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Abstract: End-to-end visuomotor policies trained using behavior cloning have
shown a remarkable ability to generate complex, multi-modal low-level robot be-
haviors. However, at deployment time, these policies still struggle to act reli-
ably when faced with out-of-distribution (OOD) visuals induced by objects, back-
grounds, or environment changes. Prior works in interactive imitation learning
solicit corrective expert demonstrations under the OOD conditions—but this can
be costly and inefficient. We observe that task success under OOD conditions
does not always warrant novel robot behaviors. In-distribution (ID) behaviors
can directly be transferred to OOD conditions that share functional similarities
with ID conditions. For example, behaviors trained to interact with in-distribution
(ID) pens can apply to interacting with a visually-OOD pencil. The key chal-
lenge lies in disambiguating which ID observations functionally correspond to the
OOD observation for the task at hand. We propose that an expert can provide this
OOD-to-ID functional correspondence. Thus, instead of collecting new demon-
strations and re-training at every OOD encounter, our method: (1) detects the
need for feedback by checking if current observations are OOD and the most sim-
ilar training observations show divergent behaviors, (2) solicits functional corre-
spondence feedback to disambiguate between those behaviors, and (3) intervenes
on the OOD observations with the functionally corresponding ID observations to
perform deployment-time generalization. We validate our method across diverse
real-world robotic manipulation tasks with a Franka Panda robotic manipulator.
Our results show that test-time functional correspondences can improve the gen-
eralization of a vision-based diffusion policy to OOD objects and environment
conditions with low feedback. Qualitative results can be found on our project
page https://adapting-by-analogy.github.io/project-page/
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1 Introduction

A central goal in robot learning is to enable robots to generalize: to successfully perform tasks in
environments they have never seen before. Imagine a robot encountering a pencil for the first time.
With just an RGB image, it should be able to reason about the scene and delicately place the object
into a nearby cup, as shown in Figure 1. One popular approach towards this is imitation-based
visuomotor policy learning. However, while internet-scale datasets have powered generalization
breakthroughs in vision and language, robotics still lacks access to the same data scale [1, 2, 3, 4, 5],
and collecting expert demonstration data remains expensive and time-consuming. This results in
robots failing in unintuitive ways when faced with out-of-distribution (OOD) environments (lower
left, Figure 1). Nevertheless, even with modest expert demonstration datasets, recent advances
in policy architectures and training algorithms have enabled robots to learn complex visuomotor
skills—such as grasping thin tools or folding clothes and operating articulated objects—that work
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Figure 1: We present Adapting by Analogy, a test-time method that uses functional correspondences
between deployment and training conditions to improve a policy’s performance in OOD conditions.

well in-distribution (ID) [6, 7, 8, 9, 10]. This raises the central question of our work: How can we
reuse robot behaviors learned in in-distribution settings to succeed in out-of-distribution scenarios?

Our key insight is that behavior generalization may not always require more demonstration data: it
may just need a better correspondence between the training and test conditions. For example, in
Figure 1, even though the robot has never seen pencils before, it has seen similarly-thin pens and
thicker markers (top row). Thus, if it understood that the pencil is functionally equivalent to the pen
in this task, it could “imagine” that the pencil is a pen and reuse the pen pickup behavior to success-
fully complete the task. Based on this insight, we present Adapting by Analogy (ABA): a method
which establishes functional correspondences between in-distribution and out-of-distribution scenes
to steer a visuomotor policy through OOD conditions. A key aspect of our method is to leverage
expert human knowledge—in the form of a textual description—to interactively learn high-level
functional correspondences relevant to the task at hand. The textual description is decoded into
a functional correspondence feature space that matches corresponding semantic segments of the
scene to retrieve ID behaviors that are ”relevant” for the current OOD scene. To measure whether
the functional correspondence is well-specified, the robot estimates its uncertainty over the retrieved
behavior modes and continues to ask for correspondence refinement until it is certain in the mapping.

