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Abstract

Unsupervised domain adaptation (UDA) enables cross-domain learning without
target domain labels by transferring knowledge from a labeled source domain
whose distribution differs from that of the target. However, UDA is not always
successful and several accounts of ‘negative transfer’ have been reported in the
literature. In this work, we prove a simple lower bound on the target domain error
that complements the existing upper bound. Our bound shows the insufficiency
of minimizing source domain error and marginal distribution mismatch for a
guaranteed reduction in the target domain error, due to the possible increase of
induced labeling function mismatch. This insufficiency is further illustrated through
simple distributions for which the same UDA approach succeeds, fails, and may
succeed or fail with an equal chance. Motivated from this, we propose novel
data poisoning attacks to fool UDA methods into learning representations that
produce large target domain errors. We evaluate the effect of these attacks on
popular UDA methods using benchmark datasets where they have been previously
shown to be successful. Our results show that poisoning can significantly decrease
the target domain accuracy, dropping it to almost 0% in some cases, with the
addition of only 10% poisoned data in the source domain. The failure of these UDA
methods demonstrates their limitations at guaranteeing cross-domain generalization
consistent with our lower bound. Thus, evaluating UDA methods in adversarial
settings such as data poisoning provides a better sense of their robustness to data
distributions unfavorable for UDA.

1 Introduction

The problem of domain adaptation (DA) arises when the training and the test data distributions
are different, violating the common assumption of supervised learning. In this paper, we focus on
unsupervised DA (UDA), which is a special case of DA when no labeled information from the target
domain is available. This setting is useful for applications where obtaining large-scale well-curated
datasets is both time-consuming and costly. The seminal works [1, 2] proved an upper bound on a
classifier’s target domain error in the UDA setting leading to several algorithms for learning in this
setting. Many of these algorithms rely on learning a domain invariant representation by minimizing
the error on the source domain and a divergence measure between the marginal feature distributions of
the source and target domains. Popular divergence measures include total variation distance, Jensen-
Shannon divergence [9, 32, 37], Wasserstein distance [29, 15, 7], and maximum mean discrepancy
[19, 17, 20]. The success of these algorithms is argued in terms of minimization of the upper bound
proposed in [1] along with an improvement in the target domain accuracy on benchmark UDA tasks.

Despite this success on benchmark datasets, some works [9, 16, 36, 33] have presented evidence of
the failure of these methods in different scenarios. Recent works have explained this apparent failure
of UDA methods by proposing new upper bounds [36, 6, 14, 34] on the target domain error while
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others have demonstrated the cause of failure using experiments showing that learning a domain
invariant representation that minimizes the source domain error can cause an increase in the error
of the ideal joint hypothesis [16]. To provably explain this apparent failure of learning in the UDA
setting we propose a lower bound on the target domain error. Our lower bound provides a necessary
condition for successful learning in the UDA setting, complementing the existing upper bound of
[1] and is dependent on the difference between the labeling functions of source and target domain
data induced by the representation map. For cases where the induced labeling functions match on
the source and the target domain data (i.e., favorable case), the success of UDA is explained using
the upper bounds proposed by previous works [1, 36, 14]. For a representation that aligns the source
and the target domain data and minimizes the error on the source but induces labeling functions
that don’t agree on the source and the target domain data (i.e., unfavorable case), our lower bound
explains the failure of UDA. Our analysis brings to light yet another case (i.e., ambiguous case) of
data distributions where success and failure of UDA are equally likely. This happens due to the lack
of label information from the target domain. This case opens doors for adversarial attacks against
UDA methods since a small amount of misinformation about the target domain labels can lead the
UDA methods into producing a representation similar to the unfavorable case, incurring a significant
increase in the target domain error.

Motivated from this analysis of UDA methods under different data distributions, we evaluate the
extent to which the performance of current UDA methods can suffer in presence of a small amount
of adversarially crafted data. For this purpose, we propose novel data poisoning attacks, using
mislabeled and clean-label points. We evaluate the effect of our poisoning attacks on popular UDA
methods using benchmark datasets, where they were previously shown to be very effective. We
find that our poisoning attacks cause UDA methods to either align incorrect classes from the two
domains or prevent correct classes from being very close in the representation space. Both of these
lead to the failure of UDA methods at reducing target domain error. With just 10% poison data in the
source domain, target domain accuracy for current UDA methods is significantly reduced, dropping
to almost 0% in some cases. This dramatic failure of UDA methods demonstrates their limits and
suggests that the future UDA methods must be evaluated in adversarial settings along with evaluation
on benchmark datasets to truly gauge their effectiveness at learning under the UDA setting.

