the formulation of Linear
Transformer in Eq. (3) (Dao & Gu, 2024), we can identify the connections between the selective
parameters, i.e., Ct and Bt, in SSM and query-key embeddings, i.e., Qt and Kt, in linear attention.
Relying on the linear attention as the bridge, we can obtain the associative indicators of Mamba as
qMamba
2t+1 = [C2t+1B

⊤
j ]

2t
j=1. To regularize the models’ attention or selection behavior in meta-training,
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for a query sample (x, y) in a sequence, we apply a selectivity regularization:

ℓslct((x, y)) = KL(pidx((x,y)),q
∗
idx((x,y))), (8)

where idx() indicates the step of the token x, ∗ indicates the arbitrary model, and KL divergence
is used to minimize the difference between model’s association pattern and the ground truth. Note
that this regularization and maintained intermediate components are not necessary in inference. We
apply this regularization to MambaCL and other sequence prediction models (weighted by a scalar
λ) together with the MCL objective in Eq. (7), which improves the meta-training stability and
convergence for all models.

4 EXPERIMENTS AND ANALYSES

Experimental setup. To evaluate the performance of various architectures across multiple types
of tasks, we conducted a series of experiments. Firstly, we divided one dataset into multiple tasks,
typically with each task representing a distinct class within the dataset. We distributed these tasks
into two non-overlapping sets, i.e., meta-training and meta-testing. The construction of CL episodes
for both meta-groups follows the same procedure: for each CL episode, we randomly select K
distinct tasks. K is set as 20 by default. We also investigated scenarios with different of K values.
By default, each task in both the training and testing sequences includes five samples (5-shot).
Additionally, involving fewer and more shots were also explored to further assess adaptability and
learning efficiency.

Datasets. We conduct experiments across various datasets: general image classification tasks
included Cifar-100 (Krizhevsky & Hinton, 2009), ImageNet-1K (Russakovsky et al., 2015),
ImageNet-R (Russakovsky et al., 2015), MS-Celeb-1M (Celeb) (Guo et al., 2016),CASIA Chinese
handwriting (Casia) (Liu et al., 2011), and Omniglot (Lake et al., 2015); fine-grained recogni-
tion tasks involved CUB-200 (Wah et al., 2011), Stanford Dogs (Khosla et al., 2011), Stanford
Cars (Krause et al., 2013), and FGVC-Aircraft (Aircraft) (Maji et al., 2013); the large domain
shift tasks featured (Peng et al., 2019); and regression tasks consisted of sine wave reconstruction
(sine), image rotation prediction (rotation), and image completion (completion).

Implementation details. We conduct our main experiments on a single NVIDIA A100 GPU. We
repeated each experiment five times and reported the mean and standard deviation of these runs.
Results are reported upon convergence on the meta-training set. The batch size is set to 16, and the
Adam optimizer is applied. We set the initial learning rate to 1 × 10−4, with decays of 0.5 every
10, 000 steps. For all models, we ensure a consistent setup to enable fair comparisons and make
sure all models achieve satisfactory results, with additional details provided in Sec. B. Specifically,
for experiments involving training from scratch, we adopt the settings from (Lee et al., 2024) to
maintain fairness. For the networks built on pre-trained models, we use the OpenAI/CLIP-ViT-
B16 (Radford et al., 2021; Ilharco et al., 2021) as our image encoder, with its parameters frozen
during training and an additional trainable linear projector.