We instantiate Adapting by Analogy on hardware with a Franka Research 3 manipulator acting
with a diffusion-based visuomotor policy [6]. By controlling the training and test environments,
we study i) how functional correspondences can improve the task success rate in increasingly OOD
environments, ii) if our method seeks expert feedback efficiently, and iii) we verify how critical func-
tional correspondences are for OOD generalization. We find that even a relatively small number of
expert-guided functional correspondences can significantly improve the generalization capabilities
of a visuomotor policy interacting with OOD objects from new semantic categories.

2 Related Works

Test-time Policy Interventions. Runtime policy interventions are a policy failure mitigation,
where-in the policy’s execution is intervened and new knowledge is supplied in-order to help miti-
gate the failure. For instance, a line of work directly proposes interventions on the policy’s behavior
space, steering the policy into desired modes either through human feedback [11], through Q func-
tions optimized on large scale offline datasets [12], or through predictive modeling [13, 14]. Another
line of work proposes intervention directly on the policy’s observations, with synthesized observa-
tions to remedy known causes of failure [15]. Our work also proposes policy observations with
functionally similar ID observations to generalize to novel out-of-distribution conditions.

Functional Correspondence for Behavior Transfer. The ability to transfer behaviors from one
set of objects to an unseen set of objects hold the potential to unlock robot generalization in the wild.
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This problem has been studied through functional correspondences [16]. Prior work have leveraged
functional correspondences to directly transfer behaviors across objects from a single demonstration
to novel objects in a one shot manner, or in a zero shot manner by leveraging an affordance dataset
[17, 18, 19]. Here, functional correspondences are typically established through keypoint based rea-
soning. In our work, we establish functional correspondences through a correspondence description
provided by an expert. Furthermore, instead of directly adapting retrieved behavior, we intervene
using the functionally similar training observation

3 Problem Formulation

Environment, Observation, & Action Models. We model the robot’s environment E ∈ E
as broadly consisting of factors external to the robot such as the objects in the scene, the back-
ground, camera configurations, etc. In a particular environment E, the robot senses its proprio-
ceptive states q ∈ Q (e.g., end-effector pose, gripper state) and uses a sensor σ : Q × E → I
to obtain high-dimensional RGB image observations of the scene. At any time t, let the stacked
image-proprioception observations be, ot ∈ O := I × Q. Finally, let a ∈ A be the robot’s action
(e.g., end-effector positions and rotations and gripper action).

Training Data The training dataset contains observation-action tuples, DID := {(oit, ait)}Ni=1, drawn
from a set of M “in distribution” environments: EID := {E1

ID, E
2
ID, . . . , E

M
ID }. For example, a

training distribution of environments could consist of M unique objects and their configurations.

Visuomotor Policy. Let the robot’s policy be a multimodal imitative action generation model [6, 9]
denoted by π(at | ot). Here at := at:t+T is a T -step action plan and ot := ot:t−H is an H-step
history of observations. We assume that the policy network first encodes any observation into a
corresponding latent state, zt = E(ot), via an encoder. Let zt = E(ot:t−H) be a sequence of latent
state embeddings. The policy is pre-trained via an imitation learning loss on the in-distribution
dataset of observation-action pairs from DID.

OOD-to-ID Generalization via Functional Correspondances. Given a visuomotor policy π(at |
ot) pre-trained on behaviors from in-distribution environments EID, we seek to generalize the robot’s
task performance to out-of-distribution (OOD) environments, EOOD. Since the general problem of
OOD generalization is an extremely challenging open problem, in this paper we assume that (1) EID
and EOOD differ only by the objects present in the scene and background color (but the environment
geometry remains the same), (2) the training observations OID and deployment time observations
OOOD are obtained on the same robot embodiment, and (3) we have access to the training data, DID.

Our key idea is to identify functional correspondences between the test-time OOD scene—in which
the base policy would fail to act correctly—and training-time ID scenes, in which the policy can gen-
erate high-quality behaviors. Functional correspondences identify parts of the image observations
with similar affordances for the task at hand. Intuitively, learned robot behaviors should be trans-
ferable across observations whose affordance maps are aligned, i.e., observations where regions
that have similar affordances overlap. Thus, we aim to retrieve ID observations whose functional
correspondences are aligned with the test-time OOD observation.

