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Abstract
Bayesian inference for hierarchical models can be very challenging. MCMC methods have
difficulty scaling to large models with many observations and latent variables. While
variational inference (VI) and reweighted wake-sleep (RWS) can be more scalable, they are
gradient-based methods and so often require many iterations to converge. Our key insight
was that modern massively parallel importance weighting methods (Bowyer et al., 2024)
give fast and accurate posterior moment estimates, and we can use these moment estimates
to rapidly learn an approximate posterior. Specifically, we propose using expectation
maximization to fit the approximate posterior, which we call QEM. The expectation step
involves computing the posterior moments using high-quality massively parallel estimates
from Bowyer et al. (2024). The maximization step involves fitting the approximate posterior
using these moments, which can be done straightforwardly for simple approximate posteriors
such as Gaussian, Gamma, Beta, Dirichlet, Binomial, Multinomial, Categorical, etc. (or
combinations thereof). We show that QEM is faster than state-of-the-art, massively
parallel variants of RWS and VI, and is invariant to reparameterizations of the model that
dramatically slow down gradient based methods.

1. Introduction

Hierarchical models are powerful statistical tools for understanding real-world, structured
data. For instance, a hierarchical model could be used to analyze student test scores, where
students are nested within classrooms and classrooms are nested within schools. However,
using Bayesian inference in these hierarchical models to estimate the underlying parameters
or latent variables from the data can be computationally challenging. MCMC methods such
as HMC (Duane et al., 1987; Neal, 2012) have difficulty scaling to large hierarchical models,
so there is a large literature applying variational inference (VI; Jordan et al., 1999; Blei
et al., 2017; Aitchison, 2019; Agrawal and Domke, 2021; Geffner and Domke, 2022) and
reweighted wake-sleep (RWS; Bornschein and Bengio, 2015; Le et al., 2020; Heap et al.,
2023) as an alternative.

However, with VI and RWS, in the case of non-conjugate models the approximate posterior
is often learned using gradient descent on an objective function (Kingma and Welling, 2014;
Rezende et al., 2014; Bornschein and Bengio, 2015; Le et al., 2020; Wingate and Weber,
2013; Titsias and Lázaro-Gredilla, 2014). Gradient descent can require many iterations to
converge, requires careful hyperparameter tuning, and is sensitive to details of how the model
is parameterized (see Appendix E).
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In this paper, we set out to develop a Bayesian inference method for hierarchical models
which is faster than both VI and RWS, while at the same time mitigating those methods’
issues, such as inefficient gradient-based training and overconfident approximate posteriors.
To develop this method, we began with massively parallel importance weighting (MPIW)
(Bowyer et al., 2024). To motivate MPIW, consider a model with data x, latent variables
z′, true posterior, P (z′|x) and approximate posterior, Q (z′). (Note that we use z′ rather
than z as we will use z later to represent the collection of samples of the latents used
in importance weighting.) Chatterjee and Diaconis (2018) showed that for importance
weighting, the number of samples from the proposal, Q (z′), required to get a good estimate
of the true posterior, P (z′|x), scales as exp (DKL (P (z′|x)∥Q (z′))). This exponential scaling
of the number of samples looks problematic. Indeed, Bowyer et al. (2024) note that the
KL-divergence scales linearly with the number of latent variables, n, implying that the
number of samples required scales as exp (n), which is intractable in all but the smallest
models. Massively parallel methods resolve this issue by drawing K samples for each of the
n latent variables, and explicitly reweighting all possible Kn combinations. MPIW is able
to be efficient because they exploit conditional independencies in the generative model and
proposal/approximate posterior. These conditional independencies are usually understood
by writing both distributions as a “Bayes net”. Thus, MPIW in effect has the required
exponential number of importance samples, and can give good posterior moment estimates
even in large models.

However, MPIW is ultimately just an importance sampling method, i.e. it allows you to
sample from a single, fixed proposal then reweight to approximate the true posterior. To
work well, all importance sampling methods require a proposal distribution that is reasonably
close to the true posterior. This motivates considering iterative schemes that learn better
proposals. Indeed, pre-existing methods such as VI (Jordan et al., 1999; Wainwright et al.,
2008; Kingma and Welling, 2014; Rezende et al., 2014; Blei et al., 2017; Nguyen et al., 2018;
Zhang et al., 2018; Kingma et al., 2019; Gayoso et al., 2021) and reweighted wake-sleep
(Bornschein and Bengio, 2015; Le et al., 2020) do just this—using gradient ascent to update
the proposal (which is usually called an approximate posterior in the VI/RWS context).

To develop an alternative, we noticed that we could use MPIW posterior moment estimates
to learn the proposal without needing gradient descent. We refer to this new method as
QEM, as it resembles the expectation maximization algorithm (Dempster et al., 1977; Neal
and Hinton, 1998). The key difference is that traditional EM optimizes the parameters
of the prior, whereas QEM optimizes the parameters of the approximate posterior (the
approximate posterior is denoted Q in VI and RWS, hence the QEM acronym). Specifically,
in the expectation step (E-step) we use MPIW to compute posterior moments, and in the
maximization step (M-step) we use these moments to update the approximate posteriors.
Note that the M-step is straightforward for simple approximate posteriors such as Gaussian,
Gamma, Beta, Dirichlet, Binomial, Multinomial, Categorical, etc. Critically, standard EM
differs from QEM because in standard EM, there is no approximate posterior. Instead,
standard EM learns parameters of the model θ which may appear in the prior Pθ (z

′) or in
the likelihood, Pθ (x|z′).

We show that QEM converges more rapidly than VI or RWS, is reparameterization
invariant, gives moment estimates that improve over VI, and are comparable to those in
RWS.
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2. Related work

Of course, key related work arises in the small but growing literature on massively parallel
methods, including massively parallel VI (Aitchison, 2019) and massively parallel RWS (Heap
et al., 2023), along with massively parallel importance weighting (Bowyer et al., 2024). This
work all uses the key massively parallel idea—drawing K samples of each of the n latent
variables and reasoning over all Kn combinations—in different contexts.

Massively parallel VI (Aitchison, 2019) is an extension of the importance weighted
autoencoder (IWAE; Burda et al., 2016). IWAE learns a good approximate posterior by
doing gradient ascent on a multi-sample variant of the ELBO (Eq. 14c) that gives tighter
variational bounds. However, IWAE only uses a small number of importance samples from the
approximate posterior to compute the ELBO. Unfortunately, given the results from Chatterjee
and Diaconis (2018) discussed in the introduction, we expect the number of importance
samples required to accurately approximate the true posterior to scale exponentially in
number of latent variables. This suggests that in larger models, IWAE will have far too
few samples to approximate the true posterior. Massively parallel VI resolves this issue by
drawing K samples for each of the n latent variables, and computing the ELBO by averaging
over all Kn combinations (Eq. 7c). Aitchison (2019) showed that massively parallel VI
converges faster than standard VI, and gives considerably tighter bounds on the marginal
likelihood.

Likewise, massively parallel RWS (Heap et al., 2023) is a massively parallel extension
of RWS (Bornschein and Bengio, 2015; Le et al., 2020). To understand RWS, note that
the ideal way to learn the approximate posterior would be maximum likelihood on samples
from the true posterior. Of course, we do not have samples from the true posterior, so
what else can we do? One approach is to approximate the true posterior by sampling
from the approximate posterior and reweighting. Of course, this procedure requires a good
importance weighted estimate of the true posterior. However, traditional RWS uses only a
small number of approximate posterior samples, which, as previously discussed, may not
suffice in settings with a large number of latent variables. Massively parallel RWS (Heap
et al., 2023) resolves this issue by again drawing K samples of each latent variable and
considering all Kn combinations.

Importantly, both massively parallel VI and RWS improve the approximate posterior by
doing gradient ascent, which can be slow and requires tuning hyperparameters such as the
learning rate. In contrast, QEM introduced here uses massively parallel moment estimates
to directly update the approximate posterior, without using gradients.

Massively parallel importance weighting (MPIW) was introduced in Bowyer et al. (2024).
We use MPIW to compute moment estimates for QEM. Importantly, however, QEM and
MPIW are doing something quite different. MPIW is just an importance weighting method, so
it allows you to sample from a proposal/approximate posterior, then reweight to approximate
the true posterior. Importantly, the proposal/approximate posterior in importance sampling
is fixed. In contrast, QEM is a method to learn a better approximate posterior.

As QEM learns a better approximate posterior, it can be understood as an adaptive
importance sampling/weighting method (Ortiz and Kaelbling, 2000; Liu et al., 2001; Pennanen
and Koivu, 2006; Rubinstein and Kroese, 2004; Cornuet et al., 2012; Marin et al., 2014;
Bugallo et al., 2015, 2017; El-Laham et al., 2019; Elvira et al., 2019; van Osta et al., 2021). We
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believe that these methods could be enhanced by incorporating massively parallel importance
weighted (MPIW) moment estimates (Bowyer et al., 2024), but we leave this complex
integration to future work.

