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Abstract

One of the goals of Cognitive Science is to understand the cognitive pro-
cesses underlying human behavior. Traditionally, this goal has been ap-
proached by analyzing simple behaviors, such as choices and response
times, to try to indirectly infer mental processes. However, a more direct
approach is to simply ask people to report their thoughts - for example, by
having them Introspect after the fact about the thought processes they used
to complete a task. However, the data generated by such verbal reports
have been hard to analyze, and whether the reported thoughts are an ac-
curate reflection of the underlying cognitive processes has been difficult
to test. Here we take a first stab at addressing these questions by using
large language models to analyze verbally reported strategies in a sorting
task. In the task, participants sort lists of pictures with unknown orders
by pairwise comparison. After completing the task, participants wrote
a description of their strategy for completing the task. To test whether
these strategy descriptions contained information about people’s actual
strategies, we compared their choice behavior with their descriptions of
the task. First, we compared the descriptions and choices at the level of
strategy, finding that people who used similar sorting algorithms (based on
their choices) provided similar verbal descriptions (based on the embed-
dings of these descriptions in the LLM). Next, we generated code based
on their strategy descriptions using GPT-4-Turbo and compared the sim-
ulated behaviors from the code to their actual choice behavior, showing
that the LLM-generated code predicts choice more accurately than chance
other, more stringent, controls. Finally, we also compare the simulated
behaviors of generated codes with those from standard algorithms and
induct the strategies that this code internally represents. In sum, our study
offers a novel approach to modeling human cognitive processes by build-
ing code-like cognitive models from introspections, shedding light on the
intersection of Artificial Intelligence and Cognitive Sciences.

1 Introduction

One of the goals of Cognitive Sciences is to understand the cognitive processes underlying
human behaviors. Cognitive scientists have long strived for this goal by building computa-
tional models that simulate cognitive processes, and have tested these models by comparing
their performance to behavior on some task. However, building these models relies heavily
on the cognitive scientist’s intuition, which is subject to bias and blind spots, while testing
these models is limited by the low dimensionality of the behavioral observations, which
usually consist of only choices and response times.
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Instead of this behaviorist approach to Cognitive Science, another way to probe human
cognition is to simply ask people what they are thinking — that is, to get them to introspect
about how they are performing the task. Such introspection research has a long and
checkered history in psychology going back to the 19th century but despite early interest
from the likes of Simon & Ericsson (1984), has had relatively little impact on modern
computational cognitive science. A major reason for this lack of impact has been due to the
difficulty of handling verbal data, which requires (labor-intensive) transcription and (often
subjective) qualitative coding before it can be analyzed, making it hard to be compatible
with traditional behavioral analysis and computational modeling. With the advent of
Natural Language Processing and Large Language Models (LLMs), there is potential to
link introspection in the form of text to computational cognitive models, predicting human
behavior and inducting — in a data-driven manner — the underlying cognitive processes.

In this paper, we bridge the gap between introspection and cognitive models by using LLMs
to generate computer code from verbally reported thoughts. By converting introspection
to a series of symbolic operations as represented in a program Lipkin et al. (2023), this
approach allows us to generate a bespoke, data-driven cognitive model for each person
and test whether the behavior generated by this model is consistent with the behavior the
participant actually exhibited.

An ideal paradigm for accommodating such research should have two features. First, it
should not be oversimplified so in the task, there are diverse strategies to achieve the goal
and the performance depends on the strategy used. Second, it should be highly structured
so that the strategies can be easily formed as programming codes for analysis. Christian &
Griffiths (2016) wrote a book Algorithms to Live By, which introduces a variety of problems
that both humans and computers will face, and the algorithms they use to solve these
problems. As one of the classical programming problems, sorting tasks is a good fit for our
study. Thompson et al. (2022) conducted a large-scale sorting experiment and collected a
rich behavioral and strategy descriptions dataset. Therefore, our paper, as an extension of
their paper, focuses on this open dataset to investigate how we could generate code-like
cognitive models in the sorting task from the strategy descriptions.

