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Abstract—Feature-based SLAM heavily relies on the specific
type of visual features employed, as illustrated in Fig. 1. The
most effective feature in some conditions may perform worse or
not be suitable for other ones, leading to significant performance
variability. Seamlessly switching to the most effective visual feature
is a desirable quality for SLAM, but, currently, this involves a
cumbersome manual task that demands substantial parameter
tuning efforts and expert knowledge.

In this paper, we present AnyFeature-VSLAM, an automated
visual SLAM pipeline capable of switching to a chosen type of
feature effortlessly and without manual intervention. The tuning
of parameters associated with visual features is performed auto-
matically to achieve the best performance. We built AnyFeature-
VSLAM on top of ORB-SLAM2, one of the most popular and
widely used feature-based visual SLAM implementations. Through
extensive experiments across various benchmark datasets, we
demonstrate that AnyFeature-VSLAM consistently delivers good
results irrespective of the chosen visual feature, outperforming
baseline implementations. Specifically, our paper includes a quanti-
tative assessment of trajectory estimation involving seven different
keypoint and descriptor combinations across thirty sequences
spanning four distinct publicly available datasets. Furthermore,
we showcase the enhanced flexibility of our system by subjecting
it to four additional challenging datasets. Code publicly available
at: https://github.com/alejandrofontan/AnyFeature-VSLAM.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) aims at
estimating the trajectory of a mobile robot while concurrently
constructing a representation of the environment [10]. Feature-
based visual SLAM (VSLAM) refers to the modality that
utilizes RGB video as the main sensory input, and specifically
multi-view correspondences between 2D salient image features
(see an illustration of such features in the first two columns of
Figure 1). VSLAM has witnessed remarkable advancements,
progressing from early filtering methods [20, 4, 17, 36] to
contemporary pipelines rooted on parallel tracking and map-
ping [50, 26, 49]. Similarly, the evolution of feature detection
and description spans from image patches [65] to corner
detectors and descriptors [55, 56, 45, 11, 57, 40, 2, 5, 43, 3],
and more recently, to methods heavily reliant on deep learn-
ing [19, 54].

Ideally, VSLAM features should capture distinctive local pat-
terns and exhibit robustness under illumination and viewpoint
changes, rolling shutter effects, sensor asynchrony, and cali-
bration errors. They should also present invariance to rotation
and perspective effects, facilitating wide baseline matching and
consequently enhancing the accuracy of Bundle Adjustment
(BA) [75] and facilitating Visual Place Recognition (VPR) [63].
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Fig. 1: Illustration of the effectiveness of our automated method
for changing features. Left column: Frames from challenging
sequences from 2 public datasets and ORB-SLAM2 tracks (in
green). Note the small amount of features tracked, that lead to
failure in both sequences. Center column: Features tracked
(in purple) for the same 2 frames by our AnyFeature-VSLAM
with R2D2 keypoints. Without any manual parameter tuning,
we leverage the distinctiveness of R2D2 compared to ORB,
leading to superior performance. The right column shows
the trajectories estimated by ORB-SLAM2 (in green) and our
approach (in purple). Note how AnyFeature-VSLAM (R2D2)
successfully estimates the entire trajectory, while ORB-SLAM2
experiences catastrophic failure.

Lastly, the quick extraction and comparison of features are
crucial for real-time execution, ensuring seamless integration
into real-time pipelines for use cases within augmented reality
(AR), virtual reality (VR), and robotics.
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Fig. 2: AnyFeature-VSLAM results for arbitrary features. We
achieve comparable trajectory accuracy for six different state-
of-the-art features without manual tuning.

https://github.com/alejandrofontan/AnyFeature-VSLAM


Size Scale Inv. Rot. Inv. Comput. Speed
BRIEF [11] Binary 32 x 8U ✗ ✗ ∼ 10 ms
ORB [57] Binary 32 x 8U ✗ ✔ ∼ 10 ms
BRISK [40] Binary 48† x 8U ✔ ✔ ∼ 10 ms
AKAZE [2] Binary 61 x 8U ✔ ✔ ∼ 35 ms

SURF [5] Non-bin 64 x 32F ✔ ✔ ∼ 35 ms
SIFT [43] Non-bin 128 x 8U ✔ ✔ ∼ 50 ms
KAZE [3] Non-bin 64 x 32F ✔ ✔ ∼ 150 ms

SuperPoint [19] Non-bin 256 x 32F ✔ ✔ -
R2D2 [54] Non-bin 128 x 32F ✔ ✔ -

TABLE I: Characteristics of Different Descriptors. This
table provides a comparison of various descriptors that could
be used in VSLAM applications. It outlines key characteristics
such as scale invariance, rotation invariance, and computational
speed. It should be noticed that only ORB and BRISK attain
the necessary speed for the real-time operation of VSLAM.
†BRISK is described by Leutenegger et al. in [40] as a 64-byte
descriptor; however, the author’s implementation has 48 bytes.

Each specific VSLAM implementation heavily depends on a
particular visual feature, to the extent of trademarking the entire
pipeline in the ORB-SLAM series case [50, 49, 12]. Refer to
Table II for an illustrative summary of various SLAM pipelines
from the literature and the keypoints and descriptors they use
in an exclusive manner. However, a particular type of visual
feature should not constraint the rest of the VSLAM pipeline,
that should be kept generic. While the high computational
demands of certain features can indeed restrict their use in real-
time VSLAM, we argue that it is not only these computational
constraints but also a lack of flexibility in the design of
SLAM pipelines what limits the full utilization of the
capabilities offered by different types of features [10].

In this work, our aim is achieving seamless feature inter-
changeability within a VSLAM pipeline, eliminating the need
for manual tuning and avoiding performance degradation (see
Figure 2). Specifically, our contribution involves automating six
feature-dependent processes commonly found in VSLAM im-
plementations. We present a comprehensive set of experimental
ablations to underscore the enhanced flexibility of our system
compared to conventional feature-dependent methodologies.
We conduct a quantitative assessment of trajectory estimation
performance, involving seven state-of-the-art keypoint and
descriptor combinations, across 30 sequences drawn from four
distinct publicly available datasets. Additionally, we extend
the capabilities of ORB-SLAM2 [49] to introduce AnyFeature-
VSLAM, which, to the best of our knowledge, stands as the
first adaptable and feature-interchangeable VSLAM pipeline.
Our novel framework facilitates the seamless interchangeability
of keypoints and descriptors with zero tuning efforts, thereby
fostering flexibility and innovation in the realm of visual SLAM
applications.

II. RELATED WORK

Keypoints and Descriptors. Among the most popular visual
features in the literature [47, 1, 34], briefly summarized in
Table I, Lowe et al.’s SIFT [43], Bay et al.’s SURF [5]
and Alcantarilla et al.’s KAZE [3] stand out due to their

Reference Acronym Keypoint/Descriptor
Fontan et al. [24] SID SLAM BoW with AKAZE
Tang et al. [71] GCNv2 Gcnv2 modification of ORB-SLAM2
Deng et al. [18] SuperPoint SLAM Superpoint modification of ORB-SLAM2
Schops et al. [62] BAD SLAM BoW with BRIEF
Qin et al. [52] VINS-MONO Corner features
Gao et al. [28] LDSO BoW with ORB
Lee et al. [39] LCSD SLAM ORB for geometric BA
Mur et al. [49] ORB-SLAM ORB tracking, mapping and LC
Lim et al. [42] Implementation with FAST + BRIEF
Leutenegger et al. [41] OKVIS Implementation with BRISK
Song et al. [67] Implementation with ORB
Concha et al. [14] RGBDTAM BoW with ORB
Strasdat et al. [68] [69] Large scale SLAM Loop Closure Detection with SURF
Klein and Murray [36] [37] PTAM FAST + Cross corr.
Davison et al. [17] MonoSLAM Image patches + Cross corr.

TABLE II: Visual SLAM Baselines and associated Key-
point/Descriptor. This table provides an overview of relevant
SLAM pipelines and their respective keypoint and descriptor
configurations. It offers insights into the choices made for
robust simultaneous localization and mapping. Note that all
VO/VSLAM systems listed in the table share a common aspect:
their implementation commits to one specific feature, although
the methodologies proposed should not be restricted to these
particular features.

high descriptive capability and robustness to illumination and
viewpoint changes. Both SIFT and SURF leverage the concept
of Gaussian scale space to enable multiscale detection and
description. KAZE adopts a locally adaptive approach to
blurring through the utilization of nonlinear scale spaces.

