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ABSTRACT

Temporal data like time series are often observed at irregular intervals which is
a challenging setting for existing machine learning methods. To tackle this prob-
lem, we view such data as samples from some underlying continuous function.
We then define a diffusion-based generative model that adds noise from a prede-
fined stochastic process while preserving the continuity of the resulting underlying
function. A neural network is trained to reverse this process which allows us to
sample new realizations from the learned distribution. We define suitable stochas-
tic processes as noise sources and introduce novel denoising and score-matching
models on processes. Further, we show how to apply this approach to the mul-
tivariate probabilistic forecasting and imputation tasks. Through our extensive
experiments, we demonstrate that our method outperforms previous models on
synthetic and real-world datasets.

1 INTRODUCTION

Time series data is collected from measurements of some real-world system that evolves via some
complex unknown dynamics and the sampling rate is often arbitrary and non-constant. Thus, the
assumption that time series follows some underlying continuous function is reasonable; consider,
e.g., the temperature or load of a system over time. Although the values are observed as separate
events, we know the temperature always exists and its evolution over time is smooth, not jittery. The
continuity assumption remains when the intervals between the measurements vary. This kind of data
can be found in many domains, from medical, industrial to financial applications.

Different approaches to model irregular data have been proposed, including neural (ordinary or
stochastic) differential equations (Chen et al., 2018; Li et al., 2020), neural processes (Garnelo et al.,
2018), normalizing flows (Deng et al., 2020) etc. As it turns out, capturing the true generative
process proves to be difficult, especially with the inherent stochasticity of the data.

We propose an alternative method, a generative model for continuous data that is based on the
diffusion framework (Ho et al., 2020) which simply adds noise to a data point until it contains no
information about the original input. At the same time, the generative part of these models learns to
reverse this process so that we can sample new realizations once training is completed. In this paper,
we apply these ideas to the time series setting and address the unique challenges that arise.

Contributions. Contrary to the previous works on diffusion, we model continuous functions, not
vectors (Fig. 1). To do so, we first define a suitable noising process that will preserve continuity.
Next, we derive the transition probabilities to perform the noising and specify the evidence bound
on the likelihood as well as the new sampling procedure. Finally, we propose new models that take
in the noisy input and produce the denoised output or, alternatively, the value of the score function.
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Figure 1: (Left) We add noise from a stochastic process to the whole time series at once. The model
ϵθ learns to reverse this process. (Right) We can use this approach to, e.g., forecast with uncertainty.
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2 BACKGROUND

Given training data {x} where each x ∈ Rd, the goal of generative modeling is to learn the prob-
ability density function p(x) and be able to generate new samples from this learned distribution.
Diffusion models (Ho et al., 2020; Song et al., 2021) achieve both of these goals by learning to
reverse some fixed process that adds noise to the data. In the following, we present a brief overview
of the two ways to define diffusion; in Section 2.1 the noise is added across N increasing scales,
which is then taken to the limit in Section 2.2 by defining the diffusion using a stochastic differential
equation (SDE).

2.1 FIXED-STEP DIFFUSION

Sohl-Dickstein et al. (2015); Ho et al. (2020) propose the denoising diffusion probabilistic model
(DDPM) which gradually adds fixed Gaussian noise to the observed data point x0 via known scales
βn to define a sequence of progressively noisier values x1,x2, . . . ,xN . The final noisy output xN ∼
N (0, I) carries no information about the original data point and thus the sequence of positive noise
(variance) scales β1, . . . , βN has to be increasing such that the first noisy output x1 is close to the
original data x0, and the final value xN is pure noise. The goal is then to learn to reverse this process.

As diffusion forms a Markov chain, the transition between any two consecutive points is defined
with a conditional probability q(xn|xn−1) = N (

√
1− βnxn−1, βnI). Since the transition kernel

is Gaussian, the value at any step n can be sampled directly from x0. Given αn = 1 − βn and
ᾱn =

∏n
k=1 αk, we can write:

q(xn|x0) = N (
√
ᾱnx0, (1− ᾱn)I). (1)

Further, the probability of any intermediate value xn−1 given its successor xn and initial x0 is

q(xn−1|xn,x0) = N (µ̃n, β̃nI), (2)

where: µ̃n =

√
ᾱn−1βn
1− ᾱn

x0 +

√
αn(1− ᾱn−1)

1− ᾱn
xn, β̃n =

1− ᾱn−1

1− ᾱn
βn. (3)

The generative model learns the reverse process p(xn−1|xn). Sohl-Dickstein et al. (2015) set
p(xn−1|xn) = N (µθ(xn, n), βnI), and parameterized µθ with a neural network. The training
objective is to maximize the evidence lower bound log p(x0) ≥

Eq

[
DKL(q(xN |x0)||p(xN )) +

∑
n>1

DKL(q(xn−1|xn,x0)||p(xn−1|xn))− log p(x0|x1)

]
. (4)

In practice, however, the approach by Ho et al. (2020) is to reparameterize µθ and predict the noise
ϵ that was added to x0, using a neural network ϵθ(xn, n), and minimize the simplified loss function:

L(x0) = Eϵ∼N (0,I),n∼U({0,...,N})
[
||ϵθ(

√
ᾱnx0 +

√
1− ᾱnϵ, n)− ϵ||22

]
. (5)

To generate new data, the first step is to sample a point from the final distribution xN ∼ N (0, I)
and then iteratively denoise it using the above model (xN 7→ xN−1 7→ · · · 7→ x0) to get a sample
from the data distribution. To summarize, the forward process adds the noise ϵ to the input x0, at
different scales, to produce xn. The model learns to invert this, i.e., predicts the noise ϵ from xn.

