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Abstract

Large Language Model (LLM) Uncertainty001
Estimation (UE) methods have become cru-002
cial tools for detecting hallucinations in re-003
cent years. While numerous UE methods have004
been proposed, most existing studies evaluate005
them in isolated short-form QA settings using006
threshold-independent metrics such as AUROC007
or PRR. However, real-world deployment of008
UE methods introduces several challenges. In009
this work, we systematically examine four key010
aspects of deploying UE methods in practical011
settings. Specifically, we assess (1) the sen-012
sitivity of UE methods to decision threshold013
selection, (2) their robustness to query transfor-014
mations such as typos, adversarial prompts, and015
prior chat history, (3) their applicability to long-016
form generation, and (4) strategies for lever-017
aging multiple UE scores for a single query.018
Our evaluations on 19 UE methods reveal that019
most of them are highly sensitive to threshold020
selection when there is a distribution shift in021
the calibration dataset. While these methods022
generally exhibit robustness against previous023
chat history and typos, they are significantly024
vulnerable to adversarial prompts. Addition-025
ally, while existing UE methods can be adapted026
for long-form generation through various strate-027
gies, there remains considerable room for im-028
provement. Lastly, ensembling multiple UE029
scores at test time provides a notable perfor-030
mance boost which highlights its potential as a031
practical improvement strategy.032

1 Introduction033

Generative Large Language Models (LLMs) have034

been deployed in various real-world applications,035

including code copilots, chatbots, and medical as-036

sistants (Zhang et al., 2024b; Liu et al., 2024).037

Their widespread usage has raised significant safety038

considerations, particularly regarding reliability039

(Bengio et al., 2025). Despite advancements over040

the previous wave of language models, these mod-041

els can still produce incorrect or misleading text,042

a problem commonly known as hallucination or 043

confabulation (Ravi et al., 2024). 044

Detecting hallucinations in LLM outputs is a fun- 045

damental challenge, with various approaches such 046

as fact-checkers (Wang et al., 2024), tool-based 047

detectors (Chern et al., 2023), LLM-collaboration- 048

based detectors (Feng et al., 2024), and Uncertainty 049

Estimation (UE) methods (Farquhar et al., 2024). 050

Among these, UE methods are particularly valu- 051

able as they operate independently of external re- 052

sources like Internet searches or other tools, and 053

have shown promising performance across diverse 054

datasets (Vashurin et al., 2025). 055

Numerous UE methods have been proposed to 056

detect hallucinations (Azaria and Mitchell, 2023; 057

Zhao et al., 2024). However, these are typically 058

tested in isolated short-form QA settings with sim- 059

ple prompts and evaluated using threshold-free met- 060

rics like AUROC and PRR (Malinin and Gales, 061

2021; Duan et al., 2024). Despite their value, the 062

challenges of real-world deployment remain largely 063

unexplored and are crucial for future research. 064

Motivated by these concerns, we investigate four 065

essential aspects of deploying a UE method in the 066

real-world (wild), as also outlined in Figure 1: 067

Sensitivity of Decision Threshold: Since the out- 068

puts of UE methods are typically continuous, se- 069

lecting a threshold is necessary to make binary de- 070

cisions (e.g., hallucination or not). This threshold 071

is calibrated using a specific dataset to meet target 072

performance levels. We explore whether the thresh- 073

olds selected for UE methods achieve the desired 074

performance in practice, evaluating their stability 075

and effectiveness across different data distributions. 076

Robustness to Input Transformations: We assess 077

the resilience of UE methods to previously gener- 078

ated context, typos in the prompts, and adversarial 079

prompts designed to confuse UE methods. 080

Applicability to Long-Form Generations: While 081

many UE methods are proposed and tested for 082

short-form QA, real-world questions often require 083
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Figure 1: Left: Existing pipeline for UE. The uncertainty score is calculated for short-form QA and evaluated using
a threshold-free metric such as AUROC. Right: Reconsidering LLM uncertainty estimation methods in the wild.
We ask four critical questions addressing challenges in deploying UE methods in real-world scenarios.

extended answers containing multiple claims. We084

examine whether these methods designed for short-085

form QA can be adapted to long-form generations.086

Reconcilability of Diverse UE Scores: UE meth-087

ods often produce varying judgments for the same088

input. Ensembling their outputs can enhance perfor-089

mance, potentially surpassing individual methods.090

With our comprehensive evaluation of 19 UE091

methods, our findings across the four investigated092

aspects can be summarized as follows:093

• Most UE methods are highly sensitive to de-094

cision threshold selection, particularly when095

the calibration data distribution differs from096

the test data distribution.097

• The majority of the methods demonstrate re-098

silience to previous context and typos in the099

prompt, but they exhibit significant perfor-100

mance drops with adversarial prompts.101

• UE methods not originally designed for long-102

form generation can be adapted to this setting103

through additional steps. However, their ef-104

fectiveness remains lower compared to their105

performance in short-form tasks.106

• Ensembling multiple UE scores can yield107

meaningful performance improvements, even108

when using a very small set of data. Notably,109

simple ensembling strategies, such as averag-110

ing UE scores, can be very effective.111

Based on these findings, we encourage re-112

searchers to evaluate the sensitivity of their pro-113

posed UE methods to threshold selection and input114

transformations. There is also potential for devel-115

oping advanced techniques to apply UE methods116

to long-form generation. Finally, we believe that117

further exploration of ensembling strategies may118

unlock even greater performance improvements.119

2 Preliminaries 120

2.1 Uncertainty Estimation of LLMs 121

Although various Uncertainty Estimation (UE) 122

methods for LLMs have been proposed recently, 123

there is no universally accepted definition of UE in 124

the context of LLMs (Vashurin et al., 2025). Some 125

research formalizes LLM uncertainty by decom- 126

posing into aleatoric (data) and epistemic (model) 127

uncertainties, leveraging LLM sampling distribu- 128

tions (Aichberger et al., 2024; Abbasi-Yadkori 129

et al., 2024). However, many heuristic-based UE 130

methods in the literature do not conform to these 131

theoretical frameworks. 132

Therefore, we adopt a broad, practical defini- 133

tion of UE, following previous works (Jiang et al., 134

2024; Huang et al., 2024). Formally, an uncer- 135

tainty estimation method U is defined as a function 136

U : V∗ × V∗ → R, where V represents the vocabu- 137

lary, and V∗ denotes all possible token sequences. 138

For a given query x and generated response ŷ, an 139

effective U should assign a low uncertainty score 140

(indicating higher confidence) if ŷ is reliable in 141

the given context. In tasks such as factual QA 142

or mathematical reasoning—common evaluation 143

benchmarks for UE methods—reliability refers to 144

the correctness of ŷ with respect to the set of ground 145

truth(s) Y . Formally, a desirable U should maxi- 146

mize E
[
1U(x1,ŷ1)<U(x2,ŷ2) · 1ŷ1∈Y1∧ŷ2 /∈Y2

]
where 147

(x1, y1), (x2, y2) ∼ D, with D being a dataset, 148

ŷ1 ∼ p(·|x1), ŷ2 ∼ p(·|x2) representing the 149

model’s sampling distributions. 150

2.2 Evaluation of UE Methods 151

As discussed in the previous section, UE methods 152

serve as proxies for predicting the correctness of 153

model-generated responses, producing scores that 154

typically lie within a continuous range. Conse- 155
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quently, their evaluation is commonly performed156

by setting the correctness of a generation as binary157

labels (0 or 1)1, using UE scores as predictions,158

and computing threshold-free metrics such as AU-159

ROC and AUPRC (Kuhn et al., 2023; Vashurin160

et al., 2025). In addition to these, the Predic-161

tion Rejection Ratio (PRR) (Malinin and Gales,162

2021) evaluates UE performance by constructing163

a rejection-precision curve, which measures the164

precision of the retained (non-rejected) samples165

at different rejection thresholds based on uncer-166

tainty scores. PRR is computed as the area under167

this curve and is further normalized by the areas168

under the curves of the best possible (oracle) and169

random rejection-precision strategies. This normal-170

ization makes PRR resilient to label imbalances in171

the dataset (Malinin and Gales, 2021). PRR ranges172

from 0.0 (random performance) to 1.0 (perfect per-173

formance). In this study, we primarily use PRR as174

our evaluation metric due to its robustness against175

variations in data distribution.176

2.3 Investigated UE Methods177

Throughout this paper, we examine 19 UE methods,178

categorizing each according to its primary concep-179

tual approach. We identify four distinct categories180

for this classification:181

Probability-Based Methods utilize probabilities182

of tokens in the generated sequence. Length-183

Normalized Scoring (LNS) (Malinin and Gales,184

2021) is the average of the log-probabilities of185

the generation, while MARS (Bakman et al., 2024)186

computes the weighted-average of that regarding187

the token importance in answering the question.188

LARS (Yaldiz et al., 2024) trains a small-scale189

transformer that takes the question, generation to-190

kens, and token probabilities. Entropy (Malinin191

and Gales, 2021) calculates the average of length-192

normalized scores over a set of sampled genera-193

tions for the same question. Semantic Entropy (SE)194

(Kuhn et al., 2023) clusters the semantically-similar195

generations while SentSAR and SAR (Duan et al.,196

2024) considers relevancy scores of the sampled197

generations during entropy calculation.198

Internal State-Based Methods make use of the199

internal states of the LLM, which are only appli-200

cable to white-box models. INSIDE (Chen et al.,201

2024) utilize the middle layer activations of the last202

tokens of multiple generations to the same question.203

1We utilize GPT-4o-mini as correctness evaluator, using
the query, generated response, and ground truth(s) (Lin et al.,
2024; Bakman et al., 2024)