These keypoints and descriptors have achieved a remarkable
success in various applications, such as Structure from Motion
(SfM) [75, 64, 32, 60, 61]. Nonetheless, despite ongoing re-
search efforts aimed at enhancing their computational efficiency,
such as exploiting GPU devices [66], these methods still
fall short in terms of computational speed when compared
to the more modest yet faster feature alternatives currently
available [72]. This is particularly true in the context of real-
time systems, such as VO or VSLAM [10], as well as on
low-end platforms like small robots and AR/VR glasses [16].

Among the methods for finding keypoints, Rosten et al.’s
FAST [55, 56] and Mair et al.’s AGAST [45] are efficient and
find reasonable corner keypoints. Calonder et al.’s BRIEF [11]
is a feature descriptor that uses simple binary tests between
pixels in a smoothed image patch. Its performance is similar to
SIFT in many respects, including robustness to lighting, blur,
and perspective distortion. However, it is highly sensitive to
image rotation and scale changes, which limits its application
to general tasks.

Rublee et al.’s ORB [57] and Leutenegger et al.’s BRISK [40]
speed up feature detection and description by combining the
strengths of the FAST corner detector and BRIEF binary
descriptors, incorporating scale and rotation invariance. Notably,
these extraction methods offer significantly enhanced computa-
tional efficiency when compared to SIFT, SURF and KAZE
while maintaining a comparable performance, particularly
in scenarios characterized by small image transformations.
Alcantarilla et al.’s AKAZE [2] shows a compromise between
speed and performance, using embedded numerical schemes
to speed-up feature detection in nonlinear scale spaces.



Learned keypoints detectors and descriptors in the litera-
ture [29, 76, 58, 15] include DeTone et al.’s SuperPoint [19],
which contributed a fully-convolutional neural network ar-
chitecture for keypoint detection and description. They have
demonstrated a competitive performance for small appearance
variations and significantly outperform handcrafted descriptors
in low-texture scenarios and high appearance variations. Revaud
et al.’s R2D2 [54] proposed a new learning-based feature
extraction method that jointly detects and describes keypoints in
images, resulting in sparse, repeatable, and reliable keypoints.

As these keypoint detectors and descriptors have shown
excellent performance for matching tasks [33, 44, 51, 73, 74],
it is reasonable to believe that they can be used to tackle all
visual data-association tasks in 3D computer vision problems
like SLAM and SfM, and that a learning-based Visual SLAM
front-end will enable more robust applications in robotics and
augmented/virtual reality.

Feature-based SLAM. The taxonomy of modern VO/SLAM,
divided into feature-based, direct, and semi-direct (or hy-
brid) categories, has been extensively addressed in previous
works [77, 24]. Here, we focus only on feature-based methods,
i.e., those that extract and match a sparse set of salient image
features using partially invariant descriptors to robustly recover
both camera motion and structure [26].

The initial solutions for monocular SLAM filtered every
frame sequentially, in a single processing thread, to jointly
estimate the map feature locations and the camera pose [17, 13].
Among them, Davison et al. [17] detected salient image regions
using the detection operator of Shi and Tomasi [65]. The map
points of PTAM by Klein and Murray [36] [37] correspond
to FAST corners matched by patch correlation. Strasdat et
al. [68] presented a large scale monocular SLAM system with
a front-end based on optical flow, followed by FAST feature
matching and motion-only BA and using SURF features for
loop detection.

The visual odometry of Song et al. [67] uses ORB features
for tracking and a temporal sliding window BA back-end. Lim
et al. [42] uses BRIEF features for tracking, mapping and loop
detection, however it limits the system to in-plane trajectories.
Leutenegger et al.’s OKVIS [41] used BRISK keypoints and
descriptors and Qin et al.’s VINS-Mono [52] a Shi and Tomasi
detector [65] for their visual-inertial odometries.

Mur et al. developed ORB-SLAM [50], the first fully com-
plete SLAM pipeline to perform real-time, accurate tracking,
mapping, loop detection, and loop closing, all with ORB
features.

Forster et al.’s SVO [25, 26] combined photometric alignment
for tracking and pixel triangulation, and feature-based joint
optimization of structure and motion. Similarly, Lee et al.’s
LCDO [39] combines photometric bundle adjustment of the
local structure and motion [22] with feature-based bundle
adjustment for larger optimization windows [49]. Numerous
approach have been built upon ORB-SLAM, given its high
degree of robustness and versatility [49, 12, 6, 38].

Typically, dense approaches add to a direct VO thread
a (feature-based) bag-of-words loop closure [27]. For in-

Algorithm 1 Automatic Tuning of Keypoint Extractor
1: function AUTOMATIC TUNING (I, keypoint type) ▷ I : grayscale image
2: #f ← Detect FAST (I, tfast = 7) ▷ #(·) : operator ‘number of (·)’
3:
4: detector ← createDetector (keypoint type)
5: ts ← detector.getNominalThreshold() ▷ ts : detection threshold at step s
6: ts−1 ← ts + δt ▷ δt = 1.1 · ts
7: #ks−1 ← detector.detectKeypoints (I, ts−1)
8: e ← Initialize error ()
9: for s = 1 : numMaxSteps do ▷ numMaxSteps = 200

10: #ks ← detector.detectKeypoints (I, ts)
11: e ← (#ks −#f)
12:
13: If (|e| < tol) then break ▷ tol = 0.01 ·#f
14:
15: ∂t

∂#k ←
ts−ts−1

#ks−#ks−1
▷ Estimate derivative

16: ts−1 ← ts ▷ Update thresholds
17: ts ← ts−1 + ∂t

∂#k · e
18: #ks−1 ← #ks

19: end for
20: return ts
21: end function

stance, Concha et al.’s RGBDTAM [14] and Gao et al.’s
LDSO [28] search for ORB correspondences, Schops et al.’s
BAD-SLAM [62] utilizes BRIEF, and Fontan et al.’s SID-
SLAM [24] looks for AKAZE. Although all these works
benefit from both point types, their loose coupling limits their
performance compared to using the same landmarks in tracking,
mapping, and relocalization tasks [50, 12].

All previous VO/VSLAM systems have in common that
their implementation commits to one specific feature, although
the methodologies proposed are not restricted to these par-
ticular features. Approaches such as Den et al.’s SuperPoint
SLAM [18] or Tang et al.’s GCNv2 SLAM [71] constitute
the first attempts to use learned features in real-time SLAM
pipelines, but again they are tied to one single specific type of
feature. Differently from all of them, our AnyFeature-VSLAM,
is the first fully automated system enabling high-performance
usage of any feature in VSLAM.

III. AUTOMATIC USAGE OF ANY FEATURE INTO VISUAL
SLAM

In this section, we provide a detailed explanation of our
method for seamlessly switching the type of features within a
VSLAM implementation. We offer technical insights into the
modifications implemented to enable VSLAM to adapt to any
feature without the need for manual tuning.

A. Keypoint and Descriptor Extraction

The quality and quantity of keypoints, defined by their
distinctive 2D positions in the image domain, are crucial
for feature-based VSLAM, impacting the system’s accuracy,
robustness, and speed. The extraction process typically begins
with detecting keypoints using a minimum edge threshold t,
followed by a selection process to spread their distribution
over the image for accuracy, robustness and speed. Figure 3
illustrates how the number of keypoints varies for each type
as the detection threshold tr = t/t0 deviates from the nominal
value t0 proposed in each implementation, underscoring the
challenge in selecting an appropriate threshold.
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Fig. 3: Illustration of the number of detected keypoints (#) in an
image for different values of the extracion threshold t. We plot
in the x axis the normalized threshold tr = t/t0 with respect
the nominal value from their respective implementations. Note
the very different response between descriptors, not only in the
absolute number of keypoints extracted for the same value but
also for the different grow ratios. Moreover, the behavior of
SIFT is inverted with respect to the other features, increasing
the number of keypoints when the threshold increase.

Fig. 4: The size of a keypoint (red circle) defines the area
of pixels used for estimating its 2D image position. The
covariance of a keypoint (purple circle) defines the uncertainty
of its 2D image position. While an underlying relationship
exists between the size of a keypoint and its covariance, there
are no models that generalizes to all descriptors.