2.2 SDE DIFFUSION

Instead of taking a finite number of diffusion steps as in Section 2.1, Song et al. (2021) introduce a
continuous diffusion of vector valued data, x0 7→ xs where s ∈ [0, S] is now a continuous variable.
The forward process can be elegantly defined with an SDE:

dxs = f(xs, s)ds+ g(s)dWs, (6)

where W is a standard Wiener process. The variable s is the continuous analogue of the discrete
steps implying that the input gets noisier during the SDE evolution. The final value xS ∼ p(xS)
will follow some predefined distribution, as in Section 2.1. For the forward SDE in Equation 6 there
exist a corresponding reverse SDE (Anderson, 1982):

dxs = [f(xs, s)− g(s)2∇xs
log p(xs)]ds+ g(s)dWs, (7)
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where ∇xs
log p(xs) is the score function. Solving the above SDE from S to 0, given initial con-

dition xS ∼ p(xS) returns a sample from the data distribution. The generative model’s goal is to
learn the score function via a neural network ψθ(xs, s), by minimizing the following loss:

L(x0) = Exs∼SDE(x0),s∼U(0,S)

[
||ψθ(xs, s)−∇xs

log p(xs)||22
]
. (8)

Song et al. (2021) define the continuous equivalent to DDPM forward process as the following SDE:

dxs = −1

2
β(s)xsds+

√
β(s)dWs, (9)

where β(s) and S are chosen in such a way that ensures the final noise distribution is unit normal,
xS ∼ N (0, I). Given this specific parameterization, one can easily derive the transition probability
q(xs|x0) and calculate the exact score in closed-form (see Section 3.3 and Appendix A.3).

3 DIFFUSION FOR TIME SERIES DATA

In contrast to the previous section which deals with data points that are represented by vectors, we
are interested in generative modeling for time series data. We represent time series as a set of points
X = {x(t0), . . . ,x(tM−1)}, t ∈ [0, T ], observed across M timestamps. The observations can be
equally spaced but this formulation encompasses irregularly-sampled data as well. We assume that
each observed time series comes from its corresponding underlying continuous function x(·).
Our approach can be viewed as modeling the distribution “p(x(·))” over functions instead of vectors,
which amounts to learning the stochastic process. To preserve continuity, we cannot apply the ideas
from Section 2 directly, unless we assume measurements are independent of each other. The issue
of adding an independent noise in the diffusion arises because it produces discontinuous samples,
which is at odds with our assumption. In the following, we address this and propose a solution.

3.1 STOCHASTIC PROCESSES AS NOISE SOURCES FOR DIFFUSION

Instead of defining the diffusion by adding some scaled noise vector ϵ ∼ N (0, I) to a data vector
x, we add a noise function (stochastic process) ϵ(·) to the underlying data function x(·). The only
restriction on ϵ(·) is that it has to be continuous so that the output remains continuous as well, which
clearly rules out stochastic processes where time is indexed by a finite set e.g. ϵ(·) ∼ N (0, I).
However, using a normal distribution proved to be very convenient in Section 2 as it allows for
closed-form formulations of various terms, especially the loss. This is due to the fact that adding
two Gaussian random variables leads to another Gaussian variable, which, as an aside, is a property
shared by some other parametric distributions (Nachmani et al., 2021).

Therefore, our goal is to define ϵ(·) which will satisfy the continuity property while giving us
tractable training and sampling. Note that t refers to the time of the observation and ϵ(t) is the noise
at t, in contrast to the previous section where time-like variables n and s referred to the noise scale.

We could consider obtaining the noise from a standard Wiener process ϵ(·) = W (·). Although we
will have all the terms in closed-form, a clear disadvantage of this approach is that variance grows
with time. Additionally, the distribution of W (0) is degenerate as we never add any noise. This can
be solved in an ad hoc manner by shifting the whole time series similar to Deng et al. (2020).

Instead, in the following, we present two stationary stochastic processes that add the same amount
of noise regardless of the time of the observation. Note that the noise is correlated in the time dimen-
sion, hence the use of the stochastic process. An additional nice property of these processes is that
they reduce to the diffusion from Section 2 in the trivial case of time series with only one element.

1. Gaussian process prior. Given a set of M time points t, we propose sampling ϵ(t), t ∈ t from a
Gaussian process N (0,Σ), where each element of the covariance matrix is specified with a kernel
cov(t, u) = k(t, u). This produces smooth noise functions ϵ(·) that can be evaluated at any t.

To define a stationary process, we have to use a stationary kernel; we will use a radial basis kernel
k(t, u) = exp(−γ(t− u)2). Adjusting the parameter γ lets us vary the flatness of the noise curves.
Given a set of time points t, we can easily sample from this process by first computing the covariance
Σ = k(t, t) and then sample from the multivariate normal distribution N (0,Σ).
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Algorithm 1 Loss (DSPD-GP diffusion)
1: X0, t ∼ pdata(X, t)
2: Σ = k(t, t)
3: L = Cholesky(Σ)
4: ϵ̃ ∼ N (0, I)
5: ϵ = Lϵ̃
6: n ∼ U({1, . . . , N})
7: Xn =

√
αnX0 +

√
1− αnϵ

8: L = ||ϵ̃− ϵθ(Xn, t, n)||22

Algorithm 2 Sampling (DSPD-GP diffusion)

1: input: t = {t0, . . . , tM−1}
2: Σ = k(t, t); L = Cholesky(Σ)
3: XN ∼ N (0,Σ)
4: for n = N, . . . , 1 do
5: z ∼ N (0,Σ)
6: Xn−1 = 1√

αn

(
Xn − 1−αn√

1−ᾱn
Lϵθ(Xn, t, n)

)
+ βnz

7: end for
8: return X0

2. Ornstein-Uhlenbeck diffusion. The alternative noise distribution is a stationary OU process
which is specified as a solution to the following SDE:

dϵt = −γϵtdt+ dWt, (10)

where Wt is the standard Wiener process and we use the initial condition ϵ0 ∼ N (0, I). We can
obtain samples from OU process easily by sampling from a time-changed and scaled Wiener process:
e−γtWe2γt . The covariance can be calculated as cov(t, u) = exp(−γ|t− u|). The OU process is a
special case of a Gaussian process with a Matérn kernel (ν = 0.5) (Rasmussen & Williams, 2005,
p. 86). We discuss different sampling techniques and their trade-offs in Appendix A.4.

In the end, both the GP and OU processes are defined with a multivariate normal distribution
N (0,Σ), where Σ is calculated using the times of the observations. As opposed to the diffusions
from Section 2, we use correlated noise in the forward process. Our approach allows us to produce
continuous functions as samples and will prove to be a natural way to do forecasting and imputation.

