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TOTAL POSITIVITY IN MARKOV STRUCTURES
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We discuss properties of distributions that are multivariate totally
positive of order two (MTP2) related to conditional independence. In partic-
ular, we show that any independence model generated by an MTP2 distribu-
tion is a compositional semi-graphoid which is upward-stable and singleton-
transitive. In addition, we prove that any MTP2 distribution satisfying an
appropriate support condition is faithful to its concentration graph. Finally,
we analyze factorization properties of MTP2 distributions and discuss ways
of constructing MTP2 distributions; in particular, we give conditions on the
log-linear parameters of a discrete distribution which ensure MTP2 and char-
acterize conditional Gaussian distributions which satisfy MTP2.

1. Introduction. This paper discusses a special form of positive dependence.
Positive dependence may refer to two random variables that have a positive co-
variance, but other definitions of positive dependence have been proposed as well;
see [24] for an overview. Random variables X = (X1, . . . ,Xd) are said to be as-
sociated if cov{f (X), g(X)} ≥ 0 for any two nondecreasing functions f and g for
which E|f (X)|, E|g(X)| and E|f (X)g(X)| all exist [13]. This notion has impor-
tant applications in probability theory and statistical physics; see, for example, [27,
28].

However, association may be difficult to verify in a specific context. The cel-
ebrated FKG theorem, formulated by Fortuin, Kasteleyn and Ginibre in [14], in-
troduces an alternative notion and establishes that X are associated if their joint
density function is multivariate totally positive of order 2: A function f over
X = ∏

v∈V Xv , where each Xv is totally ordered, is multivariate totally positive
of order two (MTP2) if

f (x)f (y) ≤ f (x ∧ y)f (x ∨ y) for all x, y ∈ X ,
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where x ∧ y and x ∨ y denote the elementwise minimum and maximum.
These inequalities are often easier to check. Furthermore, most other known

definitions of positive dependence are implied by the MTP2 constraints; see, for
example, [7] for a recent overview. Note that the conditions are on the probabili-
ties or the density and not on other types of traditional measures of dependence.
But as we shall see, the above inequality constraints combined with conditional
independence restrictions specify positive associations along edges in undirected
graphs, named and studied as dependence graphs or concentration graphs; see, for
instance, [22, 44].

MTP2 distributions have also played an important role in the study of ferromag-
netic Ising models, that is, distributions of binary variables where all interaction
potentials are pairwise and nonnegative. It has been noted in [33] that the block
Gibbs sampler is monotonic if the target distribution is MTP2, and hence partic-
ularly efficient in this setting. Bartolucci and Besag [3], Section 5, showed that
much of this work can in fact be extended to arbitrary binary Markov fields. See
also [11] for an optimization viewpoint. The special case of Gaussian distributions
was studied by Karlin and Rinott [21] and very recently by Slawski and Hein [39]
from a machine learning perspective.

Consequences of MTP2 distributions with respect to marginal and mutual in-
dependences were studied by Lebowitz [23] and Newman [28]. They showed in
particular that independence of two components of a random vector with an MTP2

distribution is equivalent to a block-diagonal structure in the covariance matrix
and that mutual independence of several components can be inferred from a block-
diagonal covariance matrix (see also Theorem 3.7 and Theorem 5.5 below). This
is remarkable because covariances and correlations are the weakest types of mea-
sures of dependence (see [48]); although they identify independence in Gaussian
distributions, this is often not the case for other types of distribution.

In this paper, we discuss implications of the MTP2 constraints for conditional
independence and vice versa. There is some related work in the context of copu-
lae [26]. Our paper can be seen as a continuation of work by Sarkar [38] and, in
particular, by Karlin and Rinott [20, 21]. They noted that the family of MTP2 dis-
tributions is stable with respect to forming marginal and conditional distributions.
At least as important is that they give constraints on different types of measures of
dependence needed to verify the MTP2 property of a joint distribution for discrete
and for Gaussian random variables.

The MTP2 property may appear extremely restrictive when higher order in-
teractions are needed to capture the relevant types of conditional dependence or
when distributions are studied which do not satisfy any conditional independence
constraints. However, as we shall see, the MTP2 constraints become less restrictive
when imposing an additional Markov structure. For example, all finite dimensional
distributions of a Markov chain are MTP2 whenever all 2 × 2 minors of its transi-
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tion matrix are nonnegative [20], Proposition 3.10. This result holds true also for
nonhomogeneous Markov chains. Moreover, models with latent, that is hidden or
unobserved, variables may be MTP2. For example, factor analysis models with a
single factor are MTP2 when each observed variable has an, albeit unobserved,
positive dependence on the single hidden factor [46]. Similar statements apply to
binary latent class models [2, 16, 46] and to latent tree models, both in the Gaus-
sian and in the binary setting [40, 50]. Furthermore, many data sets can be well
explained or modelled assuming that the generating distribution is MTP2 or nearly
MTP2; see Section 4 for some examples and also the discussion in Section 8.

The paper is organized as follows: In Section 2, we introduce our notation and
provide the main definitions. In Section 3, we review basic properties of MTP2
distributions and discuss the link to positive dependence and independence struc-
tures. In Section 4, we concentrate on the MTP2 condition in the Gaussian and
binary setting and provide several data examples where the MTP2 property ap-
pears naturally. Section 5 analyzes MTP2 distributions with respect to conditional
independence relations. One of the main results in this paper is Theorem 5.3,
which shows that any independence model generated by an MTP2 distribution
is a singleton-transitive compositional semi-graphoid which is also upward-stable;
the latter means that new arbitrary elements can be added to the conditioning set
of every existing independence statement without violating independence. Theo-
rem 5.5 gives a complete characterization of the marginal independence structures
of MTP2 distributions. In Section 6, we study Markov properties of MTP2 distri-
butions and show that such distributions are always faithful to their concentration
graph. In Section 7, we analyze factorization properties of MTP2 distributions,
show how to use these properties to build MTP2 distributions from smaller MTP2
distributions, briefly discuss log-linear expansions of discrete MTP2 distributions,
and give conditions for conditional Gaussian distributions to satisfy the MTP2 con-
straints. We conclude our paper with a short discussion in Section 8.

2. Preliminaries and notation. Let V be a finite set and let X = (Xv, v ∈ V )

be a random vector. We consider the product space X = ∏
v∈V Xv , where Xv ⊆ R

is the state space of Xv , inheriting the order from R. In this paper, the state spaces
are either discrete (finite sets) or open intervals on the real line. Hence, we can
partition the set of variables as V = � ∪ �, where Xv is discrete if v ∈ �, and
Xv is an open interval if v ∈ �. For A ⊆ V , we further write XA = (Xv)v∈A,
XA =×v∈AXv and so on.

All distributions are assumed to have densities with respect to the product mea-
sure μ = ⊗

v∈V μv , where μv is the counting measure for v ∈ �, and μv is the
Lebesgue measure giving length 1 to the unit interval for v ∈ �. We shall refer to
μ as the standard base measure. Similarly to the above, we write μA = ⊗

v∈A μv .
Finally, we introduce some definitions related to graphs: an undirected graph

G = (V ,E) (sometimes also called concentration graph in the literature of graph-
ical models) consists of a nonempty set of vertices or nodes V and a set of undi-
rected edges E. Our graphs are simple meaning that they have no self-loops and no
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multiple edges. We write uv for an edge between u and v and say that the vertices
u and v are adjacent. A path in G is a sequence of nodes (v0, v1, . . . , vk) such
that vivi+1 ∈ E for all i = 0, . . . , k − 1 and no node is repeated, that is, vi �= vj

for all i, j ∈ {0,1, . . . , k} with i �= j . Thus, an edge is the shortest type of path.
A cycle is a path with the modification that v0 = vk . Furthermore, we say that two
distinct nodes u, v ∈ V are connected if there is a path between u and v; a graph
is connected if all pairs of distinct nodes are connected. A graph is complete if
all possible edges are present. In addition, two subsets A,B ⊆ V are separated
by S ⊂ V \ (A ∪ B) if every path between A and B passes through a node in S.
A subgraph of G induced by a set A ⊂ V consists of the nodes in A and of the
edges in G between nodes in A. Finally, a maximal complete subgraph is a clique.

3. Basic properties and positive dependence. We start this section by for-
mally introducing MTP2 distributions and discuss basic properties of these. We
define the coordinatewise minimum and maximum as

x ∧ y = (
min(xv, yv), v ∈ V

)
, x ∨ y = (

max(xv, yv), v ∈ V
)
.

A function f on X is said to be multivariate totally positive of order two (MTP2)
if

(3.1) f (x)f (y) ≤ f (x ∧ y)f (x ∨ y) for all x, y ∈ X .

For |V | = 2, a function that is MTP2 is simply called totally positive of order
two (TP2) [20]. Let X = (Xv, v ∈ V ) have density function f with respect to the
standard base measure μ. Then we say that X or the distribution of X is MTP2 if
its density function f is MTP2. Note that this concept is well defined since Xv is
either discrete or an open interval on the real line.