QEM is invariant to reparameterization of the approximate posterior, which resembles
properties you might see in natural gradient variational inference (Amari, 1998; Hoffman
et al., 2013; Hensman et al., 2013; Khan and Nielsen, 2018). However, natural gradient
inference is restricted to performing variational inference in the single-sample setting, so can
be expected to give loose bounds on the ELBO and poor moment estimates (Turner and
Sahani, 2011; Burda et al., 2016; Aitchison, 2019; Geffner and Domke, 2022).

3. Background

3.1. Bayesian inference.

We have a probabilistic model with latents z′ and data x, with a prior, P (z′) and a likelihood,
P (x|z′). Our goal is to compute properties of the posterior distribution over latent variables,
z′, conditioned on data, x. This posterior is given by Bayes theorem,

P
(
z′
∣∣x) = P (x|z′) P (z′)

P (x)
, (1)

where P (x) is known as the marginal likelihood or model evidence,

P (x) =

∫
dz′ P

(
x
∣∣z′)P (z′) . (2)

In QEM, we need to compute posterior moments,

mtrue = EP(z′|x)
[
m(z′)

]
. (3)

where m(z′) is any moment of interest. These moments are usually intractable and must be
approximated.

3.2. Massively parallel importance weighting.

Traditional importance sampling methods fail to obtain a good estimate of the posterior
for hierarchical models as the required number of samples scales exponentially with the
number of latent variables. MPIW resolves this by drawing K samples for each of the n
latent variables and explicitly reweighting all Kn combinations. For each latent variable i,
we draw K samples:

zi = (z1i , . . . , z
K
i ) ∈ ZK

i , (4)

and the collection of all samples of all latents is given by

z = (z1, . . . , zn) ∈ ZK . (5)

There are then two types of approximate posterior distributions:
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Algorithm 1 Expectation maximization for approximate posteriors (QEM)
m0 = Initial values. {Initialise approximate posterior mean parameters.}
for t ∈ 1, 2, . . . , T do
Qt = set_exp_family_params(mt−1) {Set exponential family parameters (M-step)}
z ∼ Qt

mone iter
t = MPIW(z,Qt) {Compute moments using MPIW (E-step)}

mt = λmone iter
t + (1− λ)mt−1 {Update mean parameters via EMA}

end for

• Q (z): The standard approximate posterior distribution over a single complete set of
latent variables

• QMP (z): The massively parallel approximate posterior that handles all Kn combina-
tions of samples, where n is the number of latent variables

While Q (z) works with just one set of latents, QMP (z) is structured to handle the full
combinatorial space created by having K samples for each latent variable. Specifically,
QMP (z) factorizes according to the graphical model structure:

QMP (z) =

n∏
i=1

QMP (zi|zj for j ∈ qa (i)) (6)

where qa (i) represents the parents of the ith latent variable in the graphical model for the
approximate posterior. This factorization allows QMP (z) to efficiently handle the massive
number of combinations while respecting the conditional independence structure of the model.
More details on this can be found in Appendix A.

Given indices k = (k1, . . . , kn) ∈ Kn, we compute the MPIW moment estimate:

mMP(z) =
1

Kn

∑
k∈Kn

rk(z)

PMP(z)
m(zk) (7a)

rk(z) =
P
(
x, zk

)∏
iQMP

(
zkii

∣∣∣zj for j ∈ qa (i)
) (7b)

PMP(z) =
1

Kn

∑
k∈Kn

rk(z). (7c)

Heap et al. (2023) showed that Eq. (7c) is an unbiased estimator of the marginal likelihood.
Computing these estimates efficiently requires exploiting conditional independencies in the
graphical model (Bowyer et al., 2024).

While this resembles standard importance weighting, MPIW sums over all Kn combina-
tions of samples for all latent variables. Bowyer et al. (2024) showed these moment estimates
can be computed efficiently using the source-term trick—differentiating through a modified
version of the ELBO—by exploiting conditional independencies in the graphical model. Heap
et al. (2023) showed that PMP(z) provides an unbiased estimate of the marginal likelihood.
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Figure 1: Comparing the ELBO (top row) and predictive-log-likelihood (bottom row) of
QEM (pink), RWS (green) and VI (orange) on several models, with iteration
number on the x-axis. We report error bars on each line of one standard error over
five repeated runs with the same data but using different random seeds. Note we
did not run VI on the occupancy model as it has discrete latent variables.

4. Methods

Here, we introduce expectation maximization for approximate posteriors (QEM). The overall
approach is to alternate between E and M steps:

• E-step: use MPIW to estimate true posterior moments.

• M-step: compute the natural/conventional parameters of the approximate posterior by
setting the moments of the approximate posterior equal to the (average of) moments
computed in the E-step.

The algorithm operates by setting parameters of Q (z) based on current moment estimates,
then using QMP (z) to compute more accurate estimates by exploiting the full combinatorial
space of samples. This separation allows us to maintain a simple parameterization while
leveraging the power of massively parallel importance weighting.

For an efficient M-step, we assume that the approximate posterior is an exponential
family distributions such as Gaussian, Beta, and Dirichlet in which the distributions natural
or conventional parameters can be recovered directly from the moments. For instance, a
Gaussian component’s mean and variance are determined by its first and second moments,
while a Beta’s parameters are recovered from expectations of log transformations. See
Appendix B for an in-depth discussion of the relationship between the QEM M-step and
RWS.
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Figure 2: As in Figure 1, but with time, rather than iterations on the x-axis. Again, note
we cannot run VI on the occupancy model as it has discrete latent variables.

In practice, just using the previous moment estimate can cause pathologies (e.g. if the
second moment estimates on one step happen to be very close to the first moment estimates
due to only one of the samples having non-negligible weight). We can reduce these pathologies
by using an exponential moving average (EMA) for the moments. Specifically, if mt−1 is the
previous EMA moment estimate, and mone iter

t is the new MPIW moment estimate, then we
would form a new EMA moment estimate using

mt = (1− λ)mt−1 + λmone iter
t . (8)

Algorithm 1 presents the complete QEM procedure. In each iteration, the algorithm uses
the current mean parameters mt−1 to set the parameters of exponential family distributions
that form the approximate posterior Qt (line 3). This step exploits the fact that exponential
family distributions are completely determined by their mean parameters—for instance,
a Gaussian’s mean and variance can be derived from its first and second moments. The
algorithm then draws samples from Qt (line 4) and uses MPIW to compute accurate estimates
of the true posterior moments (line 5). Finally, these moment estimates are combined with
previous estimates using an exponential moving average (line 6) to reduce the impact of any
single noisy estimate.

Importantly, QEM differs from standard EM (Dempster et al., 1977) because in standard
EM, there is no approximate posterior. Instead, standard EM learns parameters of the
model θ which may appear in the prior Pθ(z

′) or in the likelihood, Pθ(x|z′). The QEM
approach provides several advantages: it avoids gradient-based optimization, is invariant to
reparameterization (Section 5.2), and converges to the correct moments as the number of
importance samples increases (Appendix C). Of course, approaches such as MC-EM (Wei
and Tanner, 1990; Levine and Casella, 2001) use a MCMC approximation to the posterior.
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However, MCMC can be very slow, and may parallelise poorly. In contrast, we use fast and
highly parallelisable massively parallel methods.

While this approach might seem natural, there are actually a number of choices here. For
instance, at each step we could use MPIW to estimate the moments (in an exponential family,
the mean parameters), then we could immediately compute the corresponding conventional
parameters (for a Gaussian, the mean and variance) then we could do an EMA for these
conventional parameters. Likewise, we could also compute the EMA of the estimated
exponential family natural parameters. We choose the mean parameters, because you only
get the same fixed points as massively parallel reweighted wake-sleep if we do the EMA for
the mean parameters (Appendix B).

Indeed, we can prove that if you have an unbiased estimator of the parameter of interest,
many iterations and a sufficiently large λ, then the EMA gives the right answer,

Theorem 1 Consider an exponential moving average moment estimator of the form Eq. (8),
where mone iter

t is an unbiased estimator with finite variance and where

λ(t) = 1− t−p, (9)

with 0 < p < 1. In the limit as t→ ∞, mt is unbiased, and zero variance,

lim
t→0

Var [mt] = 0. (10)

See D for a proof. Note that MPIW, as presented in Equation 7a-7c, gives such an unbiased
estimator mone iter

t in the limit as K → ∞, since it is a self-normalizing importance weighting
strategy (meaning the same sample z is used to calculate PMP(z) as well as rk(z) and m(zk)).
We can achieve an unbiased mone iter

t with finite K if we simply use a second, distinct sample
znew ∼ QMP to calculate PMP(znew) instead (with rk(z) and m(zk) unchanged).

5. Results

We consider the following five datasets: Bus Breakdown (Heap et al., 2023), MovieLens100K
(Harper and Konstan, 2015), Occupancy (Bowyer et al., 2024), Radon (Gelman and Hill,
2006) and Covid (Leech et al., 2022). Bus Breakdown consists of around 150,000 New York
city bus delays stratified by year and borough, we use a subset consisting of 2 years, 3
boroughs in each year and 300 delays in each borough. Movielens100K consists of 100,000
movie ratings from 943 users of 1682 movies. The Radon dataset consists of radon readings
taken at houses in the United States, of which we take a subset of 4 states and 300 readings
in each state. The Bird Occupancy dataset comes from the North American Breeding Bird
Survey, which reports the number of sightings of over 700 species of birds from 1966 to
2021 along thousands of roadside routes in the USA and Canada. The Covid dataset is
adapted from (Leech et al., 2022) and consists of 137 daily Covid-19 infection numbers from
92 countries.