3.2 DISCRETE STOCHASTIC PROCESS DIFFUSION (DSPD)

We apply the discrete diffusion framework to the time series setting. Reusing the notation from
before, X0 denotes the input data and Xn = {xn(t0), . . . ,xn(tM−1)} is the noisy output after
n diffusion steps. In contrast to the classical DDPM (Section 2.1) where one adds independent
Gaussian noise to data, we now add the noise from a stochastic process. In particular, given the
times of the input observations, we can compute the covariance Σ and sample noise ϵ(·) from a GP
or OU process as defined in Section 3.1. We can write the transition kernel and the posterior as:

q(Xn|X0) = N (
√
ᾱnX0, (1− ᾱn)Σ), (11)

q(Xn−1|Xn,X0) = N (µ̃n, β̃nΣ), (12)

where the difference to Equations 1 and 2 is the inclusion of Σ. Full derivation is in Appendix A.1.

The generative model is defined with the reverse process p(Xn−1|Xn) = N (µθ(Xn, t, n), βnΣ),
similar to Ho et al. (2020), but we swap the identity matrix for Σ. Another key difference is that the
model now takes the full time series and the time points in order to output the prediction which has
the same size as Xn. The architecture, therefore, has to be a type of a time series encoder-decoder.

Since all the probabilities are still normal, the terms in the ELBO (Equation 4) can be calculated in
closed-form. Following Ho et al. (2020), we also adopt the reparameterization which predicts the
noise ϵ(·) and use the simplified loss as in Equation 5:

L(X0) = Eϵ∼N (0,Σ),n∼U({1,...,N})
[
||ϵθ(

√
ᾱnX0 +

√
1− ᾱnϵ, t, n)− ϵ||22

]
. (13)

More details can be found in Appendix A.2. The sampling is similar to Ho et al. (2020) but the noise
comes from a stochastic process instead of an independent normal distributions. In Algorithms 1
and 2 we show the training and the sampling procedure, respectively, when using the GP diffusion.

3.3 CONTINUOUS STOCHASTIC PROCESS DIFFUSION (CSPD)

Similarly to the previous section, we can extend the continuous diffusion framework to use the noise
coming from a Gaussian or OU process. Now, the noise scales β(s) are continuous in the diffusion
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time s, see Section 2.2. Given a factorized covariance matrix Σ = LLT , we modify the variance
preserving diffusion SDE (Song et al., 2021):

dXs = −1

2
β(s)Xsds+

√
β(s)LdWs, (14)

which gives us the following transition probability (see Appendix A.3 for details):

q(Xs|x0) = N (µ̃, Σ̃) = N
(
X0e

− 1
2

∫ s
0
β(s)ds,Σ

(
1− e−

∫ s
0
β(s)ds

))
. (15)

Since this probability is normal, the value of the score function can be computed in closed-form:

∇Xs log q(Xs|X0) = −Σ̃−1(Xs − µ̃), (16)

which we can use to optimize the same objective as in Equation 8. Our neural network ϵθ(Xs, t, s)
will take in the full time series, together with the observation times t and the diffusion time s, and
predict the values of the score function. As it turns out, we can again use the reparameterization in
which we predict the noise, whilst the score is only calculated when sampling new realizations.

3.4 IMPLEMENTATION DETAILS

In our work, we consider multivariate time series which means each observation at a certain time
point is a d-dimensional vector. In the forward diffusion process we treat the data as d individual
univariate time series and add the noise to them independently. This is in line with the previous
works where, e.g., independent noise is added to the individual pixels in an image. The model takes
in a complete noisy multivariate time series to learn the reverse process so it handles the correlations
between the data dimensions and across the time dimension.

We note that the best results are obtained if the model is reparameterized to always predict the
independent Gaussian noise. In the discrete stochastic process diffusion, this means the noise is
computed as ϵ = Lϵ̃, ϵ̃ ∼ N (0, I), where LTL = Σ is the covariance matrix of the stochastic
process. The model then learns to predict ϵ̃. Similarly, in the continuous diffusion, we represent the
score as Lϵ̃/σ2, where σ2 = 1− exp(−

∫ s

0
β(s)ds) (Equation 16). In both cases, when we sample,

the model will output the prediction of ϵ̃, which we transform to get the sample from the stochastic
process or to obtain the score function value. An example of this can be found in Algorithm 2 for
the discrete diffusion.

4 APPLICATIONS

To train a generative model, it must learn to reverse the forward diffusion process by predicting the
noise that was added to the clean data. The input to the model is the time series (X0, t) along with
the diffusion step n or diffusion time s, and the output is of the same size as X0. If additional
inputs are available, we can also model the conditional distribution; for example, time series data
often contains covariates for each time point of t. We can also condition the generation on the past
observations which essentially defines a probabilistic forecaster or condition only on the observed
values which defines a neural process or an imputation model.

4.1 FORECASTING MULTIVARIATE TIME SERIES

Forecasting is answering what is going to happen, given what we have seen, and as such is the most
prominent tasks in time series analysis. Probabilistic forecasting adds the layer of (aleatoric) uncer-
tainty on top of that and returns the confidence intervals which is often a requirement for deploying
models in real world settings. The neural forecasters are usually encoder-decoders, where the his-
tory of observations (XH , tH) is represented with a single vector z and the decoder outputs the
distribution of the future values XF given z at time points tF . Previous works relied on specify-
ing the parameters of the output distribution, e.g., via a diagonal covariance (Salinas et al., 2020) or
some low-rank approximation (Salinas et al., 2019), relying on normalizing flows (de Bézenac et al.,
2020; Rasul et al., 2021b), or Generative Adversarial Networks (GANs) (Koochali et al., 2021).

Recently, Rasul et al. (2021a) introduced a diffusion based forecasting model to learn the conditional
probability p(XF |XH). In particular, let XH = {x(t0), . . . ,x(tM−1)} be a history window of
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Figure 2: Overview of the forecasting model. The inputs are time series Xn, diffusion step n,
observation times t and the history vector z. The output is the predicted noise value ϵn.

size M sampled randomly from the full training data. They specify the distribution p(x(tM )|XH)
using a conditional DDPM model. The forward process adds independent Gaussian noise to x(tM )
the same way as in DDPM. However, the reverse denoising model is conditioned on the history XH

which is represented with a fixed sized vector z. After training is completed, the predictions are
made in the following way: (1) XH is encoded with an RNN to obtain z; (2) the initial noisy value
is sampled xN (tM ) ∼ N (0, I); and (3) denoising is performed using the sampling algorithm from
Ho et al. (2020) but conditioned on z to obtain x0(tM ). The final denoised value is the forecast and
sampling multiple values allows computing empirical confidence intervals of interest.