A basic property of MTP2 distributions is that it is preserved under increasing
coordinatewise transformations. We begin with a simple result for strictly increas-
ing functions.

PROPOSITION 3.1. Let X be a random vector taking values in X . Let φ =
(φv, v ∈ V ) be such that φv : R → R are strictly increasing and differentiable for
all v ∈ V . If the distribution of X on X is MTP2, then the distribution of Y = φ(X)

is MTP2.

PROOF. We use the following fact from [20], equation (1.13): Let av :R →R

be positive and let bv : R → R be nondecreasing. If f : RV → R is MTP2, then
the function

(3.2) g(y) = f
{
bv(yv), v ∈ V

} ∏
v∈V

av(yv),

is MTP2. Let bv(yv) = φ−1
v (yv) and let av(yv) = 1/φ′

v(φ
−1
v (yv)), where φ′

v(yv)

denotes the first derivative of φv . Then g(y) is the density of Y = φ(X) and we
obtain from (3.2) that Y is MTP2. �
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We say that a function φv(x) : Xv → R is piecewise constant if φv(Xv) is fi-
nite and we can then similarly show that the MTP2 property is preserved under
transformations which are piecewise constant and nondecreasing.

PROPOSITION 3.2. Let X be a random vector taking values in X as before.
For A ⊆ V , let φ = (φv, v ∈ V ) be such that φv : Xv → R is piecewise constant
and nondecreasing for all v ∈ A and φv(xv) = xv for v /∈ A. If the distribution of
X is MTP2, then the distribution of Y = φ(X) is MTP2.

PROOF. If f denotes the density function for X and g the density function
for Y , both w.r.t. a standard base measure, we have that

g(y) =
∫
φ−1

A (yA)
f (x) dμA(xA).

Since φ is nondecreasing, we have

φ−1
A

(
y1
A

) ∧ φ−1
A

(
y2
A

) = φ−1
A

(
y1
A ∧ y2

A

)
, φ−1

A

(
y1
A

) ∨ φ−1
A

(
y2
A

) = φ−1
A

(
y1
A ∨ y2

A

)
,

where for two sets A,B ,

A ∧ B = {a ∧ b|a ∈ A,b ∈ B}, A ∨ B = {a ∨ b|a ∈ A,b ∈ B}.
Hence, we can apply [20], Corollary 2.1, to obtain that Y is MTP2. �

COROLLARY 3.3. Let X be a random vector taking values in X as before and
φ = (φv, v ∈ V ) be such that φv : Xv → R is piecewise constant and nondecreas-
ing for all v ∈ A and φv(xv) is strictly increasing and differentiable for v /∈ A. If
the distribution of X is MTP2, then the distribution of Y = φ(X) is MTP2.

PROOF. Just combine Proposition 3.1 and Proposition 3.2 by first transform-
ing to Zv = Xv for v ∈ A and Zv = φv(Xv) for v /∈ A; then subsequently letting
Yv = φv(Zv) for v ∈ A and Yv = Zv for v /∈ A. �

The following result establishes that the MTP2 property is preserved under
conditioning, marginalization and monotone coarsening. A monotone coarsening
is an operation on a finite discrete state space Xi that identifies a collection of
neighboring (in the given total order) states. For example, if Xi = {i1, . . . , ip} then
X ′

i = {{i1, . . . , ij }, ij+1, . . . , ik, {ik+1, . . . , ip}} is a monotone coarsening.

PROPOSITION 3.4. The MTP2 property is closed under conditioning, margin-
alization and monotone coarsening. More precisely:

(i) If X has an MTP2 distribution, then for every C ⊆ V , the conditional dis-
tribution of XC |XV \C = xV \C is MTP2 for almost all xV \C .

(ii) If X has an MTP2 distribution, then for every A ⊆ V , the marginal distri-
bution XA of X is MTP2.
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(iii) If X is MTP2 and discrete, and Y is obtained from X by monotone coars-
ening, then Y is MTP2.

PROOF. Property (i) follows directly from the definition of MTP2. Property
(ii) is shown in [20], Proposition 3.2. Property (iii) is an instance of a nondecreas-
ing and piecewise constant transformation and follows from Proposition 3.2. �

As we will see in the following, properties (i) and (ii) are the fundamental build-
ing blocks for understanding the implications of MTP2 on Markov properties and
vice versa. Property (iii) has direct relevance for applications. In the statistical lit-
erature, it is often warned that dependence relations may get distorted when com-
bining neighboring levels of discrete variables; see, for instance, [35]. This may
still be true for MTP2 distributions (see Example 6.2 below), but the coarsening
property (iii) implies that associations cannot become negative by such a process.

Another interesting fact about the MTP2 property is that, under suitable support
conditions, it is a pairwise property meaning that it can be checked on the level
of two variables only, when the remaining variables are fixed. We say that f has
interval support if for any x, y ∈ X the following holds:

(3.3) f (x)f (y) �= 0 implies f (z) �= 0 for any x ∧ y ≤ z ≤ x ∨ y.

Note that having interval support is equivalent to having full support over a
restricted state space that is a product of intervals. In this setting, Karlin and
Rinott [20] prove the following result in their Proposition 2.1.

PROPOSITION 3.5. If f has interval support and f : X → R is TP2 in every
pair of arguments when the remaining arguments are held constant, then f is
MTP2.

We conjecture that this result holds also under a weaker support condition,
namely that the support is coordinatewise connected [32], meaning that the con-
nected components of the support can be joined by axis-parallel lines. We now
provide such an instance in the binary 2 × 2 × 2 setting.

EXAMPLE 3.6. Consider a binary 2 × 2 × 2 distribution, where the support
only misses the entries (1,0,0) and (1,0,1). In this example, there are only two
nontrivial pairwise TP2 constraints to consider, namely for x1 = 0 and for x2 = 1,
that is,

(3.4) p000p011 ≥ p010p001 and p010p111 ≥ p110p011

as the remaining six pairwise inequalities reduce to 0 ≥ 0.
So assume p satisfies (3.4). We need to show that the nine inequalities in (4.1)

below are satisfied. Again, six of them are trivial, and two of them are exactly those
in (3.4). The remaining inequality,

p000p111 ≥ p001p110,
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follows from multiplying the two inequalities in (3.4) to get

(p000p011)(p010p111) ≥ (p010p001)(p110p011),

and dividing both sides by p010p011. Hence, in this case pairwise TP2 constraints
imply the MTP2 property even though the distribution does not have interval sup-
port.

As mentioned in Section 1, if X is MTP2, then the variables in X are associated,
that is,

(3.5) cov
{
f (X), g(X)

} ≥ 0

for any coordinatewise nondecreasing functions f and g for which the covari-
ance exists. For discrete distributions, this follows by the FKG theorem [14], or
more generally, by the four functions theorem by Ahlswede and Daykin [1]; the
general case was proved by Sarkar [38]. The following result, first proven by
Lebowitz [23], shows that the independence structure for associated vectors is en-
coded in the covariance matrix; see also [17, 28].

THEOREM 3.7 (Corollary 3, [28]). If X are associated and E|Xv|2 < ∞ for
all v ∈ V , then XA is independent of XB if and only if cov(Xu,Xv) = 0 for all
u ∈ A and v ∈ B .

In Section 5 we study conditional independence models for MTP2 distributions.
Interestingly, we will show in Theorem 5.5 that for MTP2 distributions a stronger
result holds, namely that every MTP2 random vector can be decomposed into in-
dependent components such that within each component all variables are mutually
marginally dependent. This means in particular that for MTP2 distributions, all
marginal independence relations also hold when conditioning on further variables;
the general version of this property will be termed upward-stability; see Section 5.

4. Examples of Gaussian and binary MTP2 distributions. Many examples
of MTP2 random variables are discussed in the literature; see, for example, [20,
21]. In this section, we focus on binary and multivariate Gaussian MTP2 distribu-
tions. Although the MTP2 property may appear restrictive, we want to suggest that
MTP2 distributions are important in practice and in fact appear in real data sets.

4.1. Multivariate Gaussian MTP2 distributions. Consider a multivariate
Gaussian random vector X with mean μ and covariance matrix �. Denote by
K the inverse of �. Then the distribution of X is MTP2 if and only if K is an
M-matrix (see [21]), that is:

(i) kvv > 0 for all v ∈ V ,
(ii) kuv ≤ 0 for all u, v ∈ V with u �= v.
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Properties and consequences of M-matrices were studied by Ostrowski [29],
who chose the name to honour H. Minkowski, who had considered aspects of
such matrices earlier. The connection to multivariate Gaussian distributions was
established by Bølviken [5].