Our main contributions are summarized as follows:

• We prove a lower bound on the target domain error that provides a necessary condition for suc-
cessful learning in the UDA setting. Our bound shows the failure of learning a domain invariant
representation while minimizing the source domain error at guaranteeing target generalization.

• We present example data distributions where UDA succeeds, fails, and where success and failure
are equally likely. This sensitivity of UDA methods to the data distribution brings to light a new
vulnerability of UDA methods to adversarial attacks such as data poisoning.

• To concretely understand the extent of this vulnerability of UDA methods, we propose novel
data poisoning attacks using clean-label and mislabeled data. Our results show a dramatic
failure of current UDA methods at target generalization in presence of poisoned data. Thus, our
poisoning attacks can provide better insights into the robustness of UDA methods than those
obtained from performance evaluation on benchmark datasets.

2 Background and related work

Analysis of unsupervised domain adaptation: Several previous works have studied the problem
of UDA and have provided conditions under which UDA is possible [2, 1, 21, 22, 8, 3, 34]. [1, 2]
proposed an upper bound on the target domain error which has inspired many UDA algorithms.
Recent works [36, 6, 14] have improved the upper bounds on target domain error and have proposed
a lower bound dependent on the labeling functions in the input space. Using this lower bound, the
failure of learning in the UDA setting was explained in the case when marginal label distributions
are different between the two domains. Our lower bound, on the other hand, is dependent on the
labeling functions for the source and target domains, induced by the representation. This suggests
that if a representation induces labeling functions that disagree on source and target domains then
UDA provably fails even if the representation is domain invariant and minimizes error on the source
domain. Thus our lower bound directly explains the observations of failure of UDA in many previous
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works [9, 16, 33, 36, 34]. A detailed comparison of our work with other works analyzing the failure
of learning in the UDA setting is present in Appendix G.

Algorithms for UDA: Many algorithms [9, 32, 18, 37, 30, 10] for UDA learn a domain invariant
representation while minimizing error on the source domain. A popular adversarial approach to
domain adaptation is DANN [9] which uses a discriminator to distinguish points from source and
target domains based on their representations. Another popular method CDAN[18], uses classifier
output along with representations to identify the domains of the points. IW-DAN and IW-CDAN [6]
were recently proposed as extensions of the original DANN and CDAN with an importance weighting
scheme to minimize the mismatch between the labeling distributions of the two domains. A different
approach MCD [27], makes use of two task-specific classifiers as discriminators to align the two
domains. This method adversarially trains the representation to minimize the disagreement between
the two classifiers on the target domain data (classifier discrepancy) while training the classifiers to
maximize this discrepancy. Another recent approach, SSL [35] uses self-supervised learning tasks
(e.g. rotation angle prediction) to better align the two domains. In this work, we study the effect of
poisoning on these methods as they have been shown to be effective at various UDA tasks.

Data poisoning: Data poisoning [4, 25, 12, 5, 13, 31, 24] is a training time attack where the attacker
has access to the data which will be used by the victim for training. Most works [38, 26, 28, 23, 11]
have considered data poisoning in a fully supervised setting where train and test sets are drawn
from the same underlying data distribution (single domain setting). These works either target the
classification of a single test point by adding a large number of poisoned data or require modifying all
points in a class to affect the model’s performance on that class after retraining. Our work studies the
effect of poisoning on the entire target domain in the UDA setting using popular UDA algorithms for
training. The success of our poisoning attacks at significantly reducing the target domain accuracy
with a small amount of poisoned data shows the ease of poisoning in the UDA setting. In contrast,
poisoning leads to a small decrease in the overall test accuracy in the single domain setting, especially
when using state-of-the-art classifiers such as deep neural networks.

3 When does learning fail in the unsupervised domain adaption setting?

Notations and settings: Let X be the data domain and D be the distribution over X with the
corresponding pdf p(x). We assume there is a deterministic labeling function f : X → [0, 1] for
the given binary classification task. The f(x) can be interpreted as Pr[y = 1|x]. Let g : X → Z
denote the representation map that maps an input instance x to its features where Z is called
feature or representation space. Let h : Z → [0, 1] be a hypothesis for binary classification on the
representation space. Note that the representation map g induces a distribution over Z denoted by
PrD̃[B] := PrD[g−1(B)] and the corresponding density function p̃(z) on Z [2]. The g also induces
the labeling function

f̃(z) := ED[f(x)|g(x) = z], (1)

for any B such that g−1(B) is D-measurable. The misclassification error e(h) w.r.t. the induced
labeling function is e(h) = Ez∼D̃[|f̃(z) − h(z)|] where D̃ is the induced distribution over Z .
Similarly, we define e(f̃ , f̃ ′) = Ez∼D̃[|f̃(z) − f̃ ′(z)|] and e(h, h′) = Ez∼D̃[|h(z) − h′(z)|]. The
distributions p̃ and the labeling functions f̃ for the source and the target domains will be written as
p̃S , p̃T , f̃S and f̃T , respectively. The total variation distance is D1(p̃, p̃′) =

∫
Z |p̃(z)− p̃

′(z)|dz.