Attention Score (Sriramanan et al., 2024) analyses 204

the attention maps of the LLM. SAPLMA (Azaria 205

and Mitchell, 2023) trains a classifier whose input 206

is the activations of the last token of the generation. 207

Output Consistency-Based Methods sample mul- 208

tiple generations to the query, then utilize their 209

pair-wise similarity information, hence usable with 210

black-box models. Degree Matrix Uncertainty, Ec- 211

centricity Uncertainty, SumEigV (Lin et al., 2024), 212

and Kernel Language Entropy (KLE) (Nikitin et al., 213

2024) utilize different linear algebra techniques 214

over the pair-wise similarity matrix of the sampled 215

generations. Degree Matrix-C and Eccentricity-C 216

(Lin et al., 2024) output a generation-specific score 217

for each generation by using the similar ideas in 218

Eccentricity Uncertainty and Degree Matrix Un- 219

certainty. Self-Detection (Zhao et al., 2024) para- 220

phrases the question and analyses the similarity of 221

the responses to the paraphrased questions. 222

Self-Checking Methods query the LLM itself 223

about the uncertainty of the generation. P(true) 224

(Kadavath et al., 2022) asks if the response is true 225

by providing the question, sampled generations, 226

and the answer. Verbalized Confidence (Tian et al., 227

2023) prompts the LLM to assign a confidence 228

score to the response between 0 and 1. 229

It is important to note that only LARS and 230

SAPLMA are supervised techniques, requiring la- 231

beled QA data, whereas all other methods are un- 232

supervised. For brevity, detailed explanations of 233

these methods are provided in Appendix C. 234

3 Sensitivity of Decision Threshold 235

3.1 Problem Statement 236

UE methods typically produce outputs in a continu- 237

ous range. However, integrating a UE method into 238

a real-world application requires making discrete 239

decisions, such as whether to accept or reject a 240

generated response. The sensitivity of this binary 241

decision can vary depending on the application. 242

Consequently, such scenarios require selecting an 243

appropriate threshold to achieve the desired perfor- 244

mance for decision-making. 245

Determining a threshold t for a target application 246

requires a labeled calibration dataset Dcal. Using 247

this dataset and a desired metric M with a target 248

performance level m∗, a threshold t is randomly 249

picked from the set {t : M(U,Dcal, t) = m∗}. 250

This threshold is then applied during testing. The 251

key question is whether the desired performance 252

m∗ is maintained at test time. If not, two main 253
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factors may contribute: (1) a distribution shift be-254

tween the calibration and test data, or (2) the UE255

method itself being sensitive to such scenarios. To256

investigate this phenomenon, we examine 19 UE257

methods (listed in Section 2.3) across two tasks and258

varying levels of calibration-test distribution shifts.259

3.2 Experimental Design260

Models We evaluate UE methods on two recent261

models: Llama-3-8B (AI@Meta, 2024) and GPT-262

4o-mini (OpenAI, 2023).263

Datasets We use TriviaQA (Joshi et al., 2017)264

and NaturalQA (Kwiatkowski et al., 2019) as265

closed-book QA datasets and GSM8K (Cobbe266

et al., 2021) as mathematical reasoning dataset in267

the experiments. We use 1000 samples for the test268

set and 500 samples for the calibration dataset. All269

experiments are conducted 5 times with different270

seeds and the average performance is provided.271

Metric Different applications require varying272

precision-recall trade-offs, so we introduce a met-273

ric to assess threshold generalization at test time.274

For each target recall r∗ ∈ [0, 1], we determine an275

optimal threshold t using a calibration set. Hallu-276

cinations (incorrect generations) are class 1, and277

correct answers are class 0 which makes recall the278

proportion of hallucinations correctly identified by279

the UE method.280

To assess threshold generalization, we measure281

the deviation |r∗−r|, where r is the recall achieved282

on the test set using threshold t. By averaging these283

deviations over a setR of recall values of interest,284

Average Recall Error (ARE) is defined as:285

ARE =
1

|R|
∑
ri∈R
|r∗i − ri|.286

In our experiments, we setR to span the full recall287

range from 0 to 1.0., with increments of 0.001.288

Distribution Shift Simulation We systemati-289

cally examine how distribution shifts between cali-290

bration and test data impact threshold selection per-291

formance through two experimental setups. First,292

we use TriviaQA as the test data, calibrating with293

TriviaQA for an in-domain setting, NaturalQA for294

a same-task distribution shift, and GSM8K for295

an out-of-domain scenario. Second, we test with296

GSM8K and calibrate separately with TriviaQA297

and GSM8K, where GSM8K is in-domain and Triv-298

iaQA is out-of-domain.299

3.3 Results and Discussion300

The ARE results for TriviaQA are presented in Ta-301

ble 1. The findings indicate that the majority of302

UE methods achieve a low ARE (<0.05) when the 303

threshold is calibrated on a separate subset of Trivi- 304

aQA, with the exception of Verbalized Confidence 305

and Self-Detection. However, as expected, the error 306

rate increases with greater data distribution shifts, 307

making GSM8K calibration the most erroneous 308

when UE methods are tested on TriviaQA. 309

Probability-based and output consistency-based 310

methods generally outperform internal state-based 311

and self-checking methods. However, only MARS, 312

Semantic Entropy, and Eccentricity consistently 313

achieve low error across calibration datasets, while 314

all others exceed 0.10 ARE in at least one setting. 315

These results highlight the need to align the cali- 316

bration data distribution with the test (deployment) 317

environment to ensure reliable binary decision- 318

making using UE methods. Furthermore, we en- 319

courage researchers to test their proposed UE meth- 320

ods under distribution shift conditions, particularly 321

for threshold sensitivity. Robustness to such shifts 322

is a highly desirable property, as it reduces reliance 323

on an optimal calibration dataset. Lastly, the ARE 324

results for GSM8K, provided in Appendix D.1, 325

aligns with the findings observed in TriviaQA. 326

Llama3-8b GPT-4o-mini
Calib. Dataset TrivQA NQA GSM TrivQA NQA GSM

LNS 0.030 0.093 0.103 0.055 0.035 0.049
MARS 0.035 0.025 0.077 0.050 0.046 0.040
Entropy 0.032 0.103 0.101 0.072 0.048 0.066
SE 0.035 0.065 0.073 0.060 0.029 0.045
SentSAR 0.041 0.105 0.123 0.074 0.041 0.093
SAR 0.028 0.059 0.107 0.068 0.023 0.077
LARS 0.035 0.117 0.130 0.048 0.125 0.289
DegMat 0.041 0.033 0.169 0.051 0.051 0.142
DegMat-C 0.038 0.030 0.141 0.058 0.049 0.126
SumEigV 0.042 0.035 0.191 0.051 0.053 0.165
KLE 0.047 0.062 0.173 0.076 0.056 0.115
Eccent 0.040 0.037 0.069 0.057 0.049 0.050
Eccent-C 0.040 0.039 0.098 0.063 0.048 0.051
Self-D. 0.082 0.086 0.113 0.110 0.127 0.096
P(True) 0.035 0.087 0.255 0.123 0.163 0.200
Verb. C. 0.172 0.182 0.280 0.084 0.131 0.142
Atten. S. 0.027 0.027 0.261 - - -
INSIDE 0.040 0.096 0.295 - - -
SAPLMA 0.046 0.029 0.142 - - -

Table 1: ARE of UE methods when the threshold is
calibrated on various datasets and tested on TriviaQA.

4 Robustness to Input Transformations 327

4.1 Problem Statement 328

Previous UE works primarily evaluate their meth- 329

ods in isolated environments, where a question 330

is presented to the model using a simple benign 331

prompt, and the model’s response is directly sam- 332

pled. However, in real-world applications, inputs 333

can arrive in various forms. We expect a robust UE 334

method’s performance should not be affected much 335

under these various input forms. 336
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Figure 2: PRR performance of UE methods on the GSM8K and TriviaQA datasets, evaluated under a regular prompt
(no transformation) and various input transformations, including adding context, typos, and adversarial prompts.