In the previous section, we mentioned that if X is MTP2, then its constituent
variables are associated. Therefore, for MTP2 Gaussian distributions it holds that
σuv ≥ 0 for all u, v ∈ V . More precisely, the covariance matrix has a block diagonal
structure and each block has only strictly positive elements; see also Theorem 5.5
below. Note, however, that this condition is necessary but not sufficient for the
MTP2 property.

We now analyze by simulation how restrictive the MTP2 constraint is for Gaus-
sian distributions. We quantify this by studying the ratio of the volume of all cor-
relation matrices that satisfy the MTP2 constraint to the volume of all correlation
matrices. Since no closed-form formula for these volumes is known, we use a sim-
ple Monte Carlo simulation. We uniformly sample correlation matrices using the
method suggested by Joe [18], which is implemented in the R package cluster-
Generation. We performed simulations for |V | = 3,4,5 and we here report
how many correlation matrices out of 100,000 samples satisfy the MTP2 con-
straint.

|V| 3 4 5
MTP2 5004 90 0

These simulation results show that the relative volume of MTP2 Gaussian dis-
tributions drops dramatically with increasing |V | when no conditional indepen-
dences are taken into account. However, the picture changes when imposing con-
ditional independence relations. For example, if |V | = 3, then by the above simu-
lations about 5% of all Gaussian distributions correspond to MTP2 distributions.
If 1 ⊥⊥ 2|3, then by a symmetry argument precisely 25% of such distributions are
MTP2. If, in addition, we impose 1 ⊥⊥ 3|2—which implies also 1 ⊥⊥ (3,2)—the
ratio of MTP2 distributions increases to 50%. Finally, all distributions that are
fully independent are MTP2.

We next discuss a prominent data set consisting of the examination marks of 88
students in five different mathematical subjects. The data were reported in [25] and
analyzed, for example, in [12, 15, 47]. The inverse of the sample covariance ma-
trix, together with the corresponding partial correlations ρuv·V \{u,v}, are displayed
in Table 1. This matrix is very close to being an M-matrix with only one nega-
tive partial correlation equal to −0.00001. Furthermore, when fitting reasonable
graphical models to the data, all fitted distributions are MTP2.

4.2. Binary MTP2 distributions. Suppose that X is a binary random vector
with X = {0,1}|V | and we denote its distribution by P = [px] for x ∈ X . For
example, if |V | = 3, binary MTP2 distributions must satisfy the following nine
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TABLE 1
Empirical partial correlations (below the diagonal) and entries of the inverse of the sample
covariance matrix (×1000, on and above the diagonal) for the examination marks in five

mathematical subjects

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45

inequalities:

p011p000 ≥ p010p001, p101p000 ≥ p100p001,

p110p000 ≥ p100p010, p111p100 ≥ p110p101,

p111p010 ≥ p110p011, p111p001 ≥ p101p011,(4.1)

p111p000 ≥ p100p011, p111p000 ≥ p010p101,

p111p000 ≥ p001p110.

The first two rows correspond to the inequalities px∧ypx∨y ≥ pxpy as in (3.1),
where x and y differ only in two entries. These inequalities are equivalent to
requesting that the six possible conditional log-odds ratios are nonnegative. By
Proposition 3.5, the inequalities in the last row are implied by the remaining ones
in the case when P > 0, or more generally, if P has interval support. For P > 0,
this can be seen from identities of the form

p111p000 − p010p101 = p000

p001
(p111p001 − p101p011)

+ p101

p001
(p011p000 − p010p001).

For positive binary distributions, we can verify MTP2 for any pair of variables with
the remaining variables fixed. In the binary case, this gives a single constraint for
any choice of a pair and values for the remaining |V | − 2 variables, in other words(|V |

2

) ·2|V |−2 inequalities. For binary MTP2 distributions, there is a nice description
in terms of log-linear parameters in [4]; see also Corollary 7.7 below.

The MTP2 hypothesis is rather restrictive in the binary setting when no fur-
ther conditional independence restrictions are assumed. Note, however, that binary
models can become more complex than in the Gaussian case, since log-linear in-
teractions of higher-order than pairwise may be present. In the following, we study
the volume of MTP2 distributions with respect to the volume of the whole prob-
ability simplex. Similarly, as in the Gaussian setting, we sample uniformly from
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the probability simplex. We here report how many samples out of 100,000 satisfy
the MTP2 constraints for |V | = 3,4. Note that already for |V | = 4 we did not find
a single instance although the volume of the set of MTP2 distributions is always
positive:

|V| 3 4
MTP2 2195 0

As in the Gaussian case the relative volume of MTP2 distributions is higher
when imposing additional conditional independence restrictions. By the same
symmetry argument as in the Gaussian setting, we obtain that for |V | = 3 pre-
cisely 25% of all binary distributions satisfying 1 ⊥⊥ 2|3 are MTP2. If, in addition,
we have 1 ⊥⊥ 3|2 then half of these distributions are MTP2. Finally, all binary full
independence distributions are MTP2.

This interplay with conditional independence might explain in part why bi-
nary MTP2 distributions do arise in practice. See [46], Section 5, for examples
of datasets that are MTP2 or nearly MTP2. In the following, we discuss two such
examples.

EXAMPLE 4.1. We first consider a dataset on EPH-gestosis, collected 40
years ago in a study on “Pregnancy and Child Development” by the German Re-
search Foundation and recently analyzed in [46], Section 5.1. EPH-gestosis rep-
resents a disease syndrome for pregnant women. The three symptoms are edema
(high body water retention), proteinuria (high amounts of urinary proteins) and
hypertension (elevated blood pressure). The observed counts N = (nx) are[

n000 n010 n001 n011
n100 n110 n101 n111

]
=

[
3299 107 1012 58
78 11 65 19

]
.

If untreated, EPH-gestosis is a major cause of death of mother and child dur-
ing birth ([41], page 65). However, treatment of the symptoms prevents negative
consequences and the symptoms occur rarely after the first pregnancy.

The observed counts have odds-ratios larger than one for each pair at the fixed
level of the third variable, hence the empirical distribution is MTP2. Equivalently,
the sample distribution satisfies all the constraints in (4.1). The three symptoms
do not occur more frequently jointly than in pairs and the observed conditional
odds-ratios are nearly equal given the third symptom. Possible interpretations are
that physicians intervened at the latest when two symptoms occurred and that a
single common cause, though unknown and unobserved, may have generated the
marginal dependences between the symptom pairs.

EXAMPLE 4.2. Next, we discuss an example with five binary random vari-
ables. This is a subset of data from a Polish case-control study on laryngeal cancer
[49]. Details on the study design, our selection criteria for cases and controls, and
the analysis will be given elsewhere.
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In case-control studies, the observations are implicitly obtained conditionally
on the values of at least one response variable and on relevant explanatory vari-
ables. For such designs, the class of concentration graph models are appropriate
for studying dependence structure among the variables.

In this study, we have 185 laryngeal cancer cases in urban residential areas
(coded 1; 35.7%) and 308 controls, coded 0. Four further binary variables are
defined so that 1 indicates the level known to carry the higher cancer risk, namely
heavy vodka drinking (1 := regularly for 2 or more years; 21.3%), heavy cigarette
smoking (1:= 30 or more cigarettes per day; 13.8%, and 0 := 6 to 29 cigarettes per
day), age at study entry (1 := 54 to 65 years; 51.5% and 0 := 46 to 53 years), and
level of formal education (1 := less than 8 years; 57.8 % and 0 := 8 to 11 years).

A well-fitting log-linear model for these data is determined by the sufficient
margins {{1,2}, {1,3}, {2,3}, {1,4,5}}, in other words by permitting log-linear in-
teraction terms only among variable groups that are subsets of these sets. This
model yields an overall likelihood-ratio χ2 of 13.6 with 19 degrees of freedom
and corresponds to a concentration graph with cliques: {1,2,3} and {1,4,5}. The
corresponding observed and fitted counts are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

00000 10000 01000 11000
00100 10100 01100 11100
00010 10010 01010 11010
00110 10110 01110 11110
00001 10001 01001 11001
00101 10101 01101 11101
00011 10011 01011 11011
00111 10111 01111 11111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

85 11 5 6
10 1 1 2
46 15 3 7
7 2 2 5
51 27 7 18
4 6 1 4
73 36 5 30
5 9 3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

85.88 9.87 7.30 6.35
9.27 1.70 1.55 2.08

47.59 14.31 4.19 9.21
5.32 2.47 0.89 3.02

51.70 27.13 4.55 17.46
5.78 4.68 0.97 5.73

70.57 39.96 6.22 25.72
7.89 6.89 1.32 8.43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For pairs within the cliques, the fitted two-way margins must coincide with
the observed bivariate tables of counts; here, we report marginal observed and
fitted odds-ratios, or(I, J ), and fitted conditional odds-ratios given the remaining
variables, or(I, J |R) (see Table 2).

