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Abstract

LLM-as-a-judge has become a promising001
paradigm for evaluating natural language gen-002
eration (NLG), but the lack of reliability limits003
its deployment in high-risk applications. It has004
been very common to use LLMs to directly005
evaluate LLM-generated content while uncer-006
tainty quantification for rating evaluation re-007
mains underexplored. This work presents the008
first analysis framework to offer interval eval-009
uations in LLM-based scoring via conformal010
prediction. Conformal prediction constructs011
continuous confidence intervals from a single012
evaluation run and we design a ordinal bound-013
ary adjustment for discrete rating tasks. We014
also suggest a midpoint-based score within the015
interval as a low-bias alternative to raw model016
score and weighted average. Extensive experi-017
ments and analysis across evaluators and con-018
formal prediction methods show that our frame-019
work yields narrow intervals with reliable cov-020
erage, enabling more trustworthy evaluation for021
downstream decision making1022

1 Introduction023

Large language models (LLMs) have become pow-024

erful automatic evaluators for natural language gen-025

eration (NLG) tasks, known as LLM-as-a-judge.026

Its consistency with human judgments results in027

strong performance with respect to metrics like028

ROUGE (Lin, 2004), BLEU (Papineni et al., 2002),029

and BERTScore (Zhang et al., 2020). Besides,030

LLM judges can flexibly adapt to diverse evalu-031

ation criteria and provide scalable, cost-effective032

assessments compared to expert annotation (Gao033

et al., 2024; Gu et al., 2025). These advantages034

make the LLM-as-a-judge useful in various scenar-035

ios, such as clinical radiology (Chaves et al., 2024),036

rumor detection (Hong et al., 2025), cyberattack de-037

tection (Yong et al., 2025) and wildlife trafficking038

identification (Barbosa et al., 2025).039

1Our code and data will be publicly available upon accep-
tance of this paper.

However, a single evaluation from a LLM judge 040

might be biased (Wu and Aji, 2023; Li et al., 041

2024b) and uncertain due to inherent random- 042

ness (Schroeder and Wood-Doughty, 2024), thus 043

undermining its reliability in scenarios like health- 044

care (Chung et al., 2025) and finance (Kamble 045

et al., 2025). Though a LLM judge can express its 046

confidence with well-designed prompt or via fine- 047

tuning (Xu et al., 2024a; Liu et al., 2024; Tauben- 048

feld et al., 2025), it may still suffer from overconfi- 049

dence (Xiong et al., 2024) or dishonesty (Li et al., 050

2024d). We ask: How can a LLM judge provide 051

reliable evaluation given the user request? 052

Conformal prediction (Vovk et al., 2005) is a 053

promising way to quantify the uncertainty of an 054

LLM judge (Ye et al., 2024). It outputs a confi- 055

dence interval (or set for classification) to a model 056

output with three key advantages. First, conformal 057

prediction is a distribution-free uncertainty quan- 058

tification method, which is suitable for black-box 059

models like LLMs due to unknown input data dis- 060

tribution for most (if not all) LLMs. Second, it 061

can provide post-hoc uncertainty quantification us- 062

ing only a calibration step based on LLM outputs. 063

Third, the confidence interval given by conformal 064

prediction enjoys statistically guaranteed coverage, 065

i.e., how likely the ground truth falls within the 066

interval, as long as the data is exchangeable. 067

In this paper, we comprehensively evaluate nine2 068

conformal prediction methods in quantifying the 069

uncertainty of a LLM judge in rating-based evalua- 070

tion tasks, each of which constructs a confidence 071

interval for a rating output by the LLM judge. For 072

each conformal prediction method, we evaluate its 073

efficiency (i.e., average width of confidence inter- 074

vals) and coverage (i.e., the probability that ground 075

truths fall within confidence intervals). Further- 076

more, to adapt to the ordinal and discrete nature in 077

organic rating-based evaluation, we propose bound- 078

ary adjustment that adjusts the endpoints of confi- 079

2Seven regression-type and two ordinal-type methods.
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dence interval to be aligned with the rating scales.080

We prove that the boundary adjustment yields an in-081

terval suitable to the ordinal setting with provable082

non-decreasing coverage. From our comprehen-083

sive analysis, we demonstrate that the quality of084

confidence interval attributes to design choices of085

the LLM judge (e.g., which LLM to use as the086

judge, which prompting strategy for evaluation)087

as well as the size of calibration data during cal-088

ibration. Finally, we show that the midpoint of089

the confidence interval provides better estimate to090

the ground truth to further assist better decision-091

making. Our analysis advocate for a shift from092

direct scoring to uncertainty-aware evaluations, of-093

fering references to decision-making.094

In summary, our contributes are095

• We are the first to analyze the uncertainty of096

LLM-as-a-judge using conformal prediction in097

rating-based evaluation, which uses the output098

from a single evaluation run.099

• We design a boundary adjustment, which im-100

proves the efficiency empirically without com-101

promising the coverage. The interval points sug-102

gest better alignment to human evaluation.103

• We analyze factors affecting the interval quality,104

including the LLM-as-a-judge framework itself,105

the choice of LLM in the framework, and the106

size of calibration in conformal prediction, and107

offer practical insights or recommended choices.108

2 Related Work109

Uncertainty Quantification for LLM-as-a-Judge.110

Uncertainty quantification for LLM-as-a-judge is111

an important yet less explored area. Wagner et al.112

(2024) prompt the judge to justify each rating113

option as if it were correct and then construct a114

confusion matrix from token-level probabilities115

of these assessments to derive confidence scores.116

Xie et al. (2025) use token probabilities to esti-117

mate the confidence of judgments, and demon-118

strate that such measures exhibit bias and instabil-119

ity through extensive experiments. Similar conclu-120

sions are also found when applying other two com-121

mon paradigms: (1) prompting LLMs to self-report122

confidence (Yona et al., 2024; Xu et al., 2024a),123

which can suffer from overconfidence (Xiong et al.,124

2024) or dishonesty (Li et al., 2024d); and (2)125

consistency-based approaches that rely on multiple126

generations (Tian et al., 2023; Xiong et al., 2024),127

which, like the confusion matrix-based method,128

are computationally expensive. To our best knowl-129

edge, Jung et al. (2024) is the most relevant work to 130

us, which applies conformalized risk control (An- 131

gelopoulos et al., 2022) to ensure agreement with 132

human preferences in pairwise response compar- 133

ison (Zhou et al., 2024; Li et al., 2024a,c; Zhang 134

et al., 2025; van den Burg et al., 2025). In contrast, 135

we focus on using conformal prediction to quan- 136

tify uncertainty in rating tasks instead of pairwise 137

preference modeling. 138

Conformal Prediction for LLMs. Conformal 139

prediction (Vovk et al., 2005) has drawn interest 140

for uncertainty quantification in LLMs (Ye et al., 141

2024) due to its distribution-free and post-hoc na- 142

ture with provable statistical guarantee. Owing 143

to these advantages, recent works primarily apply 144

conformal prediction to classification tasks, such as 145

multiple-choice question answering (Kumar et al., 146

2023; Zhang et al., 2024; Su et al., 2024; Vish- 147

wakarma et al., 2025) and response selection for 148

factual consistency (Quach et al., 2024; Mohri and 149

Hashimoto, 2024; Wang et al., 2024; Kladny et al., 150

2025). These studies typically focus on ensuring 151

that the correct answer is included in a unordered 152

prediction set. However, we focus on providing 153

intervals that reflect the variability in LLM judge- 154

ments in rating tasks, which has ordinal preference. 155

3 Analyzing Uncertainty of LLM Judges 156

3.1 Preliminaries 157

LLM-as-a-Judge. In recent years, LLMs have 158

been widely adopted as evaluators to score NLG 159

tasks, which commonly yields a predicted score 160

ŷ on a Likert scale (Nemoto and Beglar, 2014). 161

Following G-Eval (Liu et al., 2023), given a prompt 162

p and a generated text x to be evaluated, an LLM 163

judge M is expected to produce a response 164

M(p, x) = (z, ŷ), (1) 165

where z denotes the logits ŷ is a scalar score accord- 166

ing to a predefined scale. Note that, for the logits, 167

we only need to extract the logits of certain tokens 168

(e.g., 1, 2, 3, 4, 5 if in a Likert scale) at the position 169

of rating token only. Other than rating tasks, LLM- 170

as-a-judge can also be applied to other evaluation 171

paradigms (Gu et al., 2025), such as pairwise com- 172

parison or ranking, in which candidate outputs are 173

first scored by the LLM judge and then compared 174

or ordered based on those scores (Wang et al., 2025; 175

Wei et al., 2025). 176
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Figure 1: Overview of quantifying the uncertainty in rating tasks. We apply conformal prediction to construct the
confidence interval and set the width of the confidence interval as the uncertainty.