For each dataset we define a hierarchical generative model P
(
x, zk

)
and an approximate

posterior/proposal distribution QMP
(
zk
)

over the same latents z. See Appendix F for full
details of the priors and approximate posteriors. For the approximate posteriors, we usually
use a Gaussian independent of the other latent variables.
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We use strong baselines: massively parallel variational inference (MP VI; Aitchison, 2019)
and massively parallel reweighted wake-sleep (MP RWS; Heap et al., 2023). For MP VI and
MP RWS, we need an optimizer. We use the Adam optimizer (Kingma and Ba, 2014) with a
learning rate given by selecting the value from 0.3, 0.1, 0.03, 0.01, 0.003, 0.001 which led to
the greatest ELBO after 125 iterations (which is also how we chose λ for the EMA). All other
Adam hyperparameters are left at their PyTorch defaults. For VI the objective is simply
the massively parallel ELBO, (Eq. 7c), whilst for RWS this is a slightly modified massively
parallel ELBO (as discussed in Heap et al., 2023) which performs a maximum-likelihood
update on the parameters of QMP using posterior samples obtained via proposal samples
reweighted by the importance weights rk(z) from Eq. (7b).

To measure the quality of inference achieved we consider three metrics. First, we use the
importance weighted ELBO. This can be seen as a single-sample ELBO with an improved
approximate posterior (Cremer et al., 2017; Bachman and Precup, 2015), and since the
single-sample ELBO directly measures the KL divergence between the true posterior and
approximate posterior,

ELBO = log P (x)−DKL(Q
(
z′
)
||P (z|x)), (11)

the importance weighted ELBO is commonly taken as a proxy for the quality of the importance
weighted posterior estimate (Geffner and Domke, 2022; Agrawal and Domke, 2021; Domke
and Sheldon, 2019). When interpreting the ELBO, it is important to remember that VI
directly maximizes the ELBO, and while QEM and MP RWS do not directly maximize
the ELBO; nonetheless, it remains a useful diagnostic for all methods. Secondly, we use
predictive log-likelihood: we draw latent samples conditioned on “training” data from each
dataset and use these to predict a separate “test” set. Details about the train and test
splits for each dataset can be found in their respective sections in the appendix. Thus, in
expectation a higher predictive log-likelihood indicates importance samples which are closer
to the true posterior. Thirdly, we simply measure the mean-squared error between posterior
first moment estimates and “true” posterior first moments (which we find using long HMC
runs).

We use K = 30 in all experiments except for the Covid dataset in which we use K = 10
due to memory constraints which apply equally to QEM and the massively parallel baselines
(MP VI and MP RWS). In each experiment we run 250 iterations of the specified inference
algorithm to optimize the approximate posterior.

5.1. Model comparison

We begin by comparing QEM against its closest competitors: MP RWS and MP VI. Fig. 1
shows performance as measured by the ELBO (top) and predictive log-likelihood (bottom)
versus iterations on five datasets. Fig. 2 mirrors Fig. 1, but has time on the x-axis. Note
that occupancy has a discrete latent variable and so therefore doesn’t have a differentiable
likelihood, precluding the possibility of using MP VI or HMC. Figure 1 shows that QEM
outperforms MP VI in terms of both ELBO and predictive log-likelihood in every model, and
learns faster than MP RWS in all settings except Radon and Occupancy when considering
the predictive log-likelihood. Also notice that the standard errors (shown in the error bars of
Figures 1 and 2) of QEM’s ELBO and predictive log-likelihood results are typically much

9



Heap Bowyer Aitchison

3 10 30
K

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e 

ite
ra

tio
n 

tim
e 

(s
)

BUS BREAKDOWN
QEM
MP RWS
MP VI

3 10 30
K

0.00

0.05

0.10

0.15

0.20

0.25
MOVIELENS

3 10 30
K

0.0

0.2

0.4

0.6

0.8

OCCUPANCY

3 10 30
K

0.00

0.01

0.02

0.03

0.04

RADON

3 10
K

0.00

0.02

0.04

0.06

0.08

0.10

0.12
COVID

Figure 3: Comparing the time-per-iteration between QEM (pink), RWS (green) and VI
(orange) on several models with varying values of K. Black error bars represent
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lower than that of the other methods. The plots against time are even more stark: notice
that since we do not need to calculate gradients for the whole joint distribution, QEM runs
significantly faster than MP VI and MP RWS.

This can be seen more clearly in Figure 3: the mean time taken to complete a single
iteration of QEM is almost always less than MP VI and MP RWS for all values of K, with
the only exception occurring in the Radon model, where all methods are extremely fast but
QEM is very slightly slower than the others.

We also show in Figure 4 that the quality of posterior moments/approximate posterior
obtained by QEM is superior to that of MP VI and at least as good as MP RWS, as
measured by the mean squared distance to the true posterior means, obtained by HMC via
the BlackJAX NUTS sampler (Cabezas et al., 2024).
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5.2. QEM is invariant under reparameterization

One final advantage of QEM is that it is invariant to reparameterizations which leave the
distribution over the data intact, e.g. z′ = αz̃ for some constant factor α on a latent variable
z̃. To test this, we rerun each of our experiments but modify the models by scaling down
the size of a single latent variable by a factor of α ∈ {1/100, 1/1000, 1/100,00}, before scaling it
back up by 1/α for use later in the model—thus leaving the rest of the overall distribution
unchanged. (Note that these reparameterizations are not related to the reparameterization
trick.)

Figure 5 shows that whilst QEM retains identical performance under these changes
(barring occasional small numerical differences from floating point operations at the different
scales), the gradient-based updates for MP VI and MP RWS are not invariant to such
reparameterizations, and therefore experience slower, noisier optimization and numerical
instability (Fig. 5 shows VI failing before reaching 250 iterations on the reparameterized
Radon and Covid models). See Appendix E for a proof and more details on the experimental
setting.

6. Limitations

QEM faces the same main limitations as other massively parallel methods: complexity
of implementation and memory constraints. As mentioned in Section 3, computing the
massively parallel posterior moment estimates is, in general, far from trivial. However, using
the strategy developed in Bowyer et al. (2024), this is made possible (and efficient) for a
very large class of probabilistic models. Similarly, the task of reasoning over an effectively
exponential number of samples presents immediate concerns for memory consumption. In
order to deal with this we follow the strategy adopted in Aitchison (2019) to reduce the
memory complexity from O(Kn) to O(Kmaxi |qa(i)|) where |qa (i)| is the number of parent
random variables for the ith child random variable in a massively parallel proposal QMP.
Further implementation details can also be used such as grouping random variables together
in the proposal and splitting necessary computations into manageable chunks. Such details
as they pertain to the experiments performed in this paper can be found in Appendix F.

7. Conclusion

We present a new approach for performing Bayesian inference on general probabilistic
graphical models, based on performing expectation maximization on an approximate posterior
using massively parallel posterior moment estimates, described in Section 4. We have shown
in Section 5 that this new method, QEM, not only outperforms other standard techniques
such as massively parallel VI and RWS in terms of higher ELBOs, predictive log-likelihoods
and more accurate posterior moments, but also takes less time to do so thanks to its gradient-
free approach. Furthermore, we present theoretical justifications and empirical results for
QEM’s superior robustness to model reparameterization in comparison to gradient-based
methods such as VI and RWS in Section 5.2 and Appendix E.

We see QEM as a significant development in displaying the power of massively parallel
probabilistic inference. As future work, we anticipate more inference methods making use of
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Figure 5: Comparing the ELBOs achieved by each method on reparameterized models
(coloured lines) versus the original parameterization (black lines), with error bars
representing standard errors over five runs with the same data but using different
random seeds. In many cases, the reparameterization led to a different learning
rate being optimal for MP VI and MP RWS. Where this occurred, we have plotted
the learning rate that was optimal for the original parameterization in a solid
colour and the learning rate that was optimal for the reparameterization in a
fainter colour. Note: our implementation of VI relies on the reparameterization
trick and thus doesn’t work for models with discrete latents.

the massively parallel framework, with the aim to collect these into a complete probabilistic
programming language.
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Appendix A. Additional Background Details

A.1. “Global” importance weighting.

Importance weighting is an approach to approximating posterior moments. The standard
approach to importance weighting, called “Global” in Geffner and Domke (2022) is to sample
K times from the approximate posterior. We use zk ∈ Z, for a single sample from the full
joint latent space, and use

z = (z1, z2, . . . , zK) ∈ ZK . (12)

for the collection of all K samples. We sample z by drawing K times from the approximate
posterior,

Q (z) =
∏
k∈K

Q
(
zk
)
. (13)

Here, K is the set of indices for the samples, K = {1, . . . ,K}. The self-normalized global
importance weighted estimate is,

mglobal(z) =
1
K

∑
k∈K

rk(z)

Pglobal(z)
m(zk) (14a)

rk(z) =
P
(
x, zk

)
Q (zk)

(14b)

Pglobal(z) =
1
K

∑
k∈K

rk(z). (14c)

Here, rk(z) is the joint probability of zk and x under the generative model divided by the
probability of zk under the approximate posterior, and Pglobal(z) is an unbiased estimator of
the marginal likelihood,

EQ(z) [Pglobal(z)] = EQ(zk)

[
P
(
x, zk

)
Q (zk)

]
=

∫
dzk P

(
x, zk

)
= P (x) .