3.1 Lower bound on the target domain error

Most adversarial DA methods learn a domain invariant representation g : X → Z by minimizing
error on the source domain and penalizing the mismatch between the marginal source and target
distributions since the conditional distribution p̃T (z|y) for target domain is unavailable in the UDA
setting. Some works [33, 36, 16] have shown this to be insufficient at guaranteeing target gener-
alization. Recent works have proposed a new upper bound [36] or argued failure in terms of the
upper bound in [1, 2] (eT (h) ≤ min{eT (f̃S , f̃T ), eS(f̃S , f̃T )}+ eS(h) +D1(p̃S , p̃T )) being large.
However, a large upper bound does not guarantee failure. Thus, we prove a simple lower bound on
the target domain error which shows the necessary condition for the success of learning in the UDA
setting and also explains the failure of current UDA methods at guaranteeing target generalization.
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Figure 1: Illustrative cases for UDA. In UDA, one can observe the source data (blue blobs), the
source labels (class + and -), and the target data (green blobs) but not the target labels. The optimal
decision boundary (red dotted line) and linear representation g(x) = uTx from the input space in R2

to the feature space in R (dashed line) minimizing the source and the alignment losses in Eq. 3 can
be computed accurately. Depending on the data distribution, domain adaptation can be successful
(Case 1), fail (Case 2), or be undetermined (Case 3). Case 3 has two global minima with drastically
different target domain performance, even though representations in both cases minimize the error on
the source distribution as well as align the marginal distributions of the two domains.

Theorem 1. Let H be the hypothesis class and G be the class representation maps. Then, for all
h ∈ H and g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} − eS(h)−D1(p̃S , p̃T ). (2)

The proof is in Appendix A. Even though our bound depends on the total variation distance which is a
strict measure of distance and is difficult to estimate, the bound still explains the limitations of UDA.
Extending the bound to different divergence metrics is left as future work. The following corollary is
immediate from Theorem 1.
Corollary 1.1. For all h ∈ H, g ∈ G,

eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )} − eS(h)−
√

0.5DKL(p̃S ||p̃T ).

This is due to the Pinsker’s inequality: D1(p, p
′) ≤

√
0.5DKL(p||p′). The interpretation of Eq. 2 is as

follows. Since fT is not observable, the goal of UDA is to minimize the observable source classifi-
cation error eS(h) and the domain mismatch D1(p̃S , p̃T ) (or other metrics such as dH∆H(p̃s, p̃T )):

min
g,h

es(h) +D1(p̃S , p̃T ). (3)

This leads to maximization of the second and the third term in the RHS of Eq. 2. With overparameter-
ized models and large datasets, minimizing the empirical estimates of the quantities in Eq. 3 can drive
eS(h) ' 0 and D1(p̃S , p̃T ) ' 0. Consequently, eT (h) ≥ max{eS(f̃S , f̃T ), eT (f̃S , f̃T )}. If f̃S and
f̃T disagree on the source and target domains in the representation space, target domain error eT (h)
will be provably large.
Corollary 1.2. For all h ∈ H and g ∈ G,

|eT (h)−eS(f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ), and |eT (h)−eT (f̃S , f̃T )| ≤ eS(h) +D1(p̃S , p̃T ).

This is obtained by combining the upper and the lower bounds (Appendix A). Thus a UDA method
can only guarantee the target error eT (h) to be close to the labeling function mismatch e(f̃S , f̃T ).
Whether e(f̃S , f̃T ) becomes larger or smaller after solving Eq. 3 is data/model dependent. For
concreteness, we analyze the sensitivity of the performance of UDA methods to different data
distributions using the following illustrative examples.