Our automatic tuning mechanism employs the count of FAST
keypoints detected in the first image of a sequence as a proxy
to approximate a functional threshold for any given feature. A
preset extraction threshold tfast = 7 effectively balances the
computational demands with the complexity of correlating the
number of keypoints to the texture of the image. We achieve
convergence to the desired threshold through a gradient descent
method, incrementally adjusting the extraction threshold until
the number of detected keypoints aligns with the reference
quantity of FAST keypoints, as detailed in Algorithm 1. This
method ensures a robust initialization of the extractor, regardless
of the detector type or the specific characteristics of the RGB
input.

B. Keypoint Size

The size of a keypoint, commonly referred to as its radius
in pixels, defines the area used for estimating the 2D image
position of a salient point, as depicted by the red area in
Figure 4. In VSLAM pipelines, keypoints of varying sizes
facilitate matching across different views [50].

Given fixed camera intrinsics and an estimation of the motion
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Fig. 5: Left: The figure provides a simplified representation
of our approach to enable the utilization of the nominal size
of keypoints for estimating their covariance (see Eq 1). This
scaling allows for the relative weighting of reprojection
residuals based on keypoint size while ensuring the proper
functioning of both outlier rejection and matching processes.
Right: In order to taylor the outlier thresholds to the
uncertainty associated with each specific descriptor we
utilize a 95% probability level from the fitting of a t location-
scale distribution with ν degrees of freedom and scale Σ to
the reprojection residuals r from the local Bundle Adjustment.

of the camera, it is feasible to predict transformations of image
patches when observed from varying viewpoints. Specifically,
the expected size si of a keypoint ki in image i can be derived
from its size in a reference image j using s∗i ≈ zj

zi
sj , assuming

that the perspective distortion of the keypoints is predominantly
caused by their distances zi, zj to the 3D point [23].

This predictive model facilitates the estimation of the size
of a potential matching keypoint, thus enabling the selection of
candidates, ∀ki ∈ Ki such that s∗i

α < si < αs∗i , with a certain
tolerance α ≥ 1 (α = 1.2 in our experiments).

There exist various implementations for computing the
nominal size of a keypoint (e.g. image diffusivity [2] [3] and
resolution [57] [49]) which yield to different scales. Given the
proportionality of our approach, we can use keypoints with
any input size irrespective of its absolute scale.

C. Keypoint Covariance

The estimated positional uncertainty (σ) of a keypoint is
used in VSLAM for weighting reprojection residuals, filtering
outliers and actively defining search areas for matching.
Typically, keypoints detected at the finest discretized resolution
are assigned an initial value (σ0) of 1 pixel. As resolutions
change, it is adjusted proportionally σ̂(l) = f l · σ0, being l
the level of the keypoint in the resolution pyramid and f the
scaling factor between levels.

We propose a two-step method to estimate the functional
covariances of keypoints (Figure 5). Initially, we address the
sensitivity of the matching and outlier rejection processes to
covariance scaling by adjusting the estimated covariances to
align with the nominal parameters of ORB-SLAM2:

σ = σorb
min +

σorb
max − σorb

min

σmax − σmin
(σ̂ − σmin), (1)

where σmax and σmin are the maximum and minimum size
values provided by the new descriptor, and σorb

max and σorb
min

denote the maximum and minimum for ORB in ORB-SLAM2.
We fit a t location-scale distribution to the reprojection

residuals after the joint optimization of camera poses and 3D



landmarks in the local Bundle Adjustment [35] [31]. The cost
function is defined as the difference between the observations
kij ∈ K of a set of keypoints and their predictions:

rij = (ru, rv)
T
ij = kij −Π(Rj · pi + tj), (2)

where Π(·), determined by the intrinsic camera parameters,
projects the point pi ∈ R3 into the image domain. Rj ∈ SO(3)
and tj ∈ R3 are the rotation and translation of frame j.

We assume an isotropic distribution for the residuals r ∈
ru, rv in both image directions, to estimate the distribution pa-
rameters: degrees of freedom (ν) and scale (Σ). The estimation
is performed by minimizing the negative log-likelihood of the
distribution:

{ν,Σ}∗ = argmin
ν,Σ

{
−

∑
r∈ru,rv

log p(r|ν,Σ)
}
. (3)

We identify outliers when their Mahalanobis residuals exceed
a χ2 threshold [49]. We dynamically adjust this threshold to
tailor the uncertainty to each descriptor and scene conditions,
scaling it according to the estimated distribution scale,

rTσ−2r > Σ2 · χ2. (4)

This approach effectively manages positional uncertainty of
keypoints, enhancing residual weighting, outlier rejection, and
matching processes.

D. Feature Matching Thresholding

Feature matching involves establishing correspondences
between individual keypoints, denoted as ki ∈ Ki, within
a source image Ii, and their corresponding keypoints, denoted
as kj ∈ Kj , in a target image Ij . This process ensures that
each correspondence accurately represents the multi-view of
the same 3D point. To expedite and enhance the matching, the
candidates are reduced to a subset of keypoints kj ∈ Kj ∈ Kj ,
localized within the vicinity of its 2D projection.

The matching of keypoints entails the comparison of their
associated descriptors, achieved through the computation of
the distance between them, expressed as di,j = f(Di,Dj). The
choice of distance metric is contingent upon the descriptor type
employed. For binary descriptors D ∈ In, such as those utilized
in ORB, AKAZE, or BRISK, the Hamming distance is the
conventional choice. In contrast, continuous descriptors D ∈
Rn, as exemplified by SURF, SIFT, or KAZE, are compared
using the L2 norm.

If the computed distance between two descriptors falls below
a predefined threshold dth, their corresponding keypoints are
marked as a match. As we show in Section V, the suitability
of dth extends beyond the choice of keypoints and descriptors,
encompassing factors such as camera intrinsics, photometric
calibration, and environmental conditions.

We propose an approach for its initial estimation and
continuous update. Specifically, we maintain records of pairs
consisting of the number of candidates Kj and the minimum
computed distance dmin = min(f(Di,Dj),kj ∈ Kj). The
threshold is determined as the most likely distance computed

Dataset Resolution

ETH [62] Indoor Handheld 739 x 458
RGBD TUM [70] Indoor Handheld 640 x 480
EuRoC [7] Indoor Drone 752 x 480
KITTI [30] Outdoor Car 1241 x 376
HAMLYN [48, 53] Intracorporeal Endoscope 640 x 480
Mono TUM [21] Indoor/Outdoor Handheld 640 x 480
Minimal Texture [24] Conceptual Handheld 1280 x 720
MADMAX [46] Outdoor Mobile Robot 1032 x 772

TABLE III: Datasets we used for the comparisons between
vanilla ORB-SLAM2 [49] and our AnyFeature-VSLAM.

as the weighted average of the distances, with the weighting
inversely proportional to the number of candidates:

dth =

∑
ki∈Ki

#Kj |i
(#Ki)2

∑
ki∈Ki

dmin

(#Kj)
|i. (5)

This method enables the estimation of a valid threshold for
any given arbitrary keypoint-descriptor pair without the need
for a priori knowledge or fine-tuning, thus accommodating
the evolving nature of incoming frames in a continuous video
stream.

E. Redundancy Detection in Keyframes

A survival of the fittest strategy, typically used in visual
SLAM, involves creating keyframes as frequently as possible
to maximize its robustness, which is critical under challeng-
ing conditions [50]. However, as the complexity of bundle
adjustment increases and to prevent the unbounded growth of
keyframes, it becomes necessary to implement a policy for
detecting and removing redundant keyframes.

Heuristics based on visual redundancy, such as the number
of shared matches between keyframes, heavily rely on the
repeatability of the selected keypoint-descriptor. Moreover,
many of these approaches adopt greedy strategies for keyframe
removal due to computational constraints. This can lead to
the removal of keyframes from previously visited areas, trans-
forming explored regions into unexplored ones, consequently
impairing re-localization and map reuse, critical aspects of
VSLAM.

In our AnyFeature-VSLAM, we have introduced a new policy
for keyframe removal based on spatial constraints. We maintain
a positional record for all created keyframes, both active and
removed. Under this policy, a keyframe is eligible for removal
if all positions in the record, closer than a certain distance
(0.1/d in our experiments, with d the median depth of the
scene), are in proximity to at least one other active keyframe.
This approach reduces the dependency of the removal policy
on specific descriptors and ensures the presence of a distributed
set of active keyframes across all visited areas.