Conformal Prediction. Conformal predic-177

tion (Vovk et al., 2005) is a model-agnostic178

uncertainty quantification method. It constructs a179

confidence interval (or a set for classification) with180

coverage guarantee, free of training or prompting181

the judge model or assumptions about the underly-182

ing data distribution. In our work, we adopt split183

conformal prediction (Vovk et al., 2005), which184

quantify the uncertainty with a held-out calibration185

set. needs a offline calibration to capture the186

range of uncertainty. A non-conformity score187

function s(z, y) is computed for each point in188

the calibration set, to measure how “unusual” a189

prediction ŷ is to a ground truth y. For regression190

tasks, the non-conformity score is often defined as191

s(z, y) = |ŷ − y|. (2)192

Given a user-desired miscoverage rate α, the193
⌈(n+1)(1−α)⌉

n -quantile q̂ of these scores is then used194

to construct the confidence interval for the predic-195

tion ŷtest of any test point196

C(ztest, ŷtest) = [ŷtest − q̂, ŷtest + q̂], (3)197

or equivalently198

C(ztest, ŷtest) = {a : s(ztest, a) ≤ q̂}. (4)199

Such a confidence interval satisfies the coverage200

guarantee (Angelopoulos and Bates, 2022)201

1−α ≤ P (ytest ∈ C (ztest , ŷtest)) ≤ 1−α+
1

n+ 1
,

(5)202

as long as the calibration set and test set are ex- 203

changeable, i.e., the joint distribution remain the 204

same after any permutations on these two sets. 205

3.2 From Logits to Intervals 206

We focus on quantifying the uncertainty using con- 207

formal prediction in rating tasks (e.g., in Likert 208

scale). An overview of the workflow is presented 209

in Figure 1. 210

Extract Logits as Feature As our framework tar- 211

gets uncertainty estimation in discrete rating tasks, 212

the token-level logits corresponding to Likert-scale 213

scores (e.g., 1–5) are used as features. 214

As shown in Figure 1, an LLM judge, prompted 215

with a chain-of-thought (CoT) instruction (Exam- 216

ple in Appendix A.1) that specifies an output for- 217

mat, generates a response containing its rating. Af- 218

ter accurately locating the target score token "4", 219

we extract the log probabilities of all potential score 220

tokens (e.g., 1–5). To ensure semantic consistency, 221

we aggregate the log probabilities of tokens with 222

equivalent meanings. 223

As a result, we obtain a K-dimensional fea- 224

ture vector z representing the logits associated 225

with each candidate score token in {1, 2, . . . ,K}3, 226

which composes the input for conformal prediction, 227

3We use K = 5 for the standard Likert scale or GPA-like
settings, but K can be adapted to other granularities (e.g., 7 or
10) depending on the evaluation scale.
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i.e. {z, y}, which is found to have these proper-228

ties: (1) Independent and identically distributed,229

at least exchangeable4; (2) E[Σk
i=1e

zi ] = 1, which230

causes the interdependence among variables; (3)231

heteroskedasticity5; (4) Isolated distribution of la-232

bel caused by rating nature. These properties in-233

spires our method choice for interval construction.234

Notably, token probabilities are frequently seen235

in early works but they would cause multicollinear-236

ity in regression. Thus they are only used in ordinal237

predictors (because they need) and cause unstable238

performance due to well-known bias.239

Confidence Interval Estimation As discussed in240

Section 3.1, modern conformal prediction methods241

vary in how they define non-conformity scores and242

construct intervals, yet they share a unified struc-243

ture that ensures valid coverage. In our framework,244

we go beyond the basic absolute-error formulation245

and adopt a diverse set of nine conformal predic-246

tors. Each is designed to handle specific data char-247

acteristics—such as asymmetry, heteroskedastic-248

ity, or ordinal outputs—and offers complementary249

strengths. This diversity allows our framework to250

remain robust and adaptable across different evalu-251

ation scenarios.252

The selected methods include quantile re-253

gression–based approaches (e.g., CQR (Romano254

et al., 2019), Asymmetric CQR (Sesia and Can-255

dès, 2019)), histogram-based estimators (e.g.,256

CHR (Sesia and Romano, 2021)), kernel regres-257

sion variants (e.g., LVD (Lin et al., 2021)), boosted258

methods (Xie et al., 2024) (e.g., Boosted CQR and259

Boosted LCP), and ordinal classification–based pre-260

dictors (e.g., R2CCP (Guha et al., 2024), Ordinal261

APS (Lu et al., 2022) and Ordinal Risk Control (Xu262

et al., 2024b)). A complete summary of their non-263

comformity score functions and construction prin-264

ciples is provided in Appendix A.4.265

3.3 Boundary Adjustment266

In addition to an interval in Equation 3, our frame-267

work further transform the regression problem to268

a ordinal classification problem by a boundary ad-269

justment, due to the ordinal and discrete nature of270

rating. Therefore the interval boundaries will be271

4It depends on the generation task to evaluate. If the dateset
comprises summaries and annotations generated by multiple
models from the same source document, the features extracted
by the LLM judge are unlikely to be i.i.d. However, exchange-
ability is guaranteed for permutation invariance of evaluations.

5Hypothesis testing results are shown in Appendix A.3.

aligned with potential labels, instead of continuous 272

scores that might have no exact meaning. 273

For conformal prediction, we redefine the non- 274

conformity score function as: 275

s′(z, y) = s(z, y′) =


s(z, ⌈y⌉) if y ≤ ⌊ŷ⌋,
s(z, y) otherwise,
s(z, ⌊y⌋) if y ≥ ⌈ŷ⌉.

(6) 276

Because all potential labels y′ are integers in rating 277

evaluation, this new function ensures the scores 278

consistent on calibration set. However, it trans- 279

forms the interval from Equation 4 to 280

C(ztest) = {a : s′(xtest, a) ≤ q̂} = [l, u] → [l′, u′],
(7) 281

where l′ = ⌈l⌉ and u′ = ⌊u⌋. 282

We shrink the boundaries to interior labels by 283

cutting excessive areas because they cover no po- 284

tential labels, while y in these areas share a same q̂ 285

with the labels, which means this adjustment has no 286

influence to coverage. For example, [2.9, 4.2] will 287

be shrunk to [3, 4] with the same coverage since 288

s′(z, 2.9) = s′(z, 3) and s′(z, 4.2) = s′(z, 4). 289

On the other hand, we can also expand an inter- 290

val to mitigate the marginal miscoverage caused by 291

isolated label distribution and limited calibration 292

size. For example, the interval [2.2, 3.9] only cover 293

3 but can be expanded to [2, 4], then a pitiful mis- 294

coverage can be avoided if the ground truth is 2 or 295

4. This improvement of coverage can be explained 296

by a larger q̂ for each boundary, which theoretically 297

ensures more abnormal results to be covered. 298

The following theorem shows the non- 299

decreasing coverage after boundary adjustment, 300

with its proof shown in Appendix A.2. Other 301

discrete ganularities (e.g. GPA scale) are also 302

applicable after linear transformation to intergers. 303

Theorem 1 (Non-decreasing Coverage After 304

Boundary Adjustment). Based on coverage guar- 305

antee in Equation 5, we transform the non- 306

conformity score function s(x, y) by Equation 6 307

and adjust an continuous interval by Equation 7. 308

Then, if the adjustment is performed by shrinking 309

(l′ = ⌈l⌉ and u′ = ⌊u⌋ ), coverage preserves: 310

P
(
Ytest ∈ C′(xtest)

)
≥ 1− α. 311

And if at least one boundary is expanded ( l′ = 312

⌊l⌋ or u′ = ⌈u⌉ ), coverage is expected to increase: 313

P
(
Ytest ∈ C′(xtest)

)
> 1− α. 314
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3.4 Midpoints as Calibrated Scores315

To make use of confidence interval, one can take316

its midpoint as a suggested score. The interval317

provides coverage guarantees but offers no indica-318

tion of the direction toward the true label. Even319

if biased, the midpoint is the minimum-variance320

estimator of the true label given the endpoints.321

4 Experiments322

4.1 Experimental Setting323

Datasets. We run experiments on evaluation324

benchmarks in text summarization, dialogue sum-325

marization and reasoning. For summarization, we326

use SummEval (Fabbri et al., 2021) (1,600 samples)327

and DialSumm (Gao and Wan, 2022) (1,400 sam-328

ples), each annotated by three human raters using329

Likert-scale scores across four dimensions. The av-330

erage of the three ratings is used as the ground-truth331

label on a GPA scale. For reasoning, we use the332

annotations of overall quality for CosmosQA (Li333

et al., 2023), DROP (Dua et al., 2019), e-334

SNLI (Camburu et al., 2018) and GSM8K (Cobbe335

et al., 2021) in ROSCOE (Golovneva et al., 2023),336

each with around 200 samples on Likert scale.337

LLM-based Evaluation. We primarily adopt G-338

Eval (Liu et al., 2023) as our judge framework339

with a CoT prompt (Appendix A.1). For reason-340

ing tasks, we additionally employ SocREval (He341

et al., 2024). Evaluations are mainly conducted342

using GPT-4o-mini (2024-07-18), DeepSeek-R1-343

Distill-Qwen-32B (DeepSeek-AI et al., 2025), and344

Qwen2.5-72B-Instruct (Qwen et al., 2025), all of345

which provide token-level logits.346

Conformal Prediction. In our experiments, we347

employ 9 regression type conformal predictors in-348

troduced in Section 3.2. Detailed introduction of349

each method is provided in Appendix A.4. For each350

method, we split of dataset into 50% calibration set351

and 50% test set and run it 30 times with different352

random seeds and report the mean and standard353

deviation of interval width and coverage rate.354

Human-based Baseline. Due to lack of refer-355

ence, we design a human-based baseline by Equa-356

tion (2) and (3) after randomly choosing one anno-357

tation as prediction. Comparison on two datasets358

are discussed in Appendix A.5.359

4.2 Continuous Intervals Indicate Uncertainty 360

Across all experimental settings (Table 1 and Ta- 361

ble 7), most conformal predictors consistently gen- 362

erate confidence intervals with coverage close to 363

the 90%, indicating LLM judges were more certain 364

when evaluating summarization tasks, especially 365

on the ’Fluency’ of the summaries. However, some 366

methods show unsatisfying coverage especially in 367

small-sample conditions (ROSCOE), further high- 368

lighting the importance of proper calibration (see 369

Section 5.1). To mitigate miscoverage, a mild ad- 370

justment (e.g. adjust to nereast label within 0.1 371

radius) is effective (Table 9 and 10). 372

4.3 All Coverages Improve after Adjustment 373

While continuous interval estimators offer intuitive 374

uncertainty representations, their coverage is highly 375

sensitive to the variability of quantile estimation 376

in calibration. Table 2 and 8 show that this is- 377

sue is well addressed by boundary adjustment: all 378

conformal regressors exhibit increased coverage 379

after adjustment, with the majority achieving stable 380

coverage at or above the 90% across datasets and 381

evaluation frameworks. 382

With theoretical guarantee (Theorem 1), cover- 383

age improvements brought by boundary adjustment 384

are empirically robust across different datasets, 385

conformal predictors, judge models and judgment 386

frameworks. For example, in SummEval and Di- 387

alSumm, where coverage originally fell in the 388

83%–88% range, predictors now consistently ex- 389

ceed 90%. A significant example is LVD, which, 390

when applied to e-SNLI using Qwen2.5 under 391

SocREval, showed an increase from 85.96% to 392

95.53%, demonstrating the practical effectiveness. 393

4.4 Recommended Choice from Analysis 394

Our analysis shows that DeepSeek-R1-Distill- 395

Qwen-32B provides the most consistent coverage 396

(surpassing Qwen2.5-72B-Instruct and GPT-4o- 397

mini), while Qwen2.5-72B-Instruct typically yields 398

the narrowest intervals; under the G-Eval frame- 399

work we observe higher coverage (at the cost of 400

slightly wider bands) versus SocREval; among CP 401

methods, R2CCP strikes the best balance between 402

coverage and width, Boosted LCP performs com- 403

parably but less efficiently, LVD delivers very tight 404

intervals without sacrificing coverage, and Ordi- 405

nalAPS can produce the tightest bands yet is highly 406

sensitive to token probabilities. In practice, for 407

high-risk applications we recommend DeepSeek + 408
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Evaluator Method SummEval Evaluated with G-Eval ROSCOE Evaluated with SocREval