4.1 EXPERIMENTAL RESULTS AND ANALYSES

In our experiments, we assess several models including OML (Javed & White, 2019), Vanilla Trans-
former (Vaswani et al., 2017), Linear Transformer (Katharopoulos et al., 2020), Performer (Choro-
manski et al., 2020), and our MambaCL. OML serves as a conventional SGD-based meta-continual
learning baseline, featuring a two-layer MLP prediction network on top of a meta-learned encoder.
Transformers exhibit advanced sequence modeling capabilities, but they may not be optimal for
(CL) due to computational inefficiencies and the broad objectives associated with CL. To enhance
efficiency, Linear Transformer and Performer utilize kernel methods and linear operations to approx-
imate softmax attention, which maintain a constant hidden state size and exhibit linear computational
complexity. All transformer models share a similar structure, each with 4 layers and 512 hidden
dimensions. Mamba is an attention-free model optimized for efficiently processing long sequences
with near-linear computational demands. Our Mamba Learner also utilizes 4 layers and 512 hidden
dimensions, facilitating comparison with the transformer models, yet it features significantly fewer
parameters.
General image classification tasks. Table 1 and 2 present comparative performance analyses of dif-
ferent architectures on several general image classification tasks, initiating training from scratch and
extracting image representation based on a pre-trained model, respectively. In Table 1, within the
CIFAR-100 datasets, all methods suffer from substantial meta-overfitting, as evidenced by the large
gap between meta-training and meta-testing scores. This may be attributed to the lower task (class)
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Table 1: Classification accuracy (%) across 20-task 5-shot MCL, training from the scratch on general
image classification tasks. The best and second best performances are indicated in red and blue,
respectively.

Method
Cifar-100 Omniglot Casia Celeb

Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta-
Train Test Train Test Train Test Train Test

OML 99.4±0.1 10.1±0.4 99.9±0.0 75.2±2.2 97.2±0.1 96.8±0.1 58.2±0.3 57.5±0.2

Transformer 100.0±0.0 17.2±0.8 100.0±0.0 86.3±0.6 99.7±0.0 99.6±0.0 70.9±0.2 70.0±0.2

Linear TF 99.9±0.1 16.6±0.5 100.0±0.0 64.0±1.4 99.6±0.0 99.3±0.0 68.9±0.3 67.6±0.3

Performer 100.0±0.0 17.1±0.3 99.9±0.1 62.9±4.6 99.5±0.0 99.3±0.0 67.5±0.5 66.3±0.2

Mamba 99.9±0.1 18.3±0.4 100.0±0.0 87.7±0.5 99.8±0.1 99.5±0.1 69.4±0.2 68.1±0.1

Table 2: Classification accuracy (%) across 20-task 5-shot MCL, training from the pre-trained mod-
els on general image classification tasks.

Method Cifar-100 ImageNet-1K ImageNet-R Celeb Casia Omniglot

OML 64.4±0.4 90.5±0.3 67.5±0.3 72.8±0.1 81.5±0.5 90.4±0.2

Transformer 62.7±0.7 93.5±0.1 63.6±0.2 78.4±0.1 93.8±0.2 94.4±0.2

Linear TF 54.3±0.7 89.1±0.2 55.7±0.3 76.5±0.2 90.9±0.4 86.5±0.5

Performer 53.4±0.3 90.8±0.5 52.8±0.9 76.8±0.1 93.0±0.3 89.3±0.3

Mamba 67.1±0.4 93.6±0.2 69.7±0.4 77.0±0.1 93.1±0.2 95.9±0.2

diversity. In Table 2, the results for continual learners built on pre-trained models exhibit similar
trends in CIFAR-100 and ImageNet-R. Furthermore, Mamba demonstrates superior performance
compared to other methods in these scenarios, underscoring its robustness against overfitting. On
larger datasets such as ImageNet-1K, Casia, and Celeb, Mamba performs on par with or surpasses
transformers. Without losing generality, we use the pre-trained image representations for our exper-
iments by default.

Table 3: Classification accuracy (%) across 20-task 5-shot MCL on fine-grained recognition tasks.

Method CUB-200 Dogs Cars Aircraft

OML 78.7±0.6 72.4±0.5 83.6±0.7 49.5±0.2

Transformer 81.4±0.4 77.5±0.6 87.0±0.3 53.9±0.7

Linear TF 69.7±0.7 69.7±0.7 76.6±0.8 49.0±0.7

Performer 69.2±0.8 69.4±0.4 73.9±0.8 48.6±0.6

Mamba 83.0±0.4 79.2±0.5 88.3±0.4 55.3±0.6

Fine-grained recognition tasks. Table 3 presents a performance comparison of different architec-
tures on fine-grained recognition datasets. In fine-grained datasets, where only subtle differences
exist between classes (e.g., the CUB-200 dataset, which contains 200 bird subcategories), models
need capture global information across the entire training episode to distinguish these fine-grained
differences. Mamba outperforms other models across these datasets, potentially due to its robustness
to capture subtle inter-class distinctions.