IV. EXPERIMENTAL RESULTS

In this section, we show the versatility of AnyFeature-
VSLAM, and our novel seamless interchangeability of very
different descriptors. To demonstrate this capability, we have
implemented R2D2 [54], a learned keypoint detector grounded
in self-supervised neural network training. Remarkably, without



Table 3 Plant Scene 1 Str Tex Near Str NoTex Far 04 01 MH 02 easy V2 03 difficult

Fig. 6: AnyFeature-VSLAM (R2D2). This figure showcase RGB sample frames with the active keypoints along with the
estimated trajectories for vanilla ORB-SLAM2 (green upper rows) and AnyFeature-VSLAM (R2D2) (purple lower rows).
In sequences with rich texture and structure, our AnyFeature-VSLAM(R2D2) with non-additional fine-tuning, performs
competitively with vanilla ORB-SLAM2, thanks to our automated process for feature interchange. In challenging scenes where
R2D2 is able to extract more keypoints (notice, for example, the sofa scene or the white wall corner), our system outperforms
ORB-SLAM2. Red crosses stand for tracking failure.

Tracked Frames (#) ATE

Dataset Sequence Or∗ R2D2 Or∗ R2D2

ETH Table 3 (e) 1170 1180 0.5 0.5
ETH Einstein 1 (d) 470 480 14.7 1.9
ETH Large Loop 1 (d) 456 1064 2.6 1.1
ETH Ceiling 1 (d) - 1490 - 1.8
RGBD TUM Fr1 xyz (e) 785 778 1.0 1.0
RGBD TUM Fr2 Desk (e) 2954 2942 0.7 0.8
RGBD TUM Fr3 Long Office (e) 2559 2557 1.1 0.9
RGBD TUM Fr3 Str Tex Near (e) 103 103 1.3 1.0
RGBD TUM Fr3 Str NoTex Far (d) 15 790 - 1.2
RGBD TUM Fr3 Str NoTex Near (d) 10 107 - 9.6
EUROC MH 02 easy (e) 3007 3037 5.9 5.9
EUROC MH 03 medium (d) 2639 2560 6.0 5.5
EUROC V1 02 medium (d) 1602 1614 1.1 1.0
KITTI 00 (e) 4541 4541 7.0 7.4
KITTI 01 (e) - - - -
KITTI 04 (e) 271 269 0.6 3.96
KITTI 07 (e) 1099 1098 2.0 2.0

TABLE IV: Trajectory Accuracy Comparison: The table
compares the trajectory estimation quality between the orig-
inal ORB-SLAM2 [49] (Or∗) and our AnyFeature-VSLAM
(R2D2) implementation. In easy (e) sequences, our AnyFeature-
VSLAM (R2D2) and ORB-SLAM2 attain similar accuracy,
while in difficult (d) sequences, AnyFeature-VSLAM (R2D2)
performs substantially better. We conduct this evaluation across
17 sequences drawn from four distinct datasets: ETH , RGB-
D TUM, KITTI, and EuRoC. The Absolute Trajectory Error
(ATE) [70] is in centimeters for ETH, RGB-D TUM, and
EuRoC, and in meters for KITTI. Values in bold indicate the
best performance, and “-” stands for tracking failure.

engaging in any manual tuning efforts with respect to the ORB
configuration, we are able to run AnyFeature-VSLAM (R2D2)
across eight distinct datasets (refer to Table III).

A. Easy vs. Difficult Sequences

In our experiments, we employed sequences of varying
difficulty levels. The inclusion of easy sequences enabled a
direct comparison with vanilla ORB-SLAM2. As shown in
Table IV, our approach with R2D2, without any additional
manual tuning, achieves accuracy results comparable to those
in the easy sequences, while notably surpassing it in the difficult
ones.

Figure 6 compiles RGB images displaying the active
keypoints for both vanilla ORB-SLAM2 and AnyFeature-
VSLAM (R2D2), alongside the estimated trajectories. Observe
how, in sequences characterized by rich texture and structure,
our AnyFeature-VSLAM (R2D2), without any fine-tuning,
performs comparably to vanilla ORB-SLAM2, thanks to our
automated process for feature interchange. Furthermore, in
challenging scenes where R2D2 can extract more keypoints (as
evident in, for instance, the sofa scene or the white wall corner),
our AnyFeature-VSLAM (R2D2) outperforms ORB-SLAM2.

B. Challenging datasets

We extend our evaluation to datasets from heterogeneous
sources to showcase the versatility provided by our automatic
tuning. This versatility extends beyond indoor and outdoor
scenes, encompassing intracorporeal environments, planetary
analog settings, and even conceptual data. Figure 7 provides
examples of RGB frames and camera trajectories estimated by
AnyFeature-VSLAM (R2D2) in these challenging scenarios.

In Table V, we show a qualitative analysis comparing
the performance of vanilla ORB-SLAM2 with AnyFeature-
VSLAM (R2D2) in these scenarios. It is noteworthy that the
number of tracked frames indicates a similar performance



Rectified 01 Rectified 06 Sequence 17 Sequence 23 Circ. Dodec. 01 Triangle 01 A-0

Fig. 7: AnyFeature-VSLAM (R2D2) in challenging scenarios. Our automated system, without any manual tuning, demonstrates
robust performance across a wide spectrum of challenging scenarios: indoor and outdoor environments, intracorporeal sequences,
planetary analog scenes, and even conceptual data. The red cross stands for tracking failure.

Tracked Frames (#) Keyframes (#) Points ×103 (#) Observations ×103 (#) Observations (#) / Point (#)

Dataset Sequence Or∗ R2D2 Or∗ R2D2 Or∗ R2D2 Or∗ R2D2 Or∗ R2D2

MONO TUM Sequence 17 Indoor Handheld 2942 2937 421 276 15.6 13.1 122.3 89.5 7.9 6.8
MONO TUM Sequence 23 Outdoor Handheld 2970 2974 693 435 27.0 21.6 202.4 131.8 7.5 6.1
HAMLYN Rectified 01 Intracorporeal Endoscope 777 922 40 32 2.3 2.1 16.0 13.7 6.9 6.5
HAMLYN Rectified 06 Intracorporeal Endoscope 1136 1079 40 20 2.0 1.4 14.2 7.7 7.1 5.4
HAMLYN Rectified 08 Intracorporeal Endoscope 512 464 71 18 2.2 0.7 13.7 3.2 6.2 4.7
Minimal Texture Circ. Dodec. 1 Conceptual Handheld - 862 - 108 - 3.5 - 33.9 - 9.6
Minimal Texture Triangle 1 Conceptual Handheld - - - - - - - - - -
MAD MAX A-0 Outdoor Mobile Robot 2025 2479 378 229 22.6 19.9 156.8 111.7 6.9 5.6

TABLE V: Statistics of the SLAM Graph: The presented table provides a qualitative comparison of key graph metrics within
the SLAM system. The number of tracked frames between vanilla ORB-SLAM2 and our implementation indicates similar
performance. Crucially, the final graph size for AnyFeature-VSLAM (R2D2) is significantly smaller than that of ORB-SLAM2,
aligning with the expectation that R2D2 identifies more repeatable and reliable keypoints compared to ORB. AnyFeature-VSLAM
(R2D2) effectively leverages this advantage without any prior fine-tuning, achieving comparable performance while utilizing a
reduced yet more reliable dataset size. Biggest value bold and smallest underlined. We refer as Or∗ to the original implementation
of ORB-SLAM2.

between vanilla ORB-SLAM2 and our AnyFeature-VSLAM
(R2D2) without any manual tuning. Furthermore, the size of
the final graph for AnyFeature-VSLAM (R2D2) is considerably
smaller when compared to ORB-SLAM2. This is consistent
with the expectation that R2D2 keypoints are more repeatable
and reliable than ORB ones, allowing AnyFeature-VSLAM to
utilize a smaller yet more reliable amount of data to achieve
similar performance.

V. IMPLEMENTATION DETAILS AND SENSITIVITY ANALYSIS

In this section, we present implementation details pertaining
to AnyFeature-VSLAM and conduct a sensitivity analysis for
our approach. We evaluate the performance of six widely
recognized detector-descriptor pairs (as listed in Table I): ORB,
AKAZE, BRISK, SURF, SIFT, and KAZE. Our ablation studies
encompass sequences from four diverse datasets: RGBD-TUM,
ETH, EUROC, and KITTI (refer to Table III for details).

Trajectory Estimation and SLAM Graph Analysis: We
assess the accuracy of trajectory estimation using metrics
defined in [70]: the Absolute Trajectory Error (ATE) and
the Relative Pose Error (RPE). Additionally, we consider the
number of tracked frames and the count of loop closures. Our
evaluation includes metrics concerning the final SLAM graph,
allowing for a qualitative comparison of descriptor performance.