Problem Formulation: Expert-Guided Functional Correspondences. The core challenge lies
in identifying the functional correspondences across the OOD image observations and the ID image
observations. Humans possess the ability to infer object affordances, and generalize them to novel
objects. Thus, we propose to leverage experts feedback in the form of natural language to acquire
these functional correspondences between the OOD and the ID image observations.

Formally, let the functional correspondance map be denoted by Φ : I × I × L → P(Ω × Ω).
Given two images i, î ∈ I and a natural language description l ∈ L provided by the expert, this
mapping returns all pairs of functionally corresponding image segments (ω, ω̂) where ω ∈ Ω are
image segments from image i and ω̂ ∈ Ω̂ are image segments from image î. Here, P(Ω × Ω) is
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Figure 2: Adapting by Analogy consists of four key phases. (left) First, we run a fast OOD de-
tector by checking the cosine similarity between the current observation ô and the training observa-
tions. (center, top-left) Given a correspondence description l, we establish OOD-to-ID functional
correspondences to retrieve corresponding ID observations (center, bottom). We refine the corre-
spondances with the expert as long as there is ambiguity in the predicted behavior mode (center,
top-right). Once finalized, we intervene on the observations and execute the planned actions (right).

the powerset of all paired image segments. Let K be the number of corresponding image segments.
Thus, the functional correspondence map is defined as:

Φ(i, î, l) := {(ωj , ω̂j) | j ∈ {0, 1, . . . ,K}} (1)

We measure the functional correspondence alignment of any two images via f : P(Ω×Ω) → R.
In this work, we model f as the total Intersection over Union (IoU) between functionally corre-
sponding regions of the images returned by the functional correspondance map, Φ:

f(Φ(i, î, l)) =

K∑
i=0

IoU(ωj , ω̂j) (2)

Finally, given any OOD observation ô = (q̂, î) observed by the robot at deployment time and an
expert language input l describing the functional correspondences, we retrieve the ordered set of in-
distribution observations Of = (o1, o2, . . . , ok) ⊆ OID ranked by their functional alignment from
Eq. (2). For intervention, we use the behaviors extracted from the top-M observations in Of .

4 Method: Adapting by Analogy

4.1 Detecting Out-of-Distribution Observations

At each timestep, our method first detects if the robot’s observations ô are anomalous via a fast
OOD detector. We measure the cosine similarity between the encoded observation ẑ = E(ô)
and embeddings of in-distribution observations z ∈ E(oi), o ∈ OID via IDScore(ô,OID) :=

mino∈OID
E(ô)·E(o)

∥E(ô)∥∥E(o)∥ . If the IDScore is above a threshold λ, then we deem the observation to
be nominal and directly execute the action â ∼ π(· | ô). Otherwise, we deem the observation to be
OOD, ask the expert for an initial language instruction l describing relevant functional correspon-
dences, and use those to intervene on the observation before action generation.

4.2 Establishing OOD-to-ID Functional Correspondences

Given an OOD observation ô = (q̂, î) identified via our fast anomaly detector and the expert’s lan-
guage description l, we want to intervene on the policy by reusing learned behaviors from function-
ally similar ID observations. This requires computing the functional alignment from Eq. 2 between
ô and every ID observation o ∈ OID. However, implementing this matching is challenging in prac-
tice for two reasons: first, it is computationally expensive (requiring image segmentation and IoU
computation over all corresponding segments), and second, matching correspondances between 2D
image segments does not directly reveal correspondences in the high-dimensional robot state. Thus,
we filter the demonstration dataset DID consisting of N observation-action trajectories τ to retrieve
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one observation o ∈ τ per trajectory which contain similar proprioceptive states q to the test-time
robot state q̂. Mathematically, for a distance threshold λq ∈ R+ and the current configuration q̂, let
the filtered observation dataset Oq ⊂ OID be:

Oq =

{
o

∣∣∣∣ o = arg min
(o,a)∈τ

(
∥q − q̂∥2 − λq

)
, ∀τ ∈ DID

}
(3)

Using this filtered dataset, we can now compute our functional correspondence map from Eq. 1
via two internal models: one which converts the expert’s language feedback l ∈ L into a functional
feature set (denoted by ϕl) and another which semantically segments each ID image i ∈ Oq and the
current OOD image observations î to generate the set of image masks and semantic labels denoted
by Ω̂ and Ω respectively. We use Grounded Segment Anything [20] for semantic segmentation.