The first equality arises by taking Eq. (14c), and noticing that each rk(z) term is IID.

A.2. Massively parallel importance weighting.

In standard “global” importance sampling above we reweighted K samples from the full joint
latent space. But in massively parallel methods, we exploit the fact that we have multiple
latent variables. Write zki ∈ Zi for the kth sample of the ith latent variable. Thus all K
samples of the ith latent variable are written

zi = (z1i , . . . , z
K
i ) ∈ ZK

i (15)

and the collection of all samples of all latents is given by

z = (z1, . . . , zn) ∈ ZK . (16)
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Given indices k = (k1, . . . , kn) ∈ Kn, we can therefore represent a single sample of the latents
as:

zk = (zk11 , . . . , z
kn
n ) ∈ Z. (17)

Thus, z is all K samples for all n latents. zi is all K samples for the ith latent. zk is the kth
sample of all n latents. zki is the kth sample for the ith latent.

The massively parallel setting requires a slightly modified proposal distribution. In
particular, we define QMP (z) with graphical model structure

QMP (z) =
n∏

i=1

QMP (zi|zj for j ∈ qa (i)) , (18)

such that qa (i) is the set of indices of parents of zi under the graphical model. The conditional
distribution QMP (zi|zj for j ∈ qa (i)) over all K copies of the ith and jth latent variables,
i.e. zi and zj , is defined via a single-sample proposal (much like in the “global” setting) where
single copies of the ith and jth latents, z′i and z′j , are distributed as Q

(
z′i

∣∣∣z′j for j ∈ qa (i)
)
.

This required a scheme for choosing which of the K copies of a parent latent gets used in the
sampling of each K copy of the child latent. As discussed in Heap et al. (2023), many such
schemes are possible, such as a uniform mixture over the K parent samples or a permutation
(chosen uniformly at random) of the K parent samples. (In all experiments performed for
this paper the permutation strategy was used.)

Appendix B. The QEM M-step and massively parallel reweighted
wake-sleep

Perhaps the optimal approach for fitting an approximate posterior would be maximum
likelihood, under samples drawn from the true posterior. That would give an objective of
the form

Lpost = EP(z′|x)
[
logQ

(
z′
)]
, (19)

which gives updates of the form,

∆η = ϵEP(z′|x)
[
∇η logQ

(
z′
)]
, (20)

where η are the parameters of the approximate posterior, and ϵ is a small learning rate.
However, we cannot directly use these updates, as they require samples from the true

posterior. Instead, we can use an importance-weighted approximation to the updates,

∆η = ϵ
1

Kn

∑
k∈Kn

rk(z)

PMP(z)
∇η logQ

(
zk|x

)
. (21)

where z is sampled from Q (z). These updates are used by massively-parallel reweighted
wake-sleep (Heap et al., 2023).

For exponential family approximate posteriors,

logQ
(
z′
)
= η · T (z′)−A(η) (22)
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where η is the natural parameters, T (z′) is the sufficient statistics, and A(η) is the log-
normalizing constant. Now, differentiate with respect to η,

∇η logQ
(
z′
)
= T (z′)−∇ηA(η) (23)

where,

∇ηA(η) = ∇η log

∫
dz′ exp

(
η · T (z′)

)
(24)

=

∫
dz′ T (z′) exp (η · T (z′))∫
dz′ exp (η · T (z′))

(25)

= EQ(z′)

[
T (z′)

]
(26)

= µ (27)

are the mean-parameters of Q (z′). Thus,

∇η logQ
(
z′
)
= T (z′)− µ. (28)

And we can write the updates as,

∆η(z) = ϵ
(
mone iter(z)− µ

)
. (29)

where,

mone iter(z) =
1

Kn

∑
k∈Kn

rk(z)

PMP(z)
T (z′) (30)

is a moment estimate based on a single sample, z of K samples for all latent variables.
Here, the first term is the expected sufficient statistics of the massively parallel importance
weighted approximation of the true posterior, while the second term is the expected sufficient
statistics of the approximate posterior itself. Thus, for sufficiently small learning rates, ϵ,
standard massively parallel reweighted wake sleep is at a fixed point when the approximate
posterior sufficient statistics are equal to the massively parallel importance weighted sufficient
statistics,

µ = EQ(z)

[
mone iter(z)

]
(31)

This provides the inspiration for the QEM M-step updates, which directly set the expected
sufficient statistics of the approximate posterior to an the importance-weighted estimate of
the true posterior moments (which thus has the same fixed points). Specifically, the QEM
M-step updates are,

∆µ = λ
(
mone iter(z)− µ

)
, (32)

which obviously have the same fixed-point.
Note that these QEM M-step updates are equivalent to an EMA (Eq. 8). Importantly, we

would not get the same fixed points if we took an EMA over another quantity. For instance,
if we took ηone iter,

∆η = λ
(
ηone iter(z)− η

)
, (33)
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would imply a fixed point of,

η = EQ(z)

[
ηone iter(z)

]
(34)

This is not the same as the fixed point in Eq. (31) as the mapping from natural, µ, to mean,
η, parameters is nonlinear.

Appendix C. Convergence of QEM in the limit as K goes to infinity

As K → ∞, (massively parallel) importance sampling gives the right moments under mild
conditions (Robert et al., 1999), such as the support of Q (z′) covering the support of P (z′|x).
In that setting, QEM converges in a single step.

Appendix D. Proof of Theorem 1

We can write the EMA in Eq. (8) as,

mt = (1− λ)
t∑

τ=1

λt−τmone iter
τ . (35)

As mone iter
τ is unbiased, we have E

[
mone iter

τ

]
= mtrue,

E [mt] = (1− λ)
t∑

τ=1

λt−τmtrue. (36)

Using the standard expression for geometric series,

E [mt] = (1− λ)
1− λt

1− λ
mtrue =

(
1− λt

)
mtrue. (37)

Consider λ increasing as t increases,

λ(t)t = (1− t−p)t. (38)

To evaluate this limit, we use composition of limits1, with

lim
t→∞

λ(t)t = lim
t→∞

exp
(
t log(1− t−p)

)
(39)

We can compute the limit inside the exponential using the L’Hopital’s rule.

log λ(t)t = t log(1− t−p) (40)

lim
t→∞

t log(1− t−p) = lim
t→∞

log(1− t−p)

t−1
(41)

= lim
t→∞

pt−p−1

1−tp

−t−2
(42)

1. e.g. https://mathcenter.oxford.emory.edu/site/math111/limitsOfCompositions/
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Using p < 0 < 1,

= lim
t→∞

−pt−p+1 = ∞. (43)

Thus,

lim
t→∞

λ(t)t = exp
(
− log λ(t)t

)
= 0 (44)

and,

lim
t→∞

E [mt] = mtrue. (45)

(46)

To compute the variance of mt, we need

Var [mt] = E
[
(mt − E [mt])

2
]

(47)

= (1− λ)2E

[(
t∑

τ=1

λt−τ (mone iter
τ −mtrue)

)(
t∑

τ ′=1

λt−τ ′(mone iter
τ ′ −mtrue)

)]
.

(48)

Pushing the expectation inside the sum,

Var [mt] = (1− λ)2
t∑

τ=1

t∑
τ ′=1

λ2t−τ−τ ′E
[
(mone iter

τ −mtrue)(mone iter
τ ′ −mtrue)

]
. (49)

All the terms for τ ̸= τ ′ are zero. Taking only the terms for which τ = τ ′ and using
E
[
(mone iter

τ −mtrue)2
]
= Var

[
mone iter

τ

]
= v,

Var [mt] = (1− λ)2
t∑

τ=1

λ2(t−τ)v. (50)

As this is again a geometric series,

Var [mt] = (1− λ)2
t∑

τ=1

(
λ2
)t−τ

v, (51)

we have,

Var [mt] = (1− λ)2
1− λ2t

1− λ2
v. (52)

We begin by noting (by analogy with the derivation for the mean),

lim
t→∞

λ(t)2t = lim
t→∞

(1− t−p)2t = 0, (53)
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so limt→∞ 1− λ(t)2t = 1, and

lim
t→∞

Var [mt] =
(1− λ)2

1− λ2
v. (54)

And as,

lim
t→∞

λ(t) = lim
t→∞

(1− t−p) = 1, (55)

we have,

lim
t→∞

Var [mt] = lim
λ→1

(1− λ)2

1− λ2
v. (56)

Applying L’Hopital’s rule,

lim
t→∞

Var [mt] = lim
λ→1

−2(1− λ)

2λ
v = 0. (57)

Thus, the variance converges to zero.
However, it does not establish that reducing the KL-divergence will definitely reduce the

variance and reduce the required number of samples. For that result, we look to Chatterjee
and Diaconis (2018).