Consistency Coherence Fluency Relevance CosmosQA DROP e-SNLI GSM8K

GPT-4o mini

Boosted CQR 1.01 / 87.75% 2.73 / 87.80% 1.54 / 88.68% 2.00 / 87.42% 3.15 / 80.07% 2.63 / 78.57% 1.82 / 80.26% 3.08 / 82.50%
Boosted LCP 0.76 / 89.22% 2.67 / 87.34% 0.92 / 89.18% 1.91 / 87.19% 3.60 / 83.91% 2.92 / 85.40% 1.88 / 81.23% 3.36 / 85.93%
CHR 0.67 / 88.99% 2.41 / 82.96% 0.94 / 88.86% 1.74 / 82.62% 2.54 / 73.06% 1.86 / 68.92% 1.36 / 72.24% 1.98 / 78.67%
Asym CQR 1.25 / 94.97% 2.91 / 93.76% 1.60 / 93.75% 2.13 / 91.42% 3.90 / 98.71% 3.91 / 98.60% 2.87/ 96.67% 3.89 / 98.80%
Sym CQR 1.15 / 94.16% 2.87 / 93.15% 1.44 / 92.92% 2.09 / 90.92% 3.53 / 95.27% 3.82/96.70% 3.04 / 96.62% 3.53 / 95.67%
LVD 1.01 / 92.35% 2.73 / 89.76% 1.11 / 90.59% 2.02 / 89.55% 3.10 / 83.95% 2.49 / 83.05% 2.17 / 86.18% 3.08 / 89.57%
R2CCP 0.69 / 90.88% 2.62 / 89.63% 0.92 / 89.36% 1.97 / 89.70% 2.96 / 85.85% 2.43 / 84.73% 1.75 / 84.02% 2.15 / 85.07%

DSR1-Distill-Qwen-32B

Boosted CQR 1.10 / 89.30% 2.36 / 88.98% 1.16 / 89.46% 2.00 / 88.98% 3.17 / 82.72% 2.47 / 81.11% 1.79 / 80.96% 2.94 / 79.83%
Boosted LCP 0.77 / 89.20% 2.32 / 86.70% 0.93 / 89.10% 1.91 / 86.89% 3.48 / 81.60% 2.79 / 85.46% 1.84 / 80.61% 3.43 / 85.23%
CHR 0.82 / 91.17% 2.23 / 87.07% 0.90 / 89.24% 1.87 / 86.38% 2.66 / 76.50% 1.95 / 78.06% 1.38 / 71.97% 2.01 / 81.60%
Asym CQR 1.30 / 95.13% 2.72 / 92.86% 1.49 / 94.52% 2.21 / 92.06% 3.84 / 99.08% 3.95 / 99.27% 2.86 / 96.05% 3.85 / 98.43%
Sym CQR 1.16 / 93.88% 2.67 / 92.50% 1.31 / 93.01% 2.13 / 91.05% 3.48 / 96.70% 3.83 / 96.35% 2.97 / 96.36% 3.46 / 95.60%
LVD 0.97 / 92.93% 2.43 / 91.10% 1.00 / 91.10% 2.04 / 90.14% 3.25 / 88.10% 2.62 / 88.06% 2.24 / 90.96% 3.02/90.63%
R2CCP 0.69 / 90.44% 2.30 / 90.12% 0.89 / 90.09% 2.00 / 89.84% 2.94 / 86.97% 2.29 / 86.35% 1.85 / 87.87% 1.88 / 85.33%

Qwen2.5-72B-Instruct

Boosted CQR 0.80 / 88.28% 2.46 / 87.82% 1.24 / 89.22% 1.88 / 87.17% 3.05 / 79.08% 2.56 / 81.17% 1.51 / 77.11% 2.81 / 80.67%
Boosted LCP 0.67 / 88.81% 2.43 / 86.92% 0.94 / 89.26% 1.86 / 87.51% 3.46 / 80.41% 2.81 / 85.75% 1.74 / 77.50% 3.38 / 86.23%
CHR 0.61 / 89.04% 2.14 / 80.93% 0.98 / 88.93% 1.61 / 79.61% 2.44 / 72.65% 2.08 / 75.87% 1.22 / 69.69% 1.81 / 77.50%
Asym CQR 1.11 / 94.47% 2.80 / 93.13% 1.63 / 94.79% 2.17 / 92.21% 3.86 / 99.01% 3.89 / 98.67% 2.77 / 96.84% 3.87 / 98.97%
Sym CQR 0.98 / 93.10% 2.73 / 92.25% 1.44 / 93.73% 2.11 / 91.30% 3.37 / 94.80% 3.79 / 97.02% 3.01 / 97.37% 3.35 / 95.33%
LVD 0.85 / 92.82% 2.55 / 90.49% 1.09 / 90.94% 1.94 / 89.27% 3.05 / 84.29% 2.67 / 90.57% 1.91 / 85.96% 2.83/ 90.13%
R2CCP 0.61 / 90.73% 2.44 / 89.54% 0.95 / 90.17% 1.98 / 90.45% 2.90 / 85.34% 2.39 / 86.25% 1.59 / 84.50% 2.00 / 86.73%

Table 1: Summaries of continuous intervals, SummEval evaluated by G-Eval and ROSCOE evaluated by SocREval.

G-Eval + LVD, whereas, when employing bound-409

ary adjustment to reinforce coverage, the most effi-410

cient setup is Qwen2.5 + R2CCP + SocREval.411

4.5 Midpoints Reduce at Most 95% Bias412

A simple yet effective way to leverage these in-413

terval estimates is to use their midpoints as point414

predictions, assuming that the true score lies near415

the center of a sufficiently narrow interval, with416

extreme cases yielding exact overlap. In the inter-417

val estimation phase, R2CCP is found to be the418

best predictor with proper calibration, although419

it was occasionally outperformed by OrdinalAPS.420

Based on this, we select three interval types for421

midpoint evaluation: the continuous and discrete422

(adjusted) intervals of R2CCP, and the discrete in-423

terval derived directly from OrdinalAPS. We com-424

pare these midpoint scores against two baselines:425

the raw score in LLM response and the weighted426

average derived from token probabilities.427

Table 3 and 11 show that, while the midpoint428

estimates achieve comparable or even slightly bet-429

ter correlation with the ground-truth scores, they430

significantly reduce prediction error, yielding sub-431

stantially lower MSE and MAE. For example, the432

midpoints from OrdinalAPS on Coherence of Di-433

alSumm evaluated by DeepSeek-R1-Distill-Qwen-434

32B reduce 95.7% of the MSE, from 2.908 to 0.124435

(Table 11). Moreover, across multiple dimensions,436

the MAE between midpoints and the true ratings is437

typically below 0.5 (in some cases drops to around438

0.2), demonstrating excellent debiasing. For in-439

stance, when the ground truth is 4.33, the midpoint440

could be 4.0 or 4.5. This suggests that midpoints441

derived from narrow intervals offer a more accurate 442

and robust alternative for score estimation directly 443

from rating-type LLM-as-a-judge. 444

5 Analysis 445

5.1 Proper Calibration Improves Coverage 446

Due to the limited sample size in ROSCOE and 447

the inability of most CP methods to achieve the 448

target coverage, we turn to the SummEval and Di- 449

alSumm datasets to examine how calibration-set 450

size affects coverage. Using R2CCP, we construct 451

continuous prediction intervals under four calibra- 452

tion regimes—25%, 50%, 75%, and 100% of the 453

whole calibration set, and show the tendency in Fig- 454

ure 2, which show that as the calibration set grows, 455

the mean coverage increases and even surpasses 456

the desired 90%, while its corresponding error bar 457

shrinks. This behavior highlights the importance 458

of sufficiently large calibration sets to stabilize cov- 459

erage around the required threshold. 460

5.2 Why Boundary Adjustment is Effective 461

During the transition from continuous to discrete 462

intervals, we observe consistent improvements in 463

empirical coverage across all experimental settings. 464

A concrete example is illustrated in Figure 3 and 4, 465

where certain ground-truth scores fall just outside 466

the estimated intervals. In such cases, a marginal 467

upward shift in the estimated quantiles would suf- 468

fice to restore coverage. This demonstrates that 469

a relatively modest increase in interval width can 470

lead to a substantial gain in calibration, success- 471

fully achieving the 90% coverage. 472
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Evaluator Method SummEval Evaluated with G-Eval ROSCOE Evaluated with SocREval