3.2 Illustrative examples showing the sensitivity of UDA methods to data distributions

Assume mixture-of-Gaussian distributions pS(x) and pT (x) for the source and the target domains
in the input space, shown as blue and green blobs in Fig. 1. We consider a linear representation
map g(x) = uTx from the input space X ⊂ R2 to the feature space Z ⊂ R (dashed line) that
minimizes the source classification loss plus the marginal mismatch loss in Eq. 3. The optimal
solution g to the minimization problem can be found accurately using a mix of analytical and
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numerical optimizations (detailed in Appendix B). We demonstrate the performance of UDA on three
different data distributions. In Case 1 (favorable case), the true labeling function for source and target
is fS((x1, x2)) = fT ((x1, x2)) = I[x2 ≥ 0], that is, f is 1 in the upper halfspace and 0 in the bottom
halfspace. One can verify (Appendix B) that the optimal u is the vertical direction (u = [0, 1]T )
and the best hypothesis is h(z) = I[z ≥ 0], in which case eS(h) = 0 and D1(p̃S , p̃T ) = 0. That is,
perfect source classification and a perfect alignment of the marginals are achieved. Furthermore, the
true labeling function in Z is f̃S(z) = f̃T (z) = I[z ≥ 0] (from Eq. 1) and therefore e(f̃S , f̃T ) = 0
as well as the target loss eT (h) = 0. In other words, the representation that minimizes Eq. 3
simultaneously minimizes e(f̃S , f̃T ), achieving the goal of reducing eT (h). However in Case 2
(unfavorable case), the true labeling function for target is upside-down fT ((x1, x2)) = I[x2 ≤ 0].
Since UDA does not use the target label nor the true labeling function, the optimal g is exactly the
same as Case 1 (u = [0, 1]T ), in which case we still have eS(h) = 0 and D1(p̃S , p̃T ) = 0, but the
labeling function mismatch becomes e(f̃S , f̃T ) = 1 as well as eT (h) = 1 which is the worst case. In
other words, the representation that minimizes Eq. 3 simultaneously maximizes e(f̃S , f̃T ), totally
failing at the goal of reducing eT (h). Case 3 exemplifies an ambiguous case. The optimal projection
minimizing eS is still the vertical direction u = [0, 1]T but the optimal projection minimizing the
alignment loss D1(p̃S , p̃T ) can be either of the ±45◦ directions (u = [±1/

√
2, 1/
√

2]T ) with no
preference of one over the other. Therefore the optimal solution u for Eq. 3 that trades off the source
error and the mismatch loss has two equal-valued global solutions [±u1, u2]T for some u1, u2. One
solution (Fig. 1, Case 3, left) yields a small e(f̃S , f̃T ) and the other (Fig. 1, Case 3, right) yields a
large e(f̃S , f̃T ). As can be intuitively seen, UDA is successful in the former but fails in the latter,
and which equal-valued solution will be chosen is undetermined. A similar example of the failure
of UDA methods due to the presence of two global optima was presented in [14]. Unlike their
example, we use mixture-of-Gaussian distributions and analytically compute the representation that
will be obtained from the minimization of Eq. 3. Using the obtained representations, we evaluate the
quantities appearing in our lower bound and show that it is predictive of the performance of UDA
methods on different data distributions. Details of the analysis and the results are in Appendix B.

Motivated from this extreme sensitivity of the performance of UDA methods on simple data distri-
butions, we set out to explore the effects of small changes in real-world data distributions (via data
poisoning) on state-of-the-art UDA methods. The results of our poisoning attacks in the next section
suggest that slight changes in the data distributions could have a drastic impact on the target domain
generalization performance of state-of-the-art UDA methods. Our findings highlight the importance
of using adversarial settings (such as evaluating the performance of UDA methods in presence of
poisoned data) to gauge the effectiveness of future UDA methods at learning in the UDA setting.

4 Breaking unsupervised domain adaptation methods with data poisoning

In this section, we present our novel data poisoning attacks to evaluate the ease with which current
UDA methods can be fooled into producing a representation that leads to a large error on the target
domain1. We propose three methods to generate poisoned data which will be added to the clean
source domain data. The first poisoning attack uses mislabeled data as poisons. Under this attack,
we evaluate two approaches (a) adding mislabeled source domain data (wrong-label correct-domain
poisoning) and (b) adding mislabeled target domain data (wrong-label incorrect-domain poisoning)
as poisons. The second attack adds images from the source domain watermarked with images from
the target domain with incorrect labels (watermarking attack) as poisons. The last poisoning attack
uses poisoned data with clean labels. We evaluate two approaches for this attack (a) using source
domain data (clean-label correct-domain poisoning) and (b) using target domain data (clean-label
wrong-domain poisoning) to initialize the poison data. The intuitive pictures of how these poisoning
attacks hurt UDA methods are shown in Figs. 4, 5, and 6 (details in Appendix C). We evaluate the
effect of poisoning on popular UDA methods namely, DANN[9], CDAN[18], MCD[27], SSL[35]
(with rotation-angle prediction task), IW-DAN[6], and IW-CDAN[6]. We compare the difference
in the target accuracy attainable by these methods when using clean versus poisoned data. Two
benchmark datasets are used in our experiments, namely Digits and Office-31. We evaluate four tasks
using SVHN, MNIST, MNIST_M, and USPS datasets under Digits and six tasks under the Office-31
using Amazon (A), DSLR (D), and Webcam (W) datasets. Additional experiments evaluating the