Appendix E. QEM is invariant to reparameterization

Consider “reparameterizing” a model by rewriting the original latent variable, z′

z̃′ = 1
αz

′, (58)

as an alternative latent variable, z̃′, which is related to the original latent variable by a
multiplicative scaling.

The original model is given by,

P
(
z′
)
= π(z′) (59a)

P
(
x|z′

)
= f(x, z′) (59b)

where π(z′) and f(x, z′) are functions giving the probability for the prior and likelihood. We
get exactly the same distribution over the data if we reparameterize by setting z′ = αz̃′,

P
(
z̃′
)
= απ(αz̃′) (60a)

P
(
x|z̃′

)
= f(x, αz̃′) (60b)

Now, consider a family of exponential family approximate posterior densities, Q (z′;m) where
m is mean the parameters (e.g. for a Gaussian, m is the raw first and second moment). This
family must be closed under multiplication, in the sense that for z′ and z̃′ related by Eq. (58),
there must exist m and m̃ such that,

z′ ∼ Q
(
z′;m

)
, (61a)

z̃′ ∼ Q
(
z̃′; m̃

)
. (61b)
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The parameters of the distributions are related by a function, f ,

m = f(m̃, α). (62)

For instance, if we have a Gaussian, then

m =

(
µ

µ2 + σ2

)
(63)

m̃ =

(
µ̃

µ̃2 + σ̃2

)
(64)

f

((
µ̃

µ̃2 + σ̃2

)
;α

)
=

(
αµ̃

α2
(
µ̃2 + σ̃2

)) (65)

Note that while most standard distributions that are members of scale or location-scale
families that are closed under multiplication, not all are, with perhaps the easiest example
being the Poisson.

Finally, we need reparameterization-invariant sampling, in the sense that, sampling
proceeds by transforming an IID random variable, ξ,

z′ = g(ξ;m) ∼ Q
(
z′;m

)
, (66)

z̃′ = g(ξ; m̃) ∼ Q
(
z̃′; m̃

)
. (67)

such that,

g(ξ;m) = αg(ξ; m̃) (68)

if m = f(m̃, α). This property holds for common sampling algorithms, e.g. when using
inverse transform sampling.

Theorem 2 QEM is invariant to reparameterization, if three properties hold:

• The model is reparameterized in the sense of Eq. (59) and Eq. (60).

• Sampling is reparameterized in the sense of Eq. (68).

• The approximate posterior family is closed under multiplication, in the sense of Eq. (61)
and Eq. (62).

In the sense that if the initial parameters of the approximate posterior are reparameterized,

m0 = f(m̃0, α), (69)

then the approximate posterior parameters, mt and m̃t obtained by QEM at future timesteps
remain reparameterized at all future timesteps,

mt = f(m̃t, α). (70)
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Proof Here, we do a proof by induction, showing that if the parameters are reparameterized
(mt = f(m̃t, α)) at timestep t, then they are also reparameterized at timestep t+1 (i.e. after
a QEM update; mt+1 = f(m̃t+1, α)). The base case, m0 = f(m̃0, α), holds by assumption.

Now, if we start with a reparameterized approximate posterior, mt = f(m̃t, α), and
sampling is reparameterized, then all K samples of n latent variables in QEM, are related by
multiplication,

z′i
k
= αz′′i

k
. (71)

Under the reparameterized model, the importance weights are exactly the same under the
reparameterized model, as the importance weights depend only on rk(z), the ratio of the
generative to the approximate posterior probabilities,

rk(z) =
P
(
x, zk

)
Q (zk)

=
P
(
x, z̃k

)
Q (z̃k)

= rk(z̃) (72)

because,

P
(
x, z̃k

)
= αP

(
x, zk

)
(73)

Q
(
x, z̃k

)
= αQ

(
zk
)
. (74)

As the importance weights are the same and the samples are reparameterized, the moment
estimates are reparameterized in the sense that,

mone iter
t+1 = f(m̃one iter

t+1 , α). (75)

Thus, if we just update the approximate posterior moments using the previous sample, then
the inductive argument holds.

While it might seem that the extension to the EMA case is straightforward, it actually
turns out to be surprisingly involved due to the nonlinearity of f(m̃one iter

t+1 , α). To prove that
reparameterization holds after the EMA, we need to note that the EMA can be understood as
computing the moments on a very large weighted sample. Specifically, substituting Eq. (30)
into Eq. (8),

mt =
1− λ

Kn

t∑
τ=1

∑
k∈Kn

λt−τ rk(z)

PMP(z)
T (zk). (76)

This can be understood as a weight average over all samples at all timesteps. Again, the
importance weights at all timesteps are the same, and the samples are reparameterized, so
the moments are also reparameterized.

To demonstrate this invariance empirically we learn approximate posteriors using QEM,
MP RWS and MP VI for a modified version of each aforementioned model where some latent
variables have been reduced by a factor of 10−1, 10−2, 10−3 or 10−4 (before being scaled back
up for use later in the graphical model). The full reparameterized model specifications can
be found in Appendix F.
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Figure 5 shows that QEM retains identical performance (barring some small numerical
differences in the occupancy model results) on these reparameterized models as on the
original parameterizations. MP VI and MP RWS, on the other hand, struggle to reach the
same ELBOs and predictive log-likelihoods as before, experiencing much noisier and slower
optimization.

Appendix F. Experimental datasets and models

F.1. Experiment details

To obtain the results discussed in section 5, we use graphical models for each dataset, defining
both a generative distribution P

(
x, zk

)
and an approximate posterior/proposal distribution

QMP
(
zk
)

where x is data and zk represents a single sample from the joint latent space. We
then run 250 optimization steps of QEM, MP VI and MP RWS, at each iteration obtaining
ELBOs, predictive log-likelihoods (averaged over 100 predictive samples) and posterior
moment estimates using the massively parallel approach devised in Bowyer et al. (2024).
This was repeated five times with different random seeds, with means and standard errors
reported over these five runs. Similarly we repeated HMC runs five times using the BlackJAX
NUTS implementation (Cabezas et al., 2024), using default hyperparameters. To adapt the
parameters of NUTS we used 100, 300 and 1000 warm-up iterations, and drew 1000 samples
for MovieLens and 3000 for both Bus Breakdown and Radon.

Table 1: Memory consumption and time comparison for QEM, MP RWS and MP VI on
each of the models (with maximum K values used per model).

Model Method Memory Used (GB) Time for 250 Iterations

Bus Breakdown K = 30 QEM 0.05 11.7s
MP RWS 0.06 18.6s
MP VI 0.06 19.7s

Movielens K = 30 QEM 1.10 19.8s
MP RWS 1.11 49.6s
MP VI 1.11 62.7s

Occupancy K = 30 QEM 8.80 116.9s
MP RWS 8.80 223.4s

Radon K = 30 QEM 0.01 13.4s
MP RWS 0.01 13.3s
MP VI 0.01 15.5s

Covid K = 10 QEM 2.76 13.4s
MP RWS 2.77 18.2s
MP VI 2.77 20.8s
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Learning rates for QEM, MP VI and MP RWS were chosen from {0.3, 0.1, 0.03, 0.01, 0.003, 0.001}
based on which led to the highest ELBO after 125 iterations.

For the MovieLens QEM, MP VI and MP RWS experiments, we split the dataset along
the “user” dimension every 20 users during the calculation of approximate posterior updates
in order to reduce the memory requirement at any one time during execution.

All experiments were performed on a 24GB NVIDIA RTX 3090, with memory consumption
reported in Table 1 alongside the time taken to perform one run of 250 approximate posterior
updates.

Note that more preliminary experiments were performed. In total, the compute time for
all experiments used in generating the results of paper was approximately 250 GPU hours.

F.2. Bus delay dataset

This experiment involves modelling New York school bus journeys delays,2 using data supplied
by the City of New York (DOE, 2023). Given the year, y, borough, b, bus company, c
and journey type, j, the aim is to predict whether a given delay is longer than 30 minutes.
In particular, the data comprises 57 bus companies supplying 6 journey types (e.g. pre-
K/elementary school route, general education AM/PM route etc.) over the years 2015− 2022
(inclusive) in the five New York boroughs (Brooklyn, Manhattan, The Bronx, Queens, Staten
Island) and other surrounding areas (Nassau County, New Jersey, Connecticut, Rockland
County, Westchester). We subsample the dataset at random to select Y = 2 years and
B = 3 boroughs, constructing a training set of I = 150 delayed buses for each borough-year
combination and an equally-sized test set of a further 150 delayed buses per combination on
which to calculate predictive log-likelihood. As such, we can uniquely indentify each delay
by the year, y, the borough, b, and the index, i, giving delayybi The delays are recorded as
an indicator: 1 if the delay is greater than 30 minutes, 0 otherwise.

To model the impact of each feature (year, borough, bus company and journey type) on
the delaying of a bus, we use a hierarchical latent variable model in which the presence of a
delay is modelled as a Bernoulli random variable. The expected presence of a delay is then
described by a latent variable, logitsybi, with one logit for each delayed bus. The logits are
modelled as a sum of three terms which are themselves latent variables to be inferred: one
for the borough and year jointly, one for the bus company and one for the journey type.