Consistency Coherence Fluency Relevance CosmosQA DROP e-SNLI GSM8K

GPT-4o mini

Boosted CQR 0.99 / 92.81% 2.73 / 93.02% 1.54 / 94.38% 2.00 / 92.93% 3.20 / 93.40% 2.63 / 89.65% 1.82 / 92.15% 3.09 / 91.17%
Boosted LCP 0.74 / 91.90% 2.68 / 93.53% 0.90 / 90.88% 1.91 / 92.70% 3.60 / 95.48% 3.01 / 91.27% 1.90 / 91.80% 3.26 / 92.17%
CHR 0.70 / 91.79% 2.41 / 87.78% 0.94 / 90.60% 1.74 / 88.10% 2.56 / 82.45% 1.87 / 78.86% 1.34 / 83.46% 1.94 / 83.23%
Asym CQR 1.25 / 96.02% 2.90 / 95.41% 1.60 / 94.57% 2.14 / 94.14% 3.90 / 98.84% 3.91 / 98.73% 2.87 / 96.89% 3.89 / 98.80%
Sym CQR 1.15 / 95.45% 2.87 / 94.94% 1.44 / 93.80% 2.09 / 93.56% 3.53 / 95.34% 3.82 / 97.05% 3.04 / 96.89% 3.53 / 95.67%
LVD 1.01 / 94.11% 2.73 / 93.72% 1.12 / 92.70% 2.03 / 93.82% 3.13 / 91.53% 2.52 / 90.22% 2.17 / 94.82% 3.09/93.37%
R2CCP 0.68 / 92.15% 2.62 / 92.81% 0.91 / 90.99% 1.97 / 93.38% 2.93 / 89.46% 2.41 / 89.21% 1.71 / 90.11% 2.09 / 86.93%
OrdinalAPS 2.28 / 42.60% 1.88 / 70.90% 1.78 / 71.47% 2.36 / 51.85% 0.73 / 47.52% 0.83 / 55.08% 0.72 / 52.76% 0.58 / 73.90%
OrdinalRC 2.41 / 75.19% 2.02 / 67.38% 1.93 / 14.58% 2.51 / 90.30% 0.82 / 49.46% 0.91 / 57.11% 0.80 / 54.61% 0.60 / 74.43%

DSR1-Distill-Qwen-32B

Boosted CQR 1.08 / 93.55% 2.37 / 93.96% 1.15 / 93.48% 2.01 / 93.72% 3.20 / 95.71% 2.52 / 93.30% 1.79 / 93.25% 2.94 / 92.23%
Boosted LCP 0.76 / 92.03% 2.32 / 92.37% 0.93 / 91.34% 1.92 / 92.81% 3.46 / 95.95% 2.80 / 91.94% 1.87 / 92.89% 3.36 / 93.63%
CHR 0.87 / 93.96% 2.23 / 91.42% 0.91 / 91.98% 1.87 / 90.84% 2.69 / 86.80% 1.97 / 85.90% 1.39 / 85.96% 2.01 / 86.60%
Asym CQR 1.31 / 95.99% 2.72 / 94.83% 1.49 / 95.57% 2.21 / 94.53% 3.84 / 99.08% 3.95 / 99.27% 2.88 / 96.45% 3.84 / 98.47%
Sym CQR 1.15 / 95.02% 2.67 / 94.34% 1.32 / 94.44% 2.13 / 93.67% 3.48 / 96.80% 3.82 / 96.54% 2.99 / 96.80% 3.46 / 95.63%
LVD 0.97 / 95.01% 2.44 / 94.58% 1.00 / 93.21% 2.04 / 94.12% 3.28 / 95.27% 2.67 / 93.75% 2.24 / 96.36% 3.03 / 94.40%
R2CCP 0.68 / 91.57% 2.30 / 93.22% 0.89 / 91.80% 1.99 / 92.96% 2.91 / 90.58% 2.25 / 89.97% 1.80 / 92.35% 1.82 / 86.93%
OrdinalAPS 0.61 / 89.84% 0.66 / 90.70% 1.14 / 90.75% 0.54 / 90.11% 1.32 / 60.00% 1.26 / 78.22% 1.46 / 87.85% 1.50 / 85.67%
OrdinalRC 2.54 / 90.11% 2.56 / 91.18% 3.73 / 89.53% 2.14 / 90.07% 1.44 / 62.35% 1.33 / 78.22% 1.52 / 88.33% 1.55 / 86.07%

Qwen2.5-72B-Instruct

Boosted CQR 0.81 / 92.36% 2.47 / 93.06% 1.25 / 93.66% 1.88 / 92.81% 3.10 / 94.01% 2.56 / 90.79% 1.49 / 92.11% 2.82 / 92.03%
Boosted LCP 0.65 / 91.26% 2.44 / 92.26% 0.93 / 91.20% 1.86 / 92.57% 3.40 / 94.90% 2.84 / 92.41% 1.79 / 91.84% 3.33 / 92.90%
CHR 0.66 / 92.21% 2.14 / 86.10% 0.98 / 91.16% 1.61 / 85.78% 2.49 / 82.14% 2.05 / 82.89% 1.18 / 84.56% 1.79 / 85.27%
Asym CQR 1.10 / 95.47% 2.79 / 94.70% 1.64 / 95.63% 2.17 / 94.85% 3.85 / 99.18% 3.89 / 98.67% 2.77 / 97.06% 3.87 / 98.97%
Sym CQR 0.98 / 94.35% 2.72 / 94.18% 1.45 / 94.79% 2.10 / 94.02% 3.36 / 95.07% 3.79 / 97.08% 3.01 / 97.68% 3.34 / 95.33%
LVD 0.85 / 95.11% 2.56 / 94.05% 1.09 / 93.45% 1.95 / 93.86% 3.07 / 92.01% 2.67 / 93.87% 1.91 / 95.53% 2.87 / 93.43%
R2CCP 0.59 / 91.83% 2.43 / 92.78% 0.95 / 92.12% 1.98 / 93.72% 2.88 / 89.29% 2.34 / 90.00% 1.55 / 90.20% 1.96 / 88.57%
OrdinalAPS 0.80 / 89.94% 0.77 / 90.60% 0.90 / 58.30% 0.62 / 90.40% 0.71 / 55.99% 0.25 / 56.83% 0.67 / 77.68% 0.46 / 70.87%
OrdinalRC 2.85 / 90.00% 2.96 / 89.35% 3.21 / 53.31% 2.75 / 90.14% 0.75 / 57.28% 0.29 / 56.83% 0.80 / 79.74% 0.49 / 71.37%

Table 2: With boundary adjustment, nearly all intervals generated by conformal regressors meet or exceed the 90%
coverage on SummEval evaluated by G-Eval and ROSCOE evaluated by SocREval.

Figure 2: Coverage improves as calibration increases:
mean coverage rates increase to 90% and error bars
shrink on all dimensions of SummEval and DialSumm.

Figure 3: Red points mean the labels lying outside the
intervals, which could turn green (inside) if the interval
just extend to nearest labels (e.g. 3.33 and 5).

Figure 4: After applying boundary adjustment, the cov-
erage in this instance improves from 86.38% to 90.50%,
while the average width increases slightly to 1.8549.

5.3 Reprompt and Regrade with Intervals 473

Assuming LLM judge could mimic human to 474

decide, we explore the potential of intervals in 475

decision-making by reprompting judges with in- 476

tervals information (Figure 6). We reprompt our 477

best intervals among 30 experiments of ROSCOE 478

(R2CCP + DSR1) to the judge and find that in- 479

tervals strengthen its confidence in initial ratings 480

, which mostly lies within the intervals (Table 14, 481

Figure 7, 8 and 9). And it also retains its rating 482

even it’s outside the interval (Figure 10 and 11). 483
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Evaluator Method Coherence Consistency Fluency Relevance

MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ

GPT-4omini

Raw Score 1.729 1.055 0.446 0.373 1.674 1.073 0.480 0.437 7.099 2.393 0.051 0.045 1.009 0.786 0.512 0.427
Weighted Sum 1.643 1.037 0.514 0.379 1.548 1.066 0.478 0.383 3.412 1.733 0.319 0.250 0.865 0.737 0.567 0.419
OrdinalAPS 1.004 0.895 0.511 0.412 2.157 1.377 0.481 0.403 0.872 0.792 0.315 0.265 2.090 1.351 0.538 0.441
Con_R2CCP 0.791 0.716 0.512 0.373 0.510 0.432 0.455 0.371 0.442 0.491 0.330 0.261 0.418 0.509 0.546 0.403
Dis_R2CCP 0.794 0.715 0.508 0.386 0.512 0.428 0.506 0.468 0.443 0.488 0.336 0.300 0.423 0.509 0.540 0.423

DSR1-Qwen32

Raw Score 1.010 0.775 0.549 0.457 1.229 0.770 0.467 0.425 2.843 1.549 0.387 0.355 0.763 0.682 0.520 0.437
Weighted Sum 0.869 0.734 0.599 0.447 1.439 1.065 0.468 0.375 2.783 1.564 0.420 0.332 0.646 0.632 0.565 0.419
OrdinalAPS 0.096 0.224 0.570 0.489 0.147 0.322 0.471 0.424 0.315 0.528 0.377 0.345 0.076 0.207 0.534 0.458
Con_R2CCP 0.599 0.619 0.663 0.492 0.564 0.446 0.445 0.361 0.373 0.455 0.391 0.311 0.431 0.513 0.555 0.412
Dis_R2CCP 0.602 0.619 0.661 0.508 0.566 0.441 0.462 0.423 0.375 0.454 0.393 0.351 0.434 0.512 0.548 0.431

Qwen2.5-72B

Raw Score 1.432 0.981 0.426 0.358 2.068 1.237 0.458 0.416 4.476 1.958 0.310 0.281 1.188 0.903 0.498 0.420
Weighted Sum 1.282 0.932 0.539 0.395 1.847 1.213 0.483 0.387 4.236 1.928 0.363 0.285 1.091 0.885 0.555 0.412
OrdinalAPS 0.111 0.265 0.526 0.449 0.201 0.408 0.497 0.453 0.388 0.574 0.335 0.297 0.083 0.215 0.539 0.470
Con_R2CCP 0.675 0.659 0.603 0.444 0.469 0.396 0.465 0.378 0.414 0.486 0.340 0.269 0.407 0.502 0.571 0.425
Dis_R2CCP 0.678 0.659 0.600 0.456 0.469 0.387 0.538 0.498 0.416 0.485 0.342 0.306 0.411 0.501 0.566 0.444

Table 3: Comparison of interval midpoints with LLM scoring baselines on SummEval. Bold indicates better
performance than baselines, underlined denotes comparable performance, and gray indicates worse performance.
Mean squared error (MSE), mean absolute error (MAE), Spearman’s ρ and Kendall’s τ are calculated as the mean of
30 experiments. The R2CCP midpoints consistently yield significant improvements in MSE and MAE, though less
dramatic than those of OrdinalAPS (e.g., MSE < 0.1 in relevance). Notably, when interval quality is poor, midpoint
predictions also degrade, underscoring the importance of proper calibration (Table 12 and 13 ).