Because the observed (3,5) odds-ratio is smaller than 1, and hence the log-
odds-ratio is negative, the observed distribution is not MTP2. In addition, 21 of
the observed 80 conditional log-odds ratios, or(I, J |R), are less than 1. How-
ever, in the well-fitting model described above, we have or(I, J |R) ≥ 1 for all 80
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TABLE 2
Observed and fitted marginal and conditional odds-ratios

Variable pair: 1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 3, 4 3, 5 4, 5

Observed or(I, J ): 7.6 1.9 1.7 3.0 2.3 1.4 2.0 1.3 0.9 2.0
Fitted or(I, J ): 1.3 1.6 1.1 1.2
Fitted or(I, J |R): 7.3 1.5 2.5 4.4 1.9 1 1 1 1 ∗

∗ 2.4 for controls and 1.02 for cases.

odds-ratios, so that the fitted distribution is MTP2. This implies that each possible
marginal table—here of two, three or four variables—shows positive or vanishing
pairwise dependence for all variable pairs.

From the concentration graph, it follows that prediction of drinking and smok-
ing habits cannot be improved by using information about age or level of formal
education for the studied cases or controls and that there is no log-linear interac-
tion involving more than three factors. The set of minimal sufficient tables tells that
the only three-factor interaction is in the {1,4,5}-table. From the above change in
the conditional odds-ratio for pair (4,5) from 2.4 to 1.02, it follows that the ex-
pected improvement in education for younger—compared to older participants—
only shows for controls but not for the cases. In combination with the fact that
or(1,5|R) = 4.4, this implies that level of formal education should be explicitly
included in comparisons of results across countries and in future studies on laryn-
geal cancer.

5. Conditional independence models and total positivity. An independence
model J over a finite set V is a set of triples 〈A,B|C〉 (called independence
statements), where A, B and C are disjoint subsets of V ; C may be empty, and
〈∅,B|C〉 and 〈A,∅|C〉 are always included in J . The independence statement
〈A,B|C〉 is read as “A is independent of B given C”. Independence models do
not necessarily have a probabilistic interpretation; for a discussion on general in-
dependence models; see [42].

An independence model J over a set V is a semi-graphoid if it satisfies the
following four properties for disjoint subsets A, B , C and D of V :

(S1) 〈A,B|C〉 ∈ J if and only if 〈B,A|C〉 ∈ J (symmetry);
(S2) if 〈A,B ∪ D|C〉 ∈ J , then 〈A,B|C〉 ∈ J and 〈A,D|C〉 ∈ J (decomposi-

tion);
(S3) if 〈A,B ∪ D|C〉 ∈ J , then 〈A,B|C ∪ D〉 ∈ J and 〈A,D|C ∪ B〉 ∈ J

(weak union);
(S4) 〈A,B|C ∪ D〉 ∈ J and 〈A,D|C〉 ∈ J if and only if 〈A,B ∪ D|C〉 ∈ J

(contraction).

A semi-graphoid for which the reverse implication of the weak union property
holds is said to be a graphoid that is, it also satisfies
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(S5) if 〈A,B|C ∪ D〉 ∈ J and 〈A,D|C ∪ B〉 ∈ J then 〈A,B ∪ D|C〉 ∈ J
(intersection).

Furthermore, a graphoid or semi-graphoid for which the reverse implication of the
decomposition property holds is said to be compositional that is, it also satisfies

(S6) if 〈A,B|C〉 ∈ J and 〈A,D|C〉 ∈ J then 〈A,B ∪ D|C〉 ∈ J (composi-
tion).

Some independence models have additional properties; below we write singleton
sets {u}, {v} compactly as u, v, etc.

(S7) if 〈u, v|C〉 ∈ J and 〈u, v|C ∪w〉 ∈ J , then 〈u,w|C〉 ∈ J or 〈v,w|C〉 ∈ J
(singleton-transitivity);

(S8) if 〈A,B|C〉 ∈ J and D ⊆ V \ (A ∪ B), then 〈A,B|C ∪ D〉 ∈ J (upward-
stability).

The properties above are not independent and upward-stability is a very strong
property. For example, we have the following simple lemma.

LEMMA 5.1. Any upward stable semi-graphoid satisfies (S6) composition.

PROOF. If 〈A,B|C〉 ∈ J , (S8) yields 〈A,B|C ∪D〉 ∈ J ; hence from (S4) we
get that 〈A,D|C〉 ∈ J implies 〈A,B ∪ D|C〉 ∈ J , which is (S6). �

A fundamental example of an independence model is induced by separation in
an undirected graph G = (V ,E), denoted by J (G):

〈A,B|S〉 ∈ J (G) ⇐⇒ S separates A from B

in the sense that all paths between A and B intersect S. The independence model
J (G) satisfies all of the above properties (S1)–(S8).

Consider a set V and associated random variables X = (Xv)v∈V . For disjoint
subsets A, B and C of V we use the short notation A ⊥⊥ B|C to denote that XA is
conditionally independent of XB given XC [8, 22], that is, that for any measurable
	 ⊆ XA and P -almost all xB and xC ,

P(XA ∈ 	|XB = xB,XC = xC) = P(XA ∈ 	|XC = xC).

We can now induce an independence model J (P ) by letting

〈A,B|C〉 ∈ J (P ) if and only if A ⊥⊥ B|C w.r.t. P .

Probabilistic independence models are always semi-graphoids [31]. If, for ex-
ample, P has a strictly positive density f , the induced independence model is al-
ways a graphoid; see, for example, Proposition 3.1 in [22]. More generally, if f is
continuous, Peters [32] showed that the induced independence model is a graphoid
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if and only if the support is coordinatewise connected, that is, all connected com-
ponents of the support of the density can be connected by axis-parallel lines. In
particular, this applies to the discrete case since any function over a discrete space
is continuous. See also [9] for general discussions and [37] for necessary and suf-
ficient conditions under which the intersection property holds in joint Gaussian or
binary distributions.

Examples of discrete distributions violating one of (S5), (S6) or (S7) have been
given in [43]. We will prove in this section that, under weak assumptions, indepen-
dence models generated by MTP2 distributions satisfy all of the properties (S1)–
(S8).

First, note that by Proposition 3.4 the MTP2 property is closed under marginal-
ization and conditioning. Applying this to the conditional distribution of (Xu,Xv)

given XC for all u, v ∈ V with u �= v, C ⊆ V \ {u, v}, implies that the following
conditional covariances must be nonnegative:

(5.1) cov
{
φ(Xu),ψ(Xv)|XC

} ≥ 0 a.s.

for nondecreasing functions φ,ψ : R → R for which the covariance exists. Recall
that a function of several variables is nondecreasing if it is nondecreasing in each
coordinate. The following related result was first proved in [38], Section 3.1 (see
also [20], Theorem 4.1).

PROPOSITION 5.2. Let X be MTP2. Then for any subset A ⊆ V and any
nondecreasing function ϕ : XA → R for which E|ϕ(XA)| < ∞, the conditional
expectation

E
{
ϕ(XA)|XV \A = xV \A

}
is nondecreasing in xV \A.

We first show that any induced independence model of an MTP2 distribution
is an upward-stable and singleton-transitive compositional semigraphoid, that is,
(S1)–(S4) and (S6)–(S8) all hold.

THEOREM 5.3. Any independence model J (P ) induced by an MTP2 dis-
tribution P is an upward-stable and singleton-transitive compositional semi-
graphoid.

PROOF. We first note that any probabilistic independence model is a semi-
graphoid [30]. Next, we establish upward-stability. For this, it suffices to prove
that u ⊥⊥ v|C implies u ⊥⊥ v|C ∪ {w} for all w ∈ V \ (C ∪{u, v}). Since the MTP2
property is closed under marginalization, it follows that the marginal distribution
of XC∪{u,v,w} is MTP2. Further, because the MTP2 property is closed under condi-
tioning, after conditioning on C, it suffices to consider only 3 variables and prove
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the following statement: If the distribution of X = (X1,X2,X3) is MTP2, then
1 ⊥⊥ 2 implies 1 ⊥⊥ 2|3.

Recall that 1 ⊥⊥ 2 if and only if P(X1 > a1,X2 > a2) = P(X1 > a1)P(X2 > a2)

for all a1, a2 ∈ R. Equivalently, defining Yi = 1(Xi > ai) this translates into
Y1 ⊥⊥ Y2, which now must be satisfied for any choice of a1, a2 ∈ R. A similar con-
dition holds for the conditional independence 1 ⊥⊥ 2|3, in which case we require
that Y1 ⊥⊥ Y2|X3 for all a1, a2 ∈ R.

The advantage of working with the indicator functions is that they define
bounded random variables, which implies the existence of moments. By Propo-
sition 3.2, the vector (Y1, Y2,X3) is MTP2. Independence of X1 and X2 in combi-
nation with the law of total covariance implies that for every choice of a1, a2 ∈ R

0 = cov(Y1, Y2)

= cov
(
E(Y1|X3),E(Y2|X3)

) +E
(
cov(Y1, Y2|X3)

)
.