In Rasul et al. (2021a), the timestamps are always discrete and the prediction is autoregressive, i.e.,
the values are produced one by one. Our diffusion framework offers two key improvements: first, the
predictions can be made at any future time point (in continuous time); and second, we can predict
multiple values at the same time which scales better on modern hardware.

In our case, the prediction XF will not be a single vector but a set {x(tM ), . . . ,x(tM+K)} of size
K. This type of data is naturally handled by process diffusion as defined in Section 3. The only thing
left to do is to design a suitable denoising model ϵθ. Previous observations are again represented
with an RNN to obtain z and condition the reverse process on it. We propose an architecture similar
to the TimeGrad model from Rasul et al. (2021a) but which outputs multiple values simultaneously.
Figure 2 shows the architecture overview: we add t as an input and take the whole time series at
once. Thus, we use 2D convolution where the extra dimension corresponds to the time dimension.

4.2 DIFFUSION PROCESS AS A NEURAL PROCESS

Neural processes (Garnelo et al., 2018) are a class of latent variable models that define a stochastic
process with neural networks. Given a set of data points (a dataset), the model outputs the probability
distribution over the functions that generated this dataset. That is, for different datasets, the model
will define different stochastic processes. Due to this behavior, neural processes bear a resemblance
to the Gaussian processes but can also be viewed as a meta learning model (Hospedales et al., 2021).

Let XA denote the observed data, in our case, a time series, and let XB be the unobserved data
at the time points tB . Garnelo et al. (2018) construct the encoder-decoder model that uses the
amortized variational inference for training (Kingma & Welling, 2014). The encoder takes in a set
of observed points (XA, tA) and outputs the distribution over the latent variable q(z). It is crucial
that the encoder is permutation invariant, i.e., the order in of the input points does not alter the result.
This is easy to achieve using, e.g., deep sets (Zaheer et al., 2017). The decoder takes in the sampled
latent vector z and the query time points tB and predicts the values of the unobserved points XB .

Since our approach samples functions, we can condition the generation on an input dataset (XA, tA)
in order to create our version of a neural process, based purely on the diffusion framework. The
encoder will be a deterministic neural network that outputs the latent vector z, contrary to (Garnelo
et al., 2018) which outputs the distribution. Similar to Section 4.1, the diffusion is conditioned on
z and we can output samples for any query tB . Therefore, we capture the distribution p(XB |XA)
directly. During training, we adopt the approach of feeding in the data such that we learn p(XA ∪
XB |XA) which helps the model learn to output high certainty around tA, see Garnelo et al. (2018).

In the end, our model sees many observed-unobserved pairs coming from different true underlying
processes. The model learns to represent the observed points XA such that the denoising process
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corresponds to the correct distribution, given XA. After training is completed, we take a time series
XA and output the samples at any set of query time points tB . We can view such an approach as
an interpolation or imputation model that fills-in the missing values across time. The main appeal is
the ability to capture different stochastic processes within a single model.

4.3 PROBABILISTIC TIME SERIES IMPUTATION

Previous section considered interpolating points in time. Now, we look into filling-in the missing
values across the observation dimensions, i.e., the imputation of the vectors. An element x of the
time series X is assigned a mask m of the same dimension that indicates whether the i-th value xi
has been observed (mi = 1) or is missing (mi = 0).

Given observed XA and missing points XB , Tashiro et al. (2021) propose a model that learns a
conditional distribution p(XB |XA). The model is built upon a diffusion framework and the reverse
process is conditioned on XA, similar to Section 4.2. We extend this by introducing noise from a
stochastic process, as presented above. The learnable model remains the same but we introduce the
correlated noise in the loss and sampling. We posit that continuous noise process as an inductive
bias for the irregular time series is a more natural choice.

5 RELATED WORK

Generative modeling with diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021)
recently gained traction as it provides good sampling quality on image generation (Dhariwal &
Nichol, 2021; Ramesh et al., 2022; Rombach et al., 2021) and became the state-of-the-art method
replacing GANs (Goodfellow et al., 2020). The modeling power translates to other tasks as well,
so it has been used in modeling, e.g., waveforms (Kong et al., 2021) and time series forecasting
(Rasul et al., 2021a), but also discrete data such as text (Austin et al., 2021) and molecules (Anand
& Achim, 2022; Lee & Kim, 2022).

The number of steps can be either fixed (Ho et al., 2020) or the steps can be continuously indexed
(Song et al., 2021; Huang et al., 2021). Based on this, the reverse process is usually defined as
denoising or score-based, respectively. We implement both of the approaches in our stochastic pro-
cess diffusion. Many of the advances over the original approach focused on improving the sampling
speed (Chung et al., 2022; Jolicoeur-Martineau et al., 2021; Lyu et al., 2022), while others imple-
ment the noise scheduling for better modeling capacity (Nichol & Dhariwal, 2021b; Kingma et al.,
2021). We can implement any of these techniques that improve general diffusion to make our meth-
ods perform faster or have better sampling quality.

Neural ordinary differential equations (Chen et al., 2018) allow capturing the irregularly sampled
time series as they can naturally handle the continuous time. As such, this work is a building
block which can also be used alongside our method to devise more powerful denoising networks.
Rubanova et al. (2019) construct an encoder-decoder architecture based on neural ODEs which
resembles the variational autoencoder (Kingma & Welling, 2014). The time series is, thus, modeled
in a latent space by sampling a random vector which is propagated with an ODE. Neural stochastic
differential equations (Li et al., 2020) extend this by adding noise in every solver step. This still
amounts to generating the time series in a single pass, from t0 to tM−1, whereas we use the diffusion
framework which refines the generated time series from pure noise XN to the final sample X0.

Continuous-time flow process (CTFP) (Deng et al., 2020) uses normalizing flows (Kobyzev et al.,
2020) to generate the time series by sampling the initial noise from the stochastic process and trans-
form it with an invertible function to obtain the sample from the target distribution. Although this
allows exact likelihood training, the method cannot capture some processes (Deng et al., 2021) and
is often augmented to include a latent variable, i.e., it is trained as a VAE.