6 Discussion484

This work introduces the application of Confor-485

mal Prediction (CP) methods for quantifying LLM486

scoring uncertainty based on single-output logits.487

We provide the first analysis of applying CP in488

estimating LLM scoring uncertainty: by employ-489

ing nine distinct CP methods across three LLM490

judge models, two evaluation frameworks, and mul-491

tiple datasets, we construct continuous and discrete492

prediction intervals that achieve or approximate493

90% confidence coverage. Moreover, we design a494

theoretically grounded boundary adjustment tech-495

nique that transforms continuous intervals to dis-496

crete rating scales, yielding a global improvement497

in coverage and enhancing the reliability and in-498

terpretability of the intervals. Finally, we explore499

using interval midpoints as calibrated scores to as-500

sess the utility of interval estimation within the501

LLM-as-a-judge paradigm. Experimental results502

demonstrate that this strategy matches or slightly503

surpasses baselines on correlation metrics while504

significantly outperforming direct scoring on error505

metrics, thereby achieving higher accuracy.506

To make use of the intervals, the quantified un-507

certainty by confidence intervals is the key. As long508

as an LLM judge is used for evaluation, an inter-509

val evaluation helps users to determine when they510

can trust the judgment. On the one hand, a wider511

confidence interval serves as a warning signal of un-512

reliability with the score, which is particularly ben-513

eficial in high-risk environments where uncertainty-514

induced errors must be minimized, such as in med-515

ical diagnosis (Lu et al., 2022; Tan et al., 2024). 516

On the other hand, a narrower confidence inter- 517

val suggests a higher degree of certainty in the 518

score, thereby indicating selective prediction and 519

reducing the need for manual review in automated 520

evaluation, such as in essay scoring (Song et al., 521

2024). We believe our framework might be helpful 522

in example selection to avoid the model collapse 523

when trained on LLM generated data (Shumailov 524

et al., 2024), since wide intervals could contribute 525

to active learning. 526

Limitations 527

This paper has main limitations in tasks for LLM 528

to judge. Our experimental results are primarily 529

based on summarization and reasoning in NLG 530

tasks, with a focus on the SummEval, DialSumm 531

and ROSCOE. Additionally, we acknowledge that 532

there are numerous other tasks that we have yet 533

to explore, including but not limited to machine 534

translation, multimodal generation, etc. 535
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A Appendix 906

A.1 Prompt Used in Our Analysis 907

In our analysis, we adopted the LLM-as-a-judge 908

frameworks G-Eval (Liu et al., 2023) across all 909

tasks and SocREval (He et al., 2024) specifically 910

for reasoning tasks, making only minimal prompt 911

adjustments to suit each evaluation. Below we pro- 912

vide three representative prompt examples: the rele- 913

vance evaluations on SummEval, and the ROSCOE 914

evaluations under both G-Eval and SocREval. 915

Prompt on Relevance of SummEval

You’ll be handed a summary of a news article.

Your challenge is to rate how well the summary
captures the essence of the article.

Make sure to thoroughly read and understand these
instructions before diving in. Keep this guide handy as
you work through the task, so you can refer back to it
if needed.

Evaluation Criteria:
Relevance (1–5): Does the summary hit the mark by
including the most important content from the original
article? It should focus on the key details without
wandering into irrelevant or repetitive information. If
the summary strays or over-explains, it should be rated
lower.

How to Evaluate:

1. Read both the source article and the summary
attentively.

2. Compare the two, identifying the critical points
of the article.

3. Judge how well the summary captures these im-
portant points and avoids unnecessary details.

4. Give the summary a relevance score between 1
and 5.

Source Article:
{{Document}}

Summary:
{{Summary}}

Evaluation Form (ENTER A SCORE BETWEEN
1–5):
Relevance:

916
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Prompt on ROSCOE by G-Eval

You will receive a generated response based on the
question.

Your mission is to assess whether the generated
response answers the question in a well-justified
manner.

Please pay close attention to the instructions and keep
this guide handy while completing your review. Feel
free to refer back to it as needed.

Evaluation Criterion:
Quality (1–5): 1=incomprehensible and wrong,
5=clear and correct

Steps for Evaluation:

1. Carefully read the Situation (Premise) and the
Claim (Hypothesis) to understand their key ele-
ments.

2. Evaluate the response to determine if it logically
connects the Situation to the Claim and suffi-
ciently explains whether the Claim is supported
(or not) based on the details provided.

3. Score the response’s quality on a scale of 1 to 5,
with 1 being the lowest and 5 the highest, based
on clarity, correctness, and the justification
provided.

Situation (Premise):
{{Premise}}

Claim (Hypothesis):
{{Hypothesis}}

Question:
{{Question}}

Generated response:
{{Response}}

Evaluation Form (Only provide the overall quality
score from 1–5 without any text):
Quality:

917

It is worth noting that, through oversight, we918

applied the SummEval prompt template directly919

to the DialSumm task. Even though DialSumm is920

a dataset for dialogue summarization rather than921

news summarization, the resulting intervals on Di-922

alSumm still exhibited great performance.923

Prompt on ROSCOE by SocREval

Instruction:
Does the generated response answer the question
in a well-justified manner? Please generate your
own response for the question first, then conduct a
qualitative analysis on the generated response by
taking into account your own response, and finally
give me an overall quality score in [1, 2, 3, 4, 5]
(1=incomprehensible and wrong, 5=clear and correct).
Note that you need to consider both the explanation
and the answer in the generated response.

Example:

• Situation (Premise): Two women are embracing
while holding to go packages.

• Claim (Hypothesis): Two women are holding
packages.

• Question: Is the Claim supported by the Situa-
tion?

• Generated response: The two women are most
likely embracing because they are either friends
or family. If they were just holding packages,
there would be no need for them to embrace. The
answer is Yes.

• Example representation:
– "own response": "Yes, the Claim is sup-

ported by the Situation. The Situation states
that two women are ëmbracing while hold-
ing to go packages,ẅhich means they are
holding packages. Therefore, the Claim is
accurate.",

– "qualitative analysis": "The generated re-
sponse starts by making an assumption
about why the two women might be embrac-
ing, suggesting they could be friends or fam-
ily. While this could be true, it is not directly
relevant to the question asked. The core of
the question is about the Claim’s accuracy
given the Situation. The latter part of the
generated response does correctly determine
that the answer is Ÿes.Ḧowever, the earlier
assumption makes the response longer and
potentially more confusing.",

– "overall quality": 4

Actual Input:
• Situation (Premise): {{Premise}}
• Claim (Hypothesis): {{Hypothesis}}
• Question: {{Question}}
• Generated response: {{Response}}

Evaluation Request:
Please generate your own response for the question
first, then conduct a qualitative analysis on the
generated response by taking into account your own
response, and finally give me the overall quality of
the given generated response for the question by
taking into account both your own response and the
qualitative analysis based on the instruction and the
format of the example representation.

Evaluation Form (Only provide the overall quality
score from 1–5 without any text):
Quality:

92413



A.2 Proof of Boundary Adjustment925

Non-decreasing Coverage Guarantee926

Proof. By the standard split conformal prediction927

procedure with the nonconformity score s(x, y) =928

|ŷ − y|, the prediction set929

C(xtest) = {z ∈ R : s(xtest, z) ≤ q̂1−α}930

satisfies931

P(Ytest ∈ C(xtest)) ≥ 1− α.932

In our discrete setting, every potential label is933

an element of a predetermined ordered set (e.g.,934

{1, 2, 3, 4, 5}). The adjusted score s′(x, y) is de-935

fined such that for each y,936

s′(x, y) = s
(
x, y′

)
,937

where y′ is the label nearest to y from the appropri-938

ate side.939

In regions where the original interval C(xtest) =940

[l, u] already contains some labels, the shrinking941

adjustment leads to942

s′(xtest, l) = s
(
xtest, ⌈l⌉

)
≤ q̂1−α943

or944

s′(xtest, u) = s
(
xtest, ⌊u⌋

)
≤ q̂1−α.945

Thus, every label that was originally covered (i.e.,946

satisfying s(xtest, y) ≤ q̂) remains covered, ensur-947

ing that the coverage remains unchanged.948

On the other hand, suppose that an expanding949

adjustment is performed, we have950

s′(xtest, l) ≤ q̂1−α ≤ s′
(
xtest, ⌊l⌋

)
≤ q̂1−α0951

or952

s′(xtest, u) ≤ q̂1−α ≤ s′
(
xtest, ⌈u⌉

)
≤ q̂1−α0 ,953

where 0 ≤ α0 < α.954

In this case, for any z /∈ C(xtest), it is possible955

that z ∈ C′(xtest) for z could be ⌊l⌋ or ⌈u⌉. As a956

consequence, if the original interval barely missed957

covering the label, the expansion guarantees that958

these outcomes are now covered.959

Hence, the event960

{Ytest ∈ C(xtest)} ⊆ {Ytest ∈ C′(xtest)},961

which implies962

P
(
Ytest ∈ C′(xtest)

)
≥ P

(
Ytest ∈ C(xtest)

)
≥ 1−α.963

Moreover, 964

P
(
Ytest ∈ C′(xtest)

)
− P

(
Ytest ∈ C(xtest)

)
= P

(
q1−α ≤ s′

(
xtest, ⌊l⌋ or ⌈u⌉

)
≤ q1−α0

)
= (1− α0)− (1− α) = α− α0 > 0.