The first term considers the year and borough jointly: YearBoroughWeightyb. This has
a hierarchical prior: we begin by sampling a global mean and variance, GlobalMean and
GlobalVariance; then for each year, we use GlobalMean and GlobalVariance to sample a mean
for each year, YearMeany. Additionally, we sample a variance for each year, YearVariancey.
Finally, we sample YearBoroughWeightyb from a Gaussian distribution with a year-dependent
mean, YearMeany, and variance exp(BoroughVarianceb).

The two other terms that contribute towards the logits are the weights for the bus
company and journey type, which are modelled similarly. We have one latent weight for
each bus company, CompanyWeightc, with c ∈ {1, . . . , 57}, and for each journey type,
JourneyTypeWeightj , with j ∈ {1, . . . , 6}. Given the bus company, bybi, and journey type,
jybi, for each delayed bus journey (remember that a particular delayed bus journey is uniquely

2. Dataset: http://data.cityofnewyork.us/Transportation/Bus-Breakdown-and-Delays/ez4e-fazm
Terms of use: http://opendata.cityofnewyork.us/overview/#termsofuse
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identified by the year, y, borough, b and index i), we use a table to pick out the right
company weight and journey type weight, CompanyWeightcybi and JourneyTypeWeightjybi
which then contribute towards the sum giving us logitsybi. The final generative model is
given by

P (GlobalVariance) = N (GlobalVariance; 0, 1)

P (GlobalMean) = N (GlobalMean; 0, 1)

P (YearMeany|GlobalMean,GlobalVariance) = N (YearMeany; GlobalMean

exp(GlobalVariance)),

P (YearVarianceb) = N (YearVarianceb; 0, 1)

P
(
YearBoroughWeightyb

∣∣YearMeany,YearVarianceb
)
= N (YearBoroughWeightyb;

YearMeany,

exp(YearVarianceb))

P (CompanyWeightc) = N (CompanyWeightc; 0, 1),

P
(
JourneyTypeWeightj

)
= N (JourneyTypeWeightj ; 0, 1)

logitsybi = YearBoroughWeightyb

+CompanyWeightcybi

+ JourneyTypeWeightjybi

P
(
delayybi

∣∣logitsybi) = Bernoulli(delayybi; logitsybi),

(77)

where y ∈ {1, . . . , Y }, b ∈ {1, . . . , B}, c ∈ {1, . . . , C} and j ∈ {1, . . . , J}. The correspond-
ing graphical model is given in Figure 6. We initialise the factorised approximate posterior
Q very similarly:

Q (GlobalVariance) = N (GlobalVariance; 0, 1)

Q (GlobalMean) = N (GlobalMean; 0, 1)

Q (YearMeany) = N (YearMeany; 0, 1)

Q (YearVarianceb) = N (YearVarianceb; 0, 1)

Q
(
YearBoroughWeightyb

)
= N (YearBoroughWeightyb; 0, 1)

Q (CompanyWeightc) = N (CompanyWeightc; 0, 1)

Q
(
JourneyTypeWeightj

)
= N (JourneyTypeWeightj ; 0, 1)

(78)

F.2.1. Reparameterized bus delay model

To provide a reparameterized bus delay dataset we simply rescale the mean and standard
deviation of the YearBoroughWeightyb latent variable, then apply the inverse scaling after
sampling:
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JourneyTypeWeightj

YearBoroughWeightyb
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Figure 6: Graphical model for the NYC Bus Breakdown dataset

P (GlobalVariance) = N (GlobalVariance; 0, 1)

P (GlobalMean) = N (GlobalMean; 0, 1)

P (YearMeany|GlobalMean,GlobalVariance) = N (YearMeany; GlobalMean,

exp(GlobalVariance))

P (YearVarianceb) = N (YearVarianceb; 0, 1)

P
(
YearBoroughWeightyb

∣∣YearMeany,YearVarianceb
)
= N (YearBoroughWeightyb;

YearMeany ∗
1

1000
,

exp(YearVarianceb) ∗
1

1000
)

P (CompanyWeightc) = N (CompanyWeightc; 0, 1)

P
(
JourneyTypeWeightj

)
= N (JourneyTypeWeightj ; 0, 1)

logitsybi = YearBoroughWeightyb ∗ 1000
+ CompanyWeightcybi

+ JourneyTypeWeightjybi

P
(
delayybi

∣∣logitsybi) = Bernoulli(delayybi; logitsybi),

(79)28
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and the approximate posterior distribution Q is initialised as so:

Q (GlobalVariance) = N (GlobalVariance; 0, 1)

Q (GlobalMean) = N (GlobalMean; 0, 1)

Q (YearMeany) = N (YearMeany; 0, 1)

Q (YearVarianceb) = N (YearVarianceb; 0, 1)

Q
(
YearBoroughWeightyb

)
= N (YearBoroughWeightyb; 0,

1

1000
)

Q (CompanyWeightc) = N (CompanyWeightc; 0, 1)

Q
(
JourneyTypeWeightj

)
= N (JourneyTypeWeightj ; 0, 1)

(80)

F.3. Movielens dataset

The MovieLens100K3 (Harper and Konstan, 2015) dataset contains 100k ratings from 0 to
5 of N=1682 films from among M=943 users. Following Geffner and Domke (2022), we
binarise the ratings into likes and dislikes by mapping user-ratings of {0, 1, 2, 3} to 0 (dislikes)
and user-ratings of {4, 5} to 1 (likes), and assume binarised ratings of 0 for films which users
have not previously rated.

The probabilistic graphical model of the full generative distribution is given in Figure 7.
We specify films using the index n and specify users via the index m. Each film has a
known feature vector, xn ∈ {0, 1}18, indicating which of 18 genre tags (Action, Adventure,
Animation, Children’s, etc.) the film matches (each film may have multiple genre tags).
Similarly, we model each user with a latent weight-vector, zm ∈ R18, describing whether
or not they like any given feature. We model the probability of a user m liking a film n
as σ(z⊺mxn)), where σ(·) is the sigmoid function. Thus the generative distribution may be
written as

P (µ) = N (µ;018, I),

P (ψ) = N (ψ;018, I),

P (zm|µ,ψ) = N (zm;µ, exp(ψ)I)

P (Ratingmn|zm,xn) = Bernoulli(Ratingmn;σ(z
⊺
mxn))

(81)

where m ∈ {1, . . . ,M} and n ∈ {1, . . . , N}. Note that we also have latent vectors for the
global mean, µ, and log-variance, ψ, of the weight vectors.

The factorised approximate posterior distribution Q is initialised as:

Q (µ) = N (µ;018, I),

Q (ψ) = N (ψ;018, I),

Q (zm) = N (zm;018, I)

(82)

To ensure high levels of uncertainty, we subsample the dataset to obtain a training set of
N = 5 films and M = 300 users for our experiment. An equally sized but disjoint subset of
users is held aside as a test set for calculation of the predictive log-likelihood.

3. Dataset and license: http://files.grouplens.org/datasets/movielens/ml-latest-small-README.
html
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Ratingmn
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ψ µ

N Films
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Figure 7: Graphical model for the MovieLens dataset

F.3.1. Reparameterized Movielens model

The reparameterized model is as follows,

P (µ) = N (µ;018, I),

P (ψ) = N (ψ;018, I),

P (zm|µ,ψ) = N (zm;
µ

100
,
exp(ψ)

100
I)

P (Ratingmn|zm,xn) = Bernoulli(Ratingmn;σ(100 ∗ z⊺mxn))

(83)

The corresponding factorised approximate posterior distribution Q is then initialised as

Q (µ) = N (µ;018, I),

Q (ψ) = N (ψ;018, I),

Q (zm) = N (zm;018,
1

100
I)

(84)

F.4. Occupancy dataset

The aim of occupancy modelling is to infer the presence of an animal at a given observation
site from repeated samples, accounting for the possibilities of non-detection or false-detection
(Doser et al., 2022). In this experiment we fit a modified multi-species occupancy model
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to the North American Breeding Bird Survey data4, which records over 700 species of bird
across the contiguous United States and the 13 provinces and territories of Canada. The
readings are collected along thousands of randomly selected road-side routes, taken at half
mile intervals along the 24.5 mile routes for a total of 50 readings per route.

The survey is taken once per year, during peak breeding season, usually in June. The
dataset we use covers the years 1966-2021, excluding 2020. We obtain R = 5 repeated
samples from each route by taking the unit step function of the sum of every 10 readings
(for a given route, year and species). From the main dataset, we obtain a training set by
subsampling a set of J = 12 bird species, M = 6 years and I = 200 routes. A distinct test set
for predictive log-likelihood calculation is obtained using the same values of J and M , but a
different set of I = 100 routes. Our model takes into consideration two sets of covariates:
Weatherjmi gives the temperature at site i on year m (replicated for each bird species); and
Qualityjmi indicates whether a particular series of readings at site j on year m followed all
the recommended guidelines for recording birds.