4.2 GENERALIZATION ANALYSES

We hope a meta-learned learner has the ability to be generalized to unseen scenarios. We conduct
generalization analyses for Transformer models and Mamba in scenarios involving generalization to
longer untrained sequence lengths, larger domain shifts, and sensitivity to the noise inputs, for meta-
testing. Additionally, to analyze the behaviors of these models, we visualize the attention weights of
Transformers and the associative weights of Mamba to demonstrate their attentions and selectivity
patterns in Sec. D.

Generalization to different stream length. To effectively address episodes of continual learning of
indefinite length, the learning algorithm should demonstrate the capability to generalize beyond the
sequence lengths observed during meta-training. We conducted length generalization experiments
on ImageNet-1K, training vanilla Transformers, linear Transformers, and Mamba on 20-task 5-shot
MCL, each with a vocabulary of 200 tokens. The length of a continual learning episode is calculated
as 2× tasks × shots + 1.

Meta-testing on different numbers of tasks. Fig. 3a shows the performance of the three models
meta-trained on a 20-task, 5-shot setup, evaluated during meta-testing across varying numbers of
tasks while keeping a constant shot number of 5. Both the Transformer and Linear Transformer
suffer significant performance degradation when meta-testing at untrained episode lengths, even for
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Figure 3: Generalization Analysis on ImageNet-1K: (a) meta-trained on 20-task 5-shot MCL, meta-
testing on varying number of tasks (5-shot); (b) meta-trained on 20-task 5-shot MCL, meta-testing
on varying number of shots (20-task); (c) varying inputs noise intensity level.

simpler tasks such as the 10-task, 5-shot configuration. Mamba’s meta-testing performance on the
10-task setup is better relative to the meta-trained 20-task setup, and the performance degradation is
relatively mild compared to transformers as the number of tasks gradually increases.

Meta-testing on different number of shots. In Fig. 3b, we evaluate the performance of three mod-
els meta-trained on a 20-task, 5-shot setup, evaluated during meta-testing across varying numbers
of shots while maintaining a constant task count of 20. Both the vanilla Transformer and linear
Transformer exhibit significant performance degradation, likely due to overfitting the 20-task, 5-
shot pattern. However, Mamba experiences only about a 10% performance degradation when the
meta-testing shot number reaches 50, which is ten times the meta-training episode length. Fig. 3a
and 3b demonstrate Mamba’s robustness in length generalization.

Results and analyses on larger domain shift. We explore a larger domain shift scenario using
the DomainNet dataset (containing 6 different domains) to further evaluate model generalization to
unseen input distributions, with one domain reserved for meta-testing and the remaining domains
for meta-training, which represents a more realistic setting. The experimental results are presented
in Table 4. Overall, these models demonstrate the capability to handle large domain shift scenar-
ios. Mamba performs on par with or surpasses Transformer models across various target domains,
benefiting from the potentially better generalization ability from smaller-size model with less over-
fitting possibility. Vanilla Transformers perform well when the targets are real images or paintings.
Mamba excels particularly in the Quickdraw domain, which exhibits larger differences compared
to other domains. This performance may be attributed to Mamba’s robustness in processing inputs
with larger deviations from the training distribution.

Table 4: Classification accuracy (%) across 20-task 5-shot MCL on DomainNet dataset.
(inf,pnt,qdr,rel,skt→clp denotes meta-testing on Clipart domain, and the remaining domains used
for meta-training. clp: clipart, inf: infograph, pnt: painting, qdr: quickdraw, rel: real, skt: sketch.)

Method inf,pnt,qdr, clp,pnt,qdr, clp,inf,qdr, clp,inf,pnt, clp,inf,pnt, clp,inf,pnt, Avg
rel,skt→clp rel,skt→inf rel,skt→pnt rel,skt→qdr qdr,skt→rel qdr,rel→skt