More formally, we apply a transformation func-337

tion T to a query x such that T (x) preserves the338

same ground truth set Y as the original query.339

This ensures that the transformation does not al-340

ter the fundamental meaning of the query. Let341

D∗ := {(T (x), Y ) | (x, Y ) ∈ D} represent the342

transformed version of the original dataset D. A343

robust UE method U should exhibit similar perfor-344

mance on both D and D∗. However, since input345

transformations can influence the model’s internal346

computations—on which UE methods ultimately347

rely—a non-robust U may experience performance348

degradation under different transformations.349

We investigate the robustness of UE methods350

across three specific transformations: (1) Contex-351

tual: This transformation appends previous chat352

history (context) to the input. This scenario com-353

monly occurs in chatbot applications, where users354

may ask multiple questions within the same ses-355

sion. To evaluate this case, we prepend previous356

chat xprev to the original query x in the dataset:357

Tcontext(x) = xprev + x, where + denotes the con-358

catenation operation. (2) Typo: In real-world ap-359

plications, input queries often contain noise, with360

typos being a common form of such noise. To361

evaluate how UE methods handle noisy inputs, we362

introduce synthetic typos into the query, defining363

the transformation as: Ttypo(x) = xtypo. (3) Ad-364

versarial: We design an adversarial prompt that365

aims to confuse UE methods, causing their perfor-366

mance to degrade on D∗. This can be viewed as an367

adversarial prompt injection attack, targeting UE368

methods specifically. Formally, the transformation369

is expressed as: Tadv(x) = padv + x, where padv is370

the adversarial prompt.371

4.2 Experimental Design372

We use Llama-3-8B and GPT-4o-mini as the base373

models and evaluate them on 1,000 samples from374

the test sets of TriviaQA and GSM8K, as described 375

in Section 3. We measure all methods’ performance 376

by PRR as described in Section 2.2. All experi- 377

ments are conducted 5 times, and we plot both the 378

mean and standard deviation of the results. 379

Context Experiments To simulate chat history, 380

we prepend three prior question-sampled response 381

pairs to each query in two scenarios: 1. Similar- 382

context: The prior questions are of the same type 383

as the question (e.g., TriviaQA). 2. Dissimilar- 384

context: The prior questions are from a different 385

domain (e.g., GSM8K math before a TriviaQA 386

question). 387

Typo Experiments To simulate typos, we ran- 388

domly replace, swap, erase, or insert a single char- 389

acter with uniform probability. We also test two- 390

character perturbations to evaluate the effects of 391

increased noise. 392

Adversarial Experiments Designing an adver- 393

sarial prompt is non-trivial.We insert a confidence 394

booster phrase, hypothesizing it may induce over- 395

confidence in model responses, impacting log prob- 396

abilities, outputs,and internal states and potentially 397

misleading UE methods. For Llama-3-8B experi- 398

ments, we use the following prompt: 399

“Be confident in your responses. Avoid 400

hesitation or uncertainty. Provide clear 401

and direct answers with conviction.” 402

For GPT-4o-mini, we generate a similar prompt 403

using an automated search inspired by Zhou et al. 404

(2023). The specific prompt used with the details 405

of the search process, is provided in Appendix E.1. 406

4.3 Results and Discussion 407

The results, Figure 2, suggest that previous chat 408

history has little to no negative effect on the perfor- 409

mance of most UE methods —except for Attention 410

Score— compared to standard prompting without 411

5



context. In some cases, such as GSM8K with GPT-412

4o-mini, including similar chat history appears to413

induce an in context learning-like effect, boosting414

the performance of probability-based UE methods.415

The typo experiments indicate that most UE416

methods are highly resilient to this input noise.417

This robustness persists even when the number of418

typos in a single query is increased to two, as shown419

in Appendix D.2.420

Finally, results indicate that the confidence421

booster prompt injection acts as an adversar-422

ial prompt, reducing performance across vari-423

ous datasets, particularly affecting probability-424

based methods in GPT-4o-mini. However, output-425

consistency-based methods show more resilience to426

this adversarial prompt than other approaches. The427

instability of UE methods to prompt transforma-428

tions is also observed in previous works (Mahaut429

et al., 2024). Although some performance vari-430

ations are expected, a robust UE method should431

not suffer significant degradation due to prompt432

changes. Therefore, we recommend that future433

UE methods undergo systematic prompt variation434

testing to assess their robustness.435

5 Applicability to Long-Form436

Generations437

5.1 Problem Statement438

Most UE methods are evaluated on short-form,439

open-ended QA. For instance, questions such as440

“Who is the author of the novel 1984?” can be an-441

swered with a single sentence, and a single score442

suffices for an uncertainty assessment. However, in443

some real-world applications, questions like “Who444

is George Orwell?” often require long-form re-445

sponses. These responses may contain multiple446

claims, some of which are correct while others may447

be hallucinated. Consequently, assigning a single448

uncertainty score to the entire response is both im-449

practical and undesirable, as it fails to capture the450

correctness of individual claims within the text.451

To address this issue, long-form outputs are typ-452

ically decomposed into sentences, each convey-453

ing a distinct claim (Farquhar et al., 2024; Wei454

et al., 2024b; Fadeeva et al., 2024; Zhang et al.,455

2024a; Manakul et al., 2023; Min et al., 2023).456

Formally, the decomposition function can be de-457

fined as D : V∗ → 2V
∗
, taking a long generation ŷ458

and returning a set of claims C = {ci}Ci=1. After459

decomposition, each claim ci is evaluated individ-460

ually. Recently, several UE methods have been461

developed specifically for this claim-level uncer- 462

tainty problem in long-form generations (Fadeeva 463

et al., 2024; Farquhar et al., 2024; Zhang et al., 464

2024a; Jiang et al., 2024), however, most exist- 465

ing UE methods are not directly applicable for as- 466

sessing uncertainty at the claim level in long form 467

generations(Vashurin et al., 2025). Consequently, 468

effectively applying these methods to segmented 469

claims continues to pose challenges. 470

In this section, we propose a set of strategies 471

designed to adapt existing UE methods to assess 472

claim-level uncertainty. A strategy function takes 473

the original query x, a specific claim ci, and a UE 474

function U, and returns an uncertainty score for 475

the claim ci. Formally, a strategy function can be 476

defined as S : V∗ × V∗ ×U→ R. 477

5.2 Experimental Design 478

Decomposing the Long Generation Following 479

previous research, we employ an LLM to decom- 480

pose long text into claims (Farquhar et al., 2024; 481

Fadeeva et al., 2024; Min et al., 2023). This decom- 482

position can be applied at different levels of granu- 483

larity. For instance, Wei et al. (2024b) segments the 484

generation into paragraphs, whereas Fadeeva et al. 485

(2024); Min et al. (2023) breaks down text into 486

sentences prior to decomposition. We, similar to 487

Farquhar et al. (2024), apply decomposition to the 488

entire generation. However, we introduce an addi- 489

tional decomposition step for each claim produced 490

in the initial phase, as the model often generates 491

sentences that contain more than one claim during 492

the first decomposition step. 493

Proposed Strategies to Apply UE to Claims An 494

uncertainty estimation method U requires two in- 495

puts: the query and the response. To effectively 496

employ a UE method within a strategy function S, 497

we need to define what constitutes the query and re- 498

sponse. We introduce three strategies to enable the 499

application of existing UE methods for claim-level 500

uncertainty estimation: 501

1. Naive Application: The primary input x serves 502

as the query, and the claim ci is used as the response 503

for the UE method: S(x, ci,U) = U(x, ci). 504

2. Question Generation (QG): For the given claim 505

ci, a specific question for that claim x′ is generated, 506

where the claim itself acts as the answer. Then, the 507

generated question x′ and the claim ci are inputted 508

to the UE method: S(x, ci,U) = U(x′, ci). 509

3. Question Answer Generation (QAG): A question 510

x′ is generated for the claim such that the claim 511

serves as the answer. However, instead of using the 512
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Figure 3: PRR scores for UE methods applied to long-form generation. ‘QG-5’ and ‘QAG-5’ indicate that five
questions per claim are generated and then aggregated (averaged) to assess each claim’s uncertainty.