We use a Bernoulli random variable to model the recording of a particular species j
of bird in a particular repeated measurement (given the route i and year m) using logits
which are calculated as the product of the quality covariate Qualityjmi, an inferred quality
weight QualityWeightjmi, and another inferred latent variable zjmi which indicates the true
presence of bird species j along route i in year m, as well as including some probability of a
false-positive bird sighting. This variable zjmi is also modelled by a Bernoulli distribution,
with logits calculated as the product of the weather covariate Weatherjmi, an inferred weather
weight WeatherWeightjmi, and the latent variable BirdYearMeanjm which represents the
mean frequency of a specific species in a given year. Covariate weights, WeatherWeightjmi

and QualityWeightjmi, are modelled via separate Gaussian distributions, each of which
have standard Gaussian hyperpriors for their mean and log-variance. The BirdYearMeanjm
variable also has an hierarchical prior: it comes from a Gaussian distribution with unit
variance whose mean is the variable BirdMeanj, representing the mean frequency of species
j regardless of year or route, which in turn has its mean and log-variance modelled via
standard Gaussian hyperpriors. The full model may be written as

4. Dataset: https://www.sciencebase.gov/catalog/item/625f151ed34e85fa62b7f926, licensing informa-
tion is included with the dataset.
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P (µBirdMean) = N (µBirdMean; 0, 1),

P (σBirdMean) = N (σBirdMean; 0, 1),

P (µQualityWeight) = N (µQualityWeight; 0, 1),

P (σQualityWeight) = N (σQualityWeight; 0, 1),

P (µWeatherWeight) = N (µWeatherWeight; 0, 1),

P (σWeatherWeight) = N (σWeatherWeight; 0, 1),

P
(
QualityWeightj

∣∣µQualityWeight, σQualityWeight

)
= N (QualityWeightj ;µQualityWeight,

exp(σQualityWeight))

P
(
WeatherWeightj

∣∣µWeatherWeight, σWeatherWeight

)
= N (WeatherWeightj ;µWeatherWeight,

exp(σWeatherWeight))

P (BirdMeanj |µBirdMean, σBirdMean) = N (BirdMeanj ;µBirdMean,

exp(σBirdMean))

P (BirdYearMeanjm|BirdMeanjm) = N (BirdYearMeanjm; BirdMeanjm, 1)

logitszjmi = BirdYearMeanjm ∗WeatherWeightj

∗Weatherjmi

P
(
zjmi

∣∣logitszjmi

)
= Bernoulli(zjmi; logits = logitszjmi)

logitsyjmir = zjmi ∗QualityWeightj ∗Qualityjmir

+ (1− zjmi) ∗ (−10)

P
(
yjmir

∣∣∣logitsyjmir

)
= Bernoulli(yjmir; logits = logitsyjmir)

(85)

where j ∈ {1, . . . , J},m ∈ {1, . . . ,M}, i ∈ {1, . . . , I} and r ∈ {1, . . . , R}. The corres-
ponding graphical model is presented in Figure 8.

The factorised approximate posterior distribution Q is initialised as:

Q (µBirdMean) = N (µBirdMean; 0, 1),

Q (σBirdMean) = N (σBirdMean; 0, 1),

Q (µQualityWeight) = N (µQualityWeight; 0, 1),

Q (σQualityWeight) = N (σQualityWeight; 0, 1),

Q (µWeatherWeight) = N (µWeatherWeight; 0, 1),

Q (σWeatherWeight) = N (σWeatherWeight; 0, 1),

Q
(
QualityWeightj

)
= N (QualityWeightj ; 0, 1)

Q
(
WeatherWeightj

)
= N (WeatherWeightj ; 0, 1)

Q (BirdMeanj) = N (BirdMeanj ; 0, 1)

Q (BirdYearMeanjm) = N (BirdYearMeanjm; 0, 1)

(86)

32



Massively Parallel Expectation Maximization For Approximate Posteriors

F.4.1. Reparameterized occupancy model

The reparameterized occupancy model is as follows:

P (µBirdMean) = N (µBirdMean; 0, 1),

P (σBirdMean) = N (σBirdMean; 0, 1),

P (µQualityWeight) = N (µQualityWeight; 0, 1),

P (σQualityWeight) = N (σQualityWeight; 0, 1),

P (µWeatherWeight) = N (µWeatherWeight; 0, 1),

P (σWeatherWeight) = N (σWeatherWeight; 0, 1),

P
(
QualityWeightj

∣∣µQualityWeight, σQualityWeight

)
= N (QualityWeightj ;µQualityWeight,

exp(σQualityWeight))

P
(
WeatherWeightj

∣∣µWeatherWeight, σWeatherWeight

)
= N (WeatherWeightj ;µWeatherWeight,

exp(σWeatherWeight))

P (BirdMeanj |µBirdMean, σBirdMean) = N (BirdMeanj ;µBirdMean,

exp(σBirdMean))

P (BirdYearMeanjm|BirdMeanjm) = N (BirdYearMeanjm;

1

1000
BirdMeanjm,

1

1000
)

logitszjmi = 1000 ∗ BirdYearMeanjm

∗WeatherWeightj ∗Weatherjmi

P
(
zjmi

∣∣logitszjmi

)
= Bernoulli(zjmi; logits = logitszjmi)

logitsyjmir = zjmi ∗QualityWeightj ∗Qualityjmir

+ (1− zjmi) ∗ (−10)

P
(
yjmir

∣∣∣logitsyjmir

)
= Bernoulli(yjmir; logits = logitsyjmir)

(87)

The factorised approximate posterior distribution Q is initialised as:
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Q (µBirdMean) = N (µBirdMean; 0, 1),

Q (σBirdMean) = N (σBirdMean; 0, 1),

Q (µQualityWeight) = N (µQualityWeight; 0, 1),

Q (σQualityWeight) = N (σQualityWeight; 0, 1),

Q (µWeatherWeight) = N (µWeatherWeight; 0, 1),

Q (σWeatherWeight) = N (σWeatherWeight; 0, 1),

Q
(
QualityWeightj

)
= N (QualityWeightj ; 0, 1)

Q
(
WeatherWeightj

)
= N (WeatherWeightj ; 0, 1)

Q (BirdMeanj) = N (BirdMeanj ; 0, 1)

Q (BirdYearMeanjm) = N (BirdYearMeanjm; 0,
1

1000
)

(88)

F.5. Radon model

The radon dataset Price et al. (1996) consists of 12,777 home radon measurements in 9
states5 Each reading is accompanied with information about which floor the reading was
taken on, and county level soil uranium readings in parts per million. We take a subset of
S = 4 states and R = 300 readings. We split this dataset in half, taking the results from 150
readings (per state) as our training set whilst the other 150 readings (per state) form our
test set for the evaluation of predictive log-likelihood. The radon measurements are in log
trillionth of a Curie per litre.

We model these readings as draws from a Gaussian distribution, with mean given
by the sum of a per state mean StateMeans and weighted basement and log uranium
readings, and a per state variance StateVariances. The weights and StateVariances are
drawn from independent Normal distributions also in a per state fashion. The prior for
StateMeansc is given by a Gaussian distribution with a global mean GlobalMean and variance
GlobalVariance, both of which are drawn from Normal distributions. A graphical model
representation can be found in Figure 9. This can be written as

5. Dataset: http://www.stat.columbia.edu/~gelman/arm/examples/radon/ from Gelman and Hill (2006).
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yjmirzjmi

BirdYearMeanjm

BirdMeanj WeatherWeightj QualityWeightj

σWeatherWeightµWeatherWeight

σBirdMean

µBirdMean

σQualityWeight

µQualityWeight

R Repeats

I Routes

M Years

J Bird Species

Figure 8: Graphical model for the Bird Occupancy dataset

P (GlobalMean) = N (GlobalMean; 0, 1),

P (GlobalVariance) = N (GlobalVariance; 0, 1),

P (StateMeans|GlobalMean,GlobalVariance) = N (StateMeans; GlobalMean,

exp(GlobalVariance))

P (StateVariances) = N (StateVariances; 0, 1)

P (UraniumWeights) = N (UraniumWeightsc; 0, 1)

P (BasementWeights) = N (BasementWeights; 0, 1)

RadonMeansr = StateMeans

+UraniumWeights ∗Uraniums

+BasementWeights ∗ Basementsr

P (Radonsr|RadonMeansr,CountryVariances) = N (Radonsr; RadonMeansr,

exp(StateVariances))

(89)
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where s ∈ {1, . . . , S} and r ∈ {1, . . . , R}. We initialise our approximate posterior
distribution Q as follows:

Q (GlobalMean) = N (GlobalMean; 0, 1),

Q (GlobalVariance) = N (GlobalVariance; 0, 1),

Q (StateMeans) = N (StateMeans; 0, 1)

Q (StateVariances) = N (StateVariances; 0, 1)

Q (UraniumWeights) = N (UraniumWeights; 0, 1)

Q (BasementWeights) = N (BasementWeights; 0, 1)

(90)

Radonsr BasementWeightsUraniumWeights

StateMeans StateVariances

GlobalMean

GlobalVariance

R Readings

S States

Figure 9: Graphical model for the Radon model
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F.5.1. Reparameterized radon model