Transformer 91.8±0.1 69.4±0.1 82.6±0.2 50.2±0.6 93.8±0.1 85.9±0.3 79.0±0.3

Linear TF 91.0±0.0 66.2±0.8 80.6±0.8 30.7±1.4 92.9±0.1 85.5±0.1 74.5±0.5

Performer 91.3±0.2 66.4±0.6 81.3±0.2 39.4±1.7 92.8±0.1 84.8±0.5 76.0±0.6

Mamba 91.7±0.2 70.2±0.2 81.8±0.2 55.6±0.8 93.0±0.1 87.2±0.3 79.9±0.3

Sensitivity to the noisy inputs. To evaluate the sensitivity of different models to noisy inputs, we
conduct experiments on meta-trained 20-task, 5-shot MCL models using the ImageNet-1K dataset.
Within each meta-testing episode, we apply noise to the input embeddings xi of five randomly
selected samples. We add the noise following Gaussian distributions characterized by a mean (µ)
of 0 and a standard deviation (σ) that ranges from 0 to 10. As depicted in Fig. 3c, the vanilla
transformer and linear transformer suffer significant performance degradation. In contrast, Mamba
demonstrates robust performance when processing inputs with high levels of noise.

4.3 TRANING ON LONGER EPISODES

We conducted experiments to meta-train the models on longer episodes across both classification
and regression tasks. Table 5 demonstrates that Mamba continues to perform comparably to Trans-
former, and significantly outperforms SGD-based approaches (OML).
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Table 5: Classification accuracy (%) and regression errors across 100-task 5-shot MCL.
Method Casia Celeb Sine Rotation Completion

OML 93.2±0.9 45.5±0.2 0.0498±0.0004 0.524±0.087 0.1087±0.0001

Transformer 99.0±0.0 60.5±0.1 0.0031±0.0002 0.031±0.001 0.0989±0.0001

Linear TF 97.7±0.1 54.7±0.1 0.0139±0.0003 0.047±0.002 0.1084±0.0001

Mamba 99.1±0.1 59.9±0.1 0.0054±0.0001 0.025±0.001 0.0895±0.0001

4.4 ABLATION STUDIES

Hyper-parameter of selectivity regularization loss. We conducted an ablation study to assess
the influence of training loss hyper-parameter on our Mamba model’s efficacy. Specifically, this
study involved adjusting the λ values within our selectivity regularization loss, experimenting with
hyper-parameters set at {0.1, 0.2, 0.5, 1.0, 2.0}, as depicted in Fig. 4. The results indicate that these
variations have a minor impact on our Mamba model’s performance. Consequently, we selected a λ
value of 0.5 for our experiments.

SSM state size. In Fig. 5, we evaluate the impact of varying the SSM state size on the performance
of our methods. We conducted experiments on ImageNet-1K and Cifar-100, training MambaCL
with state sizes of 16, 32, 64, 128, and 256. The results show consistent performance improvement
as state size increases. To balance performance and computational cost, we set the state size as 128.
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Figure 4: Ablation of vary-
ing λ in training loss.
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Figure 5: Ablation of vary-
ing SSM state size.

Table 6: Different Mamba archi-
tectures on 20-tasks 5-shot MCL.

Method Cifar-100 ImageNet-1K

Transformer 62.7±0.7 93.5±0.1

Linear TF 54.3±0.7 89.1±0.2

Mamba-1 59.7±0.5 90.1±0.3

MambaFormer 62.4±0.6 92.7±0.1

Mamba-2 67.1±0.4 93.6±0.2

Mamba+MoE 68.9±0.2 94.0±0.2

Different architectures. In Table 6, we present an ablation study comparing different Mamba
architectures in our MambaCL, including Mamba-1, MambaFormer (Park et al., 2024), and Mamba-
2. MambaFormer is a hybrid model that integrates the vanilla attention mechanism of Mamba-1
and replaces the transformer’s positional encoding with a Mamba block. The results in Table 6
demonstrate that MambaFormer also achieved performance comparable to that of the transformer.
However, Mamba-2 performed better on Cifar-100 than the other variants.

Table 7: Computational cost
on 20-task 5-shot MCL.

Methods Params.↓ Inf. Speed↑
TF 9.2M 325ep/s
Mamba 5.4M 858ep/s

Mamba+MoE. In Table 6, we present experiments where Mamba
was enhanced with Mixture of Experts (MoE), incorporating twelve
2-layer MLP expert networks with a dense-MoE router following
each Mamba Block, resulting in improved performance. Addition-
ally, we include performance metrics for vanilla and linear trans-
formers for reference.