Our study leverages the public dataset to develop a pipeline that uses LLM to generate
programming codes that could simulate sorting behaviors, based on the strategy description
by human participants. We first used text embeddings of strategy descriptions to test their
relationship to behaviors and found that the text embeddings are informative to predict
strategies discovered from behaviors in the original paper. We then used these descriptions
to generate codes that can mimic human sorting behaviors, compared the simulated results
with the true behaviors of participants, and found a significantly higher accuracy than the
chance level as well as the prior knowledge that LLM can predict. Finally, we inducted
those generated codes into known strategies based on their simulated results and found
some strategies are highly consistent with those identified from behaviors. In brief, our
study shed light on formulating cognitive models from strategy descriptions by generating
codes, paving a potential path toward further development of cognitive sciences with LLM.

2 Methods

2.1 Task and Dataset

We used the dataset from Thompson et al. (2022), which consists of a sorting task in a social
learning context. The whole dataset contains 3,408 participants, and each participant needs
to complete 13 trials of the sorting task. In each trial, participants sorted six images, which
were not previously known to them, into the correct order by choosing any pair to swap
positions. Only pairs that were out of order could be successfully swapped (see Figure 1B).
When participants think everything is in order, they could click on ‘Finish’ to end the trial.
Then, they will receive feedback about how many comparisons are made and whether the
final order is correct or not. The number of comparisons and the outcome will be used to
calculate their trial performance. Each participant will need to complete 13 trials of the task,
with each task exhibiting random images as well as underlying orders. After they complete
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the whole task, they are instructed to write down how they completed the task and what
their strategies are, which are used in our analysis.

Figure 1: A. The Prompt Content to generate codes. B. The task procedure. C. Example
strategy descriptions, with their behaviorally assigned strategies. The participants are best
fitted by the codes in their algorithm. D. Generated codes of the example participants. For
exhibition purposes, we only keep the core logic of the codes.
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2.2 Generating Executable Codes with GPT-4-Turbo with Zero-Shot Training

We use the most recent version of GPT-4-Turbo, GPT-4-0125-preview, to directly generate the
codes. To make the codes executable and simulate behaviors efficiently, we restricted the
form of the codes in prompts. The principle of restricting the code is to build a human-like
sorting function, which could directly take the task input and return sorting behavior, as a
general form of cognitive models. Therefore, first, the generated code has to be a function,
which accepts the initial order and true order as input. It should produce an action sequence
to complete the sorting task. Second, the code cannot use any sorting function, or directly
look at the true order to get the sorting behavior. It should simulate how the participants
do the task, and use pairwise comparisons. Third, to minimize the variances in justifying
the task rule, we directly provide a function template that can tell the ‘agent’ whether a
pair of comparisons is successful or not. Finally, we also insert the participant’s strategic
description to ask the LLM to try to generate the function aligned with the description
(see Figure 1A). The prompts are fixed for each participant but only varying their strategic
descriptions.

2.3 Behavior Simulations

After all codes were generated and passed the pre-examination for execution, we ran two
types of simulations to generate sorting behaviors for different purposes. First, we retrieve
the initial order and true order for each participant and each trial from the public dataset and
input them into the codes. The code-like models will produce a sorting behavior sequence
like what human participants face in the real task. This result was used to evaluate how well
the model can predict real human behaviors. We ran the other comprehensive simulation
that looped through all possible permutations of the task (for length 6 sequences, there are
720 permutations). We use this result to measure the behavioral outcome of the codes in
this task and try to differentiate different strategies indicated by the codes.