The reparameterized radon model is as so:

P (GlobalMean) = N (GlobalMean; 0, 1),

P (GlobalVariance) = N (GlobalVariance; 0, 1),

P (StateMeans|GlobalMean,GlobalVariance) = N (StateMeans;
GlobalMean

1000
,

exp(GlobalVariance)

1000
)

P (StateVariances) = N (StateVariances; 0, 1)

P (UraniumWeights) = N (UraniumWeightsc; 0, 1)

P (BasementWeights) = N (BasementWeights; 0, 1)

RadonMeansr = 1000 ∗ StateMeans

+UraniumWeights ∗Uraniums

+BasementWeights ∗ Basementsr

P (Radonsr|RadonMeansr,CountryVariances) = N (Radonsr; RadonMeansr,

exp(StateVariances))

(91)

We initialise our approximate posterior distribution Q as follows:

Q (GlobalMean) = N (GlobalMean; 0, 1),

Q (GlobalVariance) = N (GlobalVariance; 0, 1),

Q (StateMeans) = N (StateMeans; 0,
1

1000
)

Q (StateVariances) = N (StateVariances; 0, 1)

Q (UraniumWeights) = N (UraniumWeights; 0, 1)

Q (BasementWeights) = N (BasementWeights; 0, 1)

(92)

F.6. Covid model

The Covid dataset we use consists of D = 137 daily Covid-19 infection measurements from
R = 92 regions around the world Leech et al. (2022).6 In addition the dataset contains
region and day level information about average mobility, mask wearing, and other non-
pharmaceutical interventions (NPIs). We model the observed Covid-19 infection numbers as
a Negative Binomial random variable. The total count parameter of the Negative Binomial
distribtion is sampled from a region level log-Normal distribution and the logits are given by
a autoregressive Gaussian timeseries where, after the initial timestep which is sampled from

6. Dataset and license: https://github.com/g-leech/masks_v_mandates
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a region level Gaussian distribution, each timestep is sampled from a Gaussian with a mean
given by the sum of the previous timestep, a global mean term and a term depending on
weighted average mobility, mask wearing and NPIs. The weights themselves are sampled
from Gaussian distributions. The variance of this Gaussian distribution is sampled from
a region level Gaussian, for which the mean and variance are sampled from global level
Gaussian distributions.

We use the first D = 109 days of data as our training set and leave the remaining 28
days to form the test set on which we’ll calculate predictive log-likelihood.

A graphical model representation of the model can be see in Figure 10. The model can
be written as:

P (αNPIs) = N (αNPIs;09, I9),

P (αWearing) = N (αWearing; 0, 0.4),

P (αMobility) = N (αMobility; 1.704, 0.44))

P (GlobalMean) = N (GlobalMean; 1.07, 0.6)

P (InitialSizeMean) = N (InitialSizeMean; log(1000), 0.5)

P (InfectedNoiseMean) = N (InfectedNoiseMean; log(0.01), 0.25)

P (MeanInfectedr,1|InitialSizeMean) = N (MeanInfectedr,1;

InitialSizeMean, 0.5)

P (InfectedNoiser|InfectedNoiseMean) = N (InfectedNoiser;

InfectedNoiseMean, 0.25)

P (ψr) = N (ψr; 0, 1)

NPIr,d = GlobalMean +αNPIsNPIsr,d

+ αWearing ∗Wearingr,d

+ αMobility ∗Mobilityr,d

NewMeanr,d =NPIr,d +MeanInfectedr,d−1

P (MeanInfectedr,d|NewMeanr,d, InfectedNoiser) = N (MeanInfectedr,d; NewMeanr,d,

exp(InfectedNoiser))

P (Infectedr,d|ψ,MeanInfectedr,d) =NegativeBinomial(Infectedr,d; exp(ψ),

exp(ψ −MeanInfectedr,d) + 1

+ 10−7)

(93)

where r ∈ {1, . . . , R} and d ∈ {2, . . . , D} (note that the initial time step, d = 1, is
dealt with separately from subsequent time steps). We initialise our approximate posterior
distribution Q as follows:
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Q (αNPIs) = N (αNPIs;09, I9),

Q (αWearing) = N (αWearing; 0, 1),

Q (αMobility) = N (αMobility; 0, 1))

Q (GlobalMean) = N (GlobalMean; 0, 1)

Q (InitialSizeMean) = N (InitialSizeMean; 0, 1)

Q (InfectedNoiseMean) = N (InfectedNoiseMean; 0, 1)

Q (MeanInfectedr,1) = N (MeanInfectedr,1; 0, 1)

Q (InfectedNoiser) = N (InfectedNoiser; 0, 1)

Q (ψr) = N (ψr; 0, 1)

Q (MeanInfectedr,d) = N (MeanInfectedr,d; 0, 1)

(94)

Infectedr,dMeanInfectedr,d

MeanInfectedr,1InfectedNoiser ψr

InitialSizeMean

GlobalMean

αMobility

αMobility

αNPIs

D Days

R Regions

Figure 10: Graphical model for the Covid model
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F.6.1. Reparameterized covid model

The reparameterized covid model uses the following generative distribution

P (αNPIs) = N (αNPIs;09, I9),

P (αWearing) = N (αWearing; 0,
0.4

10000
),

P (αMobility) = N (αMobility; 1.704, 0.44))

P (GlobalMean) = N (GlobalMean; 1.07, 0.6)

P (InitialSizeMean) = N (InitialSizeMean; log(1000), 0.5)

P (InfectedNoiseMean) = N (InfectedNoiseMean; log(0.01), 0.25)

P (MeanInfectedr,1|InitialSizeMean) = N (MeanInfectedr,1;

InitialSizeMean, 0.5)

P (InfectedNoiser|InfectedNoiseMean) = N (InfectedNoiser;

InfectedNoiseMean, 0.25)

P (ψr) = N (ψr; 0, 1)

NPIr,d = GlobalMean +αNPIsNPIsr,d

+ 10000 ∗ αWearing ∗Wearingr,d

+ αMobility ∗Mobilityr,d

NewMeanr,d =NPIr,d +MeanInfectedr,d−1

P (MeanInfectedr,d|NewMeanr,d, InfectedNoiser) = N (MeanInfectedr,d; NewMeanr,d,

exp(InfectedNoiser))

P (Infectedr,d|ψ,MeanInfectedr,d) =NegativeBinomial(Infectedr,d; exp(ψ),

exp(ψ −MeanInfectedr,d) + 1

+ 10−7)

(95)

We initialise the reparameterized approximate posterior distribution Q as follows:
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Q (αNPIs) = N (αNPIs;09, I9),

Q (αWearing) = N (αWearing; 0,
1

10000
),

Q (αMobility) = N (αMobility; 0, 1))

Q (GlobalMean) = N (GlobalMean; 0, 1)

Q (InitialSizeMean) = N (InitialSizeMean; 0, 1)

Q (InfectedNoiseMean) = N (InfectedNoiseMean; 0, 1)

Q (MeanInfectedr,1) = N (MeanInfectedr,1; 0, 1)

Q (InfectedNoiser) = N (InfectedNoiser; 0, 1)

Q (ψr) = N (ψr; 0, 1)

Q (MeanInfectedr,d) = N (MeanInfectedr,d; 0, 1)

(96)

Appendix G. Train-Test Splits for Experimental Evaluation

For our experimental evaluation, we carefully constructed train-test splits for each dataset to
ensure robust assessment of model performance. Below we detail the specific splits used for
each model:

G.1. Bus Breakdown Dataset

The NYC Bus Breakdown dataset was subsampled to include Y = 2 years and B = 3
boroughs. For each borough-year combination, we constructed a training set of I = 150
delayed buses and an equally-sized test set of an additional 150 delayed buses for calculating
predictive log-likelihood. Each delay was uniquely identified by the year, borough, and index.

G.2. MovieLens Dataset

From the MovieLens100K dataset, we constructed a training set consisting of N = 5 films
and M = 300 users. An equally sized but completely disjoint subset of users was held out
as a test set for evaluating predictive log-likelihood. All ratings were binarized, with user
ratings of {0, 1, 2, 3} mapped to 0 (dislikes) and ratings of {4, 5} mapped to 1 (likes).

G.3. Bird Occupancy Dataset

For the North American Breeding Bird Survey data, we created a training set containing
J = 12 bird species, M = 6 years, and I = 200 routes. The test set for predictive log-
likelihood calculation used the same species and years but a different set of 100 routes. We
obtained R = 5 repeated samples from each route by taking the unit step function of the
sum of every 10 readings along each route.
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G.4. Radon Dataset

We used a subset of the radon measurement dataset consisting of S = 4 states and R = 300
readings per state. This was split evenly, with 150 readings per state forming the training
set and the other 150 readings per state constituting the test set for evaluating predictive
log-likelihood.

G.5. Covid Dataset

The Covid dataset contained D = 137 daily Covid-19 infection measurements from R = 92
regions worldwide. The first 109 days of data were used as the training set, while the
remaining 28 days formed the test set for calculating predictive log-likelihood. This temporal
split allows us to evaluate the model’s predictive performance on future infection rates.
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