Implicit neural representations (Sitzmann et al., 2020; Dupont et al., 2022) treat data points as func-
tions, i.e., each data point is represented by its own neural network which acts as a form of compres-
sion. In our work, we treat time series as continuous functions but instead of fitting a different neural
network to each point we model the probability over the functions using the diffusion framework.
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CIR Lorenz OU Predator–prey Sine Sink

D
SP

D Gauss -0.4830±0.0176 1.4161±0.0987 0.7081±0.0192 -3.8656±0.0347 -1.3978±0.0108 -5.8355±0.0360
OU -0.4694±0.0154 -7.3334±0.1446 0.5298±0.0229 -9.4932±0.0544 -4.2337±0.0577 -11.3145±0.2015
GP -0.4512±0.0606 -8.4433±0.2435 0.5622±0.0050 -10.1138±0.4601 -4.5568±0.0732 -12.0081±0.0404

C
SP

D Gauss -0.4914±0.0079 1.9043±0.3224 0.5333±0.0144 -3.5642±0.2014 -1.1204±0.0580 -5.6209±0.2057
OU -0.4796±0.0109 -6.6638±0.0773 0.4959±0.011 -8.7748±0.1419 -3.9496±0.1669 -10.4739±0.2482
GP -0.4935±0.0052 -7.5565±0.4107 0.5251±0.0145 -9.3409±0.199 -4.3591±0.1242 -11.6571±0.2825

Table 1: Negative log-likelihood on synthetic data (lower is better) shows OU/GP consistently better
than independent noise.

CIR Lorenz OU Predator-prey Sine Sink

CTFP 0.9985±0.0012 0.995±0.0057 0.783±0.0756 0.789±0.0227 0.981±0.0104 0.7265±0.1378
Latent ODE 1.0±0.0 0.998±0.0019 0.512±0.0331 0.958±0.0213 1.0±0.0 0.907±0.0394
DSPD-GP (Our) 0.5115±0.0282 0.5135±0.0288 0.5055±0.0458 0.5855±0.0219 0.5255±0.009 0.513±0.0103

Table 2: Accuracy of the discriminator trained to distinguish real data and model samples.
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Figure 3: Real data and samples from our model based on an Ornstein-Uhlenbeck process.

6 EXPERIMENTS

Probabilistic modeling. We test our DSPD and CSPD with independent Gaussian noise and noise
from stochastic processes (GP and OU) on six synthetic datasets, coming from deterministic and
stochastic dynamical systems. We also compare to the established baselines for irregular time series
modeling, namely, latent ODEs (Rubanova et al., 2019) and continuous-time flow process (CTFP)
(Deng et al., 2020). The detailed experimental setup along with further results is in Appendix B.1.

Table 1 shows that using a stochastic process as the noise source outperforms independent noise.
The ablation in Table 6 shows that using an independent denoising model, i.e., ϵθ that processes
time series inputs individually, performs worse than a model that processes the whole time series
at once. Figure 3 demonstrates the quality of the samples. Finally, Table 2 compares our model
with the baselines and demonstrates that our model produces samples that are indistinguishable to a
powerful transformer-based (Vaswani et al., 2017) discriminator model. The same does not hold for
the competing methods.

Forecasting. We test our model as defined in Section 4.1 and Figure 2 against TimeGrad (Rasul
et al., 2021b) on three established real-world datasets: Electricity, Exchange and Solar (Lai et al.,
2018). Due to the limitations of the CRPS-sum metric (Koochali et al., 2022), we report the NRMSE
and the energy score (Gneiting & Raftery, 2007) averaged over five runs, but we note that the rank
of the models’ performance does not change when using other metrics as well. Table 3 shows that
our method outperforms TimeGrad even though we predict over the complete forecast horizon at
once, and Figure 4 demonstrates the prediction quality alongside the uncertainty estimate.

Neural process. We construct a dataset where each time series X comes from a different stochas-
tic process, by sampling from Gaussian processes with varying kernel parameters and time series
lengths. This is a standard training setting in neural process literature (Garnelo et al., 2018). In our
denoising network, we modify the attention-like layer to make it stationary (see Appendix B.2) and
train as described in Section 4.2. Due to the use of tanh activations in the final layers, combined
with its stationary, our model extrapolates well, i.e., when tanh saturates the mean and variance do
not vary far from observations. This is the same behaviour we see in the GP with an RBF kernel,
for example. The quantile loss of the unobserved data under the true GP model is 0.845 while we
achieve 0.737 which indicates we capture the true process, which can also be seen in Figure 5. We
remark that attentive neural process (Kim et al., 2019) does not produce the correct uncertainty.
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TimeGrad Ours

Electricity 0.064±0.007 0.045±0.002
8425±613 7079±164

Exchange 0.013±0.003 0.012±0.001
0.057±0.002 0.031±0.002

Solar 0.799±0.096 0.757±0.026
150±17 166±12

Table 3: NRMSE (top) and energy
score on real-world forecasting data.
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Figure 4: Forecast and uncertainty intervals on Electricity.

Imputation. We compare to the CSDI model (Tashiro et al., 2021) introduced in Section 4.3 on
an imputation task. To this end, we use exactly the same training setup, including the random
seeds and model architecture, but change the noise source to a Gaussian process. Following Tashiro
et al. (2021), we use Physionet dataset (Silva et al., 2012) which is a collection of medical time
series collected at hourly rate. It already contains missing values but for testing purposes we choose
varying degrees of missingness and report the results on the test set. We update the loss and sampling
accordingly, as in Section 3. Table 4 shows that we outperform the original CSDI model even though
we only changed the noise, and the dataset we used has regular time sampling.

Missing CSDI DSPD-GP (Our)

10% 0.520±0.055 0.498±0.036
50% 0.644±0.024 0.644±0.029
90% 0.818±0.02 0.815±0.019

Table 4: Imputation RMSE on Physionet
data with varying amounts of missingness. 0.0 0.2 0.4 0.6 0.8 1.0

−2

0

2
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µ± σ

µ± 2σ

0.0 0.2 0.4 0.6 0.8 1.0

Diffusion model

Figure 5: Sampled curves given a set of points.

7 DISCUSSION

In this paper, we introduced the stochastic process diffusion framework for time series modeling.
We demonstrated that the improvements over the previous works come from (1) using the stochastic
process as the noise source; and (2) using the model that takes in the whole time series at once,
instead of modeling points independently. We also show how one can condition the generation to
obtain a forecasting model as well as interpolation and imputation models.

In our experiments we used a mixture of synthetic and real-world datasets which both have regular
and irregular sampling. We outperform strong baseline models on all of the tasks which demon-
strates practical utility of our method.