Next, the expert’s language input l is decoded into a set of correspondence features ϕl that can be
applied to the semantic segmentations Ω, Ω̂ to return a set of K functionally corresponding image
segments (ωj , ω̂j), j ∈ {0, . . . ,K}. For example, the ϕl that is decoded from l =“Match pencils
with pens” lifts pixels corresponding to the segmentation label ‘pencil’ in the OOD image, and pairs
it with pixels corresponding to the label ‘pen’ in the ID images. In this work, we use a templated l,
but future work could explore the use of LLMs as an interface.

Ultimately, after Φ extracts the set of functionally corresponding image segments, we measure their
alignment using Eq. 2. Each ID observation o ∈ Oq is ranked based on its functional alignment
with the OOD observation ô to obtain the ordered set of functionally corresponding ID observations
Of ⊆ Oq used during intervention (Sec. 4.4).

4.3 Refining Functional Correspondences Until Confident

Thus far, we have assumed that the initial expert description l of functional correspondences was
sufficient for the entire task. However, correspondences may evolve during task execution. For ex-
ample, consider the task of picking up trash and sorting it into organic and recycling. The functional
correspondence between types of trash (organic and recycling) does not matter initially when the
robot is planning a grasp, but becomes relevant once the item has been picked up and needs to be
sorted. Thus, our method interactively refines the functional correspondence description until the
robot is confident in the behavior it has retrieved.

Intuitively, a well-established functional correspondence will reduce the diversity in robot action
plans, focusing on the “correct” behavior mode. To quantify the relevant behavior modes before
functional alignment, we obtain a set of action plans Aq := {a ∼ π(· | o) | o ∈ Qq} for all
observations with the same proprioceptive state via a forward pass through the policy. Behavior
mode labels are obtained by fitting nc clusters to Aq via K-means clustering. Since the current
functionally-aligned observations are a subset Qf ⊆ Qq , we can obtain labels for all functionally-
aligned action plans Af ⊆ Aq and measure the reduction in behavior modes via the entropy over
the action plan labels. As long as the entropy in the retrieved actions is high, the robot keeps
asking the expert to refine their functional correspondence description l by showing them the current
observations and their behaviors, then re-doing the OOD-to-ID matching from Sec. 4.2.

4.4 Intervening on Observations to Generate Functionally-Corresponding Behavior

Once the correspondence description l is complete and the retrieved action mode uncertainty is suf-
ficiently low, the robot intervenes on its observations to generate functionally “correct” behavior.
Specifically, observations in the final refined Of are ranked based on their functional alignment as
measured by Eq. 2. To smooth out action prediction, we generate the final executed action plan by in-
terpolating the embeddings of M -highest ranked corresponding observations: ẑ := 1

M

∑
o∈Of

E(o)
before passing the average embedding to the policy network.
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5 Hardware Experiments

We conduct a series of experiments in robot hardware to study: (1) How much does Adapting by
Analogy improve the visuomotor policy’s closed-loop performance on OOD environments induced
by novel objects and backgrounds conditions?, (2) What kind of features (e.g., base policy’s embed-
ding, DINOv2 [21], or functional correspondences) maximally help observation interventions?, (3)
How efficient is our method at seeking expert feedback for adaptation in OOD environments?, (4)
When intervention schemes succeed, are they retrieving functionally-aligned observations?

Real Robot Setup. We use a Franka Research 3 robotic manipulator equipped with a 3D printed
UMI gripper [22] for our real-world experiments. The RGB image observations i ∈ I come from
a wrist mounted RealSense D435 camera and a third-person Zed mini 2i camera overlooking the
workspace. The overall robot observation o := (i, q) consists of the concatenated images and the
robot proprioception. More details about our setup can be found in the supplementary.

ID Environments & Tasks. We train two visuomotor policies on two different real-world ma-
nipulation tasks. The first task is sweep-trash, wherein robot must sweep trash towards different
goals, based on whether the trash is organic and recycling. The next task is object-in-cup, where-in
a robot arm is tasked with picking up a object such as a marker or a pen and dropping it in a mug.
Pens—which are grasped above their center-of-mass—need to be dropped into the mug from the
bottom, and markers—which are grasped below their center-of-mass—need to be dropped from the
front. We divide the task in 3 sub-goals (A) grasping the object, (B) picking the correct behavior
mode based on the grasp, and (C) dropping object into the cup.