By Proposition 5.2, E(Y1|X3 = x3) and E(Y2|X3 = x3) are almost everywhere
nondecreasing and bounded functions of x3, and hence their covariance exists and
is nonnegative by (3.5) and the fact that univariate random variables are always as-
sociated. Moreover, it follows from (5.1) that cov(Y1, Y2|X3 = x3) ≥ 0 for almost
all x3, and thus its expectation is nonnegative. This means that we expressed zero
as a sum of two nonnegative terms, and thus both terms must be zero. This implies
that cov(Y1, Y2|X3 = x3) = 0 for almost all x3. Hence, by Theorem 3.7, we obtain
that Y1 ⊥⊥ Y2|X3. Now by varying a1, a2 we conclude that X1 ⊥⊥ X2|X3. Having
established upward-stability, composition now follows from Lemma 5.1.

We finally prove singleton-transitivity. Using upward-stability this property can
be rephrased in a simpler form as

1 ⊥⊥ 2 =⇒ 1 ⊥⊥ 3 or 2 ⊥⊥ 3.

So we assume that 1 ⊥⊥ 2. By the same argument as in the previous paragraph,
cov(Y1, Y2) = 0 implies that cov(E(Y1|X3),E(Y2|X3)) = 0. By Theorem 5.2, both
f (X3) := E(Y1|X3) and g(X3) := E(Y2|X3) are nondecreasing functions. Their
covariance is zero and can be rewritten as

cov
(
f (X3), g(X3)

) =
∫
{x′>x}

(
f

(
x′) − f (x)

)(
g
(
x′) − g(x)

)
d
(
μ3(x) ⊗ μ3

(
x′)).

Note that {x′ > x} ⊇ {f (x′) > f (x)} ∩ {g(x′) > g(x)} and so the integral on the
right-hand side, which is equal to zero, is bounded from below by∫

{f (x′)>f (x)}∩{g(x′)>g(x)}
(
f

(
x′) − f (x)

)(
g
(
x′) − g(x)

)
d
(
μ3(x) ⊗ μ3

(
x′)),

which is strictly positive unless the set {f (x′) > f (x)} ∩ {g(x′) > g(x)} has mea-
sure zero. This set is the set of all pairs (x, x′) such that x′ > x and f (x′) > f (x),
g(x′) > g(x), and its measure is half the measure of the set of all (x, x′) such
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that f (x′) �= f (x) and g(x′) �= g(x). This measure is zero only if either f or g is
constant almost everywhere.

It follows that for every a1, a2 ∈ R either E(Y1|X3) = P(X1 > a1) or E(Y2|
X3) = P(X2 > a2). Let U ⊆ R

2 be the set of all (a1, a2) such that the former
equality holds and V be the set such that the latter holds. Let πi denote the projec-
tion on the ith coordinate in R

2. We have U ∪ V =R
2, and so if π1(U) �= R, then

π2(V ) = R. This implies that π1(U) = R or π2(V ) = R. For simplicity, assume
that the latter holds but the general argument is the same. If π2(V ) = R, then for
every a2 ∈ R there exists a1 such that E(Y2|X3) = P(X2 > a2), or equivalently
P(X2 > a2|X3) = P(X2 > a2). We conclude that 2 ⊥⊥ 3. This, up to symmetry,
implies that 1 ⊥⊥ 3 or 2 ⊥⊥ 3. �

We now analyze the intersection property. It is important to note that an MTP2

independence model is not necessarily a graphoid, as the following simple example
shows.

EXAMPLE 5.4. Consider the binary MTP2 distribution with

p000 = p111 = 1

2
.

Then 1 ⊥⊥ 2|3 and 1 ⊥⊥ 3|2, but 1⊥�⊥(2,3) and, therefore, the intersection property
does not hold.

As a consequence of the earlier mentioned result by Peters [32], any MTP2

distribution with continuous density and coordinatewise connected support is an
upward-stable and singleton-transitive compositional graphoid.

We conclude this section with the following property of MTP2 distributions.

THEOREM 5.5. Let the distribution of X be MTP2 with none of Xv having a
degenerate distribution. Then X can be decomposed into independent components
such that within each component all variables are mutually marginally dependent.

PROOF. As in the previous proof, we define Yi = 1(Xi > ai) and by Theo-
rem 3.7 it suffices to prove that the covariance matrix of Y is block diagonal with
strictly positive entries in each block. We write u ∼ v if the covariance between
Yu and Yv is nonzero and we show that u ∼ v is an equivalence relation, and thus
induces a partition of V into independent blocks. It is clear that u ∼ u and u ∼ v

whenever v ∼ u. It remains to show that u ∼ v and v ∼ w imply u ∼ w. But if
u � w, we have σuw = 0 and thus u ⊥⊥ w. Using upward-stability from Theo-
rem 5.3 yields u ⊥⊥ w|v and singleton-transitivity yields u ⊥⊥ v or v ⊥⊥ w, which
contradicts that u ∼ v and v ∼ w. �



1168 S. FALLAT ET AL.

6. Faithfulness and total positivity. In the following, we shall write A⊥G

B|C for the graph separation 〈A,B|C〉 ∈ J (G) and A ⊥⊥ B|C for the relation
〈A,B|C〉 ∈ J (P) in the independence model generated by P . For a graph G =
(V ,E), an independence model J defined over V satisfies the global Markov
property w.r.t. a graph G, if for disjoint subsets A, B and C of V the following
holds:

A⊥G B|C =⇒ 〈A,B|C〉 ∈ J .

If J (P ) satisfies the global Markov property w.r.t. a graph G, we also say that P

is Markov w.r.t. G.
We say that an independence model J is probabilistic if there is a distribution

P such that J = J (P ). We then also say that P is faithful to J . If P is faithful to
J (G) for a graph G, then we also say that P is faithful to G. Thus, if P is faithful
to G it is also Markov w.r.t. G.

In this section, we examine the faithfulness property for MTP2 distributions.
Let P denote a distribution on X . The pairwise independence graph of P is the
undirected graph G(P ) = (V ,E(P )) with

uv /∈ E(P ) ⇐⇒ u ⊥⊥ v|V \ {u, v}.
A distribution P is said to satisfy the pairwise Markov property w.r.t. an undirected
graph G = (V ,E) if

uv /∈ E =⇒ u ⊥⊥ v|V \ {u, v}.
Thus, any distribution P satisfies the pairwise Markov property w.r.t. its pairwise
independence graph G(P ); indeed, G(P ) is the smallest graph that makes P pair-
wise Markov.

Generally, a distribution may be pairwise Markov w.r.t. a graph without being
globally Markov. However, if an MTP2 distribution P satisfies the coordinatewise
connected support condition, in particular if it is strictly positive, and since these
are sufficient conditions for the intersection property to hold, then pairwise and
global Markov properties are equivalent; see [36]. We prove in the following result
that if the pairwise-global equivalence is already established, then P is in fact
faithful to G(P ).

THEOREM 6.1. If P is MTP2 and its independence model is a graphoid, then
P is faithful to its pairwise independence graph G(P ).

PROOF. By Theorem 3.7 in [22], it follows that P is globally Markov w.r.t.
G(P ).

To establish faithfulness, we consider disjoint subsets A, B and C so that C

does not separate A from B in G(P ). We need to show that A⊥�⊥B|C.
First, let uv ∈ E. Then u⊥�⊥v|V \ {u, v} and hence by upward-stability as shown

in Theorem 5.3, u⊥�⊥v|C for any C ⊂ V \ {u, v}.
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Since C does not separate A from B , there exists u ∈ A and v ∈ B and a path
u = v1, v2, . . . , vr = v such that vk /∈ C for all k = 1, . . . , r , and vkvk+1 ∈ E for
all k = 1, . . . , r − 1. By the previous argument, we obtain that vk ⊥�⊥vk+1|C for
all k = 1, . . . , r − 1. By singleton-transitivity, v1⊥�⊥v2|C and v2⊥�⊥v3|C imply that
v1⊥�⊥v3|C. Repeating this argument yields u⊥�⊥v|C and hence A⊥�⊥B|C. �

Note that this was also shown by Slawski and Hein [39] in the case of a Gaus-
sian MTP2 distribution. In fact, in the Gaussian case it follows readily since con-
ditional covariances between any pair of variables can be obtained through adding
(nonnegative) partial correlations along paths in G(P ) [19]; see also [45].

Notice that if X has coordinatewise connected support, then Theorem 5.5 is a
direct corollary of Theorem 6.1. This is because if a distribution is faithful to an
undirected graph, then the statement of Theorem 5.5 obviously holds. However,
the latter theorem is still interesting as it covers cases that Theorem 6.1 does not;
such as that of Example 5.4.

In Section 3, we postponed showing that the stability of the MTP2 property un-
der coarsening as established in (iii) of Proposition 3.4 does not imply that coars-
ening preserves conditional independence relations for MTP2 distributions. We
demonstrate this in the following example.