Table XI shows how AnyFeature-VSLAM, facilitates con-
sistent SLAM graphs across all six descriptor combinations.

This result aligns with expectations, as these descriptors are
anticipated to exhibit similar behavior under conditions of
minimal motion and favorable environmental circumstances.
Table X shows how all descriptor combinations achieve com-
parable trajectory estimation errors, reinforcing the consistency
of their performance. Notably, in most occasions, different
combinations outperform the original ORB-SLAM2 [49],
illustrating the relevance of feature interchangeability and
validating our initial research hypotheses and our work.

Feature Matching Threshold Estimation. The determina-
tion of the feature matching threshold dth (as discussed in
Section III-D), relies on the analysis of candidate counts #Kj

and the minimal descriptor distances dmin observed within the
local keyframe window as implemented in ORB-SLAM2 [49].

Real-time threshold updates based on a partial map can pose
a risk, especially in challenging conditions like textureless
areas, potentially leading to suboptimal parameter estimates.
To reduce this risk, we store all computed thresholds and update
the parameter using their median value.

In Figure 8, we present the evolution of dth for six different
descriptors across distinct sequences captured using various
cameras. Notably, we observe a transition from initially con-
servative values to stable thresholds over time. It is remarkable
that even when employing the same descriptor in different
sequences, as indicated in Table VII, different threshold values



Keypoint Detection - Descriptor Extraction (ms / frame) Complete Extraction (ms / frame) Automatic Tuning (s)

Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka Or Ak Br Su Si Ka

ETH - 30 Hz 4-3 4-2 18-17 9-4 16-14 24-20 82-44 7 6 35 13 31 44 126 0.2 0.8 0.3 0.5 0.5 4.1
RGBD TUM - 30 Hz 5-3 6-2 18-15 8-4 19-14 23-18 84-40 8 9 32 13 34 41 124 0.2 1.2 0.3 0.5 0.5 5.3
KITTI - 10 Hz 8-3 11-2 25-19 10-5 26-10 34-26 95-53 11 14 45 15 37 60 169 0.2 2.2 0.4 0.8 0.7 6.8
EUROC - 20 Hz 6-3 7-2 18-16 8-4 18-13 25-19 90-42 8 10 34 12 32 44 133 0.2 1.2 0.3 0.5 0.5 5.1

TABLE VI: Keypoint Extraction Profiling. We report the median extraction times for keypoint detection and descriptor
extraction across each dataset and feature. In bold, we highlight the values where the duration necessary for the complete
extraction process supports real-time operation (less than half the frequency (Hz) of the respective image stream). Our findings
indicate that only the ORB and Brisk descriptors achieve speeds suitable for real-time applications across all evaluated datasets.
Notation: Or∗ denotes the ORB extractor used in ORB-SLAM2 [49]. We utilize the OpenCV [8] implementations for ORB
(Or), AKAZE (Ak), SURF (Su), SIFT (Si), and KAZE (Ka). For BRISK (Br), we adopt the latest author’s implementation
[40], noting our experiments show that the OpenCV version significantly slows during keypoint detection. The procedure for
automatic threshold adjustment for extraction, detailed in Section III-A, is time-consuming but is executed only once at the
start of each sequence, thereby not impeding real-time performance.

Feature Matching Threshold (dth)

Or∗ Or Ak Br Su Si Ka

1a 62.4 62.4 99.4 120.1 0.4 164.8 0.4
2a 54.8 54.8 89.3 113.0 0.3 145.1 0.4
2e 65.3 65.3 106.5 124.7 0.3 156.3 0.4
2g 55.1 55.1 82.7 106.4 0.2 140.1 0.3
3a 61.5 61.5 99.1 116.3 0.3 132.3 0.4
4a 61.8 61.8 97.2 123.3 0.3 115.2 0.5

TABLE VII: Feature Matching Threshold Estimation. This
table presents the final estimations for the matching threshold
dth. Note that the same descriptor in distinct sequences results
in varying threshold values. Descriptors: ORB [49] (Or∗),
ORB (Or), AKAZE (Ak), BRISK (Br), SURF (Su), SIFT (Si),
KAZE (Ka).

are observed accounting for factors such as camera intrinsics
and environmental conditions.

t Location-Scale Distribution Fitting in Local Bundle
Adjustment. In the context of ORB-SLAM2 [49], we undertake
the process of fitting a t location-scale distribution to the repro-
jection residuals generated during the local Bundle Adjustment
phase. Specifically, we accumulate all reprojection residuals
that emerge from the joint optimization of 3D landmarks
and camera poses. The fitting procedure is initiated once the
keyframe window attains a certain baseline, normalized by the
median depth of points within the scene (in our experimental
setup, denoted as b = 0.5/z). The outcomes, including the
distribution parameters ν, Σ, and the threshold employed for
outlier rejection χ2

95%, are presented in Table VIII.
Implementations for Keypoint Detection and Description.

Within AnyFeature-VSLAM, we assess the detectors using
their implementations provided by OpenCV [8]. Surprisingly,
the BRISK implementation experiences a significant slowdown
when the extraction threshold is decreased. Consequently, we
have opted for the most recent author’s implementation of
BRISK [40] in our experiments.

Table VI offers a detailed time profiling for keypoint
detection and description. This analysis reveals that only ORB

0 200 400 600 800 1000

40

50

60

(a) ORB
0 200 400 600 800 1000

60

80

100

(b) AKAZE
0 200 400 600 800 1000

80

100

120

(c) BRISK

0 500 1000

0.1

0.2

0.3

(d) SURF

0 200 400 600 800 1000

50

100

(e) SIFT

0 200 400 600 800 1000

0.3

0.4

0.5

(f) KAZE
Table 3 (ETH), Fr1. xyz (RGBD TUM), Fr2. desk (RGBD TUM),

Fr3. Str Tex Far (RGBD TUM), MH 01 easy (EuRoC), 00 (KITTI)

Fig. 8: Feature Matching Threshold Tuning: Evaluation
of feature matching threshold convergence across the initial
frames for six descriptors in six distinct sequences captured
by different cameras. Noteworthy is the observation that even
for the same descriptor applied in different sequences, distinct
threshold values are obtained. Furthermore, it is evident that
during the initialization phase, the thresholds tend to exhibit a
more conservative behavior.

and BRISK demonstrate suitability for real-time operation,
maintaining a 30 Hz video stream. Notably, as anticipated,
KAZE and SIFT prove to be the most time-consuming options.

Additionally, Table VI provides insights into the time
required for our automatic tuning process, juxtaposed with the
extraction time per frame. Although the tuning process takes
approximately one second, which might seem slow relative
to the extraction rate, it’s important to note that this process
occurs only once, during the first frame of the sequence.

Real-time Operation and Multi-threading: The practice
of separating tracking, mapping, and loop closure tasks into
distinct threads plays a pivotal role in achieving real-time
performance. In our implementation, we have introduced
a modification to the keyframe creation policy originally
employed in ORB-SLAM2.

In the conventional ORB-SLAM2 approach, when the
necessity to create a new keyframe arises (e.g., due to a
reduction in the number of matches), it traditionally halts



ORB AKAZE BRISK

χ2
95%

ν Σ χ2
95%

ν Σ χ2
95%

ν Σ

1a 2.9 2.7 0.3 6.0 1.9 0.2 5.2 2.1 0.2
2a 5.9 - - 5.9 - - 5.9 - -
2e 2.9 2.9 0.3 4.2 2.6 0.3 3.8 2.5 0.3
2g 1.7 2.8 0.2 2.0 2.3 0.2 2.5 2.2 0.2
3a 2.9 3.0 0.3 3.4 2.3 0.2 3.4 2.9 0.3
4a 2.2 2.7 0.2 2.4 1.9 0.1 3.3 1.8 0.2

SURF SIFT KAZE

χ2
95%

ν Σ χ2
95%

ν Σ χ2
95%

ν Σ

1a 5.9 2.4 0.3 5.9 1.9 0.3 5.5 2.2 0.3
2a 5.9 - - 5.9 - - 5.9 - -
2e 4.8 3.0 0.4 3.2 3.6 0.4 4.4 2.6 0.3
2g 3.7 2.1 0.2 2.2 1.4 0.2 2.8 2.1 0.2
3a 3.7 3.2 0.3 4.4 2.4 0.1 3.9 2.9 0.3
4a 3.7 2.2 0.2 2.6 1.6 0.2 5.6 1.7 0.2

TABLE VIII: t Location-Scale Distribution Fitting Analysis.
In this table, we present the shape ν and scale Σ, of the best t
location-scale distribution fit for the reprojection residuals from
ORB-SLAM2’s local Bundle Adjustment. We also estimate a
threshold χ2

95%, corresponding to a 95% confidence level, used
for outlier removal. In the case of sequence 2a, the baseline
remains smaller than the minimum, preventing the fitting of
the distribution. Consequently, the original outlier threshold is
retained.

the local Bundle Adjustment optimization process. While this
alteration contributes to improved real-time operation, it may
come at the expense of system robustness. In our approach, we
prioritize system stability by delaying the insertion of a new
keyframe until after the optimization process is completed. This
deliberate trade-off enhances system resilience at the potential
cost of a temporary slowdown in processing speed.