965

Thus 966

P
(
Ytest ∈ C′(xtest)

)
> 1− α. 967

968

A.3 Hypothesis Testing of Heteroskedasticity 969

In order to assess the validity of regression-based 970

conformal prediction and to guide our choice 971

of conformal prediction (CP) methods, we per- 972

form two classical tests for heteroskedasticity: the 973

Breusch–Pagan (BP) test and the White test. This 974

phenomenon indicates a non-constant residual vari- 975

ance, which causes deviation in coverage rates and 976

inefficiency in interval widths. This data prop- 977

erty also motivates the development of modern CP 978

algorithms such as CQR (Romano et al., 2019), 979

LCP (Guan, 2022), and R2CCP (Guha et al., 2024). 980

Breusch–Pagan Test. The BP test regresses the 981

squared OLS residuals ê2i on the original covariates 982

X . Under the null hypothesis of homoskedasticity, 983

H0 : Var(εi) = σ2 vs. H1 : Var(εi) = σ2h(Xi), 984

the test statistic 985

LMBP = nR2
ê2∼X ∼̇ χ2

k, 986

where n is the sample size and k = dim(X). A 987

small p-value indicates rejection of homoskedastic- 988

ity. 989

White Test. The White test extends BP by includ- 990

ing not only X but also their squares and pairwise 991

interactions Z = {X, X2, XiXj} in the auxiliary 992

regression of ê2i . The statistic 993

LMWhite = nR2
ê2∼Z ∼̇ χ2

m, 994

with m = dim(Z). Unlike BP, White’s method 995

does not require specifying the form of h(·). 996

Test Results. Table 4 reports both BP and White 997

p-values across our datasets and evaluators. 998

• SummEval / DialSumm (G-Eval): All four 999

metrics and all models exhibit highly signifi- 1000

cant heteroskedasticity (p < 10−12). 1001
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• ROSCOE by G-Eval: CosmosQA remains1002

homoskedastic, whereas DROP, e-SNLI and1003

GSM8k show p < 0.05.1004

• ROSCOE by SocREval: Heteroskedasticity1005

is confined to DROP (for DSR1-Qwen-32B1006

and GPT-4o-mini) and to CosmosQA/e-SNLI1007

(for Qwen2.5-72B).1008

A.4 Summary of CP Methods1009

In our analysis, we employ a total of seven1010

regression-based conformal prediction (CP) meth-1011

ods to generate continuous confidence inter-1012

vals (e.g., [3.2,4.1]), as well as two ordinal1013

classification-based CP methods to produce or-1014

dered discrete intervals (e.g., [3,4]). In this sub-1015

section, we provide a detailed discussion of these1016

CP approaches, including the motivation behind1017

our choice to focus on regression and ordinal for-1018

mulations rather than commonly used risk-control-1019

based methods. We further elaborate on how each1020

method computes nonconformity scores and con-1021

structs predictive intervals accordingly.1022

A.4.1 Why not use classification methods?1023

As mentioned, early work has primarily applied1024

conformal prediction to classification-style tasks,1025

which produces non-ordered prediction set, e.g. {A,1026

C} in multiple choice question answering. Admit-1027

tedly, the rating scale {1,2,3,4,5} can be cast as a1028

multiple-choice classification problem. However,1029

it is unclear how to interpret a predicted set such as1030

{1,5}: what does it mean for both the lowest and1031

highest scores to be both plausible, and nothing in1032

between? As Wang et al. (2025) have shown, judg-1033

ment distributions from LLMs can be irregular or1034

even bimodal, making such fragmented prediction1035

sets not only difficult to interpret, but also problem-1036

atic for downstream decision-making.1037

In contrast, regression-based and ordinal con-1038

formal predictors generate ordered prediction inter-1039

vals, offering a coherent and interpretable depiction1040

of score variability. These intervals communicate1041

not just inclusion, but range—what is the highest1042

plausible score, and what is the lowest? In high-1043

stakes applications such as medical diagnosis, this1044

becomes crucial. For example, if an LLM evaluator1045

assigns a rating of 3 (e.g., "moderate condition"), a1046

disjoint set like {1,5} offers confusing insight. On1047

the other hand, a calibrated interval such as [3,5]1048

conveys that the case might be severe, thus sig-1049

naling the need for a more cautious and proactive 1050

treatment plan. 1051

A.4.2 Continuous CP methods 1052

The following gives a brief description of each CP 1053

method used in our experiments, including its non- 1054

conformity score, interval construction procedure 1055

and how we employ. 1056

Conformalized Quantile Regression (CQR) (Ro- 1057

mano et al., 2019) 1058

• Nonconformity score: 1059

si = max
{
q̂α/2(xi)−yi, yi−q̂1−α/2(xi)

}
, 1060

where q̂τ is the τ–quantile regression es- 1061

timator. 1062

• Interval construction: Compute si on cal- 1063

ibration set and let Q1−α be the (1− α)- 1064

quantile of {si}. For a test input x, form 1065[
q̂α/2(x)−Q1−α, q̂1−α/2(x) +Q1−α

]
. 1066

• Deployment: We implement Conformal- 1067

ized Quantile Regression (CQR) using 1068

the MapieQuantileRegressor from the 1069

mapie package (Taquet et al., 2022), 1070

with a GradientBoostingRegressor 1071

(configured for quantile loss) as the base 1072

estimator for quantile regression. 1073

Asymmetric CQR (Sesia and Candès, 2019) 1074

• Nonconformity scores: 1075

sℓi = q̂α(xi)−yi, sui = yi− q̂1−α(xi). 1076

• Interval construction: Let Qℓ and Qu be 1077

the (1− α)-quantiles of {sℓi} and {sui }, 1078

respectively. Then 1079[
q̂α(x)−Qℓ, q̂1−α(x) +Qu

]
. 1080

• Deployment: Same with CQR but the 1081

asymmetric variant. 1082

Conditional Histogram Regression (CHR) (Sesia 1083

and Romano, 2021) 1084

• Distribution estimation: Partition the tar- 1085

get range into bins and estimate Pr(Y ∈ 1086

bin | X = x) via a black-box model. 1087

• Nested set series: Based on conditional 1088

probability, construct a series of nested 1089

set {Ct}Tt=0, where T is the length of the 1090

series and Ct expands as t increases. 1091
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SummEval by G-Eval

Evaluator Test Consistency Coherence Fluency Relevance

LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value

GPT-4o-mini
BP 372.121 3.02e-78 96.615 4.52e-89 147.034 5.71e-30 32.261 2.07e-31 144.954 1.58e-29 31.759 6.35e-31 102.860 1.32e-20 21.903 2.85e-21
White 446.359 4.68e-82 30.547 2.61e-97 204.285 1.60e-32 11.556 4.96e-35 187.021 4.08e-29 10.450 3.71e-31 132.282 1.45e-18 7.116 1.85e-19

DSR1-Qwen-32B
BP 332.234 1.17e-69 83.545 4.44e-78 64.602 1.36e-12 13.414 7.81e-13 209.266 2.95e-43 47.970 2.46e-46 78.494 1.73e-15 16.447 7.41e-16
White 406.728 8.21e-74 26.910 4.32e-86 142.666 1.58e-20 7.729 1.33e-21 242.606 3.52e-40 14.111 6.53e-44 92.448 2.76e-11 4.841 1.19e-11

Qwen2.5-72B
BP 351.775 7.26e-74 89.844 2.03e-83 82.248 2.84e-16 17.276 1.11e-16 227.917 2.99e-47 52.956 5.94e-51 83.830 1.32e-16 17.627 4.96e-17
White 407.695 5.17e-74 26.996 2.33e-86 142.134 1.99e-20 7.697 1.71e-21 245.423 9.55e-41 14.304 1.40e-44 100.688 9.49e-13 5.302 3.34e-13

DialSumm by G-Eval

Evaluator Test Consistency Coherence Fluency Relevance

LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value

GPT-4o-mini
BP 70.220 9.22e-14 14.723 4.30e-14 199.050 4.54e-41 46.209 2.85e-44 250.633 4.02e-52 60.796 2.06e-57 87.825 1.92e-17 18.664 5.49e-18
White 96.250 5.87e-12 5.091 2.01e-12 238.533 2.32e-39 14.160 1.56e-43 271.824 4.40e-46 16.613 9.80e-52 170.231 7.82e-26 9.548 9.86e-28

DSR1-Qwen-32B
BP 100.158 4.90e-20 21.483 9.27e-21 126.174 1.54e-25 27.616 9.87e-27 169.680 8.54e-35 38.451 4.63e-37 177.728 1.64e-36 40.540 5.12e-39
White 169.039 1.33e-25 9.468 1.83e-27 196.532 5.45e-31 11.260 1.21e-33 225.735 8.54e-37 13.255 1.83e-40 250.758 8.03e-42 15.045 1.65e-46

Qwen2.5-72B
BP 88.782 1.21e-17 18.877 3.37e-18 209.551 2.57e-43 49.076 6.76e-47 199.737 3.23e-41 46.395 1.92e-44 125.827 1.83e-25 27.532 1.19e-26
White 123.892 5.40e-17 6.694 7.13e-18 228.974 1.92e-37 13.482 3.09e-41 235.628 8.89e-39 13.953 7.83e-43 175.737 6.61e-27 9.897 6.01e-29

ROSCOE by G-Eval

Evaluator Test CosmosQA DROP e-SNLI GSM8k

LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value

GPT-4o-mini
BP 5.839 0.3222 1.167 0.3270 11.334 0.0451 2.328 0.0440 26.074 0.0001 6.053 0.0000 7.586 0.1806 1.530 0.1822
White 17.194 0.6404 0.841 0.6609 23.456 0.2669 1.188 0.2681 35.174 0.0192 1.974 0.0124 26.151 0.1609 1.346 0.1556

DSR1-Qwen-32B
BP 8.042 0.1539 1.626 0.1550 20.313 0.0011 4.369 0.0008 24.209 0.0002 5.537 0.0001 15.828 0.0074 3.335 0.0065
White 17.670 0.6092 0.867 0.6290 40.833 0.0039 2.281 0.0022 58.598 0.0000 4.122 0.0000 33.872 0.0270 1.825 0.0210

Qwen2.5-72B
BP 7.883 0.1628 1.592 0.1641 22.042 0.0005 4.785 0.0004 22.554 0.0004 5.092 0.0002 27.782 0.0000 6.259 0.0000
White 25.904 0.1690 1.333 0.1640 31.326 0.0510 1.657 0.0438 49.770 0.0002 3.196 0.0000 56.739 0.0000 3.545 0.0000