Computational cost. In Table 7, we detail various aspects of computational cost using our imple-
mentation in PyTorch [27], executed on an NVIDIA 4090 GPU and an INTEL I9-14900k CPU.
We specifically report the costs associated with meta-testing at a batch size of 1. Notably, Mamba,
characterized by fewer parameters and increased processing speed, achieves performance that either
matches or surpasses that of the vanilla transformer.

5 CONCLUSION
In this paper, we tried to answer a question – Can attention-free Mamba perform well on MCL? We
formulate the SSM and Mamba as a sequence prediction-based continual learner and meta-learn it
on CL episodes. A selectivity regularization is introduced for meta-learning the models. Compre-
hensive experiments show that Mamba performs well across diverse MCL scenarios, significantly
outperforming attention-free methods and matching or exceeding Transformers’ performance with
fewer parameters and computations. In challenging scenarios with global structures, domain shifts,
and long sequences, Mamba demonstrates obvious reliability, generalization, and robustness.

Limitations and future work. This study can be extended to larger-scale datasets and offline CL
settings. Beyond the current MCL framework, we aim to explore the online meta-continual learning
paradigm to broaden the applicability of our approach to a wider range of scenarios.
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A DATASETS

A.1 GENERAL IMAGE CLASSIFICATION TASKS

Cifar-100 (Krizhevsky & Hinton, 2009) dataset consists of 60,000 images across 100 classes, each
with 600 images. We select 60 classes at random for meta-training and use the remaining 40 for
meta-testing.

ImageNet-1K (Russakovsky et al., 2015) dataset comprises over one million labeled images dis-
tributed across 1,000 categories. We select 600 classes at random for meta-training and use the
remaining 400 for meta-testing.

ImageNet-R(endition) (Russakovsky et al., 2015) extends 200 ImageNet classes with a compilation
of 30,000 images tailored for robustness research.

Celeb (Guo et al., 2016) is a large-scale facial image collection featuring approximately 10 million
images of 100,000 celebrities. We randomly allocated 1,000 classes for meta-testing and assigned
the remaining classes to meta-training.

Casia Chinese handwriting (Liu et al., 2011) dataset encompasses a total of 7,356 character classes
with 3.9 million images. We randomly selected 1,000 classes for the meta-testing and allocated the
remaining classes for meta-training.

Omniglot (Lake et al., 2015) is a collection of 1,632 handwritten characters from 50 different alpha-
bets. The meta-training set comprises 963 classes, while the meta-testing set includes 660 classes,
with each class containing 20 images.

A.2 FINE-GRAINED RECOGNITION TASKS

CUB-200-2011 (Wah et al., 2011) is a widely used fine-grained visual categorization dataset, com-
prising 11,788 images across 200 bird subcategories. We randomly selected 80 classes for the meta-
testing and allocated the remaining classes for meta-training.

Stanford Dogs (Khosla et al., 2011) dataset comprises 20,580 images spanning 120 global dog
breeds, divided into 12,000 training images and 8,580 testing images. We select 48 classes at random
for meta-testing and use the remaining 72 for meta-training.

Stanford Cars (Krause et al., 2013) comprises 16,185 images across 196 car classes, primarily
captured from the rear perspective. We select 80 classes at random for meta-testing and use the
remaining 40 for meta-training.

FGVC-Aircraft (Maji et al., 2013) dataset comprises 10,200 images across 102 aircraft model
variants, each represented by 100 images, primarily consisting of airplanes. We randomly selected
40 classes for the meta-testing and allocated the remaining classes for meta-training.

A.3 LARGE DOMAIN SHIFT TASKS

DomainNet (Peng et al., 2019) dataset is a benchmark for domain adaptation, encompassing com-
mon objects organized into 345 classes across six domains: clipart, real, sketch, infograph, painting,
and quickdraw. We evaluate model adaptability to out-of-domain data by using one domain for
meta-testing and the remaining domains for meta-training.

A.3.1 REGRESSION TASKS

Sine Wave Reconstruction (Sine) The sine wave ω(τ) = A sin(2πντ + ψ) is defined by its am-
plitude A, frequency ν, and phase ψ. We denote the target values y as evaluations of the sine wave
at 50 predefined points: y = [ω(τ1), . . . , ω(τ50)]. In each task, the frequency and phase remain
constant, but the amplitude is allowed to vary. To corrupt y into x, we introduce a phase shift and
Gaussian noise, where the phase shift is randomly selected for each task. The mean squared error
between y and the model’s prediction ŷ is reported as the evaluation criterion.