7.1 FUTURE WORK

We used bare-bones diffusion without extensive tuning to demonstrate the modeling potential and
make a fair comparison to other methods. However, it should be straightforward to improve upon
our models by implementing recent advances in diffusion models (e.g., Nichol & Dhariwal, 2021a).

In case we have a large amount of points, we can consider replacing the current sampling strategies
with more scalable variants, such as switching to a sparse GP (Quiñonero-Candela & Rasmussen,
2005). Additionally, one can train the latent diffusion (Rombach et al., 2021) by first learning the
time series encoder-decoder which might be helpful for high-dimensional data, such as those we
encountered in the forecasting task.

It would be interesting to explore different architecture choices, e.g., implement improvements in
conditioning models via learned activations (Ramos et al., 2022). Finally, we can also apply the
presented methods to other areas outside time series, such as modeling point clouds or even images,
as we have demonstrated that our method is competitive on regular grids.
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ETHICS STATEMENT

We introduced a new method for time series generation. As such, it has many applications, such
as probabilistic forecasting and imputation, both of which are of practical significance in the real-
world settings. In particular, we would like to see successful applications in the healthcare domain.
As with any generative model, one has to pay attention to the privacy and fairness when collecting
data and building a model. We do not anticipate any negative outcomes applying our model on time
series data. No personal information is contained in any of the datasets.

REPRODUCIBILITY STATEMENT

Throughout the paper we describe in detail how our novel stochastic process diffusion framework
works, including the algorithms for training and generation. We also describe the datasets and
models we used, both in the main text and the Appendix. All the datasets we used are publicly
available and the code that reproduces the results is released to the reviewers.

REFERENCES

Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant de-
noising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022. 7

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982. 2

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. 7

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
1, 7, 17

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating con-
ditional diffusion models for inverse problems through stochastic contraction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. 7
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A DERIVATIONS

A.1 DISCRETE DIFFUSION POSTERIOR PROBABILITY

We extend Ho et al. (2020) by using full covariance Σ(t) to define the noise distribution across time
t. If Σ = LLT and keeping the same definitions from Section 2.1 for βn, αn, and ᾱn, we can write:

Xn =
√

1− βnXn−1 +
√
βnLϵ, (17)

Xn =
√
ᾱnX0 +

√
1− ᾱnLϵ, (18)

with ϵ ∈ N (0, I). This corresponds to the following transition distributions:

q(Xn|Xn−1) = N (
√

1− βnXn−1, βnΣ), (19)

q(Xn|X0) = N (
√
ᾱnX0, (1− ᾱn)Σ). (20)

We are interested in q(Xn−1|Xn,X0) ∝ q(Xn|Xn−1)q(Xn−1|X0). Since both distributions
on the right-hand side are normal, the result will be normal as well. We can write the resulting
distribution as N (µ̃, Σ̃), where:

µ̃ = R(Xn −Aµ1) + µ1

Σ̃ = Σ1 −RAΣT
1

R = Σ1A
T (AΣ1A

T +Σ2)
−1,

with A =
√
1− βnI , µ1 =

√
ᾱn−1X0, Σ1 = (1− ᾱn−1)Σ, and Σ2 = βnΣ. We can now write:

R = (1− ᾱn−1)Σ
√
1− βn

(√
1− βn(1− ᾱn−1)Σ

√
1− βn + βnΣ

)−1

=
(1− ᾱn−1)

√
αn

αn(1− ᾱn−1) + 1− αn
ΣΣ−1

=
1− ᾱn−1

1− ᾱn

√
αn,

and from there:

µ̃ =
1− ᾱn−1

1− ᾱn

√
αn

(
Xn −

√
1− βn

√
ᾱn−1X0

)
+
√
ᾱn−1X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

(
1− 1− ᾱn−1

1− ᾱn
αn

)
X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

1− ᾱn
βnX0,

(21)

and using the fact that Σ is a symmetric matrix:

Σ̃ = (1− ᾱn−1)Σ− 1− ᾱn−1

1− ᾱn

√
αn

√
1− βn(1− ᾱn−1)Σ

T

=

(
1− ᾱn−1 −

1− ᾱn−1

1− ᾱn
αn(1− ᾱn−1)

)
Σ

=
1− ᾱn−1

1− ᾱn
βnΣ.

(22)

Therefore, the only difference to the derivation in Ho et al. (2020) is the Σ(t) instead of the identity
matrix I in the covariance.

A.2 DISCRETE DIFFUSION LOSS

We use the evidence lower bound from Equation 4. The distribution q(Xn−1|Xn,X0) is defined
as N (µ̃, C1Σ), where C1 is some constant (Equations 21 and 22). Similar to Ho et al. (2020),
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we choose the parameterization for the reverse process p(Xn−1|Xn) = N (µθ(Xn, t, n), βnΣ),
where:

µθ(Xn, t, n) =
1√
αn

(
Xn − βn√

1− ᾱn
ϵθ(Xn, t, n)

)
.

Then the KL-divergence is between two normal distributions so we can write the following, where
C2 is a term which does not depend on the parameters θ:

DKL[q(Xn−1|Xn,X0)||p(Xn−1|Xn)] = DKL[N (µ̃, C1Σ)||N (µθ(Xn, t, n), βnΣ)]

=
1

2
(µ̃− µθ)

TΣ−1(µ̃− µθ) + C2.

If we follow the implementation from Section 3.4 we reparameterize the model to predict the noise
from the unit normal distribution. Then, the matrix L, where Σ = LTL, can be factorized from the
previous equation leaving us with the LTΣ−1L term in the middle which evaluates to an identity.
We found that simplifying the loss to computing the mean squared error between the true noise ϵ and
the predicted noise ϵθ, as in Ho et al. (2020), leads to faster evaluation and better results. Therefore,
during training we use the loss as described in Equation 13.

Note that in the above notation we have a set of observations X for times t that we feed into the
model ϵθ to predict a set of noise values ϵ(t), t ∈ t, whereas, previous works predicted the noise for
each data point independently.

A.3 CONTINUOUS DIFFUSION TRANSITION PROBABILITY

Given an SDE in Equation 14 we want to compute the change in the variance Σ̃s, where s denotes the
diffusion time. The derivation is similar to that in Song et al. (2021). We start with the Equation 5.51
from Särkkä & Solin (2019):

dΣ̃s

ds
= E[f(Xs, s)(Xs − µ)T ] + E[(Xs − µ)f(Xs, s)

T ] + E[L(Xs, s)QL(Xs, s)
T ],

where f is the drift, L is the SDE diffusion term and Q is the diffusion matrix. From here, the only
difference to Song et al. (2021) is in the last term; they obtain β(s)I while we have a full covariance
matrix from the stochastic process: β(s)Σ. Therefore, we only need to slightly modify the result:

dΣs

ds
= β(s)(Σ− Σ̃s),

which will gives us the covariance of the transition probability as in Equation 15. The derivation for
the mean is unchanged as our drift term is the same as in Song et al. (2021).