EXAMPLE 6.2. Consider the trivariate discrete distributions of (I, J,K)

where I and K are binary taking values in {0,1} whereas J is ternary with state
space {0,1,2} given as follows:

pijk = θi|jφk|jψj ,

where ψj = 1/3 for all j , θ1|0 = φ1|0 = 1 − θ0|0 = 1 − φ0|0 = 1/4, θ1|1 = φ1|1 =
1 − θ0|1 = 1 −φ0|1 = 1/3, and θ1|2 = φ1|2 = 1 − θ0|2 = 1 −φ0|2 = 1/2. This distri-
bution is easily seen to be MTP2 which also follows from Proposition 7.1 below.
By construction, it also satisfies I ⊥⊥ K|J so that its concentration graph has edges
IJ and JK .

Now define the binary variable L by monotone coarsening of J so that L = 0 if
J = 0 and L = 1 if J ∈ {1,2}. Letting qilk denote the joint distribution of (I,L,K)

we get, for example,

q010 = p010 + p020 = (θ0|1φ0|1 + θ0|2φ0|2)/3 = (4/9 + 1/4)/3 = 25/108,

and similarly

q011 = q110 = 17/108, q111 = 13/108

so that the odds-ratio between I and J conditional on {L = 1} becomes

θ = q010q111

q110q011
= 13 × 25

172 = 325

289
> 1.
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Hence, after coarsening, the conditional association between I and J given the
third variable changes from absent to positive. Note that the MTP2 property en-
sures nonnegativity of the distorted association.

Clearly, the distribution after coarsening remains faithful to its concentration
graph, but coarsening changes the latter to become the complete graph on V =
{I,L,K}.

For completeness of Theorem 6.1, it is important to show that any concentration
graph is realizable by an MTP2 distribution. We prove this fact in the special case
of Gaussian distributions.

PROPOSITION 6.3. Any undirected graph G is realizable as the concentration
graph G(P ) of some MTP2 Gaussian distribution.

PROOF. Let A be the adjacency matrix of G, that is, Aij = 1 if and only if
(i, j) is an edge of G. Because G is undirected, A is symmetric. Since the set
of positive definite matrices is open and the identity matrix is positive definite,
it follows that K = I − εA is positive definite if ε > 0 is sufficiently small. By
construction, K is an M-matrix and its nonzero elements correspond to the edges
of the graph G. �

7. Special instances of total positivity. We conclude this paper with a sec-
tion on how to construct MTP2 distributions from a collection of smaller MTP2
distributions, a brief discussion of conditions for the MTP2 property of discrete
distributions in terms of log-linear interaction parameters, and characterizing con-
ditional Gaussian distributions which are MTP2.

7.1. Singleton separators. Let A,B ⊂ V . We then say that two random vari-
ables XA and XB with distributions PA and PB are consistent if the distribution of
XA∩B is the same under PA as under PB . Then one can define a new distribution
denoted by PA � PB and known as the Markov combination of PA with density f

and PB with density g (see [10]). Its density is denoted by f � g and given by

(f � g)(xA∪B) = f (xA)g(xB)

h(xA∩B)
.

Here, h denotes the density of XA∩B , common to PA and PB . In the following, we
show that the Markov combination of two MTP2 distributions is again MTP2 as
long as they are glued together over a 1-dimensional margin.

PROPOSITION 7.1. Suppose that |A ∩ B| = 1. Then the Markov combination
PA � PB of a consistent pair of distributions PA and PB is MTP2 if and only if PA

and PB are both MTP2.



TOTAL POSITIVITY IN MARKOV STRUCTURES 1171

PROOF. Since PA and PB are marginal distributions of PA �PB and the MTP2
condition is preserved under marginalization, we only need to prove one direction.
Assume that PA and PB are MTP2. The product of MTP2 functions is an MTP2
function; see, for example, Proposition 3.3 in [20] for this basic result. This implies
that (fg)(x) = f (xA)g(xB) is MTP2. Now, if A∩B is a singleton, then also f � g

is MTP2 because multiplying by functions of a single variable preserves the MTP2
property; cf. (3.2). �

For example, Proposition 7.1 implies that for the fitted model in Example 4.2
we only need to check the MTP2 condition in each of the two clique marginals
{1,2,3} and {1,4,5} to verify that the fitted distribution is MTP2. Since the fit-
ted distribution is positive, this involves only 6 + 6 = 12 log-odds-ratios; see the
discussion of (4.1) in Section 4.2. In addition, as there are only pairwise inter-
actions in the {1,2,3}-marginal, conditional log-odds-ratios for any pair of these
variables are constant in the third variable, and hence we actually only need to
check 3 + 6 = 9 such ratios to verify the MTP2 property for the model fitted to the
laryngeal cancer data; see also Theorem 7.5 below.

Unfortunately, the conclusion in Proposition 7.1 does not hold in general if |A∩
B| > 1, as we show in the following example.

EXAMPLE 7.2. Suppose that A = {1,2,3} and B = {2,3,4}, and let X =
(X1,X2,X3,X4) ∈ {0,1}4. Consider the following distribution:

[p0000,p0001,p0010,p0011,p0100,p0101,p0110,p0111]
= [1,2,2,20,2,20,20,400]/Z,

[p1000,p1001,p1010,p1011,p1100,p1101,p1110,p1111]
= [2,4,20,200,20,200,400,8000]/Z,

where the normalizing constant Z = 9313. It is easy to check that for every
i, j, k, l ∈ {0,1} the following holds:

pijkl = pijk+p+jkl

p+jk+
.

Hence, the distribution P = [pijkl] can be obtained as the Markov combination
of two distributions, namely pijk+ over {1,2,3} and p+jkl over {2,3,4}. One can
also easily check that both these distributions are MTP2. However, since

p(1,1,0,1)∧(1,0,1,1)p(1,1,0,1)∨(1,0,1,1) − p(1,1,0,1)p(1,0,1,1)

= p1001p1111 − p1101p1011 = − 8000

93132 ,

P is not MTP2.
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As a direct consequence of Proposition 7.1, we obtain the following result for
decomposable graphs, which are graphs where there is no cycle of length more
than three such that all its nonneighboring nodes (on the cycle) are not adjacent
(see, e.g., [22] for a review).

COROLLARY 7.3. Let G be a decomposable graph such that the intersection
of any two cliques is either empty or a singleton. Let P be a distribution that is
Markov w.r.t. G. Then P is MTP2 if and only if the marginal distribution over each
clique is MTP2.

PROOF. The proof follows by induction over the number of cliques. �

As we show in the following example, Corollary 7.3 cannot be extended directly
to nondecomposable graphs. It does not hold in general that a distribution is MTP2
if the margins over all cliques in the graph are MTP2 and the cliques intersect in
singletons only. However, as we show in Theorem 7.5 such a result does hold if all
clique potentials are MTP2 functions.

EXAMPLE 7.4. Consider the following 4-dimensional binary distribution P =
[pijkl] with

pijkl = 1

Z
AijBjkCklDil,

where

Z = 243, A =
[
6 5
4 3

]
and B = C = D =

[
2 1
1 2

]
.

This distribution is Markov w.r.t. the 4-cycle. We now show that the marginal dis-
tributions over each edge are MTP2. For this, note that a binary 2-dimensional
random vector is MTP2 if and only if its covariance is nonnegative. To see this, ob-
serve that in the bivariate case there is only one inequality p00p11 − p01p10 ≥ 0.
Using the fact that p00 + p01 + p10 + p11 = 1, it is seen that this inequality is
equivalent to p11 − p1+p+1 ≥ 0, but cov(X1,X2) = p11 − p1+p+1.

In this example,

cov(X1,X2) = 148

2432 , cov(X2,X3) = 4812

2432 ,

cov(X3,X4) = 4842

2432 , cov(X1,X4) = 4632

2432 ,

and hence all edge-marginals are MTP2. However, the full distribution P is not
MTP2, since

p0011p1111 − p0111p1011 = − 32

2432 ,

which completes the proof by a similar argument as in Example 7.2.
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We now show how to overcome these limitations and build MTP2 distributions
over nondecomposable graphs, namely by using MTP2 potentials over the edges
instead of MTP2 marginal distributions over the edges.

THEOREM 7.5. A distribution of the form

p(x) = 1

Z

∏
uv∈E

ψuv(xu, xv),

where ψuv are positive functions and Z is a normalizing constant, is MTP2 if and
only if each ψuv is an MTP2 function.

PROOF. Since the distribution p is strictly positive, by Proposition 3.5 p sat-
isfies MTP2 if and only if it does so for x, y ∈X that differ in two coordinates, say
with indices u, v. Write Eu for the set of edges that contain u but not v and Ev for
the set of edges that contain v but not u. First, consider the case where uv ∈ E.
Then we have that p(x ∧ y)p(x ∨ y) − p(x)p(y) ≥ 0 if and only if

ψuv

(
(x ∧ y)uv

)
ψuv

(
(x ∨ y)uv

) ∏
st∈Eu∪Ev

ψst

(
(x ∧ y)st

)
ψst

(
(x ∨ y)st

)

≥ ψuv(xuv)ψuv(yuv)
∏

st∈Eu∪Ev

ψst (xst )ψst (yst ).