To evaluate how accurately the model can predict, for each pair of the predicted and real
action sequences, we compare them and count how many actions are predicted correctly.
The accuracy of each predicted sequence is computed by the number of correct predictions
divided by the length of the true behavior sequence. To evaluate how algorithmically similar
each generated code is to each other, we used the comprehensive simulation result and
compared each subject to each trial’s behavioral sequence. We then averaged each pair of
participants’ similarity across 720 permuted trials. Specifically, for each pair of behavioral
sequences, we define their similarity as the first index the two sequences deviate from each
other as the proportion of the longer sequence. In this definition, when two sequences are
identical, the similarity is 1. It is formulated as below:

S(A, B) =
argmini(ai ̸= bi)

max(|A|, |B|) (1)

3 Result

3.1 Text Embeddings of Strategic Narratives Reveal Information of Human Sorting
Behaviors

Strategic narratives are summaries by the participant after completing the task. The in-
formation underlying the strategic narratives should reveal how participants did the task.
The original study modeled the participants’ sorting behaviors by RNN and inducted 16
commonly used sorting algorithms by model comparisons. Here, we tested how strategy
descriptions relate to these algorithms purely inducted from behaviors.

We input the strategy descriptions of all participants into the embedding model, text-ada-002
OpenAI (2023) and use K-mean Clustering by gathering them into 8 different clusters. We
mapped each participant’s algorithm discovered from the original study by behavioral data
into the cluster. We picked the two most commonly used algorithms (Selection Sort and
Gnome Sort) with their forward and backward versions (see the number of participants
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identified to all other algorithms by behaviors in table 1) and found out that different
algorithms distributed differently in these 8 clusters. More interestingly, the same algorithms
but with different implementational directions (i.e., ‘from left to right’ vs. ‘from right to left’)
exhibit very similar distribution patterns across clusters(Fig. 2). Despite their descriptions
may be different semantically, the similar distribution suggests that the text embeddings of
strategy description can reveal the underlying algorithmic information. We further tested
whether the text embedding is sufficient to classify the two strategies and we found that
with PCA to 200 dimensions (with 89% variances explained), text embeddings could well
classify the two strategies with SVM with five-fold cross-validation, obtaining an average
test accuracy of 88% ± 2%. This result suggests that strategic narratives can indeed reveal
algorithms inferred purely from behaviors and could be potentially informative in building
cognitive models. We also expand the test to eight common algorithms (merging forward
version and backward version of the same algorithm) and 16 algorithms (without merges),
and obtain an averaged test accuracy of 37.4% ± 4.6%, 36.3% ± 4.3%, exhibiting a higher
performance than chance level.

Figure 2: Text Embeddings from different algorithms exhibit different distributions in
clusters, and the same algorithms with different versions exhibit similar patterns.

3.2 LLM-Generated Codes Surpass Chance and Prior Knowledge in Predicting Human
Sorting Behaviors

Since strategy descriptions reveal the behavioral information, we create code-like cognitive
models. These models mimic human sorting behavior by prompting GPT-4-0125-Preview
with the strategy descriptions. The generated codes can be executable after extracting and
debugging from the LLM responses. For each code, we input the task’s specific challenges
faced by the corresponding participant to predict their sorting behaviors. We compared the
true behavior sequence with the simulated behavior sequence at the element level. The result
suggests that the model accurately predicts the actions of participants beyond the chance
level, with 78% of participants surpassing the chance level (predicting 1 out of 16 possible
actions, 15 possible pairs plus 1 ‘finish’ action, see Figure 3A). However, one could argue that
the LLM’s prior knowledge about sorting algorithms could influence its code generation,
enabling it to produce sorting behaviors that align with human actions above chance levels,
regardless of the content of the strategic descriptions. Yet, this influence does not imply
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random generation nor does it guarantee human-like behavior outcomes. To confirm
the LLM makes use of the strategic descriptions to generate codes, we ran a simplified
permutation test in which we permute code-participant correspondence to evaluate a null
level of predicting human sorting behaviors by randomly generating sorting codes. Our
results show that if the LLM does not use strategic descriptions to generate the codes, the
mean prediction accuracy for behaviors is 14.8% (95% CI: [14.3, 15.3]). Therefore, the true
mean accuracy is higher and out of the null distribution from purely prior knowledge,
with 49% of participants surpassing the prior knowledge. This result suggests that our
model performance surpasses the chance and prior knowledge level, indicating its robust
performance in predicting human sorting behaviors as cognitive models.