claim directly, a new response y′ is generated by513

the model in response to x′ to make the claim come514

from the actual sampling distribution of the model515

to potentially estimate the uncertainty better. The516

UE method U(x′, y′) is called if y′ semantically517

equivalent with ci. If not, a high uncertainty score518

is assigned to the claim:519

S(x, ci,U) =

{
U(x′, y′) if ci aligns with y′,

∞ otherwise.
520

To further improve the last two strategies, mul-521

tiple questions can be generated for each claim.522

For each question, the processes outlined in the523

strategies are applied, resulting in a series of UE524

scores for the same claim. To combine these scores525

into a single assessment, we can aggregate them by526

taking the minimum, maximum, or average.527

Models, Datasets, and Metrics We employ GPT-528

4o-mini and Llama3-8B as our base models, using529

GPT-4o-mini consistently for text decomposition530

across all models. For question and answer gen-531

eration, the same base model generating the main532

response is utilized. We use two long-form QA533

datasets: FactScore-Bio (Min et al., 2023), con-534

taining biography questions from Wikipedia, and535

LongFact-Objects (Wei et al., 2024b), covering 38536

diverse topics. Experiments are conducted on a537

random sample of 50 questions from each dataset.538

For evaluation, we collect the UE scores from all539

claims as predictions and follow the SAFE (Wei540

et al., 2024b) algorithm to set ground truths, then541

calculate the PRR score. More details on this sec-542

tion are provided in Appendix E.3.543

5.3 Results and Discussion544

Our evaluation (Figure 3) shows that UE meth-545

ods not designed for long-form generation can be546

adapted using decomposition and strategies from547

Section 5.2. Results suggest that QAG outperforms548

other strategies, while Naive Application is the 549

least effective. Besides, generating claim-specific 550

questions (QG, QAG) improves uncertainty estima- 551

tion over relying on the original query (Naive), and 552

using model-generated answers (QAG) generally is 553

more effective than assessing claims directly (QG). 554

For both QG and QAG, generating multiple ques- 555

tions consistently enhances UE performance, with 556

only a few exceptions. This may indicate that mul- 557

tiple inquiries can capture uncertainty more effec- 558

tively, especially when there are various ways to 559

form a question for a specific claim. Among the 560

aggregation methods we evaluated (minimum, max- 561

imum, and average), averaging is consistently the 562

most effective, as shown in Appendix D.3. 563

When comparing different question domains, 564

higher PRR scores are observed in FactScore-Bio 565

compared to LongFact-Objects dataset which has 566

broader subjects such as chemistry, gaming, and 567

geography. Notably, we observe a non-negligible 568

performance drop of UE methods in PRR in long- 569

form generation compared to short-form QA such 570

as TriviaQA. This highlights there is still significant 571

room for improvement in applying these methods 572

to long-form generation. 573

6 Reconcilability of Diverse UE Scores 574

6.1 Problem Statement 575

UE methods use diverse algorithms to estimate un- 576

certainty which leads to different outputs for the 577

same input (x, ŷ). We leverage this diversity by 578

ensembling multiple UE methods during inference 579

to improve performance. Formally, given K UE 580

methods (U1,U2, . . . ,UK), their outputs for (x, ŷ) 581

form the score vector s = (s1, s2, . . . , sK). We ag- 582

gregate these scores using an ensemble function 583

E : RK → R. Since UE methods output in differ- 584

ent numerical ranges, we assume access to a small 585
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supervised calibration dataset Dcal of 100 samples586

for normalization.587

6.2 Experimental Design588

We conduct experiments using LlaMA-3-8B and589

GPT-4o-mini, evaluating the PRR performance of590

both individual UE methods and ensembling strate-591

gies on TriviaQA and GSM8K. Given that we in-592

vestigate K = 19 UE methods, the number of pos-593

sible ensemble combinations is 2K−K−1, which594

is computationally infeasible. Therefore, instead595

of exhaustively evaluating all possible ensembles,596

we focus on ensembling all methods together and597

compare its performance against the most effective598

individual UE method.599

Ensembling Strategies We ensemble in two600

stages: preprocessing raw scores s and combin-601

ing them with E . For preprocessing, we use three602

strategies: (1) No processing, using raw scores. (2)603

Standard normalization, where s′i =
si−µi

σi
, with604

mean µi and standard deviation σi computed from605

the calibration set Dcal. (3) Isotonic Regression606

calibration (Han et al., 2017), which maps scores607

to probabilities in the range [0,1] which approx-608

imates correctness likelihood. Unlike normaliza-609

tion, which only requires inputs x, calibration also610

requires ground truth y in Dcal.611

For ensembling, we investigate 7 different strate-612

gies. The first two are simple aggregation meth-613

ods: taking the minimum and maximum of s.614

We also consider averaging methods, including a615

simple mean 1
K

∑K
i=1 si and a weighted average616 ∑K

i=1wisi. Here wi represents the PRR perfor-617

mance of uncertainty estimator Ui on Dcal. An-618

other approach is a voting-based method, where619

we count the number of scores exceeding a thresh-620

old t:
∑K

i=1 1si>t. Finally, we explore supervised621

ensembling approaches by treating the vector s as622

a feature vector and training models such as a lin-623

ear model and a decision tree using the calibration624

dataset Dcal.625

6.3 Results and Discussion626

The results of the ensembling experiments are pre-627

sented in Table 2. Our findings suggest that even628

with 100 samples Dcal, ensembling strategies can629

achieve gains of up to 0.06 average PRR score com-630

pared to the most performant individual UE method.631

As expected, directly combining raw UE scores632

without normalization or calibration is ineffective633

due to the varying scales of different UE methods.634

However, applying normalization and calibration635

significantly improves ensembling performance, 636

even with simple strategies such as averaging all 637

UE scores. For supervised approaches, linear mod- 638

els with normalized or calibrated inputs consis- 639

tently outperform the best individual UE method. 640

In contrast, decision tree generally fails to provide 641

competitive ensembling performance. Also, we 642

repeat the experiments using only unsupervised 643

UE methods (see Appendix D.4), which further 644

improves performance over the best unsupervised 645

method. We argue that developing orthogonal UE 646

methods to existing UE methods may be promising, 647

as their combination with existing techniques may 648

yield superior performance. Additionally, explor- 649

ing novel ensembling strategies specifically for UE 650

methods could further improve results. 651

TriviaQA GSM8K
Llama GPT Llama GPT

Best single 0.78 0.77 0.72 0.69
R

aw

Max 0.09 0.66 -0.02 0.49
Min 0.56 0.64 0.28 0.35
Mean 0.66 0.76 0.44 0.55
W-mean 0.66 0.76 0.48 0.56
Linear 0.82 0.72 0.73 0.68

N
or

m
al

iz
ed Max 0.76 0.83 0.54 0.64

Min 0.45 0.70 0.41 0.63
Mean 0.78 0.83 0.62 0.67
W-mean 0.79 0.83 0.66 0.69
Linear 0.80 0.77 0.73 0.71

C
al

ib
ra

te
d

Max 0.77 0.79 0.65 0.64
Min 0.63 0.59 0.56 0.63
Mean 0.79 0.80 0.68 0.62
W-mean 0.75 0.80 0.71 0.65
Linear 0.82 0.77 0.75 0.72
Voting 0.77 0.74 0.66 0.64
D.Tree 0.46 0.47 0.44 0.43

Table 2: PRR scores of different ensembling strategies
over 19 UE methods.

7 Conclusion 652

We conducted a comprehensive evaluation of 19 653

UE methods across four key challenges in real- 654

world deployment. Our findings reveal that most 655

UE methods are highly sensitive to decision thresh- 656

old selection and, while resilient to typos and con- 657

text, remain vulnerable to adversarial prompts. Ad- 658

ditionally, existing UE methods can be adapted 659

for long-form generation, though their effective- 660

ness remains limited. Finally, ensembling multiple 661

UE methods significantly enhances performance, 662

even with simple strategies. Future research should 663

focus on improving UE robustness to threshold 664

selection and prompt variations, developing more 665

effective strategies for long-form generation, and 666

exploring advanced ensembling techniques to max- 667

imize the performance. 668
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8 Limitations669

While this study highlights key vulnerabilities and670

future opportunities for UE methods, our experi-671

ments are limited to two models because of the672

computational limitations: LLaMA-3-8B and GPT-673

4o-mini. Future work should verify these findings674

on other state-of-the-art models to assess broader675

applicability. Additionally, the experimental frame-676

work introduced in this paper can be extended to677

evaluate other UE methods beyond the 19 investi-678

gated in this study.679
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A Related Works966