All other terms cancel because of the assumption that xw = yw for w ∈ V \ {u, v}.
Now note that for st ∈ Eu ∪ Ev we have {xst , yst } = {(x ∧ y)st , (x ∨ y)st } and so
the above inequality holds if and only if

ψuv

(
(x ∧ y)uv

)
ψuv

(
(x ∨ y)uv

) ≥ ψuv(xuv)ψuv(yuv),

that is, if and only if ψuv is MTP2.
Next, consider the case where uv /∈ E. By the same argument, one concludes

that in this case the above inequalities are in fact equalities, which completes the
proof. �

As a final remark note that Theorem 7.5 can directly be extended to distributions
of the form

p(x) = 1

Z

∏
C∈C

ψC(xC),

where C is a family of subsets of V such that for any two C,C′ ∈ C we have
|C ∩ C′| ∈ {0,1}.
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7.2. Log-linear interactions. We next give a short discussion of interaction
representations for discrete MTP2 distributions, as they typically are used in log-
linear models for contingency tables. Suppose that X = (Xv)v∈V is a random vec-
tor with values in X = ∏

v∈V Xv where each Xv is finite. Let D denote the set of
subsets of V . Any function h : X →R

n of X can be expanded as

(7.1) h(x) = ∑
D∈D

θD(x),

where θD are functions on X that only depend on x through xD , that is, θD satisfy
that θD(x) = θD(xD). In the case where h(x) = logp(x) where p is a positive
probability distributions over X , the functions θD(x) are known as interactions
among variables in D and we shall also use this expression for a general function h.

Without loss of generality, we may assume that minXv = 0 for all v ∈ V and to
assure that the representation is unique, we may require that θD(x) = 0 whenever
xd = 0 for some d ∈ D. With this convention, the sum in (7.1) can be rewritten
so it only extends over such D ∈ D which are contained in the support S(x) of x

where d ∈ S(x) ⇐⇒ xd �= 0. In the binary case, when dv = 1, this allows us to
use a simpler notation, namely θD(1D) := θD for all D ∈ D.

For any such interaction expansion and a fixed pair u,w ∈ V , we define a func-
tion γuw on X by

γuw(x) = ∑
D:{u,w}⊆D⊆S(x)

θD(x).

Observe that then γuw(x) = 0 unless u,w ∈ S(x), and thus in particular whenever
|S(x)| ≤ 1; further, γuw is a linear combination of interaction terms.

Let Z ⊆ X be a subset of X which is closed under ∧ and ∨. A function g :
Z →R is supermodular if

g(x ∧ y) + g(x ∨ y) ≥ g(x) + g(y) for all x, y ∈ Z.

Thus, g is supermodular on X if and only if exp(g) is MTP2 on X . A function g

is modular if both of g and −g are supermodular.
Denote by XA the set of all x ∈ X with S(x) = A. Clearly, XA is closed under

∧ and ∨. Then we obtain the following result.

THEOREM 7.6. Let P be a strictly positive distribution of X. Then P is MTP2
if and only if for all A ⊆ V with |A| ≥ 2 and any given u,w ∈ V the function γuw

is nonnegative, nondecreasing and supermodular over XA.

PROOF. By Proposition 3.5, p is MTP2 if and only if

(7.2) logp(x ∧ y) + logp(x ∨ y) − logp(x) − logp(y) ≥ 0

for all x, y ∈ X that differ only in two entries. Let u,w ∈ V and take x, y ∈ X
satisfying xv = yv for all v ∈ V \{u,w}. Without loss of generality, we can assume
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xu < yu and yw < xw for otherwise the inequality is trivially satisfied. Using the
expansion (7.1), the inequality (7.2) becomes

(7.3)
∑
D∈D

(
θD

(
(x ∧ y)D

) + θD

(
(x ∨ y)D

) − θD(xD) − θD(yD)
) ≥ 0.

For every D ⊆ V \ {w}, we have (x ∧ y)D = xD and (x ∨ y)D = yD . Similarly,
for every D ⊆ V \ {u} we have (x ∧ y)D = yD and (x ∨ y)D = xD , and thus, in
both cases the corresponding summands in (7.3) are zero. It follows that (7.3) is
equivalent to

(7.4)
∑

D:{u,w}⊆D⊆A

(
θD

(
(x ∧ y)D

) + θD

(
(x ∨ y)D

) − θD(xD) − θD(yD)
) ≥ 0,

where A ⊆ V is the support of x ∨ y (if D is not contained in A all terms θD are
zero by our convention).

We now show that the fact that (7.4) must hold for all u,w ∈ V and x, y ∈X as
above is equivalent to the fact that all γuw satisfy the conditions of the theorem.

Consider three possible cases:

(a) S(x) = A \ {u}, S(y) = A \ {w},
(b) either S(x) = A \ {u}, S(y) = A or S(x) = A, S(y) = A \ {w};
(c) S(x) = S(y) = A.

In other words: in case (a), we have xu = yw = 0; in case (b), either xu = 0, yw > 0
or xu > 0, yw = 0; and in case (c) we have xu, yw > 0.

In case (a), we have θD((x ∧ y)D) = θD(xD) = θD(yD) = 0 for every D con-
taining {u,w} so (7.4) becomes∑

D:{u,w}⊆D⊆A

θD

(
(x ∨ y)D

) ≥ 0.

By choosing different pairs x, y, this can be equivalently rewritten as∑
D:{u,w}⊆D⊆S(x)

θD(xD) ≥ 0 for all x ∈ X

and the sum on the left is precisely γuw(x).
In case (b), if S(x) = A \ {u}, S(y) = A, (7.4) becomes∑

D:{u,w}⊆D⊆A

(
θD

(
(x ∨ y)D

) − θD(yD)
) ≥ 0,

where A = S(x ∨ y) = S(y), which is equivalent to γuw being nondecreasing on
XA.

Finally, in case (c), all x ∨ y, x ∧ y, x, y have the same support. Thus, γuw must
be supermodular over each XA. �

As a special case, we recover the characterization of binary MTP2 distributions
in [4].
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COROLLARY 7.7. Let P be a binary distribution with

logp(x) = ∑
D:D⊆S(x)

θD

using the convention that θD = θD(1D). Then P is MTP2 if and only if for all A

with |A| ≥ 2 and all {u,w} ⊆ V we have∑
D:{u,w}⊆D⊆A

θD ≥ 0.

PROOF. In the binary case, each XA has only one element and so the only
constraint from Theorem 7.6 is the nonnegativity constraint. �

EXAMPLE 7.8. Let X = (X1 = 1A,X2 = 1B,X3 = 1C) be the vector of bi-
nary indicator functions of events A, B , C. Reichenbach [34], page 190 (us-
ing a different notation) says that an event B is causally between A and C if
P(C|B ∧ A) = P(C|B) and further

1 > P(C|B) > P(C|A) > P(C) > 0,

1 > P(A|B) > P(A|C) > P(A) > 0.

Equivalently, as defined in [6], B is causally between A and C if the following
hold:

P(A ∧ C) > P(A)P (C),(7.5)

P(A|B) > P(A|C),(7.6)

P(C|B) > P(C|A),(7.7)

P(A ∧ C|B) = P(A|B)P (C|B),(7.8)

P(¬A ∧ B) > 0, P (¬C ∧ B) > 0.(7.9)

In general, causal betweenness does not imply MTP2; if we let p101 = 0, p000 =
4/10, and pijk = 1/10 for the remaining six possibilities, B is causally between A

and C, but X is not MTP2 since 0 = p101p000 < p100p001.
However, if P(X = x) > 0 for all x and B is causally between A and C, then

P is MTP2. To see this, we expand P in log-linear interaction parameters to get

(7.10) 1A ⊥⊥ 1C |(1B = 1) ⇐⇒ θAC + θABC = 0.

Further, a simple but somewhat tedious calculation using (7.10) yields that (7.6)
and (7.7) hold if and only if

θAB > θAC, θBC > θAC,

which in combination with (7.10) gives that (7.6)–(7.8) hold if and only if

(7.11) θAB + θABC > 0, θBC + θABC > 0, θAC + θABC = 0.
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Thus, Corollary 7.7 ensures that P is MTP2.
Conversely, if P(X = x) > 0 for all x and P is MTP2, the condition

1A ⊥⊥ 1C |(1B = 1) implies “weak causal betweenness”, that is, P satisfies the
inequalities (7.5)–(7.7) with > replaced by ≥; this is true because the weak form
of (7.6) and (7.7) follows from the weak form of (7.11), and (7.5) in its weak form
expresses that cov(X1,X3) ≥ 0, which is also a consequence of MTP2.