In essence, even if a significant number of matches in-
troduced by a new descriptor temporarily slows down the
optimization process, our system remains functional, thereby
avoiding catastrophic failures and enhancing overall flexibility.

Visual Place Recognition: In AnyFeature-VSLAM, we
enable the visual place recognition (VPR) module with any
descriptor by making modifications to the ORB-SLAM2 [49]
and DBoW2 library [27] modules for loop closure and map
merging. However, this has key limitations. Firstly, it requires
a carefully assembled vocabulary every time a new descriptor
is tested. Secondly, the reliance on a training dataset (such as
Bovisa 2008-09-01 [7] in the case of ORB-SLAM2) restricts
its applicability. For example, if the training data consists
of outdoor images and we intend to use the system indoors,
these limitations can significantly curtail the system’s flexibility
and adaptability. Future work should address newer VPR
approaches, such as HBST [59], where a binary tree of feature
descriptors is built online and hence adapts to domain changes.

VI. CONCLUSION

AnyFeature-VSLAM is an automated visual SLAM sys-
tem that seamlessly adapts to different visual features with-
out any manual tuning. Built over ORB-SLAM2 [49], it

Code Dataset Sequence # RGB

1a table 3 1182
1b table 4 1018
1c table 7 1677
1d cables 1 1182
1e ETH repetitive 1968
1f einstein 1 489
1g planar 2 632
1h planar 3 903
1i plant scene 1 742
1j large loop 1 1513

2a RGBD dataset freiburg1 xyz 800
2b RGBD dataset freiburg1 desk 615
2c RGBD dataset freiburg1 desk2 642
2d RGBD TUM RGBD dataset freiburg2 xyz 3671
2e RGBD dataset freiburg2 desk 2967
2f RGBD dataset freiburg3 long office household 2587
2g RGBD dataset freiburg3 structure texture far 940
2h RGBD dataset freiburg3 structure texture near 1101

3a 00 4543
3b 01 1103
3c 02 4663
3d 03 803
3e KITTI 04 273
3f 05 2763
3g 06 1103
3h 07 1103
3i 08 4073
3j 09 1593

4a MH 01 easy 3684
4b MH 02 easy 3042
4c MH 03 medium 2702
4d MH 04 difficult 2035
4e MH 05 difficult 2275
4f EuRoC V1 01 easy 2914
4g V1 02 medium 1712
4h V1 03 difficult 2151
4i V2 01 easy 2282
4j V2 02 medium 2350
4k V2 03 difficult 1924

TABLE IX: Sequences for trajectory accuracy comparison.

consistently delivers competitive performance across utterly
different features and datasets, offering flexibility and inno-
vation in visual SLAM for robotics and computer vision.
The code is publicly available for broader accessibility at:
https://github.com/alejandrofontan/AnyFeature-VSLAM.

Future Work. The methodologies proposed in this work
are not restricted to monocular cameras and can be extended
to stereo, RGB-D and visual-inertial setups. We will research
solutions to overcome limitations to seamless feature inter-
change imposed by current bag-of-words methods. AnyFeature-
VSLAM allows for automating the usage of any feature into
visual SLAM, future research should focus on optimization to
seamlessly obtain the highest performance.
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Tracked Frames ×102 (#) ATE (units) RPE (units/s) Loop Closures (#)

Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka

1a 11.7 11.7 11.7 2.7 11.7 2.6 12.3 - 0.5 0.3 - 0.6 - - 186.2 0.8 0.5 44.3 0.9 185.0 187.0 0 0 1 0 1 0 0
1b 10.1 10.1 10.1 10.1 10.1 10.4 10.5 0.9 0.8 1.0 1.0 1.6 0.8 0.8 1.2 1.1 1.3 1.2 2.0 1.2 1.2 0 0 0 0 0 0 0
1c 16.4 15.5 16.7 7.9 14.0 15.4 15.6 - 6.7 0.5 1.9 - 0.5 6.9 36.2 7.2 0.7 1.8 19.1 34.9 36.1 0 0 1 0 0 0 0
1d 11.7 8.3 11.7 6.5 8.7 8.5 11.4 - 2.3 0.5 8.7 - 0.5 0.5 46.1 2.0 0.6 7.4 14.0 2.0 0.6 0 0 0 0 0 0 0
1e 10.8 10.6 16.7 15.0 2.5 15.0 2.6 1.1 0.5 1.9 4.6 4.9 0.5 1.0 1.2 0.6 2.4 4.3 69.1 70.5 1.2 0 0 0 0 0 0 0
1f 4.7 4.4 4.8 4.6 4.8 4.6 4.5 - - 0.4 - 0.5 - 0.4 25.9 21.3 0.6 21.6 0.8 20.4 0.7 0 0 0 0 0 0 0
1g 4.7 2.6 5.0 5.0 4.1 4.8 4.5 0.2 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.4 0.2 0.3 0.2 0.2 0.2 0 0 0 0 0 0 0
1h 8.4 8.5 7.6 8.5 7.9 8.6 8.0 1.0 0.7 0.6 0.7 0.3 0.7 0.3 1.2 0.9 0.7 0.9 0.4 0.9 0.4 1 1 1 1 1 1 1
1i 2.6 0.7 7.0 2.1 6.9 2.2 6.7 1.2 0.7 1.0 0.5 0.8 0.5 0.8 1.9 2.4 1.8 1.0 2.0 1.9 2.5 0 0 0 0 0 0 0
1j 4.6 4.4 15.0 4.8 0.7 4.5 4.9 - 2.4 1.7 1.8 2.2 1.8 2.3 164.9 3.0 2.6 2.4 38.0 2.4 37.6 0 0 1 0 0 0 0

2a 7.8 7.8 7.8 7.8 7.6 7.3 7.5 1.0 1.1 0.8 1.1 1.1 1.1 1.1 1.5 1.5 1.2 1.5 1.5 1.6 1.5 0 0 0 0 0 0 0
2b 4.6 6.1 4.4 0.3 3.8 4.8 3.6 1.5 1.7 9.6 4.1 1.6 1.7 - 2.7 2.8 12.4 14.5 2.3 12.2 14.5 0 0 0 0 0 0 0
2c 0.3 0.5 0.5 0.8 0.4 0.5 0.5 5.9 4.5 3.4 2.2 3.0 4.7 4.4 6.8 18.8 4.3 3.6 3.4 3.8 3.5 0 0 0 0 0 0 0
2d 36.5 36.3 36.5 36.6 36.6 37.8 34.9 0.3 0.2 0.2 0.2 0.2 0.2 0.3 1.0 0.9 1.0 1.0 1.1 1.0 0.9 0 0 0 0 0 0 0
2e 29.6 29.5 29.5 29.5 28.2 29.7 28.5 1.3 0.7 0.8 0.5 1.2 1.2 1.1 3.3 2.8 3.1 3.0 3.0 3.3 3.4 1 1 1 1 1 1 1
2f 25.5 25.6 25.6 15.8 25.6 24.4 26.0 1.6 1.8 1.2 - 1.1 1.3 1.6 2.8 2.8 2.3 75.7 2.2 2.9 2.9 1 1 1 0 1 1 1
2g 9.1 9.0 9.1 9.1 9.1 9.2 9.2 0.9 1.0 0.9 0.9 0.7 1.0 1.0 1.5 1.6 1.4 1.6 1.4 1.6 1.5 0 0 0 0 0 0 0
2h 10.3 10.3 10.3 10.3 10.3 9.9 10.1 1.2 1.3 1.0 1.1 0.9 1.1 1.0 1.9 1.9 1.7 1.6 1.6 1.5 2.0 0 0 0 0 0 0 0