We further take a look at how the prediction accuracy could vary across trials and par-
ticipants since we suppose algorithmic information revealed by strategic descriptions is
different in these conditions. We first tested whether as the trial went on, the prediction
accuracy of the model increased accordingly. The result shows a strong correlation between
the trial number and the predicting accuracy (see Figure 3B, r = 0.82, p < 0.001). This
indicates a learning effect in their task that a better performance occurs in later trials as
already indicated by the original research. It might also be because the strategy descriptions
happen at the end of the task, and it is more likely for participants to summarize their
thoughts from the most recent trial (last trial).

We also test whether the prediction accuracy varies across participants as their task per-
formance varies. We first ran an overall correlation across all participants, finding that
task performance is significantly positively correlated with predicting accuracy (r = 0.21,
p < 0.001). This may indicate that participants with better performance may have clearer
expressions about their strategy, and their behaviors are less random which could be eas-
ier to be fitted by sorting codes. However, as we observed the plot and found there is a
mixture of distributions across these two variables (see Figure A1), we plot and calculate
the correlation by previously behaviorally assigned algorithms. We still picked the two
most commonly used algorithms here to calculate their correlations. As shown in Figure
3C and 3D, both algorithms of participants exhibited significant correlations (Gnome sort:
r = 0.19, p < 0.001; Selection sort: r = 0.31, p < 0.001). However, their distributions of
both task performance and prediction accuracy are quite different, suggesting that either
the LLM may have inducive biases into some particular sorting algorithms or descriptions
from some algorithms are more explicit and comprehensible, but those from others are
more implicit and challenging to convey. This variation in semantic transparency among
strategies could significantly influence the effectiveness of the LLM’s code generation and
subsequent behavior prediction.

In sum, the generated codes exhibit a robust prediction accuracy above chance and prior
knowledge and reveal individual differences and temporal relationships from participants’
behaviors, suggesting their potential to serve as predictive and explainable cognitive models.

3.3 Comprehensive Simulated Behaviors in the Task Induct Strategies Underlying
LLM-Generated Codes

Since these codes can predict the behaviors, and align with the simulated behaviors and
strategy descriptions, we are interested in the underlying cognitive processes they represent.
In sorting tasks, the most important cognitive process is the strategy or algorithm humans
use to sort unordered lists. As revealed in the original study, researchers used RNNs to iden-
tify 16 standard and commonly used sorting algorithms for most participants. Following
their hypothesis, we evaluate the similarity between each generated code and hypothetical
algorithms. By running comprehensive simulations with the standard algorithm codes,
we compare the simulated behaviors of each generated code to those of the standard algo-
rithms. When a generated code’s simulated behaviors exactly match those from a standard
algorithm (similarity = 1), we attribute the code to that algorithm. We compared our results
with the original study, which based its strategy attributions on behaviors. Attributions
between codes and behaviors were consistent for 28.2% of participants.
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Figure 3: A. The prediction accuracy of generated codes surpass random chance and prior
knowledge by the LLM. B. The generated codes capture learning effects in human behaviors.
C, D. The generated codes can capture individual differences in the task. For different
algorithms, the LLM has different performance and variability in capturing such individual
differences.

Moreover, we used a confusion matrix to compare LLM-inferred strategies with behaviorally
assigned strategies, examining the alignment and discrepancies between LLM-generated
computational models and algorithms based on actual participant behaviors. The result
shows that several strategies are well aligned (e.g., Selection Sort, Successive Sweeps) but
also indicates the shortcomings of LLM in identifying some other strategies (e.g., Gnome
Sort and Backward Gnome Sort) from purely strategy descriptions. To confirm whether this
shortcoming in identifying strategies is because the LLM has some inductive biases to some
particular algorithms or people from some of the algorithms find it hard to describe the
algorithm clearly, we ran a recovery test that we instruct GPT-4-0125-Preview to describe
each algorithm in this task context, and ran a completely same pipeline as above. We found
that even for the LLM-generated descriptions, the LLM cannot correctly identify those
biased strategies (e.g., Gnome Sort, see Figure A2). The recovered confusion matrix exhibits
a very similar pattern to Figure 4, which suggests there is a systematic inductive bias in
sorting algorithms in the LLM.