1Our code can be found at https://github.com/akshaymehra24/LimitsOfUDA.
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(a) DANN trained on
clean data

(b) DANN trained on poi-
soned data

(c) CDAN trained on
clean data

(d) CDAN trained on poi-
soned data

Figure 2: (Best viewed in color.) t-SNE embedding of the data in the representation space (for
MNIST→ USPS task) learned using DANN and CDAN on clean and poisoned source domain data.
Without poisoning, correct classes (data from source class 2 is zoomed in) from two domains are
aligned ((a) and (c)). The presence of poisoned data fools the methods into aligning incorrect classes
from the two domains ((b) and (d)). The mismatch between the source and target classes is dependent
on the labels of the poison data (due to which the target class 1 is aligned to the source class 2).

performance of our poisoning attacks against other popular UDA methods are present in Appendix F.
For all experiments, we train UDA algorithms using neural networks whose architectures are similar
to those used by previous works (see Appendix H for details).

4.1 Poisoning using mislabeled source and target domain data

In this experiment, mislabeled data is added to the clean source domain as poison. The labels provided
by the attacker to the poison data are chosen to fool UDA methods into learning a representation that
incurs large errors on the target domain. We use two simple and effective labeling functions for this.
For the Digits dataset, we use a labeling function that systematically labels the poison data to the
class next to their true class (e.g. poison points with true class one are labeled as two, points with
true class two are labeled as three, and so on). For the Office-31 dataset, we use a labeling function
that assigns the poison data the label of the closest (in the representation space learned using the
clean source domain data) incorrect source domain class. Here the attacker is limited to adding only
10% poisoned data with respect to the size of the available target domain data (for experiments with
different poison percentages see Appendix D). In wrong-label correct-domain poisoning, mislabeled
source domain data are used as poisons. The results in rows marked with Poisonsource in Tables 1
and 2, show that UDA methods suffer only a minor decrease in target domain accuracy with this
approach. This happens because the presence of a large amount of correctly labeled source domain
data prevents the small amount of poisoned data from affecting the performance of UDA methods.
A similar effect is observed when a small amount of mislabeled data is used for poisoning in the
traditional single domain setting [23, 26]. However, if the relative size of poisoned data is larger or
comparable to the size of clean source domain data, poisoning can be effective. This is observed in
Table 2 when Amazon is the target data. The Amazon dataset is roughly 5 times bigger than both
DSLR and Webcam datasets. Due to this, the permissible amount of poisoned data (10% of the target
domain) makes the size of clean and poisoned data comparable, leading to successful poisoning.
Thus, this attack causes UDA methods to fail in presence of a large amount of poisoned data.

In the wrong-label wrong-domain approach, mislabeled target domain data is used for poison-
ing. The effect of poisoning on discriminator-based methods [9, 18] is shown in Fig. 4. The
domain discriminator used in these methods is maximally confused when marginal distributions
of the source and target domains are aligned. However, alignment of the marginal distributions
does not ensure alignment of the conditional distributions [36, 18]. The objective of achieving
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(a) MCD trained on clean
data

(b) MCD trained on poi-
soned data

(c) SSL trained on clean
data

(d) SSL trained on poi-
soned data

Figure 3: (Best viewed in color.) t-SNE embedding of the data in the representation space (for MNIST
→ USPS task) learned using MCD and SSL on clean and poisoned source domain data. Without
poisoning, correct classes (data from source class 2 is zoomed in) from two domains are aligned ((a)
and (c)). The presence of poisoned data prevents the methods from aligning correct classes from the
two domains ((b) and (d)).

Table 1: Decrease in the target domain accuracy for UDA methods trained on poisoned source domain
data (with poisons sampled from source/target domains) compared to accuracy attained with clean
data on the Digits tasks (mean±s.d. of 5 trials).