3a 45.4 42.7 39.9 42.0 41.5 40.6 39.0 11.9 6.7 11.0 33.3 8.7 34.7 32.5 15.3 9.4 13.4 46.5 11.3 11.6 9.8 4 3 2 5 3 5 2
3b 11.0 2.5 1.1 2.1 1.1 2.6 2.5 383.0 2.2 0.5 0.8 0.5 2.1 0.6 445.5 3.1 0.6 1.4 0.7 1.4 0.7 0 0 0 0 0 0 0
3c 46.6 0.1 0.1 0.1 0.0 48.6 0.0 22.9 0.0 0.0 0.0 100.0 23.0 0.0 24.1 0.0 0.0 0.1 100.0 23.8 0.0 2 0 0 0 0 2 0
3d 8.0 8.0 8.0 8.0 8.0 8.2 7.9 2.5 1.2 1.4 1.2 1.0 2.6 1.2 3.2 1.7 1.8 1.8 1.7 1.8 1.7 0 0 0 0 0 0 0
3e 2.7 2.7 2.7 2.7 2.7 2.7 2.7 0.9 0.3 0.3 0.3 0.3 0.3 0.2 1.2 0.7 0.7 0.7 0.8 0.7 0.7 0 0 0 0 0 0 0
3f 27.6 27.6 27.6 27.6 27.6 28.1 27.1 7.2 6.0 6.9 7.2 5.5 5.7 7.5 9.7 8.2 9.4 10.4 7.0 8.2 9.5 3 3 3 3 3 3 3
3g 11.0 11.0 0.4 11.0 11.0 11.6 10.5 15.4 19.2 0.0 16.0 18.4 16.7 18.3 19.1 22.2 0.1 17.4 21.4 21.9 21.1 1 1 0 2 1 2 1
3h 11.0 11.0 8.2 11.0 11.0 11.5 10.5 3.0 2.6 16.6 4.0 2.1 2.1 3.1 4.3 3.6 21.9 5.1 2.9 4.4 20.9 1 1 0 1 1 1 1
3i 40.7 35.4 36.2 40.7 40.7 39.2 42.3 42.2 58.3 68.0 79.8 77.9 58.1 57.0 51.2 70.7 83.9 94.4 91.8 94.4 94.2 0 0 0 0 0 0 0
3j 15.7 7.7 7.7 7.7 12.6 7.8 7.3 46.2 6.7 9.0 8.3 31.0 6.7 6.7 57.0 8.6 11.1 10.2 39.0 8.3 8.6 0 0 0 0 0 0 0

4a 36.8 36.8 36.8 36.8 36.8 38.2 35.2 7.3 7.8 6.8 7.1 7.3 6.9 6.5 625.1 610.1 642.2 641.1 609.9 652.7 581.7 0 0 0 0 0 0 0
4b 30.4 30.4 30.0 30.0 30.4 31.1 31.9 - 5.9 5.9 8.7 6.2 5.9 6.0 663.8 649.9 664.1 642.8 656.7 634.3 670.2 0 0 0 0 0 0 0
4c 26.4 0.1 2.6 0.2 26.5 2.7 26.3 6.4 0.0 0.5 0.1 5.5 0.0 0.1 540.0 0.7 8.5 4.6 566.3 8.6 0.7 0 0 0 0 0 0 0
4d 19.9 19.9 19.9 0.2 2.5 20.4 19.7 6.4 - - 0.4 1.1 - - 940.7 896.9 909.7 8.3 9.1 876.9 873.8 0 0 1 0 0 0 0
4e 21.9 21.8 21.5 0.2 21.7 22.5 22.8 - 6.3 6.3 0.2 6.7 6.3 6.6 878.4 827.6 893.5 8.2 933.4 8.2 863.7 2 2 2 0 2 2 2
4f 28.0 28.0 27.8 28.0 28.0 28.4 29.2 - - - - - - - 368.2 362.8 364.2 371.5 371.9 362.2 357.4 0 0 0 0 0 0 0
4g 16.0 13.7 15.8 13.7 16.2 16.4 16.6 - 9.9 - 9.9 - - 9.7 320.0 333.0 345.8 338.4 330.2 359.2 353.8 1 2 2 1 1 1 1
4h 19.9 16.9 20.0 14.4 20.0 16.4 16.4 - - - 9.5 9.8 - - 284.4 280.8 293.9 310.4 293.8 294.0 270.1 1 1 1 0 1 1 1
4i 20.8 20.8 20.8 20.8 20.8 21.0 21.5 9.1 8.8 8.5 8.8 - 8.8 8.9 312.3 314.7 306.7 309.5 309.1 318.2 316.6 0 0 0 0 1 0 0
4j 22.8 0.1 22.1 19.5 22.8 19.1 23.3 9.7 0.0 9.7 9.4 9.9 - 0.0 323.9 0.9 317.9 327.2 322.5 317.7 337.3 1 0 1 1 2 1 1
4k 16.9 14.3 9.1 10.5 10.9 9.5 10.8 - - - - - 9.8 - 389.3 365.9 326.5 316.4 364.2 349.6 366.0 1 1 0 0 1 0 0

TABLE X: Trajectory Accuracy Comparison: The table shows the trajectory estimation accuracy between the original ORB-
SLAM2 [49] and our AnyFeature-VSLAM, utilizing different descriptors. Notably, the performance across all descriptors
exhibits remarkable similarity. We conduct this evaluation across 39 sequences drawn from four distinct datasets: ETH
(1) [62], RGB-D TUM (2) [70], KITTI (3) [30], and EuRoC (4) [9]. For metrics, we employ the Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE) [9], expressed in centimeters for ETH, RGB-D TUM, and EuRoC, and meters for KITTI.
Values in bold indicate the best performance. Descriptors: ORB [49] (Or∗), ORB (Or), AKAZE (Ak), BRISK (Br), SURF
(Su), SIFT (Si), KAZE (Ka). Sequence names and dataset characteristics can be found in Tables IX and III.



Keyframes (#) Points ×103 (#) Observations ×103 (#) Observations (#) / Point (#)

Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka Or∗ Or Ak Br Su Si Ka

1a 259 165 173 69 201 62 154 9.9 7.0 9.5 2.0 11.2 1.8 8.5 62.9 48.2 58.5 11.0 68.1 9.8 52.0 6.4 6.9 6.1 5.5 6.1 4.9 5.5
1b 124 153 156 176 189 168 138 5.8 6.9 9.1 7.9 10.7 7.5 6.2 43.5 45.4 53.8 50.5 63.9 49.7 39.8 7.5 6.6 5.9 6.4 6.0 7.2 5.0
1c 231 233 201 128 308 153 288 8.3 9.8 10.2 5.5 13.5 6.6 12.1 67.7 66.2 67.3 34.4 78.1 41.1 81.8 8.1 6.8 6.6 6.2 5.8 7.5 8.4
1d 284 91 136 119 110 260 84 13.4 3.8 6.2 5.4 5.6 12.3 4.3 86.4 24.6 39.1 35.8 33.6 79.2 25.7 6.5 6.5 6.3 6.6 6.0 5.9 4.6
1e 79 124 286 240 52 108 86 3.7 5.3 12.0 9.7 2.7 4.6 4.0 27.5 35.3 72.0 58.7 15.3 30.8 30.0 7.5 6.7 6.0 6.1 5.7 5.8 8.2
1f 67 89 62 100 69 53 71 3.1 4.6 4.6 5.1 4.8 2.5 3.7 20.6 28.0 26.2 30.6 29.1 16.2 22.5 6.5 6.1 5.7 6.0 6.1 5.1 4.9
1g 66 48 63 81 51 74 59 3.9 3.1 5.2 5.9 4.2 5.4 3.8 27.1 18.2 32.0 38.8 27.4 35.4 22.5 7.0 5.8 6.2 6.6 6.6 6.0 7.2
1h 109 123 107 146 119 122 113 5.8 6.3 7.2 8.5 6.8 7.0 6.4 40.9 41.8 43.8 55.9 41.9 43.1 39.9 7.0 6.7 6.1 6.6 6.2 6.4 5.9
1i 59 13 87 67 98 11 14 1.9 0.2 5.0 2.4 4.9 0.2 0.2 12.1 1.1 30.0 15.8 30.3 0.9 1.1 6.2 4.6 6.0 6.7 6.2 4.1 4.9
1j 48 60 291 82 23 63 259 2.5 3.5 17.1 4.2 1.6 3.6 15.2 13.3 19.6 98.4 23.5 8.3 20.6 87.5 5.4 5.7 5.8 5.7 5.2 6.0 5.1