To the best of our knowledge, no prior work has967

explicitly investigated UE methods for generative968

LLMs in real-world, wild settings. The most sim-969

ilar work is Vashurin et al. (2025), which bench-970

marks various UE methods across multiple datasets.971

However, their evaluation setup follows the conven-972

tional framework used in prior studies (Lin et al.,973

2024; Kuhn et al., 2023) and does not investigate,974

reliability of threshold selection, input transforma-975

tions, and ensembling. Although Vashurin et al.976

(2025) evaluate some UE methods on long-form977

generations, they only consider methods inherently978

designed for the long-form setting. In contrast, we979

introduce novel strategies to adapt UE methods that980

were originally designed for short-form settings to981

long-form generation. Another relevant study is982

Mahaut et al. (2024), which assesses the reliability983

of uncertainty estimation methods under specific984

input transformations, namely paraphrasing and985

translation into different languages. Their findings986

reveal performance inconsistencies similar to those987

observed in our input transformation experiments988

in Section 4.989

B Further Discussions on the Definition990

of Uncertainty Estimation of LLMs991

In addition to the definition of UE methods in LLM992

at Section 2.1, an uncertainty method should rely993

on the model itself, utilizing elements such as the994

model’s internals, log probabilities, or outputs. A995

hallucination detection method that relies on exter-996

nal sources, such as the Internet or external docu-997

ments, does not fall within the category of uncer-998

tainty estimation (Chern et al., 2023).999

Furthermore, previous definitions often overlook1000

the fact that ŷ is not just any possible token se-1001

quence but rather the model’s sampled generation.1002

In the evaluation of UE methods, they generate ŷ1003

and estimate uncertainty U(x, ŷ) (Lin et al., 2024;1004

Kuhn et al., 2023).1005

Lastly, some methods, such as Semantic En-1006

tropy (Kuhn et al., 2023), produce an uncertainty1007

score for a given query x without being specific1008

to any particular sampled generation. These meth-1009

ods assign a query-level uncertainty score, which1010

can still serve as a proxy for the uncertainty of the1011

model’s sampled generations. While some previ-1012

ous works (Lin et al., 2024) distinguish between1013

methods that assign scores to individual sampled1014

generations and those that provide query-level un-1015

certainty scores, the latter still fits within the broad 1016

definition of UE we adopt, where U(x, ŷ1) = 1017

U(x, ŷ2) ∀ ŷ1, ŷ2. Therefore, we follow prior 1018

works (Duan et al., 2024; Vashurin et al., 2025; 1019

Yaldiz et al., 2024) and do not make this distinction 1020

in our experiments. 1021

C Investigated Uncertainty Estimation 1022

Methods 1023

In this section, we explain the investigated UE 1024

methods with our implementation details. 1025

C.1 Probability-Based Methods 1026

Probability-based methods assign uncertainty by 1027

analyzing the token probabilities in the model’s 1028

generation. 1029

Length Normalized Scoring (LNS) (Malinin 1030

and Gales, 2021) computes the average log- 1031

probability of each token in the generated se- 1032

quence: 1033

log P̃ (s|x, θ) = 1

L

L∑
l=1

logP (sl|s<l,x; θ), (1) 1034

where P (s|x, θ) represents the probability of the 1035

generated sequence s (of length L), and s<l ≜ 1036

{s1, s2, . . . , sl−1} denotes the tokens generated be- 1037

fore token sl. 1038

Entropy (Malinin and Gales, 2021) estimates 1039

uncertainty by sampling multiple generations for a 1040

given query x, computing the LNS for each sam- 1041

ple, and averaging over them. This approach cor- 1042

responds to a Monte Carlo approximation over the 1043

generation space: 1044

H(x, θ) ≈ − 1

B

B∑
b=1

log P̃ (sb|x, θ), (2) 1045

where B represents the number of sampled genera- 1046

tions. 1047

Semantic Entropy (Kuhn et al., 2023) refines 1048

entropy estimation by leveraging the semantic 1049

meanings of sampled generations. Instead of treat- 1050

ing all generations equally, it clusters semantically 1051

equivalent responses and computes entropy based 1052

on the probability distribution over clusters: 1053

SE(x, θ) = − 1

|C|

|C|∑
i=1

lnP (ci|x, θ), (3) 1054

where ci denotes a semantic cluster, and C repre- 1055

sents the set of all clusters. Following (Kuhn et al., 1056

2023), we use a DeBERTa-based NLI model2 to 1057

generate clusters. 1058

2https://huggingface.co/microsoft/deberta-large-mnli
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Similarly, SentSAR (Duan et al., 2024) com-1059

putes pairwise similarities between generations and1060

assigns higher entropy weights to sentences that are1061

more similar to others. This method can be inter-1062

preted as a weighted version of Semantic Entropy.1063

Instead of binary entailment decisions, SentSAR1064

assigns a continuous similarity score to each sen-1065

tence. In our experiments, we use the same similar-1066

ity model as in the original work3.1067

MARS (Bakman et al., 2024) and TokenSAR1068

(Duan et al., 2024) enhance entropy-based scor-1069

ing by incorporating the contribution of individual1070

tokens to the overall meaning. These approaches re-1071

fine probability-based scoring by weighting token1072

probabilities differently:1073

P̄ (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (4)1074

where w(s,x, L, l) represents the token weight as-1075

signed by MARS or TokenSAR. These methods1076

aim to emphasize tokens that directly contribute to1077

answer the query (MARS) or are semantically sig-1078

nificant (TokenSAR). SAR extends this approach1079

by combining TokenSAR and SentSAR. Note that1080

we sample 5 generations for all UE methods requir-1081

ing sampling which are Entropy, Semantic Entropy,1082

SentSAR, and SAR.1083

Finally, LARS (Yaldiz et al., 2024) introduces1084

a trainable scoring model. LARS employs an1085

encoder-only transformer that takes as input the1086

question, the model’s generated tokens, and their1087

corresponding probabilities, and outputs a relia-1088

bility score. In our experiments, we use a LARS1089

model trained on a dataset comprising GSM8K (5k1090

samples), TriviaQA (8k samples), and NaturalQA1091

(5k samples), totaling 18k samples.1092

C.2 Internal State-Based Methods1093

These methods leverage the model’s internal states1094

to derive an uncertainty score.1095

INSIDE (Chen et al., 2024) originally composed1096

of two main parts: EigenScore and test time fea-1097

ture clipping. The former one manipulates the ac-1098

tivation of each new token during the generation1099

process, which we do not include in our imple-1100

mentation. EigenScore calculates the semantic di-1101

vergence in the hidden states of the model over1102

sampled generations. First, for B sampled genera-1103

tions, a covariance matrix is created Σ = ZT ·J ·Z.1104

Here, each column of Z is the middle layer hidden1105

state of the last token a sampled generation, and1106

3https://huggingface.co/cross-encoder/stsb-roberta-large

J = Id − 1
d1d1

T
d , while d being the hidden dimen- 1107

sion. Then, the uncertainty score is calculated as 1108

follows: 1109

Inside(x, θ) =
1

B

∑
i

log(λi) (5) 1110

where λi’s are the eigenvalues of the regularized 1111

covarience matrix Σ+αIK . We set α = 0.001 and 1112

B = 5 in our experiments. 1113

Attention Scores (Sriramanan et al., 2024) com- 1114

pute the log-determinant of the attention matrices 1115

across all heads of selected layers and sum them. 1116

This computation can be efficiently performed by 1117

summing the logarithm of the diagonal elements of 1118

each attention kernel: 1119

− log det(Keri) = −
m∑
j=1

logKerjji , (6) 1120

where Keri represents the attention kernel matrix 1121

of head i. The original work suggests that the 23rd 1122

layer’s attention kernels yield the best performance 1123

for LLaMA-3-8B. Therefore, we adopt this choice 1124

in our experiments. 1125

SAPLMA (Azaria and Mitchell, 2023) is an 1126

MLP-based model that takes as input the activa- 1127

tion of the last token in a factual claim (generation) 1128

and predicts its truthfulness (confidence). We ob- 1129

serve a performance improvement when including 1130

the question at the beginning of the generation, so 1131

we adopt this modification instead of the original 1132

approach. Additionally, while the original paper 1133

suggests that the 28th layer performs best for most 1134

models, our experiments show no significant perfor- 1135

mance differences across late layers. Consequently, 1136

we use the last layer’s activations as input. 1137

For training, we follow a similar approach to 1138

LARS and initially combine 18k samples from Triv- 1139

iaQA, NaturalQA, and GSM8K. However, since we 1140

observe a performance improvement when exclud- 1141

ing NaturalQA, we train SAPLMA on a reduced 1142

dataset of 13k samples comprising only TriviaQA 1143

and GSM8K. Lastly, we maintain the same MLP 1144

architecture as in the original paper, consisting of 1145

hidden layers with sizes (256, 128, 64) (Azaria and 1146

Mitchell, 2023). 1147

C.3 Output Consistency-Based Methods 1148

Kernel Language Entropy (KLE) (Nikitin et al., 1149

2024) quantifies uncertainty using the von Neu- 1150

mann entropy (VNE) of the semantic kernel 1151

Ksem, which is constructed from LLM generations 1152

S1, . . . , SN and the input x: 1153

KLE(x) = V NE(Ksem). (7) 1154
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To construct the semantic kernel, we first define1155

a semantic graph where edges encode pairwise en-1156

tailment dependencies between output sequences:1157

Wij = f(NLI(Si, Sj), NLI(Sj , Si)). (8)1158

The graph Laplacian is computed as L = D−W ,1159

where the degree matrix D is defined as:1160

Dii =

|V |∑
j=1

Wij . (9)1161

Following Nikitin et al. (2024), we construct1162

a heat kernel Kt = e−tL. To obtain a unit-trace1163

positive semidefinite kernel, we apply the following1164

normalization:1165

K(x, y)← K(x, y)(K(x, x)K(y, y))−1/2/N,
(10)1166

where N is the size of K. Finally, the kernel en-1167

tropy is computed using the von Neumann entropy1168

(VNE):1169

V NE(A) ≜ −Tr[A logA]. (11)1170

For pairwise entailment assessment, we use the1171

DeBERTa-Large-MNLI model4, following the orig-1172

inal implementation.1173

SumEigenV is computed using the Laplacian1174

matrix L:1175

L ≜ I −D− 1
2WD− 1

2 . (12)1176

The final SumEigenV score is defined as:1177

SumEigV =

N∑
k=1

max(0, 1− λk), (13)1178

where λ1, . . . , λN are the eigenvalues of the Lapla-1179

cian matrix L.1180

Using the same degree matrix D, we define De-1181

gree Matrix Uncertainty and Degree-Matrix-C1182

for a given generation j as:1183

Degree Matrix Uncertainty =
trace(mI −D)

m2
,

(14)