A.4 SAMPLING FROM AN ORNSTEIN-UHLENBECK PROCESS

In the following, we discuss three different approaches to sampling noise ϵ(·) from an OU process
defined by γ at time points t0, . . . , tM−1.

1. Modified Wiener. As we already mentioned in Section 3.1, we can use a time-changed and
scaled Wiener process: e−γtWe2γt . Sampling from a Wiener process is straightforward:
given a set of time increments ∆t0, . . . ,∆tM−1, we sample M points independently from
N (0,∆ti) and cumulatively sum all the samples. The time changed process first needs to
reparameterize the time values. The issue arises when applying the exponential for large t
which leads to numerical instability. This can be mitigated by re-scaling t.

2. Discretized SDE. A numerically stable approach involves solving the OU SDE in fixed
steps. The point at t = 0, ϵ(0) is sampled from unit Gaussian. After that, each point is
obtained based on the previous, i.e., i-th point ϵ(ti) is calculated as ϵ(ti) = cϵ(ti−1) +√
1− c2z, where c = exp(−γ(ti − ti−1)) and z ∼ N (0, 1). This is an iterative procedure

but is quite fast and stable.
3. Multivariate normal. Finally, we can treat the process as a multivariate normal distribu-

tion with mean zero and covariance cov(t, u) = exp(−γ|t− u|). Given a set of time points
t it is easy to obtain the covariance matrix Σ and its factorization LTL. To sample, we first
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Dataset Dim. d Dom. Freq. Time steps Pred. steps

Exchange 8 R+ day 6, 071 30
Solar 137 R+ hour 7, 009 24
Electricity 370 R+ hour 5, 833 24

Table 5: Multivariate dimension, domain, frequency, total training time steps and prediction length
properties of the training datasets used in the forecasting experiments.

draw ϵ̃ ∼ N (0, I) and then ϵ = Lϵ̃. Since our model performs best if it predicts ϵ̃, we
opted for this particular sampling approach. If t is not changing, L can be computed once
and the performance impact will be minimal. Also when sampling new realizations, L has
to be computed only once, before the sampling loop (see Algorithm 2).

B EXPERIMENTAL DETAILS

B.1 PROBABILISTIC MODELING

B.1.1 DATASETS

The properties of the open datasets used in the forecasting experiment are detailed in Table 5. Ad-
ditionally, we generate 6 synthetic datasets, each with 10000 samples, that involve stochastic pro-
cesses, dynamical and chaotic systems.

1. CIR (Cox-Ingersoll-Ross SDE) is the stochastic differential equations defined by:

dx = a(b− x)dt+ σ
√
xdWt,

where we set a = 1, b = 1.2, σ = 0.2 and sample x0 ∼ N (0, 1) but only take the positive
values, otherwise the

√
x term is undefined. We solve for t ∈ {1, . . . , 64}.

2. Lorenz is a chaotic system in three dimensions. It is governed by the following equations:

ẋ = σ(y − x),

ẏ = ρx− y − xz,

ż = xy − βz,

where ρ = 28, σ = 10, β = 2.667, and t is sampled 100 times, uniformly on [0, 2], and
x, y, z ∼ N (0, 100I).

3. Ornstein-Uhlenbeck is defined as:

dx = (µt− θx)dt+ σdWt,

with µ = 0.02, θ = 0.1 and σ = 0.4. We sample time the same way as for CIR.

4. Predator-prey is a 2D dynamical system defined with an ODE:

ẋ = 2/3x− 2/3xy,

ẏ = xy − y.

5. Sine dataset is generated as a mixture of 5 random sine waves a sin(bx + c), where a ∼
N (3, 1), b ∼ N (0, 0.25), and c ∼ N (0, 1).

6. Sink is again a dynamical system, governed by:

dx

dt
=

[
−4 10
−3 2

]
x,

with x0 ∼ N (0, I).
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B.1.2 CTFP

We implement continuous-time flow process (Deng et al., 2020) which is a normalizing flow model
for stochastic processes. That is, there is a predefined base distribution p(z) and a series of invertible
transformations f such that we can generate samples x = f(z), and evaluate the density in closed-
form by computing z = f−1(x) and using the change of variables formula. For more details on
normalizing flows, see Kobyzev et al. (2020). The novel idea in CTFP is to change the base density
to a stochastic process, i.e., a Wiener process, to obtain the distribution over the functions, similar
to our work. In our case, we do not use invertible functions but learn to inverse the noising process,
and additionally, we add noise at multiple levels instead only in the beginning. In the experiments
we define a CTFP model as a 12-layer real NVP architecture (Dinh et al., 2017) with 2 hidden layers
in each layer’s MLP.

B.1.3 LATENT ODE

Latent ODE is a variational autoencoder architecture, with an encoder that represents the complete
time series as a single vector following q(z), and a decoder that produces the samples at observation
times ti, z(ti) = f(z), z ∼ q(z). The final step is projection to a data space q(ti) 7→ x(ti). The
key idea is to use the neural ordinary differential equation (Chen et al., 2018) to define the evolution
of the latent variable z(·), thus, have a probabilistic model of the function. This is different to
our approach as it models the function in a latent space, with a single source of randomness at the
beginning of the time series. That is, the random value is sampled at t = 0 and the time series is
determined from there onward, whereas our method samples random values on the whole interval
[0, T ] and does so multiple times (for N diffusion steps) until we get the new realization. In the
experiments we use a two layer neural network for the neural ODE, and a another two layer network
for projection to the data space.

B.1.4 OUR MODELS

We use two models, one is a simple feedforward network, and the second is an RNN-based model.
The model takes in the time series X , times of the observations t and the diffusion step n or dif-
fusion time s. The output is the same size as X . The feedforward model embeds the time and
the diffusion step with a positional encoding (Vaswani et al., 2017) and passes it together with X
through the multilayer neural network. Here, there is no interaction between the points along the
time dimension. The model, however, has the capacity to learn transformation based on time of ob-
servation. The second model is RNN based, that is, we pass the same concatenated input as before to
a 2-layer bidirectional GRU (Chung et al., 2014) and use a single linear layer to project to the output
dimension. Table 6 shows that it is important to have interactions in the time dimension, regardless
of the noise source, because otherwise we only learn the marginal distribution and the quality of the
samples suffers.