Image Rotation Prediction (Rotation) The model is provided with an image rotated by an angle
ψ ∈ [0, 2π), and its task is to predict the rotation angle ψ̂. We use 1− cos(ψ̂ − ψ) as the evaluation
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Table 8: Model Configurations

Mamba Transformer Linear TF Performer

Batch size 16
Max Train Step 50000
Optimizer Adam
Learning Rate 1× 10−4

Learning Rate Decay Step
Learning Rate Decay Step 10000
Learning Rate Decay Rate 0.5
Regularization λ 0.5
Hidden Dimension 512
Layer 4
State Size 128 - - -
Delta Convolution 4 - - -
Attention - Softmax Elu Favor

metric, where a perfect prediction would result in a score of 0, while random guessing would yield
an average score of 1.0. The Casia dataset is employed, with each class being treated as an individual
task, maintaining the same meta-split configuration.

Image Completion (Completion) In this task, the model is tasked with filling in the missing parts
of an image given the visible sections. Using the Casia dataset, we modify the input x to consist
of the top half of the image, while the target y is the bottom half. The performance is evaluated by
computing the mean squared error between the predicted and true pixel values. We report the MSE
between y and the model’s prediction ŷ as the evaluation criterion.

B ADDITIONAL EXPERIMENTAL DETAILS

Table 8 presents the configurations of the models employed in our experiments.

C ADDITIONAL EXPERIMENTS

C.1 EFFECTS OF SELECTIVITY REGULARIZATION AND META-TRAINING LOSS CURVES

Due to the complexity of the MCL task, the proposed regularization technique plays a crucial role
in stabilizing and improving the training process for all models. Fig. 6 showing the initial training
phases (2500 steps) for different models with and without selectivity regularization. The losses are
3–5 times higher compared to the models with regularization applied and successfully converging.
Beyond 2500 steps, the losses oscillate and no longer decrease. The results indicate that models
without our regularization struggle to converge and exhibit significant oscillations during training,
highlighting the effectiveness of the regularization.

C.2 MORE ABLATION STUDIES ON REGULARIZATION STRENGTH

In Fig. 4, we conducted ablation study to assess the influence of regularization strengths on our
Mamba’s efficacy. Fig. 7 illustrates more ablation studies assessing the impact of regularization
strengths λ by setting is as {0.1, 0.2, 0.5, 1.0, 2.0}, across multiple models on both ImageNet-1K
and Cifar-100 datasets. The results demonstrate that all models exhibit stability within a wide and
appropriate range of λ, providing evidence of consistent patterns. In our experiments, without losing
generality, all models employed a regularization strength of 0.5 by default.

C.3 MORE ABLATION STUDIES ON LEARNING RATES

Fig. 8 illustrates ablation studies assessing the impact of varying initial learning rates {5×10−5, 1×
10−4, 2 × 10−4, 5 × 10−4}, across multiple models on both ImageNet-1K and Cifar-100 datasets.
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Figure 6: Training loss curves for (a, e) Mamba, (b, f) Transformer, (c, g) Linear Transformer, and
(d, h) Performer, under the same type of representation and experimental settings, with and without
selectivity regularization (ℓslct) during meta-training on 20-task, 5-shot MCL on Cifar-100.
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Figure 7: Ablation studies on regularization strength λ (0.1, 0.2, 0.5, 1.0, 2.0) during meta-testing of
20-task, 5-shot models (meta-trained on 20-task, 5-shot) for (a) Mamba, (b) Transformer, (c) Linear
Transformer, and (d) Performer.

The results indicate that within a reasonable range, the learning rate does not significantly affect
model performance. In our experiments, without losing generality, we set the initial learning rate to
1× 10−4, with decays of 0.5 every 10,000 steps.