Visuomotor Policy Training. We use a diffusion policy [6] as the base visuomotor policy π(a | o).
It takes as input o and predicts a T-step action plan, where T = 16. For sweep-trash, the training
dataset |DID| = 100 consists of 50 demonstrations cleaning up crumpled paper (recycling trash) and
50 demonstrations cleaning up M&Ms (organic trash). For object-in-cup, the policy is trained on
|DID| = 200 demonstrations with 100 placing a marker (dropped from the back) and 100 placing a
pen (dropped from the top).

OOD Environments. We test on two in-distribution environments and five OOD environments for
each task. In addition to pens and markers, we e evaluate sweep trash with one background variation
(workspace covered with black cloth), and three novel instances of trash (doritos, crumpled napkin,
thumb tacks). For the object-in-cup, we test with in-distribution objects, one novel background
(workspace covered with black cloth), and three instances of novel objects varying in shapes and
sizes (pencil, battery, jenga block).

Baselines. We compare our method, ABA, with three baselines. Vanilla is the base visuomotor
policy without any intervention mechanism. PolicyEmbed intervenes on the observations with a
similar mechanism to ours, but it retrieves ID observations using cosine similarity in the base pol-
icy’s learned embedding space, E(o) ∈ Z . It does not use any expert feedback. DINOEmbed
also intervenes on the base policy, but it retrieves ID samples using cosine similarity in the DinoV2
[21] feature space of the OOD and ID observations. We use this to test if powerful pre-trained vi-
sion foundation models can implicitly capture functional correspondences beyond semantic object
categories. We use both the class token features and the patch features. For ABA, we generate corre-
spondence features ϕ via decoding l into a pre-templated set of features. The choices of the features
are (1) match ‘ood object semantic label’ with ‘id object semantic label’, (2) overlap segments of
‘ood object’ with ‘id object’ (3) Align left/right edge of segments, (4) align top/base of segments,
and (5) “Pass”, which meant that the expert does not want to refine the set of correspondence fea-
tures. All intervention methods perform matching in the refined set of ID observations based on the
robot’s current proprioception Oq , as described in Sec. 4.2.

Evaluation Procedure. All methods are evaluated via the same procedure and in the same con-
ditions. For each ID and OOD environmental condition, we perform 10 rollouts of each method,
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Figure 3: Task Success in ID and OOD Environments. We report the task success rate averaged
across 10 rollouts (per each ID and OOD conditions) and averaged across ID, OOD background,
or OOD object conditions. For both the sweep-trash and the object-in-cup tasks, we see that ABA
consistently achieves the highest task success rate compared to baselines.

placing the object of interest uniformly at random within a 15 cm horizontal range on the table. With
a total of 14 environmental conditions, we collect a total of 140 rollouts for evaluation.

5.1 How much does ABA improve the policy’s closed-loop performance?

In this section, we compare the overall task success rate of ABA with Vanilla. As shown in Fig. 3,
ABA improves the Vanilla policy even in in-distribution environments by 15% on the sweep-trash
task and 25% on the object-in-cup task. While the vanilla policy was robust to the novel background
for the sweep-trash task, it completely degraded when faced with the novel background in the more
challenging object-in-cup task. By reasoning about functional correspondences, ABA improved
over the vanilla policy by 20% on the sweep trash task and by 90% on the object in cup task, staying
robust to task-irrelevant changes to the background. Finally, we observe strong OOD generalization
with ABA when evaluated under OOD objects where it improves over the vanilla policy by 76%
on both tasks, showcasing that learned behaviors can be transferred to OOD objects from different
semantic categories by reasoning about functional correspondences.