2a 37 34 39 42 51 27 41 2.0 1.7 2.4 2.4 2.7 1.4 2.1 12.9 10.6 14.1 15.2 18.6 8.5 14.8 6.6 6.2 5.9 6.2 6.9 5.0 5.5
2b 94 131 95 23 65 21 101 4.6 5.5 4.3 0.8 3.4 0.7 4.2 33.0 35.3 24.9 3.9 19.5 3.5 27.2 7.2 6.5 5.8 5.0 5.8 4.4 5.0
2c 21 24 24 46 20 20 39 0.9 0.8 1.1 2.2 0.9 0.7 1.9 5.2 4.8 5.5 12.2 4.5 3.9 10.4 5.7 5.7 5.2 5.5 4.9 4.6 4.8
2d 40 38 49 36 41 38 34 1.6 1.4 2.3 1.7 2.7 1.8 1.6 13.1 10.4 17.3 12.3 16.4 13.3 11.5 8.4 7.6 7.5 7.1 6.1 5.7 6.6
2e 185 262 237 258 273 213 264 7.0 10.1 12.2 11.4 14.7 8.2 11.6 54.0 68.8 74.3 76.7 92.1 55.9 78.4 7.7 6.8 6.1 6.7 6.3 5.5 6.9
2f 209 263 289 234 288 233 214 9.8 11.9 16.2 11.4 17.0 11.0 9.7 75.4 78.7 97.4 72.7 106.2 84.2 64.1 7.7 6.6 6.0 6.4 6.3 8.5 5.4
2g 39 37 42 45 41 39 34 2.2 2.0 3.2 2.8 3.5 3.0 1.8 17.3 13.7 19.3 19.6 21.1 18.1 12.5 7.8 6.8 6.0 6.9 6.1 5.6 6.2
2h 56 65 81 87 79 65 87 3.5 3.8 5.6 5.2 5.6 4.6 6.2 22.7 23.6 31.5 32.1 32.2 26.5 35.5 6.5 6.3 5.6 6.2 5.7 4.7 6.3

3a 2874 2554 2013 3276 1970 3934 2512 236.9 162.9 129.7 231.1 151.5 277.5 160.2 1573.7 973.9 726.8 1392.3 788.8 1672.0 957.7 6.6 6.0 5.6 6.0 5.2 7.2 5.9
3b 664 185 72 201 59 218 194 42.1 11.4 4.6 14.7 5.0 13.5 14.2 277.5 59.8 24.1 81.4 22.6 70.4 78.7 6.6 5.2 5.2 5.5 4.6 6.2 5.3
3c 3944 9 9 8 0 4651 4479 356.4 0.8 1.0 0.9 0.0 420.3 404.8 2225.3 3.3 3.3 3.0 0.0 2624.1 2527.4 6.2 4.0 3.5 3.3 NaN 7.4 7.1
3d 537 439 369 678 340 489 344 44.8 27.0 24.3 50.6 26.8 30.1 21.2 317.4 164.9 143.5 332.8 150.7 183.7 129.3 7.1 6.1 5.9 6.6 5.6 6.8 4.8
3e 227 212 172 264 148 254 234 18.8 13.2 9.7 20.6 11.4 19.9 14.6 119.8 72.2 49.8 115.3 51.9 111.0 79.6 6.4 5.5 5.2 5.6 4.6 5.4 6.0
3f 1812 1697 1424 2132 1291 2069 1292 146.8 94.2 83.6 145.7 92.8 114.9 71.7 999.7 577.5 466.6 918.3 490.2 704.2 439.7 6.8 6.1 5.6 6.3 5.3 7.5 4.7
3g 717 717 18 933 577 659 676 59.2 40.0 1.3 64.1 43.1 36.8 37.7 389.2 235.1 6.0 384.5 220.8 216.1 221.5 6.6 5.9 4.6 6.0 5.1 5.4 5.5
3h 737 729 441 868 557 577 427 61.3 42.9 23.6 59.1 40.9 33.9 22.8 408.8 256.2 129.6 364.8 213.6 202.8 125.5 6.7 6.0 5.5 6.2 5.2 4.7 5.3
3i 3345 2598 2245 3683 2143 2231 3068 285.0 160.2 129.5 266.7 158.4 128.7 189.2 1864.2 905.8 705.8 1618.0 815.7 701.3 1069.5 6.5 5.7 5.5 6.1 5.1 5.4 6.7
3j 1402 612 493 709 745 611 614 122.1 31.8 23.4 43.8 46.0 29.0 37.9 772.3 185.0 124.0 260.2 224.7 153.8 225.2 6.3 5.8 5.3 5.9 4.9 6.6 5.1

4a 336 287 243 320 236 212 258 12.8 11.4 14.7 14.9 13.9 12.9 9.9 114.7 81.7 90.0 102.7 87.3 78.5 88.1 8.9 7.1 6.1 6.9 6.3 5.3 6.9
4b 331 306 255 386 252 394 271 13.2 11.5 13.5 15.7 13.7 15.7 14.7 105.5 87.1 80.9 125.7 88.7 125.6 95.3 8.0 7.6 6.0 8.0 6.5 9.5 7.0
4c 275 6 26 14 227 17 5 10.9 0.1 0.8 0.4 10.3 0.4 0.1 93.9 0.4 4.0 1.8 64.5 2.1 0.3 8.6 4.1 5.2 4.8 6.3 5.6 3.2
4d 329 359 299 21 24 24 370 14.0 14.3 14.9 0.7 1.1 0.8 18.4 115.5 102.9 86.9 3.5 5.9 4.0 107.4 8.3 7.2 5.8 5.2 5.2 5.9 7.2
4e 363 306 324 13 330 298 367 14.8 12.7 17.0 0.3 17.0 12.4 15.3 125.4 83.9 100.6 1.3 102.7 81.7 100.7 8.5 6.6 5.9 3.8 6.0 6.4 7.9
4f 239 263 232 273 206 158 199 10.5 10.6 13.7 13.0 13.0 10.0 11.8 87.5 80.1 87.7 95.8 83.7 64.2 75.3 8.3 7.6 6.4 7.4 6.4 4.9 5.5
4g 268 257 260 237 243 207 215 10.8 9.0 12.8 9.7 11.9 10.2 7.5 90.2 64.5 81.5 65.9 70.2 64.9 53.9 8.4 7.2 6.3 6.8 5.9 5.0 6.0
4h 348 362 323 332 275 312 406 13.4 12.1 13.1 12.1 12.5 12.6 14.8 104.7 84.5 84.8 78.9 82.4 82.0 96.4 7.8 7.0 6.5 6.5 6.6 6.3 8.0
4i 206 241 227 243 230 297 248 10.8 11.4 15.4 13.3 14.6 16.3 16.8 78.4 77.3 96.1 87.1 88.7 106.6 104.8 7.2 6.8 6.2 6.5 6.1 8.0 6.8
4j 347 8 403 361 332 342 395 13.3 0.3 17.0 14.3 16.1 13.1 16.7 111.1 1.3 103.9 94.0 98.6 109.6 101.9 8.4 4.6 6.1 6.6 6.1 8.2 6.0
4k 426 315 156 220 254 263 154 16.2 11.6 6.2 8.2 12.1 12.5 6.1 118.6 77.3 37.7 50.9 72.2 74.6 37.3 7.3 6.7 6.1 6.2 6.0 6.2 6.0

TABLE XI: Characterization analysis of the SLAM Graph: The table shows a comparison of key SLAM graph metrics
between the original ORB-SLAM2 [49] and our AnyFeature-VSLAM implementation, utilizing various descriptors. Notably,
the performance across all descriptors exhibits remarkable similarity. This evaluation encompasses 39 sequences from four
distinct datasets: ETH (1) [62], RGB-D TUM (2) [70], KITTI (3) [30], and EuRoC (4) [9]. The metrics include the number of
keyframes and 3D points in the final graph, the count of active observations (2D keypoints), and the observations per 3D point.
Bold values highlight the highest, while underlined values denote the lowest. Descriptors are denoted as ORB [49] (Or∗),
ORB (Or), AKAZE (Ak), BRISK (Br), SURF (Su), SIFT (Si), and KAZE (Ka). Sequence names and dataset characteristics
can be found in Table IX and Table III.
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