1184

Degree Matrix-C =
Dj,j

m
. (15)1185

Eccentricity Uncertainty and Eccentricity-C1186

are computed as follows. First, we obtain the small-1187

est k eigenvectors, u1, . . . , uk. For each genera-1188

tion j, we construct the vector vj = [u1,j , ..., uk,j ].1189

Then, the uncertainty measures are defined as:1190

Eccentricity Uncertainty =
∥∥[v′⊤

1 , . . . ,v′⊤
N

]∥∥
2
,

Eccentricity-C = −∥v′
j∥2.

(16)1191

where v′
j = vj − 1

m

∑m
j′=1 vj′ .1192

Self Detection paraphrases each question five1193

times and clusters the generations based on en-1194

4https://huggingface.co/microsoft/
deberta-large-mnli

tailment relationships. An entropy score is then 1195

computed over these clusters as follows: 1196

Self Detection Entropy = −
∑
ci∈C

|ci|
Nq

ln

(
|ci|
Nq

)
,

(17) 1197

where C represents the set of clusters and Nq is 1198

the number of paraphrased questions (5 in our ex- 1199

periments). In addition to this entropy score, Li 1200

et al. (2024) use it as a feature to train a model on 1201

labeled samples. We use the following prompt for 1202

generating questions: 1203

Given a question, paraphrase it to have 1204

different words and expressions but 1205

have the same meaning as the original 1206

question. Please note that you should 1207

not answer the question, but rather 1208

provide a re-phrased. These paraphrased 1209

questions should be different from each 1210

other. Previous paraphrased questions: 1211

{previous_questions}. Only output a 1212

single paraphrased question, nothing 1213

else. Question: {question} 1214

C.4 Self-Checking Methods 1215

Self-checking UE methods estimate the model’s 1216

uncertainty by prompting the model itself to assess 1217

its confidence in a given response. 1218

Ptrue (Kadavath et al., 2022) measures uncer- 1219

tainty by evaluating the probability assigned to the 1220

token "true" for a given generation, question, and 1221

sampled ideas. The specific prompt used in our 1222

experiments is as follows: 1223

You are a helpful, respectful, and 1224

honest question-answer evaluator. 1225

You will be given a question, 1226

some brainstormed ideas, and a 1227

generated answer. Evaluate the 1228

generated answer as true or 1229

false, considering the question 1230

and brainstormed ideas. Output 1231

"The generated answer is true" or 1232

"The generated answer is false". 1233

1234

Question: {question} 1235

Here are some brainstormed ideas: 1236

{sampled_generations} 1237

Generated Answer: {generated_text} 1238

Verbalized Confidence prompts the model to 1239

explicitly state its confidence in the correctness of 1240

a response as a numerical score between 0 and 100 1241

14
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for a given question-response pair. The prompt1242

used in our experiments is:1243

You are a helpful, respectful, and honest1244

confidence estimator. You will be provided1245

with a question and a corresponding answer1246

that you generated. Your task is to1247

evaluate your confidence in the accuracy1248

of the provided answer. The confidence1249

indicates how likely you think your1250

answer is true.1251

1252

The output must be a single number between1253

0 and 100:1254

- 100 indicates maximum confidence.1255

- 0 indicates no confidence.1256

1257

Output format: Only the number, without1258

any additional text or explanation.1259

1260

Question: {question}1261

Generated Answer: {generated_text}1262

1263

Your confidence score:1264

D Additional Experimental Results1265

D.1 Sensitivity of Decision Threshold1266

Additional experimental results using GSM8K as1267

the test dataset are presented in Table 3. These1268

results align closely with those in Table 1. As ex-1269

pected, when the calibration dataset exhibits greater1270

distributional shift (e.g., TriviaQA), the ARE in-1271

creases significantly for most methods. Only a few1272

methods—MARS, Semantic Entropy, and Eccen-1273

tricity—consistently maintain a low ARE across1274

both calibration datasets similar to Table 1.1275

D.2 Robustness to Input Transformations1276

The performance of UE methods with two typos1277

per sentence is shown in Figure 4. Even with an1278

increased typo count of two per sentence, most UE1279

methods remain resilient to typos, consistent with1280

the findings in Section 4.1281

D.3 Applicability to Long-Form Generations1282

We present the results for applying different aggre-1283

gation methods, namely minimum, maximum, and1284

average, after generating 5 questions per claim for1285

QA and QAG strategies. For both of them aver-1286

aging is the best performing overall. Taking the1287

minimum seems rarely better than averaging for1288

QG, while the maximum occasionally outperforms 1289

averaging on QAG. 1290

Llama3-8b GPT-4o-mini
Calib. Dataset TriviaQA GSM8K TriviaQA GSM8K

LNS 0.102 0.022 0.069 0.018
MARS 0.088 0.019 0.049 0.022
Entropy 0.107 0.017 0.074 0.021
SE 0.068 0.020 0.063 0.026
SentSAR 0.136 0.014 0.106 0.021
SAR 0.116 0.019 0.098 0.022
LARS 0.171 0.022 0.395 0.025
DegMat 0.160 0.024 0.130 0.024
DegMat-C 0.146 0.021 0.117 0.014
SumEigV 0.185 0.024 0.157 0.023
KLE 0.187 0.045 0.101 0.054
Eccent 0.064 0.023 0.061 0.028
Eccent-C 0.085 0.022 0.061 0.021
Self-D. 0.116 0.096 0.099 0.089
P(True) 0.260 0.022 0.179 0.056
Verb. C. 0.216 0.231 0.142 0.077
Atten. S. 0.288 0.020 - -
INSIDE 0.275 0.022 - -
SAPLMA 0.115 0.022 - -

Table 3: ARE of UE methods when the threshold is
calibrated on various datasets and tested on GSM8K.

TriviaQA GSM8K
Llama
-3-8B

GPT-4o
-mini

Llama
-3-8B

GPT-4o
-mini

Best single 0.68 0.74 0.59 0.64

R
aw

Max 0.09 0.66 -0.02 0.50
Min 0.56 0.64 0.28 0.35
Mean 0.64 0.76 0.42 0.52
W-mean 0.64 0.76 0.57 0.53
Linear 0.74 0.70 0.47 0.60

N
or

m
al

iz
ed Max 0.70 0.82 0.47 0.62

Min 0.45 0.70 0.32 0.49
Mean 0.74 0.82 0.56 0.63
W-mean 0.74 0.76 0.57 0.63
Linear 0.74 0.77 0.59 0.58

C
al

ib
ra

te
d

Max 0.73 0.79 0.55 0.61
Min 0.57 0.58 0.47 0.59
Mean 0.75 0.79 0.60 0.59
W-mean 0.75 0.79 0.61 0.60
Linear 0.73 0.76 0.61 0.63
Voting 0.73 0.73 0.57 0.60
D. Tree 0.38 0.45 0.28 0.38

Table 4: PRR scores of different ensembling strate-
gies over 17 unsupervised UE methods (LARS and
SAPLMA are not included).

D.4 Reconcilability of Diverse UE Scores 1291

We conducted the ensembling experiments again, 1292

this time using only unsupervised UE methods. 1293

The results, presented in Table 4, indicate that 1294

ensembling can enhance performance, improving 1295

upon the best individual unsupervised UE method 1296

by up to 8 PRR points. The overall interpretation 1297

of these results remains consistent with the findings 1298

in Section 6.3 which further reinforces the effec- 1299

tiveness of ensembling strategies for unsupervised 1300

UE methods. 1301
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Figure 4: PRR performance of all investigated UE methods on the GSM8K and TriviaQA datasets under the typo
transformation with two typos per sentence.