ROSCOE by SocREval

Evaluator Test CosmosQA DROP e-SNLI GSM8k

LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value LM Stat. p-value F Stat. p-value

GPT-4o-mini
BP 7.256 0.20231 1.461 0.20457 4.016 0.54705 0.796 0.55399 7.637 0.17742 1.545 0.17954 3.577 0.61180 0.707 0.61918
White 20.130 0.26762 1.199 0.26973 37.301 0.01077 2.041 0.00732 12.766 0.75172 0.722 0.77546 11.661 0.82022 0.663 0.83626

DSR1-Qwen-32B
BP 5.659 0.34085 1.130 0.34606 29.404 0.00002 6.643 0.00001 6.994 0.22105 1.409 0.22457 4.244 0.51487 0.841 0.52199
White 13.283 0.86492 0.636 0.88162 38.105 0.00860 2.095 0.00561 18.955 0.52477 0.933 0.54694 8.983 0.98311 0.421 0.98678

Qwen2.5-72B
BP 13.470 0.01935 2.805 0.01810 8.464 0.13245 1.714 0.13293 16.545 0.00545 3.569 0.00450 2.321 0.80313 0.456 0.80886
White 34.356 0.00755 2.227 0.00499 22.780 0.19917 1.291 0.19706 29.926 0.03818 1.813 0.02981 12.387 0.77613 0.707 0.79345

Table 4: Breusch-Pagan (BP) and White tests detect pervasive heteroscedasticity in SummEval and DialSumm: both
tests yield highly significant p-values (p < 1e-12) across all four metrics and all evaluators. By contrast, in ROSCOE
by G-Eval only DROP, e-SNLI and GSM8k exhibit significant heteroscedasticity (p < 0.05) while CosmosQA
remains homoscedastic; in ROSCOE by SocREval heteroscedasticity is confined to DROP for DeepSeek-R1-Qwen-
32B and GPT-4omini and to CosmosQA and e-SNLI for Qwen2.5-72B-Instruct.

• Compute conformity score1092

si = min{t ∈ {0, ..., T} : y ∈ Ct}1093

on calibration set and obtain estimated1094

quantile s1−α = t̂.1095

• Interval construction: Find the t̂-th set1096

Ct̂ in {Ct(xtest)}Tt=0 for the test point.1097

• Deployment: We estimate the condi-1098

tional distributions by QNet estimator1099

with two hidden layers of 256 units each,1100

a batch size of 32, learning rate 5×10−41101

and 1000 epochs.1102

Locally Valid and Discriminative (LVD) (Lin1103

et al., 2021)1104

• Nonconformity score: Absolute residu-1105

als Ri = |yn+i − ŷn+i| are collected as1106

nonconformity scores from the calibra-1107

tion set. Here, ŷn+i can be the prediction1108

from the a deep neural network model or1109

from kernel regression.1110

• Interval construction: For a test point, 1111

weights are assigned to the calibration 1112

residuals based on its similarity to points 1113

in the calibration set, quantified by a 1114

trained kernel function Kf . The (1−α)- 1115

quantile of this weighted residual distri- 1116

bution is then calculated. This quantile 1117

is added to and subtracted from the base 1118

deep learning model’s prediction ŷN+1 1119

for the test point, yielding locally adap- 1120

tive prediction intervals. 1121

Locally Valid and Discriminative (LVD) (Lin 1122

et al., 2021) 1123

• Nonconformity scores: For each calibra- 1124

tion example (xn+i, yn+i), compute the 1125

absolute residual 1126

Ri =
∣∣ yn+i − ŷn+i

∣∣, 1127

where ŷn+i is the model’s point predic- 1128

tion (e.g. from a deep network or kernel 1129

regression). 1130
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• Interval construction: For a test input x,1131

assign similarity weights1132

wi ∝ Kf

(
xn+i, x

)
and w∞ ∝ Kf (x, x)1133

(normalized so
∑

iwi + w∞ = 1), form1134

the weighted empirical distribution of1135

{Ri} with a “safe-guard” atom at ∞,1136

take its (1− α)–quantile Q, and output1137 [
ŷ(x)−Q, ŷ(x) +Q

]
.1138

• Deployment: We train the kernel1139

similarity function using KernelM-1140

LKR with parameters d=10, seed=0,1141

n_iters=500, norm=True, lr=1e-31142

that used in their demo notebook.1143

Boosted Conformal Prediction (Xie et al., 2024)1144

• Boosting the conformity score: Boost-1145

edCP optimizes conformity score func-1146

tions from baselines like CQR (Romano1147

et al., 2019) or LCP (Guan, 2022) via1148

gradient boosting. This is guided by a tai-1149

lored loss function, aiming for enhanced1150

conditional coverage or reduced interval1151

length. It operates post-model training,1152

solely relying on model predictions.1153

• Interval Estimation: The boosted score1154

function is used for calibration to com-1155

pute empirical quantiles. These quan-1156

tiles, with the boosted score, construct1157

final intervals for testing points. This1158

approach improves prediction interval1159

statistical properties while maintaining1160

valid marginal coverage.1161

• Deployment: We set n_rounds_cv as1162

500 and learning_rate as 0.02.1163

R2CCP (Regression-to-Classification Conformal1164

Prediction) (Guha et al., 2024)1165

• Two-stage approach: Partition the con-1166

tinuous response range [ymin, ymax] into1167

K equally spaced bins with midpoints1168

{ŷk}Kk=1. Train a softmax-output neural1169

network to classify.1170

• Non-conformity score: On the calibra-1171

tion set, compute for each pair the in-1172

terpolated probability σj = q̄θ(yj | xj)1173

by linearly interpolating qθ between ad-1174

jacent bin midpoints.1175

• Interval construction: Obtain (1 − α)- 1176

quantile q̂1−α of non-conformity scores 1177

and generate intervals by 1178

C1−α(xtest) = { z ∈ R : q̄θ(z | x) ≥ q̂1−α }. 1179

• Deployment: We train R2CCP model 1180

with max_epoches = 100. In practice, 1181

this method might yields fragmental in- 1182

tervals. We merge those intervals into 1183

one by taking minimum and maximum. 1184

Moreover, the range of labels in calibra- 1185

tion determines the bin split in testing. 1186

Thus there would be error if two ranges 1187

are inconsistent, which causes that the 1188

trials of random experiments are some- 1189

times slightly less than 30. 1190

A.4.3 Ordinal CP methods 1191

Ordinal CP methods generate intervals by softmax 1192

probabilities, which derives from judgment distri- 1193

bution. For GPA-scale tasks, we obtain probabil- 1194

ities of fractional labels (e.g. 1.33, 1.67, ...) by 1195

linear interpolation. 1196

Ordinal APS (Lu et al., 2022) 1197

• Nonconformity score: Nonconformity 1198

score equals to 1 if the true label lies 1199

in the interval and 0 if not. Obtain an 1200

empirical quantile λ as the threshold of 1201

accumulated probability mass. 1202

• Interval construction: Start from the la- 1203

bel with highest probability, and then ex- 1204

tend to both directions until the accumu- 1205

lated probability mass reach the quantile. 1206

Ordinal Risk Control (Xu et al., 2024b) 1207

• Nonconformity score: Similar to Ordi- 1208

nal APS but calculate the empirical risk 1209

by weighted average of nonconformity 1210

scores. Select a smallest quantile λ to 1211

control the empirical risk. 1212

• Interval Estimation: Similar to Ordinal 1213

APS, start from point estimation and ex- 1214

tend to both directions until the miscov- 1215

erage risk is higher than λ. 1216

• Deployment: We deploy the 1217

WeightedCRPredictor variant for 1218

better performance in our tasks. 1219
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A.5 Human-based baseline in summarization1220