4 Discussion

4.1 Introspections, cognitive processes, and behaviors.

Building precisely predictive and interpretable computational models is crucial to the field
of cognitive sciences. Introspections can be informative in probing thought processes rather
than purely inferring from behavioral observations. In our study, we showed that text
embeddings of strategy descriptions can well predict strategies discovered from behavioral
datasets. We are not the first ones to observe such effects. Previous research revealed that
both self-report ratings and Think-Aloud as natural languages can be used to predict human
choice behaviors, as well as probe the underlying cognitive processes with computational
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Figure 4: The confusion matrix compares the behavioral similarity of code-generated
simulations to standard algorithms, organized by behaviorally identified strategies. It
quantifies how closely codes, derived from participants’ strategy-based descriptions, align
with algorithmic benchmarks in behavioral outcomes.

models and neural networks (Morris et al., 2023; Xie et al., 2023). Our study again highlights
the importance of introspection in building computational cognitive models of human
behaviors.

4.2 Code-like models and behaviors.

In our study, we generated codes with the LLM based on the strategy descriptions from
human participants, which are later used to predict behaviors and induct strategies that
they use throughout the task. With the code-like models achieving higher accuracy than
chance level and surpassing the prior knowledge the LLM can produce, the descriptions do
contain information that the LLM could utilize. However, the current model performance
is still inferior to the purely behavioral RNN model performance Correa et al. (2024); Ellis
(2024), indicating that zero-shot learning is not yet sufficient to comprehend behaviors
fully. The generated code is mostly deterministic and optimal, overlooking human-centric
cognitive features like memory, action biases, and randomness. To further encapsulate
human-centered behavioral features, program induction could be utilized, treating the
generated code as a prior.
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4.3 LLM, Introspections, Code-like Models, and Behaviors.

Interestingly, we also found that the LLM exhibits strong inductive biases towards some
sorting algorithms. This bias affects both strategy attribution and model performance for
specific datasets. The relationship between the LLM, introspections, code-like models, and
behaviors can be regarded as a hierarchical Bayesian structure, where the domain knowl-
edge of LLM serves as the prior when generating codes conditioned on the introspections.
Therefore, correcting inductive biases of the LLM is as crucial as fitting the codes to behav-
ioral data when generating precise and interpretable code-like models. Ellis (2024) revealed
that a tuned-prior LLM could outperform a pre-trained-prior LLM in generating codes that
fit behaviors. This suggests the importance of teaching the LLM to be a good ‘scientist’ in
proposing models (generating codes), rather than serving as a mere cognitive model to
predict behaviors.

4.4 Limitations and Future Directions.

Introspections and Task Settings. In the original study, the strategy descriptions are mainly
used for communication purposes and are passed on to the next generation of participants
to learn. This means participants may not fully reveal their behavior, instead telling what
they think is optimal in the task. Additionally, each participant only provides one paragraph
of introspection at the end of the task, which overlooks the dynamics of their behavioral
evolution. A higher temporal resolution for probing thoughts, such as at each trial, would
better capture behavioral patterns. The lack of demographic information also prevents us
from investigating individual differences in task performance and strategy descriptions.
These task settings constrain the predictive performance of code-like models, which could
be better designed for a separate task.