C.4 ADDITIONAL GENERALIZATION ANALYSES

Without the regularization, models struggle to converge and exhibit significant oscillations during
training, as shown in Fig. 6. In Sec. 4.2 and Fig. 3, we conducted generalization analyses of var-
ious models by conducting meta-testing on the episodes different from the meta-training settings.
Specifically, we apply the models meta-trained with 20-task-5-shot episodes on the meta-testing
episodes with varying numbers of tasks or shots or the episodes contaminated by noise. The results
show that Mamba shows better generalization ability to unseen scenarios and Transformer shows
more meta-overfitting issues. To validate that the results are not relevant to the regularization, we
evaluated various models with a small regularization strength (λ = 0.1) to assess the impact of reg-
ularization on this generalization experiment and the meta-overfitting issue. The results indicate that
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Figure 8: Ablation studies on learning rates ({5×10−5, 1×10−4, 2×10−4, 5×10−4}) during meta-
testing of 20-task, 5-shot models (meta-trained on 20-task, 5-shot) for (a) Mamba, (b) Transformer,
(c) Linear Transformer, and (d) Performer.

regularization strengths of 0.1 (Fig. 9) and 0.5 (Fig. 3) lead to similar phenomena across different
models.
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Figure 9: Generalization Analysis on ImageNet-1K with regularization strength λ = 0.1: (a) meta-
trained on 20-task 5-shot MCL, meta-testing on varying number of tasks (5-shot); (b) meta-trained
on 20-task 5-shot MCL, meta-testing on varying number of shots (20-task); (c) meta-trained on 20-
task 5-shot MCL, meta-testing on 20-task 5-shot with varying inputs noise intensity level

D VISUALIZATION OF ATTENTION AND SELECTIVITY PATTERN

Given meta-learned sequence models as the continual learner, the models process the samples in
sequence in the meta-test CL process. To analyze the behaviors of these models, we visualize
the attention weights of Transformers and the associative weights of Mamba (as discussed in Sec.
3.2.2) to demonstrate their attention and selectivity patterns, respectively. In a meta-testing episode,
given a trained model and a sequence of samples, the prediction for a given xtest is produced based
on the attention or implicit association of seen samples in the sequence. Visualizing the attention
and selectivity patterns can empirically show how the models make predictions. For the standard
benchmarking case, Fig. 10 shows that both Transformer and Mamba can effectively associate seen
samples with query inputs, leading to the results as shown in Table 2.

Specifically, we use this visualization to analyze how different models perform in the generalization
studies (discussed in Sec. 4.2), i.e., generalizing to meta-testing cases that are different from meta-
training cases.

D.1 VISUALIZATION ANALYSES FOR GENERALIZATION TO DIFFERENT STREAM LENGTH

The experiments shown in Fig. 3a and Fig. 3b validate the generalization ability of models by meta-
testing on CL episodes/sequences that differ from those seen during meta-training. Specifically, the
models are meta-trained on 20-task, 5-shot MCL episodes and meta-tested on episodes with task and
shot numbers exceeding those in meta-training. Transformers generally converge more easily during
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(a) Mamba

(b) Transformer

Figure 10: 20-task 5-shot in meta-testing: visualization of the final layer associations between vari-
ous test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Trans-
former during meta-testing on 20-task 5-shot MCL episode (meta-trained on 20-task 5-shot). In
meta-testing, the four visualizations share a single MCL training episode (prompt) spanning 0th−99th
shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, and 18th tasks
(0th−4th, 5th−9th, 45th−49th, and 90th−94th train shots), respectively.

meta-training compared to Mamba, due to their strong fitting ability. However, this advantage may
also lead to meta-overfitting.

To analyze how different models perform on these sequences, we visualize the final layer attention
weights of Transformer and the corresponding selective scores (associative indicators) of Mamba,
between various test shots (queries) and a single MCL train episode (prompt) of both Mamba and
Transformer. Note that Mamba does not have explicit attention weights, we compute the scores re-
lying on the connection between Mamba and Transformers described in Section 3.2.2. Specifically,
we computed the parameters Ctest and B (CtestB

⊤) within its SSMs to compare its behavior with
the attention matrix (QtestK

⊤) of Transformers, where Ctest ∈ R1×C and Qtest ∈ R1×C correspond
to the row of the test shot. Both models are meta-trained on a 20-task, 5-shot setting using the
ImageNet-1K dataset.