Method Data SVHN→ MNIST MNIST→ MNIST_M MNIST→ USPS USPS→ MNIST

Source only Clean 72.42±1.44 39.05±2.30 87.13±1.75 78.6±1.45

DANN
Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonsource 70.26±2.84 69.98±3.49 93.44±0.84 92.08±0.68
Poisontarget 1.46±1.12 0.48±0.04 0.97±0.53 5.83±0.82

CDAN
Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonsource 73.67±4.19 73.36±1.31 92.06±0.59 92.85±0.31
Poisontarget 12.27±5.02 0.59±0.12 1.92±0.42 2.96±0.71

MCD
Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonsource 85.86±5.66 93.33±0.71 87.99±1.05 83.19±2.98
Poisontarget 0.97±0.94 0.37±0.06 0.66±0.16 2.07±0.69

SSL
Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonsource 61.97±1.62 91.35±1.13 85.74±2.92 82.56±0.84
Poisontarget 0.31±0.03 0.36±0.02 7.76±1.52 9.88±1.07

low source domain error pushes the source domain classifier to correctly classify the poison data.
Thus placing the poison and source data with the same labels close in the representation space.

Figure 4: Wrong-label
incorrect-domain poisoning
causes discriminator-based
UDA approaches to align
wrong classes (+ to -) from
the two domains, leading to
a significant decline in the
target domain accuracy.

Since the poison data is mislabeled target domain data, poisoning
makes UDA methods align wrong source and target domain classes.
This leads to a significant decline in the target domain accuracy.

This is also evident from the t-SNE embedding for DANN and CDAN
methods in Fig. 2. In absence of poisoning, correct source and target
classes are aligned (Fig. 2 (a) and (c)), whereas in presence of poi-
soning wrong classes from the two domains are closer (Fig. 2 (b) and
(d)). For MCD [27], which uses use classifier discrepancy to detect
and align source and target domains, our poisoned data prevents the
method from detecting target examples. This happens because the
term that minimizes the error on the poisoned source domain reduces
the discrepancy of the classifiers on poison data, which are from the
target domain. Thus, both the generator (common representation) and
discriminator (in the form of two classifiers) become optimal and there
is no signal for the generator to align the two domains. The t-SNE
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Table 2: Decrease in the target domain accuracy for UDA methods trained on poisoned source domain
data (with poisons sampled from source/target domains) compared to accuracy attained with clean
data on the Office tasks (mean±s.d. of 3 trials).

Method Dataset A→ D A→ W D→ A D→ W W→ A W→ D

Source Only Clean 79.61 73.18 59.33 96.31 58.75 99.68

DANN
Clean 84.06 85.41 64.67 96.08 66.77 99.44

Poisonsource 79.11±0.35 83.98±1.19 44.31±2.94 95.22±0.22 43.35±1.65 96.58±0.87
Poisontarget 59.83±0.20 63.18±1.96 17.58±0.39 76.43±0.62 19.82±0.33 84.20±0.71

CDAN
Clean 89.56 93.01 71.25 99.24 70.32 100

Poisonsource 90.16±0.61 90.94±0.13 53.68±0.37 98.45±0.07 57.27±0.57 99.66±0.23
Poisontarget 71.88±0.20 71.94±0.76 11.19±1.47 86.37±0.36 18.54±0.45 89.08±1.23

IW-DAN
Clean 84.3 86.42 68.38 97.13 67.16 100

Poisonsource 81.25±0.91 83.27±0.45 50.76±1.58 96.68±0.29 48.31±2.02 99.73±0.12
Poisontarget 61.64±0.53 63.43±1.14 15.69±1.76 80.29±0.07 26.54±0.48 88.62±0.23

IW-CDAN
Clean 88.91 93.23 71.9 99.3 70.43 100

Poisonsource 89.83±0.31 90.77±1.27 57.51±0.06 98.41±0.07 61.16±1.21 99.66±0.12
Poisontarget 72.62±0.42 70.15±2.21 14.36±0.66 88.26±0.15 22.36±0.96 87.75±0.53