5.2 What kind of features maximally help observation interventions?

In this section, we compare how the features used for retrieving ID observations affect policy per-
formance. For in-distribution environments, on the sweep trash task both PolicyEmbed and DI-
NOEmbed perform on par with ABA. However, ABA outperforms by 15% on the object in cup
task. Similar to ABA, both the DINOEmbed and PolicyEmbed are also robust to the novel back-
ground. Interestingly, DINOEmbed’s performance improves under the novel background. We hy-
pothesize that this is due to the exceptional capabilities of the dino features at dense correspondence
matching across objects within the same semantic category [21]. When tested on OOD objects, both
DINOEmbed and PolicyEmbed struggle, achieving only 36.67% and 33.34% success rate respec-
tively on sweep trash. On the object in cup task both baselines failed to successfully complete the
task. Taking a closer look at the performance with specific OOD objects revealed common failures
at the grasping stage and at picking the correct behavior mode. More analysis in supplementary.

5.3 How efficient is ABA at seeking expert feedback in OOD environments?

Next we study how often does ABA request feedback from the expert at test-time. Fig. 4 shows the
number of times ABA requested feedback on average across 10 rollouts (with standard error bars)
for both the sweep trash and the object in cup task, in all the three experiment settings (ID, OOD-Bg,
OOD-Object).
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Figure 4: Expert Feedback Requested by ABA. We show mean and standard error for the number
of feedback requests across 10 rollouts per each environment. We find that ABA infrequently queries
the expert for correspondances, given that sweep-trash has 70 timesteps and object-in-cup has 120.

For the sweep-trash task, ABA asks for feedback 3.8± 1.66 times for ID crumpled paper. In OOD
backgrounds,feedback requests increased, e.g., to 4.5 ± 1.2 times per rollout for crumpled paper.
ABA requested feedback the most for OOD objects, with the highest number of requests for doritos
with an average of 5.2 ± 1.16 times per rollout. Note that each rollout for sweep trash ran for 80
timesteps, so this corresponds to asking for feedback 6% of the rollout. For the object-in-cup task,
feedback was requested 2.1±0.7 times for the ID pen, and 1.3±1.0 times for the ID marker. Similar
to sweep-trash, the feedback requests increased with OOD backgrounds: e.g., feedback about the
pend was requested 4.3 ± 1.73 times per rollout. Finally, amongst the OOD objects, feedback was
requested the most for battery at 3.4± 1.62 times per rollout. Note that each rollout in the object in
cup task ran for 120 timesteps.

5.4 When intervention methods succeed, do they retrieve functionally-aligned observations?
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Figure 5: Retrieval overlap vs task
success.

We looked at what observations the intervention-based base-
lines retrieved when they succeed. We measured the precision
of the set of observations retrieved by DINOEmbed and Pol-
icyEmbed against the observations retrieved by ABA.

Fig. 5 shows precision vs. cumulative success rate, where each
dot on the plot is a rollout1from the object-in-cup task in ID
and OOD background environment configurations. These had
sufficient coverage over successes and failures. Overall, the
trends indicate that when the baselines were successful, they
also retrieved functionally corresponding observations with
high precision. This shows that interventions using function-
ally corresponding observations help generalize under OOD
conditions.

6 Conclusion

In this work, we present Adapting by Analogy, a method for enabling deployment-time generaliza-
tion of visuomotor policies by leveraging functional correspondences between out-of-distribution
(OOD) and in-distribution (ID) observations. Rather than requiring new expert demonstrations for
each novel scenario, our approach uses expert-provided functional features—which are interactively
refined to represent during task execution—to repurpose existing ID policy behaviors in OOD envi-
ronments. Empirical results across two real-world manipulation tasks with ten OOD environments
demonstrate that establishing functional correspondences can improve a diffusion policy’s success
rate by 76% to new objects and backgrounds with minimal human intervention.

1The final precision value is averaged over each timestep where retrieval happened during the rollout.
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7 Limitations

Our method is not without its limitations.

Assumes functional overlap: Our method assumes that there exists a functional behavior overlap
between the OOD scenarios and ID scenarios, enabling the learned behaviors from the ID scenarios
to be reused. However, this may not hold in tasks where new objects or environment geometries
require fundamentally new strategies that go beyond what was seen in training. Future work should
rigorously quantify the robot’s confidence in retrieving a behavior that is relevant and actively asking
for expert demonstrations when no behaviors are relevant.