For models meta-trained on the 20-task, 5-shot setting, we meta-tested them and visualized their
weights on 20-task, 5-shot episodes (Fig. 10), 20-task, 10-shot episodes (Fig. 11), and 40-task, 5-
shot episodes (Fig. 12). Specifically, we observed that Transformers tend to either average attention
or consistently focus on specific token positions in episodes that deviate from the training length.
In contrast, Mamba effectively associates with relevant shots. This suggests that Transformers may
learn pattern biases in the sequences (e.g., positional biases unrelated to content), leading to meta-
overfitting during these generalization tests.

D.2 VISUALIZATION ANALYSIS OF GENERALIZATION TO NOISE-CONTAMINATED EPISODES

In the experiments, the modes are meta-trained on noise-free episodes. And the noise is added on
randomly selected samples/shots in the meta-testing episodes. The task can also be seen as validating
the ability of ignoring the irrelevant samples or contaminated outlier samples in the sequences.
To directly show how the models work in this scenarios, we visualized the final layer attention
weights for test shots compared to training shots for both Mamba and Transformer, each meta-
trained in a 20-task, 5-shot setting. During meta-testing, these models processed a 20-task, 5-shot
episode with five noisy input shots (shot index: 8, 18, 39, 61, 75) at noise strengths of 1 (Fig. 13), 2
(Fig. 14), and 6 (Fig. 15). The results indicate that the Transformer meta-trained on clean episodes
tend to produce extreme attention weights (either very high or very low) on noisy or outlier shots,
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(a) Mamba

(b) Transformer

Figure 11: More shots in meta-testing: visualization of the final layer associations between various
test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Transformer
during meta-testing on 20-task 10-shot MCL episode (meta-trained on 20-task 5-shot). In meta-
testing, the four visualizations share a single MCL training episode (prompt) spanning 0th−199th

shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, and 18th tasks
, respectively.

(a) Mamba

(b) Transformer

Figure 12: More tasks in meta-testing: visualization of the final layer associations between various
test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Transformer
during meta-testing on 40-task 5-shot MCL episode (meta-trained on 20-task 5-shot). In meta-
testing, the seven visualizations share a single MCL training episode (prompt) spanning 0th−199th

shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, 18th, 28th,
38thand 39th tasks , respectively.

whereas Mamba is less affected. This observation suggests that Transformers’ learned attention
mechanisms tend to associate samples based on local and independent representations. In contrast,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Mamba

(b) Transformer

Figure 13: Noise inputs in meta-testing: visualization of the final layer associations between various
test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Transformer
(meta-trained on 20-task 5-shot without noise inputs), during meta-testing on 20-task 5-shot MCL
episode with noise inputs (noise strength=1, noise on 8th, 18st, 39th, 61th, and 75th training shots).
In meta-testing, the four visualizations share a single MCL training episode (prompt) spanning 0th−
99th shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, and 18th

tasks (0th−4th, 5th−9th, 45th−49th, and 90th−94th train shots), respectively.

(a) Mamba

(b) Transformer

Figure 14: Noise inputs in meta-testing: visualization of the final layer associations between various
test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Transformer
(meta-trained on 20-task 5-shot without noise inputs), during meta-testing on 20-task 5-shot MCL
episode with noise inputs (noise strength=2, noise on 8th, 18st, 39th, 61th, and 75th training shots).
In meta-testing, the four visualizations share a single MCL training episode (prompt) spanning 0th−
99th shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, and 18th

tasks (0th−4th, 5th−9th, 45th−49th, and 90th−94th train shots), respectively.

Mamba performs more effectively by selectively associating relevant information and leveraging its
recurrently updated latent state, which accumulates global sequence information.
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(a) Mamba

(b) Transformer

Figure 15: Noise inputs in meta-testing: visualization of the final layer associations between various
test shots (queries) and a single MCL train episode (prompt) of both (a) Mamba and (b) Transformer
(meta-trained on 20-task 5-shot without noise inputs), during meta-testing on 20-task 5-shot MCL
episode with noise inputs (noise strength=6, noise on 8th, 18st, 39th, 61th, and 75th training shots).
In meta-testing, the four visualizations share a single MCL training episode (prompt) spanning 0th−
99th shots, while the test shots (queries at the 100th shot) correspond to the 0th, 1st, 9th, and 18th

tasks (0th−4th, 5th−9th, 45th−49th, and 90th−94th train shots), respectively.
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