embedding in Fig. 3 shows this effect. In presence of poisoned data Fig. 3 (b), we see twenty distinct
clusters rather than just ten (we have ten classes in the Digits) as seen in the absence of poisoning in
Fig. 3 (a). In SSL [35], the generator must work well on the main task, i.e., should correctly classify all
data in the poisoned source domain data. The auxiliary task ensures that representations of the source
and target domains become similar as seen on clean data (Fig. 3 (c)). But in presence of poisoned data,
similar representations of correct source and target domain classes leads to a drop in the accuracy
of the main task on the poisoned data. This creates a conflict between the main and auxiliary tasks
due to which correct source and target domain classes cannot be aligned (Fig. 3 (d)). The objective
of making the main task accurate on poisoned data leads to target domain data being assigned the
labels of the poisoned points. Thereby leading to a significant drop in the target-domain accuracy.
The results of wrong-label wrong-domain poisoning present in rows marked with Poisontarget in
Tables 1 and 2 show a significant reduction in the target domain accuracy compared to the accuracy
obtained on clean data. On Digits, poisoning makes the target domain accuracy close to 0% on most
tasks. On Office-31, poisoning causes at least a 20% reduction in the target domain accuracy in most
cases. The reason tasks in Office-31 are less hurt by poisoning is because of the use of a pre-trained
representation. Similar to previous works for Office-31, we use all labeled source and unlabeled target
domain data for training and fine-tune from a representation pre-trained on the ImageNet dataset. The
slowly changing representation pre-trained on a massive dataset weakens the effect of poisoning but
cannot eliminate it. For the two tasks D→ W and W→ D, the fine-tuned representation, trained just
on the clean source dataset (Source Only in Table 2) achieves high accuracy indicating the domains
are already well aligned in terms of conditional distributions as well. As a result, UDA methods can
easily align correct classes and suffer a drop close to 10% which is the amount of poisoned data
added. However, this is not an interesting case for the evaluation of UDA methods as domains can be
aligned just by training on the source domain data without the need for target domain data.

4.2 Poisoning with mislabeled watermarked data

Figure 5: Successful poi-
soning with mislabeled wa-
termarked data prevents
discriminator-based UDA
approaches from aligning
correct classes from the
source and target domains.

In this experiment, we evaluate the effect of using poisoned data that
looks like the source domain data. The poisoned data is generated by
superimposing an image from the source domain with an image from
the target domain. This method of generating poison data is known
as watermarking [28]. To generate watermarked poison data we select
an image from the target domain (t) and a base image from the source
domain (s) such that it has the same class as the target domain image
and lies closest to the target image (in the input space). The poisoned
image (p) is obtained by a convex combination of the base and target
images i.e., p = αt + (1 − α)s where α ∈ [0, 1]. α is selected such
that the target image is not visible in the poison image ensuring the
poisoned image looks like the image from the source domain. We
use the same labeling function as discussed in the previous section
to label the poisoned image and add 10% poison data to the source.
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Table 3: Decrease in target accuracy when training different domain adaptation methods on poisoned
watermarked data in comparison to the target accuracy obtained with clean data on the Digits task
(mean±s.d. of 5 trials).

Method Dataset SVHN→ MNIST MNIST→ MNIST_M MNIST→ USPS USPS→ MNIST

DANN

Clean 78.05±1.15 76.22±2.38 92.17±0.73 92.73±0.71

Poisonedα
68.76±3.910.05 27.36±15.770.05 91.84±0.550.10 88.93±4.360.10

57.96±5.840.10 7.19±2.590.10 85.51±3.010.20 78.29±8.520.20

33.33±4.380.15 4.73±0.380.15 39.29±1.340.30 41.52±7.430.30

CDAN

Clean 79.19±0.70 73.88±1.10 93.92±0.97 95.94±0.71

Poisonedα
65.77±4.820.05 55.47±3.870.05 92.05±0.960.10 86.53±1.550.10

57.57±3.110.10 7.37±1.260.10 86.54±2.430.20 77.39±4.840.20

44.83±4.090.15 6.68±1.640.15 88.67±0.440.30 79.54±7.020.30

MCD

Clean 96.18±1.53 93.95±0.33 89.96±2.04 88.34±2.50

Poisonedα
74.96±3.200.05 92.18±0.780.05 6.75±4.810.10 30.35±2.300.10

35.85±3.230.10 85.38±3.570.10 0.77±0.220.20 11.34±0.770.20

17.01±1.520.15 70.34±11.490.15 0.71±0.220.30 3.28±0.940.30

SSL

Clean 66.85±2.30 92.76±0.91 88.69±1.28 82.23±1.59

Poisonedα
44.64±2.010.05 53.33±13.480.05 32.38±10.770.10 34.72±1.710.10

10.86±1.210.10 26.64±10.10.10 6.12±2.130.20 21.86±1.010.20

3.4±1.110.15 12.14±4.660.15 2.42±0.410.30 11.90±0.810.30

The illustrative picture of the effect of poisoning in this scenario is presented in Fig. 5. Successful
poisoning, in this case, works just like in the previous experiment i.e., by making the representations
of the data from wrong classes in source and target domains similar for DANN/CDAN, by reducing
the discrepancy between the classifiers on target data for MCD and inducing a conflict between the
supervised and auxiliary task for SSL. The t-SNE embedding showing the effect of poisoning (Fig. 9)
and watermarked poison data (Fig. 10) are shown in the Appendix. We evaluate the effectiveness of
this method on the Digits dataset for different values of α. The results in Table 3 show a significant
decrease in the target domain accuracy even with a small watermarking percentage for all methods
except CDAN. This is because the success of CDAN is dependent on the correctness of the pseudo-
labels on the target domain data (output of the classifier), which are used in the discriminator. Correct
pseudo-labels provide CDAN a positive reinforcement to align correct classes from the two domains,
leading to a failure of poisoning. However, as we increase the amount of watermarking, the quality
of pseudo labels deteriorates. Thus, providing a negative reinforcement to CDAN that causes the
alignment of wrong classes from the two domains.