The Biases of Large Language Models. This language-based program induction task re-
quires LLMs to have the integrative capability to understand the instructions and strategy
descriptions and generate codes correctly. We attempted to use ’code-LLaMA-34b-Instruct-
hf’ for the task but found the model failed to generate executable codes for all participants
without human intervention, preventing us from further comparing their actual perfor-
mance. We also used the most recent open-source models, ’LLaMA3-8b’ and ’LLaMA3-70b’,
to classify the strategies participants used based on their descriptions. We found our cur-
rently used model, GPT-4-0125-preview, exhibits better performance than the other two
models (Fig. A3). Despite the superior performance, the current model still exhibits obvious
inductive biases toward some algorithms, hindering the model from correctly generating
codes for specific groups of participants. One easy way to investigate whether different
LLMs exhibit different biases is to use a mixture of models to optimize general perfor-
mance. More importantly, correcting model biases by fine-tuning or instruction-tuning can
help ’teach’ models to distinguish different algorithms, benefiting downstream program
induction tasks.

Interpretability of Generated Codes. In this paper, we have shown that the generated
codes can serve as a form of cognitive model that can predict human sorting behaviors
based on their strategy descriptions. However, how the codes represent the cognitive
processes is poorly understood. In our analysis, we compare each participant’s generated
codes to standard algorithms, trying to see how language-based program induction captures
human behavior compared to purely behavior-driven models. How the strategy descriptions
provide information beyond behavioral observations and the standard algorithm hypothesis
space is yet to be investigated. One future avenue could be decomposing the codes into
primitives (e.g., operations, index, loop) and instructing LLMs to build purely on these
primitives. By analyzing how each generated code organizes these primitives, we can
understand how codes vary from each other individually, and potentially identify whether
biases stem from humans or LLMs among these primitives.
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A Appendix

A.1 Prompts of Generating Codes from Strategic Narratives

For each participant, we extract their strategic descriptions and insert it into the prompt.
The complete prompt is like below:

Create a Python sorting function ’human like sorting’,which is directly executable and effective for
a general sorting task, based on a strategic approach to sorting a list of items. The function should
simulate the decision-making process humans might use when sorting, without direct comparison to
a known ’true order’. The function must:
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1. Accept ’initial stimuli’ as a list of items to be sorted, with ’true order’ available only to
the internal ’attempt swap’ function for providing feedback on swap actions. ’True order’
represents the correct order of items and is used to simulate feedback on whether a swap
action brings items closer to their desired order:

def attempt_swap(current_order, true_order, action):
index1, index2 = action
if 0 <= index1 < len(current_order) and 0 <= index2 < len(current_order)

and index1 != index2:
item1, item2 = current_order[index1], current_order[index2]
true_pos1, true_pos2 = true_order.index(item1), true_order.index(item2)
if (true_pos1 > true_pos2 and index1 < index2) or

(true_pos1 < true_pos2 and index1 > index2):
current_order[index1], current_order[index2] =
current_order[index2], current_order[index1]
return True, current_order

return False, current_order

2. Return a log of actions attempted, regardless of the outcome, formatted as tuples of item
indices attempted for swapping, as well as the outcome of this attempt. A ’finish’ action
signals the end of the sorting process. This log tracks the sorting actions as well as the
outcome of the comparison, simulating a step-by-step decision-making process.

3. Contain all necessary logic for sorting within the function, making it capable of sorting lists
of any length using basic operations. The function should not depend on external libraries
or Python’s built-in sorting functions for its core sorting logic. To avoid infinite loop, the
function should set a hard limit up to 50 comparison attempts and always ended up with a
’finish’. All the basic functions should be correctly used (if used).

4. Refrain from using ’true order’ for direct comparisons with ’current order’ to assess sorting
completion. Instead, infer the completion through the sorting process itself, akin to how a
person might determine they have finished sorting without knowing the exact ’true order’.
’true order’ can only be used in the ’attempt swap’ function.

Focus on generating executable, valid Python code that effectively sorts ’initial stimuli’ into order.
The code should first and foremost be functional and capable of performing the sorting task well under
general conditions. Once functional validity is ensured, align the code as closely as possible with the
strategic description provided, within the bounds of simulating human-like sorting behavior under
fair computational constraints.