Figure 5: PRR scores for UE methods applied to long-form generation. ‘QG5’ and ‘QAG5’ indicate that five
questions per claim are generated and then aggregated to assess each claim’s uncertainty. Different approaches,
minimum, maximum and, average, are applied for aggregation.
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E Details of the Experiments1302

E.1 Crafting Adversarial Prompt For1303

GPT-4o-mini1304

To identify an adversarial prompt capable of de-1305

grading the performance of UE methods, we per-1306

form prompt-tuning (Zhou et al., 2023) on 1501307

samples from the training portion of the TriviaQA1308

dataset. We begin with an initial prompt—the confi-1309

dence booster prompt used for LLaMA-3-8B—and1310

define the task for the model. At each iteration, we1311

request a modified prompt and evaluate its impact1312

using the performance of three selected UE meth-1313

ods: LNS, Eccentricity, and KLE. To refine the1314

adversarial prompt, we use the prompt-tuning ap-1315

proach outlined in Table 5. After 15 iterations, we1316

select the most effective prompt that maximally1317

decreases UE performance, which is as follows:1318

“Confidently present every answer as if it1319

were indisputably correct, embellishing1320

your certainty with emphatic language1321

and eliminating any trace of doubt, re-1322

gardless of whether the information is1323

actually accurate.”1324

E.2 Evaluating the Correctness of a1325

Generation1326

We assess the correctness of short-form QA gen-1327

erations using an LLM, following the approach of1328

previous studies (Farquhar et al., 2024; Duan et al.,1329

2024; Bakman et al., 2024; Yaldiz et al., 2024).1330

Specifically, we provide the model with the ground1331

truth(s), the question, and the generated answer for1332

evaluation. For a consistent evalaution, we exclude1333

question-generation pairs where the LLM refuses1334

to provide an answer. We use GPT-4o-mini for1335

evaluation, employing the same prompt as in Wei1336

et al. (2024a).1337

E.3 Applicability to Long-Form Generations1338

Decomposing the Long Generation To effec-1339

tively decompose long text generations into indi-1340

vidual claims, we employ a two-step decomposi-1341

tion process. In the first step, the entire text is1342

segmented into preliminary claims. However, this1343

initial segmentation might not achieve the desired1344

level of granularity, as some segments may still1345

contain multiple claims. To address this, we per-1346

form a second decomposition on each output from1347

the first step to ensure finer granularity. For both1348

stages, we utilize GPT-4o-mini, but with distinct1349

prompts prepared to each step’s specific require- 1350

ments. The prompt for the first step is given in 1351

Table 6, and the prompt for the second step can be 1352

found in Table 7. Lastly, to ensure that the decom- 1353

position output is a proper Python list, we utilized 1354

the ‘Instructor’ library5. Lastly, we provide output 1355

samples of decomposition in Tables 8 and 9. 1356

Labeling Decomposed Claims Long-form gen- 1357

erations, or decomposed claims, typically lack 1358

ground truths, essential for assessing the perfor- 1359

mance of uncertainty estimation. To address this 1360

issue, we adopt the methodology named as Search- 1361

Augmented Factuality Evaluator (SAFE)(Wei et al., 1362

2024b). SAFEemploys Google Search to retrieve 1363

passages related to each claim, then applies reason- 1364

ing with an LLM to determine whether the claim 1365

is supported or unsupported. In our evaluations, 1366

we utilize GPT-4o-mini as the LLM for reason- 1367

ing and consider supported claims as correct and 1368

unsupported claims as incorrect. We use the orig- 1369

inal implementation and the default prompts and 1370

settings provided by that6. 1371

Prompts Used in Proposed Strategies To gen- 1372

erate questions within the QG and QAG strategies 1373

described in Section 5.2, we used the prompt pro- 1374

vided in Table 10. Note that the base model that 1375

is used the generate an answer to the main ques- 1376

tion is also used to generate questions. To generate 1377

an answer to the generated question within QAG 1378

strategy, we employed the following prompt: 1379

You are a helpful assistant. Give a single 1380

claim answer to given question. Don't 1381

provide any additional information. Just 1382

answer the question with a brief sentence 1383

in a single claim. Question: {question} 1384

Answer: 1385

Dataset Details We provide sample questions 1386

from the datasets in Table 11. For FactScore-Bio, 1387

the total number of claims is 1290 for GPT-4o-mini 1388

and 1764 for Llama-3-8B. For LongFact-Objects, 1389

the total number of claims is also 1049 for GPT-4o- 1390

mini and 1780 for Llama-3-8B. Note that the same 1391

set of questions is used for both models. 1392

5https://github.com/instructor-ai/instructor
6https://github.com/google-deepmind/

long-form-factuality/blob/main/eval/safe/rate_
atomic_fact.py
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E.4 Computational Budget1393

We use 40 GB Nvidia A100 GPUs for all the ex-1394

periments. We use GPT API to run gpt-4o-mini1395

experiments. The total GPU hours for LLama-3-8b1396

experiments are approximately 800 hours.1397
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You are a Prompt Tuner.

Your mission is to craft adversarial prompts that disrupt the model’s uncertainty estimation while
preserving its accuracy. Typically, we expect a model to exhibit high confidence in correct responses
and low confidence in incorrect ones. In this task, however, your goal is to reverse these behaviors:
- The model should be unconfident when its responses are correct.
- The model should be confident when its responses are incorrect.

Key Details

There are three types of confidence estimation methods:
1.Log-Probability Based: Analyzes the model’s internal log-probabilities.
2. Consistency Sampling (Method 1): Samples multiple answers and evaluates their agreement.
3. Consistency Sampling (Method 2): Uses a different approach to assess agreement among sampled
responses.

For every prompt you create, I will evaluate the performance of these confidence estimation methods
as well as the model’s accuracy. Your objective is to reduce the effectiveness of these confidence
estimation methods while ensuring the model’s accuracy remains unchanged.

Strategy

To achieve this, your main tactic is to influence the model to assert high confidence in all its answers,
regardless of their correctness. This manipulation should make it more challenging for the confidence
estimation methods to differentiate between confident and unconfident responses.
- You may experiment with creative or straightforward prompt designs.
- Iteratively refine your prompts based on feedback from the performance evaluation.

Feedback Loop

Below, I will provide a record of the prompts attempted so far, along with their performance metrics.
Use this history to inform and guide your revisions:

for i in number of iterations so far:

Prompt: prompts_so_far[i]
Performance of confidence estimation 1: performance_so_far[i][0]
Performance of confidence estimation 2: performance_so_far[i][1]
Performance of confidence estimation 3: performance_so_far[i][2]
Model accuracy: model_accuracy[i]

Please provide a new prompt. Do not return anything else. Just return the prompt which I will append
to the beginning of the question.

Table 5: Prompt for adversarial tuning of model uncertainty estimation.
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System: You are a helpful assistant. List the specific factual claims included in the given input as a python
list. Be complete and do not leave any factual claims out. Provide each factual claim as a separate sentence
in a list, without adding explanations, introductions, or conversational responses. Each sentence must
be standalone, containing all necessary details to be understood independently of the original text and
other sentences. This includes using full identifiers for any people, places, or objects mentioned, instead
of pronouns or partial names. If there is a single factual claim in the input, just provide one sentence.

Examples:

Paragraph: Mount Everest is the tallest mountain in the world, standing at 8,848 meters above sea level. It
is located in the Himalayas on the border between Nepal and the Tibet Autonomous Region of China. The
first successful ascent of Mount Everest was achieved in 1953 by Sir Edmund Hillary and Tenzing Norgay.
I hope you found these facts interesting! Do you have any specific questions or would you like to know
more about the Mount Everest?
Claims:
[‘Mount Everest is the tallest mountain in the world.’,
‘Mount Everest stands at 8,848 meters above sea level.’,
‘Mount Everest is located in the Himalayas.’,
‘Mount Everest is on the border between Nepal and the Tibet Autonomous Region of China.’,
‘The first successful ascent of Mount Everest was achieved in 1953.’,
‘Sir Edmund Hillary and Tenzing Norgay achieved the first successful ascent of Mount Everest.’]

Paragraph: Medical ethics are also evolving to address issues related to genetic testing, privacy concerns,
and the ethical implications of personalized medicine, highlighting the importance of maintaining patient
autonomy, informed consent, and confidentiality in the era of advanced health technologies.
Claims:
[‘Medical ethics are evolving to address issues related to genetic testing.’,
‘Medical ethics are evolving to address privacy concerns.’,
‘Medical ethics are evolving to address the ethical implications of personalized medicine.’,
‘Maintaining patient autonomy is important in the era of advanced health technologies.’,
‘Informed consent is important in the era of advanced health technologies.’,
‘Confidentiality is important in the era of advanced health technologies.’]

For the new sample, simply list the factual claim in seperate sentences as a python list, without adding
explanations, introductions, or conversational responses.