Reliance on experts: Our method does still rely on an expert to provide the functional correspon-
dences at test time, which can be challenging for novice end-users and limit the autonomy of the
robot. Future work should study the autonomous identification of correspondence features (e.g., via
another foundation model). Relatedly, the decoding of the language description into the functional
feature set can be ambiguous, prompting the need for future work on grounding natural language
into embodied representations.

Limited experiment scope: We tested our method on two types of OOD conditions for two real
world tasks. Future work, should incorporate more OOD scenarios, for ex. lighting perturbations,
distractor objects, on more complex, fine-grained and long-horizon tasks.

Uncalibrated OOD detection: Finally, our system’s performance requires a reliable OOD detection
mechanism, which should be properly calibrated to balance how frequently the robot has to do
interventions and ask for features from the expert.
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Supplementary

This is the supplementary material to the paper, Adapting by Analogy: OOD Generalization of
Visuomotor Policies via Functional Correspondence.

A Hardware Experiment Setup

Figure 6: Our hardware experiment setup, we use a Franka Research 3 robot, with a UMI gripper.
The RealSense D435 wrist camera, and Zed mini 2i third person camera are placed as shown.

B Tasks

pen marker

Object in Cup

Sweep Trash

A B C

A B BA

A B C

Figure 7: The training demonstrations for our two tasks, with their sub-goals(A, B, C). For the object
in cup task, the pen is grasped below the center-of-mass, and is dropped into the mug from the front.
The marker is grasped above the center-of-mass and is dropped into the mug from the bottom. For
the sweep trash task, paper (i.e., recycling) is swept up, and M$Ms (i.e., organic) is swept down.
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We conduct our experiments on two real-world tasks. The first task is sweep-trash, wherein robot
must sweep trash towards different goals, based on whether the trash is organic and recycling. For
evaluation, we divide the task in two sub-goals (A) properly aligning the wiper with the trash, (B)
sweeping to the correct location. The next task is object-in-cup, where-in a robot arm is tasked with
picking up a object such as a marker or a pen and dropping it in a mug. Markers—which are grasped
above their center-of-mass—need to be dropped into the mug from the bottom, and pens—which
are grasped below their center-of-mass—need to be dropped from the front. We divide the task in
3 sub-goals (A) grasping the object, (B) picking the correct behavior mode based on the grasp, and
(C) dropping object into the cup. Fig. 7 demonstrates the various modes and the sub-goals for the
two tasks.

We evaluate both tasks on the in-distribution conditions and OOD conditions induced by back-
ground and novel objects. The OOD environments are shown in Fig. 8 For sweep-trash our
ID environments are EID-trash := {Epaper

ID , EM&Ms
ID }. The OOD environments are EOOD-Trash :=

{Edoritos
OOD , Enapkin

OOD , Ethumb-tack
OOD , Epaper-bg

OOD , EM&M-bg
OOD }.

For object-in-cup our ID environments are EID-object := {Emarker
ID , Epen

ID }. The OOD environments
are EOOD-object := {Epencil

OOD , Ebattery
OOD , Eblock

OOD , E
marker-bg
OOD , Epen-bg

OOD }.

Jenga-BlockBatteryPencilPen black 
background

Marker black 
background

Doritos Thumb-
tack

NapkinM&Ms black 
background

Paper black 
background

Figure 8: Our OOD environments for both the sweep-trash and object-in-cup task

C Additional Results

C.1 How much does ABA improve the policy’s sub-goal level closed-loop performance?

Fig. 9 shows that on the sweep-trash task, both ABA and Vanilla are able to successfully accomplish
both subgoals on EM&Ms

ID . However, in Epaper
ID , Vanilla fails at aligning the wiper with the paper

trash (subgoal A) 10% of the times, and sweeps paper incorrectly (subgoal B) 30% of the times.
ABA maintains 100% performance on Epaper

ID .