4.3 Poisoning using clean-label source and target domain data

Figure 6: Successful poi-
soning using clean-label
poisoned data aligns the tar-
get point (purple) close to
the wrong class (-).

In this experiment, correctly labeled data is used for poisoning. To
generate clean-label poison data that can affect the performance of
UDA methods we must affect the features of the poison data. This
requires solving a bilevel optimization problem [11, 23, 24] which we
present in the Appendix E. Due to the high computational complexity
involved in solving the bilevel problem, we propose to use a simple
alternating optimization to demonstrate the feasibility of a clean label
poisoning attack against UDA. We use the setting of previous works
[11, 28] and consider misclassification of a single target domain test
point (xtarget

test , ytarget
test ) rather than affecting the accuracy of the entire

target domain as done in the previous two experiments. Let u =
{u1, ..., un} denote the poisoned data. To ensure a clean label, each poison point ui must have a
bounded perturbation from a base point xbase

i i.e, ‖ui − xbase
i ‖ = ‖δi‖ ≤ ε and has label of the

base i.e., ybase
i . Thus, D̂poison = {(ui, ybase

i )}Npoison

i=1 , D̂source = {(xsource
i , ysource

i )}Nsource
i=1 and

D̂target = {(xtarget
i , ytarget

i )}Ntarget

i=1 . The clean-label poison data u is such that when the victim uses
D̂source

⋃
D̂poison and D̂target for UDA, the target domain test point (xtarget

test , ytarget
test ) is misclassified.
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The optimization problem for the clean-label attack is as follows.

min
u

Npoison∑
i=1

‖g(xtarget
test ;θ)− g(ui; θ)‖22 s.t. ‖xbase

i − ui‖ ≤ ε, for i = 1, ...,Npoison,

min
θ
LUDA(D̂source

⋃
D̂poison, D̂target; θ).

(4)

The first problem minimizes the distance between the representations of the poison and the target
domain test data (first term) while ensuring the poison data is not too far from the base data (second
term). The second problem optimizes the parameters of the representation using UDA methods.

Figure 7: Attack success rate
of clean-label poisoning using
base data from source/target
for a two-class problem in
MNIST→ MNIST_M.

Attack success is evaluated by solving the second problem in Eq. 4
from scratch and evaluating the classification of xtarget

test . This is
illustrated in Fig. 6. The left part shows the case before retraining
using the poison data generated from Eq. 4 and the right part shows
how poisoning induces misclassification. We use two approaches
for poisoning. The first uses source domain data and the second uses
target domain data as base data. We add 1% poisoned data and test
the effect of poisoning on a two-class (3 vs 8) domain adaptation
problem on MNIST→ MNIST_M (see Appendix H). The results in
Fig. 7 show that using target domain data as base data is significantly
more successful under small permissible perturbation (ε). Using
base data from the source domain requires larger distortion to keep
the poison data close to the target point in the representation space and is hence less successful. This
shows the feasibility of clean label attacks against UDA methods. We believe the attack success can
be improved by solving the bilevel level problem (Eq. 9 in Appendix E) and is left as future work.

5 Conclusion

We studied the problem of UDA and highlighted the limitations of learning under this setting. We
proposed a simple lower bound on the target domain error for UDA, dependent on the labeling function
induced by the representation. The lower bound demonstrated that learning a domain invariant
representation while minimizing error on the source domain cannot guarantee good generalization on
the target domain. We analyzed a simple model and showed the existence of cases where UDA can
naturally succeed or fail. The analysis also highlighted a case where, without access to any labeled
target domain data, the success and the failure are equally likely. In such a case, the presence of
even a small amount of poisoned data can make the data distribution unfavorable for UDA methods,
making them fail dramatically in comparison to the case without poisoning. We proposed novel
data poisoning attacks to demonstrate the failure of popular UDA methods with a small amount of
poisoned data. Our results suggest that the performance of a UDA method in presence of poisoned
data indicates how well the method aligns the conditional distributions across the two domains. Thus,
we believe our attacks can be used for evaluating UDA methods, beyond simple benchmark datasets,
to reveal their robustness to data distributions inherently unfavorable for UDA.
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