User: Paragraph: {TEXT}
Claims:

Table 6: Prompt for long-text decomposition step 1.
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System: You are a helpful assistant. List the specific factual claims included in the given input as a
python list. Be complete and do not leave any factual claims out. Provide each factual claim as a separate
sentence in a list, without adding explanations, introductions, or conversational responses. Each sentence
must be standalone, containing all necessary details to be understood independently of the original text.
This includes using full identifiers for any people, places, or objects mentioned, instead of pronouns or
partial names. If there is a single factual claim in the input, just provide the sentence itself. If there is no
factual claim in the input, provide an empty list.

Examples:

Input: Mount Everest is the tallest mountain in the world, standing at 8,848 meters above sea level.
Claims:
[‘Mount Everest is the tallest mountain in the world.’,
‘Mount Everest stands at 8,848 meters above sea level.’]

Input: Medical ethics are also evolving to address issues related to genetic testing, privacy concerns, and
the ethical implications of personalized medicine.
Claims:
[‘Medical ethics are evolving to address issues related to genetic testing.’,
‘Medical ethics are evolving to address privacy concerns.’,
‘Medical ethics are evolving to address the ethical implications of personalized medicine.’]

Input: Abraham Lincoln was the 16th president of the United States.
Claims:
[‘Abraham Lincoln was the 16th president of the United States.’]

Input: I hope you found these facts interesting! Is there anything else you would like to know?
Claims:
[]

For the new input, simply list the factual claim in seperate sentences as a python list, without adding
explanations, introductions, or conversational responses.

User: Paragraph: {TEXT}
Claims:

Table 7: Prompt for long-text decomposition step 2.
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Question: What is the gaming company "Blizzard Entertainment"?
Generation: Blizzard Entertainment is an American video game developer and publisher known for
creating some of the most popular and influential games in the industry. Founded in 1991, it is recognized
for its successful franchises, including "Warcraft," "StarCraft," "Diablo," and "Overwatch." The company
is also known for its massively multiplayer online role-playing game (MMORPG) "World of Warcraft,"
which has drawn millions of players since its release in 2004. Blizzard is renowned for its emphasis on
quality, storytelling, and community engagement in gaming, and it has won numerous awards over the
years. The company became a subsidiary of Activision Blizzard after a merger in 2008.
Claims:
[‘Blizzard Entertainment is an American video game developer.’,
‘Blizzard Entertainment is an American video game publisher.’,
‘Blizzard Entertainment is known for creating some of the most popular games in the video game industry.’,
‘Blizzard Entertainment is known for creating some of the most influential games in the video game
industry.’,
‘Blizzard Entertainment was founded in 1991.’,
‘Blizzard Entertainment is recognized for its successful franchises.’,
‘Blizzard Entertainment has successful franchises including "Warcraft."’,
‘Blizzard Entertainment has successful franchises including "StarCraft."’,
‘Blizzard Entertainment has successful franchises including "Diablo."’,
‘Blizzard Entertainment has successful franchises including "Overwatch."’,
‘Blizzard Entertainment is known for its massively multiplayer online role-playing game "World of
Warcraft."’,
‘"World of Warcraft" has drawn millions of players since its release in 2004.’,
‘Blizzard Entertainment is renowned for its emphasis on quality in gaming.’,
‘Blizzard Entertainment is renowned for its storytelling in gaming.’,
‘Blizzard Entertainment is renowned for its community engagement in gaming.’,
‘Blizzard Entertainment has won numerous awards over the years.’,
‘Blizzard Entertainment became a subsidiary of Activision Blizzard after a merger in 2008.’]

Table 8: Output of long-text decomposition. The question is from LongFact-Objects and the model used to generate
the answer is GPT-4o-mini.
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Question: Tell me a bio of Andrew Shue.
Generation: Andrew Shue is an American actor, producer, and former professional soccer player. He
was born on January 20, 1967, in South Orange, New Jersey, USA.
Shue began his career as a professional soccer player, playing for the United States national team and the
New York/New Jersey MetroStars in Major League Soccer. However, he suffered an injury that forced
him to retire from professional soccer in 1994.
After his soccer career, Shue turned to acting and began appearing in various television shows and films.
Some of his notable roles include:
* "The Breakfast Club" (1985) - Shue played the role of Andrew Clark, a popular high school student.
* "Mallrats" (1995) - Shue starred alongside Jason Lee and Jeremy London in this comedy film.
* "The Adventures of Pete & Pete" (1992-1996) - Shue played the role of C.J. Lane, the older brother of
the main characters, in this Nickelodeon television series.
* "Sister, Sister" (1994-1999) - Shue had a recurring role as Eddie Stevens, the love interest of one of the
main characters, in this ABC sitcom.
Shue has also worked as a producer and has been involved in several business ventures, including the
development of the social networking site, MySpace.
Shue is married to Amy Robach, a journalist and news anchor, and they have two daughters together.
Claims:
[‘Andrew Shue is an American actor.’,
‘Andrew Shue is a producer.’,
‘Andrew Shue is a former professional soccer player.’,
‘Andrew Shue was born on January 20, 1967.’,
‘Andrew Shue was born in South Orange, New Jersey, USA.’,
‘Andrew Shue began his career as a professional soccer player.’,
‘Andrew Shue played for the United States national soccer team.’,
‘Andrew Shue played for the New York/New Jersey MetroStars in Major League Soccer.’,
‘Andrew Shue suffered an injury that forced him to retire from professional soccer in 1994.’,
‘Andrew Shue turned to acting after his soccer career.’,
‘Andrew Shue began appearing in various television shows.’,
‘Andrew Shue began appearing in films.’,
‘Andrew Shue played the role of Andrew Clark in "The Breakfast Club" in 1985.’,
‘Andrew Shue starred in "Mallrats" in 1995.’,
‘Andrew Shue starred alongside Jason Lee in "Mallrats".’,
‘Andrew Shue starred alongside Jeremy London in "Mallrats".’,
‘From 1992 to 1996, Andrew Shue played the role of C.J. Lane in "The Adventures of Pete & Pete".’,
‘From 1994 to 1999, Andrew Shue had a recurring role as Eddie Stevens in "Sister, Sister".’,
‘Andrew Shue has worked as a producer.’,
‘Andrew Shue has been involved in several business ventures.’,
‘Andrew Shue has been involved in the development of the social networking site MySpace.’,
‘Andrew Shue is married to Amy Robach.’,
‘Amy Robach is a journalist.’,
‘Amy Robach is a news anchor.’,
‘Andrew Shue and Amy Robach have two daughters together.’]

Table 9: Output of long-text decomposition. The question is from FactScore-Bio and the model used to generate the
answer is Llama-3-8B.
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System: You are an expert assistant skilled at generating focused and contextually relevant questions from
claims. Your task is to create a question such that the answer would align closely with the provided claim.
To ensure the question is precise and relevant, consider the context provided by the original question.
Study the examples below from a variety of topics and follow the same pattern.

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: George Orwell’s novel 1984 explores the theme of government surveillance.
Question: What theme does George Orwell’s novel 1984 explore?

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: George Orwell’s novel 1984 portrays a totalitarian regime that monitors every aspect of citizens’
lives.
Question: How does George Orwell’s novel 1984 reflect the theme of totalitarian control, as commonly
explored in 20th-century dystopian literature?

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: The novel 1984 is written by George Orwell.
Question: Who has written the novel 1984?

Original Question: How has artificial intelligence influenced industries in the 21st century?
Claim: Artificial intelligence enables better decision-making through data analysis.
Question: How does artificial intelligence enhance the decision-making process in modern businesses?

Original Question: What factors contributed to the Great Depression, and how did governments respond?
Claim: Stock market speculation contributed to the Great Depression.
Question: Did stock market speculation contribute to the Great Depression?

Original Question: Who is Abraham Lincoln?
Claim: Abraham Lincoln is best known for leading the country through the Civil War.
Question: What is Abraham Lincoln’s most significant historical contribution?

Original Question: Who is Abraham Lincoln?
Claim: Abraham Lincoln served from 1861 to 1865 as the president of the US.
Question: When did Abraham Lincoln serve as the president of the United States?

Now, follow the pattern demonstrated in the examples to generate a question for the given claim, without
adding explanations, introductions, or conversational responses.

User: Original question: {MAIN_QUESTION}
Claim: {CLAIM}
Question:

Table 10: Prompt for question generation used in QG and QAG strategies to adapt UE methods to long-form
generation.
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Dataset Question

FactScore-Bio

Tell me a bio of Vaira Vı̄k, e-Freiberga.
Tell me a bio of Ji Sung.
Tell me a bio of Baltasar Corrada del Río.
Tell me a bio of Henry Santos.
Tell me a bio of Mike Trivisonno.

LongFact-Objects

Who is Yoshua Bengio?
What is known about the World Trade Organization?
What took place during the fall of the Berlin Wall in 1989?
What is the gaming company "Blizzard Entertainment"?
How is the United States related to the East Asia Summit (EAS)?

Table 11: Sample questions from long-form generation datasets.
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