CIR Lorenz OU Predator-prey Sine Sink
RNN-based model

D
SP

D Gauss 0.5245±0.0252 0.512±0.0212 0.568±0.051 0.5275±0.0383 0.5565±0.0353 0.526±0.0085
GP 0.5115±0.0282 0.5135±0.0288 0.5055±0.0458 0.5855±0.0219 0.5255±0.009 0.513±0.0103
OU 0.514±0.0737 0.6095±0.0964 0.5605±0.0581 0.5865±0.053 0.507±0.11 0.6255±0.1672

C
SP

D Gauss 0.644±0.0373 0.5015±0.0243 0.6105±0.0153 0.548±0.0751 0.611±0.0516 0.5495±0.0313
GP 0.5795±0.0541 0.674±0.0739 0.5025±0.0622 0.607±0.0538 0.5575±0.0376 0.5345±0.0201
OU 0.4535±0.165 0.715±0.0884 0.5255±0.011 0.5835±0.0723 0.556±0.118 0.5795±0.0173

Feedforward model

D
SP

D Gauss 0.624±0.0438 0.713±0.1798 0.5275±0.0371 1.0±0.0 0.7875±0.0585 0.9695±0.0302
GP 0.558±0.0611 0.894±0.212 0.5535±0.1152 0.7565±0.1362 0.735±0.2146 0.784±0.2281
OU 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

C
SP

D Gauss 0.537±0.0458 0.959±0.0808 0.5155±0.0165 0.9995±0.001 0.6335±0.0765 0.9095±0.1306
GP 0.645±0.1034 1.0±0.0 0.507±0.0264 0.894±0.212 0.894±0.212 0.88±0.088
OU 0.984±0.032 1.0±0.0 0.9905±0.019 1.0±0.0 1.0±0.0 1.0±0.0

Table 6: Accuracy of the discriminator trained on samples from a diffusion model. Values around
0.5 indicate the discriminative model cannot distinguish the model samples and real data. Values
closer to 1 indicate the generative model is not capturing the data distribution.
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B.2 NEURAL PROCESS

B.2.1 DATASET

We sample points from a Gaussian process to obtain a single time series. In the end, we have
8000 time series and 2000 test time series. We sample the number of time points from a Poisson
distribution with λ = 10 but restrict the values to always be above 5 and below 50. The time
points are sampled uniformly on [0, 1]. The observations are sampled from a multivariate normal
distribution with mean zero and covariance obtained from an RBF kernel. The σ value in the kernel
is uniformly sampled in [0.01, 0.05] for each time series independently. Half of the sampled points
are treated as unobserved while the rest are used as a context in the model.

B.2.2 MODEL

The denoising model takes in XA (observed points) as a conditioning variable and XB
n (target

points) as the noisy input. We first run a learnable RBF kernel k(tA, tB) to obtain a similarity
matrix K between the observed and unobserved time points. We project XA with a neural network
by transforming each point independently to obtain Z, and then obtain the latent variable of the
same time dimension size as XB by multiplying K and Z. We then use Z as a conditioning vector
and add it to projected XB , transform with a multilayer network, and obtain the output.

B.2.3 ADDITIONAL RESULTS

We test the hypothesis that using a stochastic process with similar properties to the data will lead
to better performance. The difference to the neural process setup in Section 6 is that we fix the
synthetic GP to always have σ = 0.05. As can be seen from Figure 6, the marginal distribution
will be equal regardless of which process and which kernel parameter we use. On the other hand,
when we look at path probability p(X), we notice better results when the noise process matches
data properties (as was also shown in Table 1 and 6). That means, while our model can reverse the
process well, the qualitative properties of the sampled curves will be different. In particular, the
curves will be rougher with increasing γ in OU and smoother with increasing σ in GP.

B.3 CSDI IMPUTATION

The imputation experiment presented in Sections 4.3 and 6 uses the original CSDI model (Tashiro
et al., 2021) and only changes the noise to include the stochastic process source. In this case, the
time points at which we evaluate the stochastic process are regular which does not reflect the true
nature of the Physionet dataset. Here, we change the setup such that the measurements keep the
actual time that has passed instead of rounding to the nearest hour. This is still in favour of the
original paper as it only takes one measurement per hour and discards other if they are present. The
model from Tashiro et al. (2021) remains the same and we replace the independent normal noise
with the GP noise with σ ∈ {0.005, 0.01, 0.02}.

We run each experimental setup 10 times with different data maskings (see Tashiro et al. (2021)
for more details) and report the results in Table 7. We perform the Wilcoxon one-sided signed-
rank test (Conover, 1999) and reject the null hypothesis that the expected RMSE values are the
same when p < 0.05. As we can see, higher values of σ produce better results which makes sense
since σ = 0.005 is, informally, closer to independent Gaussian sampling than σ = 0.02, which
has stronger temporal dependency between the samples. We suspect 10%-missing case does not
produce significant results due to noise. Using higher σ does not further improve the results.

Missingness: 10% 50% 90%
Metrics: RMSE p-value RMSE p-value RMSE p-value

CSDI (baseline) 0.603±0.274 – 0.658±0.060 – 0.839±0.043 –

0.005 0.541±0.085 0.125 0.647±0.049 0.116 0.824±0.032 0.188
σ = 0.01 0.575±0.195 0.125 0.640±0.050 0.001 0.823±0.028 0.032

0.02 0.515±0.039 0.326 0.636±0.050 0.001 0.811±0.032 0.001

Table 7: Imputation results averaged over 10 runs and p-value of Wilcoxon one-sided test.
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Figure 6: (Top) Neural process with Gaussian process diffusion, fitted on GP synthetic data.
Columns correspond to different values of the kernel parameter σ. First row shows samples from the
GP prior. As we can see, the higher the value of σ the smoother the process is. This is also reflected
in the samples from the model. (Bottom) Same but for Ornstein-Uhlenbeck process, however, in-
creasing the kernel parameter γ now decreases the smoothness. All of the models perfectly capture
the marginal distribution.
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