Please provide only the implemented function, ready for direct execution with ’initial stimuli’ and
’true order’ inputs. Don’t include any comments, explanations, notes, or examples.

The strategy description is {strategy description}.

For best reproducibility, we always fixed the hyper-parameters, with max token = 1024,
temperature = 0.1, seed = 2024, with all other hyper-parameters set to their default values.

A.2 Representational Similarity Analysis: Aligning Generated Codes, Descriptions, and
Simulated Behaviors

To investigate how well the strategic descriptions, generated codes, and simulated behaviors
are aligned, we use inter-subject RSA to validate their correlations. The very first step of
RSA is to define a similarity matrix for each level of datasets. For strategy descriptions, we
obtain the text embeddings by inputting the text into the text-ada-002 model by OpenAI
(2023). We compute cosine similarity for each pair of participants to obtain the similarity
matrix. For the generated codes, we use CodeBERT to obtain the embeddings of codes and
similarly compute the inter-subject similarity matrix of code embeddings. For the behavioral
similarity matrix, we computed behavioral similarity in the same way as described in the
methods section (2.3).
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After three inter-subject similarity matrices were computed, we correlated the upper trian-
gular, non-diagonal elements of flattened similarity matrices to compare representational
structures without redundancy or self-comparisons. To test the correlation, we used the
Spearman correlation and permutation test with 2,000 permutations to define whether the
correlation is statistically different from the null distribution.

Our results suggest that all three pairs of correlations are out of null distributions
(description-code correlation: r = −0.07, 95%CI = [−0.0008, 0.0008]; description-simulated
behavioral correlation: r = −0.01, 95%CI = [−0.0008, 0.0008]; code-simulated behavior
correlation: r = 0.18, 95%CI = [−0.0008, 0.0008]), indicating significant strong alignments
among strategic descriptions, generated codes, and simulated behavior.

A.3 Behaviorally Assigned Strategies Sample Summary

Algorithm Regular Backwards
Selection sort 996 67
Gnome sort 711 178
Shaker sort 71 23
Modified selection sort 63 58
Bubble sort 47 38
Successive sweeps 44 14
Insertion sort 19 1
Comb sort 0 8
Unlabeled 1112 -

Table 1: Algorithm Samples Discovered from Behaviors. Source from Thompson et al. (2022)

A.4 Overall Subject-wise Task Performance and Prediction Accuracy

Figure A1: The overall correlation between individual task performance and prediction
accuracy. The distributions for both task performance and prediction accuracy suggest a
mixture of distributions in the dataset and it is necessary to isolate the algorithms.
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A.5 Recovery Test in LLM for Code-Generations

Figure A2: Confusion matrix in recovery test. This recovery test indicates biases towards
algorithms similar to those on human data, such as Gnome Sort and Backward Gnome Sort.

A.6 Strategy Classifications of Several LLMs
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Figure A3: GPT-4-0125-preview generally exhibits better performance than the two most
recent versions of LLaMA.

14


	Introduction
	Methods
	Task and Dataset
	Generating Executable Codes with GPT-4-Turbo with Zero-Shot Training
	Behavior Simulations

	Result
	Text Embeddings of Strategic Narratives Reveal Information of Human Sorting Behaviors
	LLM-Generated Codes Surpass Chance and Prior Knowledge in Predicting Human Sorting Behaviors
	Comprehensive Simulated Behaviors in the Task Induct Strategies Underlying LLM-Generated Codes

	Discussion
	Introspections, cognitive processes, and behaviors.
	Code-like models and behaviors.
	LLM, Introspections, Code-like Models, and Behaviors.
	Limitations and Future Directions.

	Appendix
	Prompts of Generating Codes from Strategic Narratives
	Representational Similarity Analysis: Aligning Generated Codes, Descriptions, and Simulated Behaviors
	Behaviorally Assigned Strategies Sample Summary
	Overall Subject-wise Task Performance and Prediction Accuracy
	Recovery Test in LLM for Code-Generations
	Strategy Classifications of Several LLMs