Showing a similar trend, both Vanilla and ABA show 100% success rate on the Emarker
ID for the

object-in-cup task. On the Epen
ID , while both Vanilla and ABA are able to grasp the pen (subgoal

A) 100% of the times, ABA improves over Vanilla by 40% at picking the right mode (subgoal B),
showing a 100% success rate. Finally, since dropping the pen into the cup (subgoal C) is the most
fine-grained aspect of the task, both ABA and Vanilla struggle but ABA still improves over Vanilla
by 50%.
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Figure 9: Subgoal Success in each ID Environment. We report the subgoal level task success rate
averaged across 10 rollouts. For both the sweep-trash and the object-in-cup tasks, we see that ABA
consistently achieves the highest task success rate compared to baselines.
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Figure 10: Subgoal Success in each OOD Environment, induced by changing the background. The
success rate is averaged across 10 rollouts. ABA again consistently achieves the highest task success
rate compared to baselines.

Next, we compare ABA and Vanilla across OOD environments, induced using a novel background
(Epaper-bg

OOD , EM&M-bg
OOD , Epen-bg

OOD , Emarker-bg
OOD ).

Fig. 10 shows that on the sweep-trash task the performance trends are similar to the ID environments,
although interestingly instead of Epaper−bg

OOD , Vanilla now shows poorer performance on subgoal B
of EM&Ms-bg

OOD . ABA shows 100% success rate on both goals of both EM&Ms-bg
OOD and Epaper-bg

OOD . On the
object-in-cup task, Vanilla struggles on all subgoals of both Epen-bg

OOD , Emarker-bg
OOD environments. ABA
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Figure 11: Subgoal Success in each OOD Environment with 3 novel objects for both sweep-trash
and object-in-cup task. The success rate is averaged across 10 rollouts. ABA again consistently
achieves the highest task success rate compared to baselines.

improves over Vanilla on both environments showing a 100% performance on all subgoals of both
environments, except subgoal C of the Epen-bg

OOD , where it shows an 80% success rate. This shows
that a with novel background, Vanilla fails to even grasp the objects, however interventions with
ID observations ignores the OOD conditions induced by the novel background, allowing ABA to
uphold closed loop performance under the OOD environments.

Finally, on OOD environments induced by novel object categories for the sweep-trash task we ob-
serve from Fig. 11 that while Vanilla is able to align the wiper with the trash, it fails to pick the
correct direction for sweeping the trash (subgoal B), as visual features are not enough to decide
whether the trash is organic or recycling. ABA is able to successfully accomplish both subgoals for
all novel objects as the relevant features for deciding the trash type are supplied by the expert as
functional correspondences.

Since the object-in-cup task is more challenging, Vanilla is only performant at grasping (subgoal
A). It is able to grasp the pencil with 40%, the battery with 90%, and the jenga-block with 80%
success-rate. However, the sizes of the objects are such that they can only be dropped into the mug
from the top (subgoal B), however Vanilla is not able to infer these features solely from the training
data and hence fails at subgoal B and C. With ABA, the expert language feedback helps establish
the correct functional correspondences, leading to an improvement in the performance across all
subgoals.

C.2 What kind of features maximally improve the sub-goal level performance for
observation interventions based methods?

As shown in Fig. 9, all intervention based method demonstrate a 100% task success on all sub-
goals of the sweep-trash task, in the ID environments. On the object-in-cup task intervention based
methods again perform comparably on the Emarker

ID , however on the Epen
ID both PolicyEmbed and

DINOEmbed perform worse as compared to ABA on all subgoals.

As shown in Fig. 10, under a novel background, intervention based methods perform comparably
on the sweep-trash task. On the object-in-cup task, PolicyEmbed performs worse compared to
both DINOEmbed and ABA, whereas DINOEmbed performs comparably with ABA. This can be
attributed to the ability of dino features to perform dense correspondence matching, specially across
objects in the same semantic class.

Fig. 11 shows that under novel objects both PolicyEmbed and DINOEmbed struggle. Since Pol-
icyEmbed relies on the policy embeddings, under ‘doritos’ and ‘napkin’ it sweeps them in either
direction. DINOEmbed matches the visual features and since napkin closely resembles paper, it is
able to correctly sweep napkin as recycling, and fails on other objects.
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For the object-in-cup task, because policy embeddings and visual features alone are not enough to
match the objects with the ID sample that lead to the desired behavior mode, both PolicyEmbed
and DINOEmbed perform worse as compared to ABA.
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