Finally, if P(X = x) > 0 for all x, P is MTP2, and the independence graph
of P is 1—2—3, then B is causally between A and C, as then P is faithful by
Theorem 6.1, which ensures that inequalities are strict.

7.3. Conditional Gaussian distributions. In this section, we study CG-distri-
butions satisfying the MTP2 property. The density of a CG-distribution is given
by specifying a strictly positive distribution p(i) over the discrete variables for
i ∈ X�. Then the joint density f (x) = f (i, y) is determined by specifying f (y|i)
to be the density of a Gaussian distribution N�(ξ(i),�(i)), where ξ(i) ∈ R

� is
the mean vector and �(i) is the covariance matrix. CG-distributions can also be
represented by the set of canonical characteristics (g,h,K) where

logf (x) = logf (y, i) = g(i) + h(i)T y − 1

2
yT K(i)y;

see [22]. Here, K(i) = �−1(i) is the conditional concentration matrix. We shall
say that a function u(i) is additive if it has the form

u(i) = ∑
δ∈�

αδ(iδ).

Before we characterize CG-distribution with the MTP2 property, we need a small
lemma.

LEMMA 7.9. A function u :X� →R is additive if and only if it is modular.

PROOF. If u is additive, then it is clearly modular. To show the converse, we
make a log-linear expansion of u as in (7.1)

u(i) = ∑
D∈D

ηD(i).

We shall show that if u is modular, then ηD(i) = 0 whenever |D| ≥ 2. If for C ⊆ V ,
we let

wC(i) = u(iC,0V \C),

it follows from the Möbius inversion lemma, also known as inclusion–exclusion
(for example p. 239 of [22]) that

ηD(i) = ∑
A:A⊆D

(−1)|D\A|wA(i).
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If |D| ≥ 2, we can for distinct u, v ∈ D rewrite this as

ηD(i) = ∑
A:A⊆D\{u,v}

(−1)|D\A|{wA∪{u,v}(i) − wA∪{u}(i) − wA∪{v}(i) + wA(i)
}
.

If u is modular, all terms inside the curly brackets are zero, and hence u is additive.
�

PROPOSITION 7.10. A CG-distribution P with canonical characteristics
(g,h,K) is MTP2 if and only if:

(i) g(i) is supermodular;
(ii) h(i) is additive and nondecreasing;

(iii) K(i) = K for all i where K is an M-matrix.

PROOF. By Proposition 3.5, a CG-distribution is MTP2 if and only if it satis-
fies

f (y ∧ z, i ∧ j)f (y ∨ z, i ∨ j) ≥ f (y, i)f (z, j)

for cases where (y, i) and (z, j) differ on two coordinates. Suppose first that i = j

and y, z differ on two coordinates. Then we equivalently need to check whether

f (y ∧ z|i)f (y ∨ z|i) ≥ f (y|i)f (z|i).
Since f (y|i) is the density of a Gaussian distribution, this inequality holds for
every y, z ∈ R

� and i if and only if each K(i) is an M-matrix.
If i, j and y, z both differ on one coordinate then without loss of generality we

can assume i < j and y > z so that i = i ∧ j and z = y ∧ z. In this case, we need
to show that

(7.12) logf (z, i) + logf (y, j) ≥ logf (y, i) + logf (z, j).

Write y = z + tek for some t > 0, where ek is a unit vector in R
� . Then equiva-

lently

1

t

(
logf (z + tek, j) − logf (z, j)

) ≥ 1

t

(
logf (z + tek, i) − logf (z, i)

)
.

Since this holds for every t > 0, we can take the limit t → 0, which implies that
necessarily

∇z logf (z, j) ≥ ∇z logf (z, i) for all z ∈ R
�, i < j ∈ �.

Since ∇y logf (y, i) = h(i) − K(i)y, this is equivalent to

h(j) − h(i) − (
K(j) − K(i)

)
z ≥ 0.

The function on the left-hand side is linear in z, and thus this holds for every z if
and only if K(j) = K(i) for every i, j and h(i) is nondecreasing in i.
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If y = z and i, j differ on two coordinates, using all the conditions that have
been already proven to be necessary we need to check that

(
g(i ∧ j) + g(i ∨ j) − g(i) − g(j)

)
(7.13)

+ (
h(i ∧ j) + h(i ∨ j) − h(i) − h(j)

)T
z ≥ 0.

This can hold for every z only if h is modular, that is,

(7.14) h(i ∧ j) + h(i ∨ j) − h(i) − h(j) = 0 for all i, j.

Now if (7.14) holds, (7.13) holds if and only if g(i) is super-modular. By
Lemma 7.9, h is additive, which completes the proof. �

Proposition 7.10 gives a simple condition for CG-distributions to be MTP2 in
terms of their canonical characteristics. This also implies that the moment charac-
teristics (p, ξ,�) have simple properties.

PROPOSITION 7.11. If a CG-distribution is MTP2, its moment characteristics
(p, ξ,�) satisfy:

(i) p(i) is MTP2;
(ii) ξ(i) is additive and nondecreasing;

(iii) �(i) = � for all i and all elements of � are nonnegative.

PROOF. If the CG-distribution is MTP2, (iii) follows directly from Proposi-
tion 7.10. The condition (i) follows since marginals of MTP2 distributions are
MTP2 and (ii) follows from (ii) of Proposition 7.10 since ξ(i) = �h(i) and �

has only nonnegative elements. �

Thus, MTP2 CG-distributions are in particular homogeneous—�(i) constant
in i—and mean-additive [12, 22]. Note that the converse of Proposition 7.11 is not
true since ξ(i) can be nonincreasing and h = Kξ(i) decreasing, even when K is
an M-matrix.

Finally, we make expansions of g(i) as in Section 7.2:

g(i) = ∑
D∈D

λD(i), γ g
uw(i) = ∑

D:{u,w}⊆D⊆S(i)

λD(i)

and recall that IA = {i : S(i) = A}. We then have the following alternative formu-
lation of Proposition 7.10.

COROLLARY 7.12. A CG-distribution is MTP2 if and only if:

(i) For all A ⊆ V with |A| ≥ 2 and all u,w ∈ V , the functions γ
g
uw(i) are

supermodular and nondecreasing over each IA;
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(ii) The function h(i) is additive

h(i) = ∑
δ∈�

αδ(iδ)

with nondecreasing components αδ(iδ)v ;
(iii) There exists an M-matrix K such that K(i) = K for all i.

PROOF. The proof of Theorem 7.6 does not use that logp is the logarithm of
a probability distribution; hence the corresponding conclusions also apply to the
expansion of g. �

Note that if i is binary, condition (i) of the Corollary simplifies as in Corol-
lary 7.7 to the condition that for all A ⊆ V and all u �= w ∈ A we have∑

D:{u,w}⊆D⊆A

λD ≥ 0.

8. Discussion. In this paper, we showed that MTP2 distributions enjoy many
important properties related to conditional independence; in particular, an indepen-
dence model generated by an MTP2 distribution is an upward-stable and singleton-
transitive compositional semi-graphoid which is faithful to its concentration graph
if it has coordinatewise connected support.

We illustrated with several examples that MTP2 models are useful for data anal-
ysis. The MTP2 constraint seems restrictive when no conditional independences
are taken into account. However, the picture changes and the MTP2 constraint be-
comes less restrictive when imposing conditional independence constraints in the
form of Markov properties.

An important property of MTP2 models, which is of practical relevance, is that
the positive conditional dependence of two variables given all remaining variables
implies a positive dependence given any subset of the remaining variables. This is
a highly desirable feature, especially when results of follow-up empirical studies
are to be compared with an earlier comprehensive study, and the studies coincide
only in a subset of core variables.

More generally, in any MTP2 concentration graph model, dependence rever-
sals cannot occur. This undesirable, worrying feature has been described and stud-
ied under different names depending on the types of the involved variables, for
instance as near multicollinearity for continuous variables, as the Yule–Simpson
paradox for discrete variables, or as the effects of highly unbalanced experimental
designs with explanatory discrete variables for continuous responses. It is a re-
markable feature of MTP2 distributions that such dependence reversals are absent.

These observations suggest that it would be desirable to develop further methods
for hypothesis testing and estimation under the MTP2 constraint as done for the
binary case in [4]. Our results may also be applied not to the joint distribution of all
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variables, but only to the joint distribution of a subset of the variables, given a fixed
set of level combinations of the remaining variables. This is particularly interesting
in empirical studies, where a set of possible regressors and background variables is
manipulated to make the studied groups of individuals as comparable as possible;
for instance, by selecting equal numbers of persons for fixed level combinations
of some features, by proportional allocation of patients to treatments, by matching
or by stratified sampling. In such situations, not much can be inferred from the
study results about the conditional distribution of the manipulated variables given
the responses. However, the MTP2 property of the joint conditional distribution of
the responses given the manipulated variables could be essential.
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