tasks1221

Table 5 demonstrates that R2CCP consistently1222

matches or outperforms the human baseline across1223

both SummEval and DialSumm.1224

A.6 In Context Learning G-Eval1225

Following ICE (Jain et al., 2023) and G-Eval (Liu1226

et al., 2023), we designed the prompts by example1227

selection with three sampling methods. For each1228

test sample, we randomly select examples with1229

difference source test as the exsample pool. There1230

are 100 source in the SummEval dataset, so the1231

sample size of example pool is 99× 16 = 1584.1232

As for sampling method, ICE (Jain et al., 2023)1233

has introduced uniform sampling and stratified sam-1234

pling to in-context LLM evaluation on SummEval.1235

We modified the later to quantile-based sampling to1236

stratify bins by distribution quantiles. For example,1237

assume we need K examples in a prompt, uniform1238

sampling is to randomly select K samples in the1239

example pool, stratified sampling is to stratify the1240

range of scores into K bins and then randomly se-1241

lect 1 from each bin, and quantile based sampling is1242

to stratify the distribution of scores into K quantile1243

bins and select 1 from each bin.1244

After prompt design, we obtained evaluations1245

from GLM 4-flash (GLM et al., 2024), which is1246

free to use API. Then we calculate the correlation1247

with the expert average. Here we present several1248

results of different number of shots and different1249

sampling methods, comparing with results of G-1250

Eval and ICE. We found that ICL-G-Eval based on1251

GLM 4-flash is equivalent to GPT3.5-Eval.1252

Adding more samples leads to varying effects on1253

correlation across dimensions. For coherence and1254

fluency, the impact is minimal or slightly negative.1255

In contrast, consistency and relevance benefit, par-1256

ticularly under the quantile method. Among evalu-1257

ation methods, quantile performs best in relevance,1258

while stratified excels in other three dimensions.1259

A.7 Supplementary Results and Analysis1260

A.7.1 Continuous Intervals1261

In Table 7, we observe that some methods such as1262

Boosted CQR and Boosted LCP consistently fall1263

short of the 90 % coverage target on the DialSumm1264

dataset, achieving only 86%–88%. In contrast,1265

R2CCP maintains coverage in the 89%–91% range1266

while yielding the narrowest intervals among meth-1267

ods with comparable performance, thus offering an1268

optimal trade-off between coverage and efficiency. 1269

LVD achieves slightly higher coverage (around 90 1270

%–92 %) but at the cost of wider intervals, mak- 1271

ing it suitable for scenarios that prioritize coverage 1272

over interval compactness. Both Asymmetric and 1273

Symmetric CQR reliably guarantee or exceed the 1274

90 % coverage, but the cost is larger interval widths 1275

(mostly larger than 3 on ROSCOE). Across eval- 1276

uators, we find that the intervals produced by the 1277

DSR1-Distill-Qwen-32B model achieve marginally 1278

higher average coverage rates. And those gener- 1279

ated by Qwen2.5-72B-Instruct are generally shorter 1280

with lower coverage. 1281

A.7.2 Discrete Intervals 1282

Overall, with the aid of boundary adjustment, 1283

nearly all continuous-interval methods achieve av- 1284

erage coverage rates of approximately 90% (Ta- 1285

ble 8). With coverage guarantee, the gap between 1286

BoostedCP (Boosted CQR and Boosted LCP) and 1287

R2CCP become narrower, all of which now offer 1288

similarly optimal trade-offs between coverage and 1289

interval width. 1290

When comparing across evaluators, we observe 1291

heterogeneity in method performance: on GPT-4o 1292

mini, Boosted CQR and Boosted LCP typically 1293

attain the best balance, with R2CCP slightly be- 1294

hind; in contrast, under DSR1-Distill-Qwen-32B 1295

and Qwen2.5-72B-Instruct, the ordinal methods 1296

(OrdinalAPS, OrdinalRC), which generally under- 1297

perform on GPT-4o mini, excel on DSR1. No- 1298

tably, OrdinalAPS produces interval with markedly 1299

smaller intervals than those of the other methods 1300

while the coverage is around 90%. 1301

A.7.3 With Only 0.1 Adjustment is Effective 1302

to Mitigate Miscoverage 1303

In Section 3.3, we introduced boundary adjust- 1304

ment, whereby a continuous confidence interval 1305

on a Likert scale is rounded to the nearest integer 1306

endpoints, i.e. any true label falling within half 1307

an ordinal step of a boundary is adjusted to that 1308

boundary. In practice, we observed that purely 1309

continuous intervals sometimes underperform the 1310

nominal 90% coverage target (Table 1 and 7), ow- 1311

ing to the heteroskedastic, and correlated nature of 1312

LLM-generated judgments and to calibration set 1313

sizes that are insufficient. Full boundary adjust- 1314

ment reliably remedies this miscoverage by con- 1315

verting continuous intervals into ordinal discrete 1316

intervals, but it may introduce bias or fail to satisfy 1317

users’ preference for continuous outputs. To strike 1318

18



Figure 5: This is the summary and comparison on all experiments for continuous intervals. Each cell displays the
mean coverage of its corresponding CP method over 30 trials on the given dataset. The cell’s shading encodes the
average interval width, with lighter hues denoting narrower intervals. A ✓ or ✗ in the cell’s upper-right corner
denotes whether the coverage criterion is met: specifically, if the mean coverage plus one standard deviation exceeds
90%, the cell is marked with ✓; otherwise, it is marked with ✗.
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Dataset Evaluator Method Metrics

Consistency Coherence Fluency Relevance

SummEval

Human-based Baseline 0.667 (91.4%) 2.000 (95.6%) 1.333 (96.3%) 2.000 (92.8%)
GPT-4o-mini R2CCP 0.621 (90.1%) 2.652 (89.9%) 1.135 (93.4%) 2.076 (91.5%)
DSR1-Qwen-32B R2CCP 0.598 (89.3%) 2.168 (85.8%) 0.850 (90.1%) 2.142 (93.3%)
Qwen-2.5-72B R2CCP 0.491 (88.9%) 2.429 (88.0%) 0.812 (88.0%) 1.969 (91.4%)

DialSumm

Human-based Baseline 2.667 (95.9%) 2.000 (96.9%) 2.000 (95.1%) 2.667 (95.6%)
GPT-4o-mini R2CCP 1.799 (91.99%) 1.701 (91.00%) 1.215 (89.71%) 1.580 (85.2%)
DSR1-Qwen-32B R2CCP 1.912 (88.7%) 1.283 (89.3%) 0.812 (88.0%) 1.805 (89.9%)
Qwen-2.5-72B R2CCP 1.591 (87.0%) 1.494 (90.3%) 1.136 (90.3%) 1.653 (91.9%)

Table 5: Comparison of human-based baseline and R2CCP (seed = 42) on SummEval and DialSumm

Metric
Coherence Consistency Fluency Relevance
ρ τ ρ τ ρ τ ρ τ

G-EVAL-3.5 0.440 0.335 0.386 0.318 0.424 0.347 0.401 0.320
G-EVAL-4 0.582 0.457 0.507 0.425 0.547 0.433 0.514 0.418

ICE (Uniform Sampling) 0.476 0.388 0.486 0.466 0.366 0.328 0.467 0.384
ICE (Stratified Sampling) 0.497 0.387 0.298 0.263 0.397 0.348 0.485 0.396

ICL-G-Eval 0-shot 0.411 0.354 0.441 0.417 0.404 0.384 0.428 0.375
ICL-G-Eval 1-shot uniform 0.411 0.339 0.405 0.374 0.302 0.282 0.406 0.341
ICL-G-Eval 2-shot quantile 0.445 0.365 0.422 0.387 0.345 0.321 0.439 0.367
ICL-G-Eval 3-shot stratified 0.447 0.367 0.424 0.385 0.356 0.335 0.430 0.361
ICL-G-Eval 4-shot stratified 0.409 0.334 0.421 0.382 0.362 0.340 0.412 0.340
ICL-G-Eval 5-shot stratified 0.393 0.323 0.419 0.381 0.356 0.334 0.414 0.339
ICL-G-Eval 5-shot quantile 0.417 0.343 0.404 0.364 0.302 0.280 0.448 0.375

Table 6: Summary-level Spearman and Kendall-Tau correlations of different metrics on the SummEval benchmark

a balance, we propose a partial boundary adjust-1319

ment with threshold λ (e.g. λ = 0.1), meaning that1320

only those interval endpoints within λ of an inte-1321

ger are rounded. For instance, [3.2,4.9] becomes1322

[3,5] under full adjustment, but under λ = 0.1 it1323

becomes [3.2,5], which increases coverage if the1324

true label is 5.1325

As our theorem certifies, this outward adjust-1326

ment effectively shifts the quantile levels to include1327

more potential labels within the interval. Empiri-1328

cally, larger λ yields greater coverage gains, while1329

the average interval width does not increase too1330

much and can even shrink. This is because our1331

adjustment simultaneously cut redundant fractional1332

parts that fail to cover the true label (e.g. [1.05,2.1]1333

becomes [1,2], removing the excessive [2,2.1] seg-1334

ment). If the frequencies and sums of shrinking1335

and expanding adjustments across intervals are ap-1336

proximately balanced, the average interval width 1337

remains unchanged. A sufficient condition for this 1338

result is that, within each integer bin, boundaries’ 1339

fractional parts (e.g. 0.3 of 4.3, 0.7 of 1.7) are 1340

symmetrically distributed. But due to unknown 1341

distributions of model output, formally verifying 1342

this theorem remains challenging. 1343

A.7.4 Midpoints 1344

Table 3, 11, 12 and 13 show that midpoints are less- 1345

biased score evaluations than baselines from LLM 1346

judgments. 1347

A.7.5 Reprompt and Regrade 1348

Table 14 shows that there is trivial difference if we 1349

try to reprompt LLM judges to regrade. However, 1350

Figure 6, 7, 8, 9, 10, 11 show the examples of 1351

responses in reprompting. 1352
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Evaluator Method DialSumm (G-Eval) ROSCOE (G-Eval)

Consistency Coherence Fluency Relevance CosmosQA DROP e-SNLI GSM8K

GPT-4o mini

Boosted CQR 1.85 / 86.81% 1.61 / 87.26% 1.03 / 86.33% 1.65 / 87.06% 3.12 / 77.99% 2.58 / 78.32% 2.13 / 75.79% 3.20 / 80.03%
Boosted LCP 1.83 / 87.45% 1.59 / 88.30% 1.00 / 87.53% 1.76 / 87.20% 3.45 / 79.66% 2.94 / 86.41% 1.94 / 80.26% 3.42 / 83.53%
CHR 1.54 / 80.01% 1.48 / 83.03% 0.99 / 84.01% 1.40 / 80.53% 2.47 / 70.78% 1.82 / 68.44% 1.28 / 55.66% 2.27 / 70.27%
Asym CQR 2.43 / 92.30% 1.87 / 94.00% 1.18 / 94.40% 2.09 / 92.38% 3.95 / 99.56% 3.89 / 98.19% 2.98 / 96.67% 3.94 / 99.27%
Sym CQR 2.41 / 91.99% 1.77 / 92.41% 1.08 / 93.38% 2.06 / 91.57% 3.60 / 96.43% 3.77 / 96.54% 3.35 / 95.31% 3.58 / 94.83%
LVD 1.90 / 89.20% 1.75 / 90.67% 1.20 / 88.40% 1.79 / 89.23% 3.18 / 83.44% 2.33 / 79.11% 3.00 / 91.18% 3.10 / 84.50%
R2CCP 1.84 / 90.13% 1.63 / 90.15% 1.14 / 89.64% 1.72 / 90.11% 3.09 / 86.77% 2.54 / 86.70% 2.20 / 88.01% 2.43 / 84.67%

DSR1-Distill-Qwen-32B

Boosted CQR 1.89 / 87.48% 1.31 / 88.61% 1.11 / 88.07% 1.71 / 87.39% 3.40 / 80.92% 2.84 / 85.02% 2.23 / 83.68% 3.27 / 80.53%
Boosted LCP 1.88 / 86.05% 1.32 / 86.77% 1.02 / 87.28% 1.82 / 87.24% 3.49 / 81.73% 2.94 / 86.06% 1.99 / 83.33% 3.38 / 81.13%
CHR 1.76 / 86.09% 1.26 / 87.80% 1.06 / 87.79% 1.53 / 85.22% 2.64 / 78.10% 2.19 / 80.13% 1.80 / 77.24% 2.77 / 81.90%
Asym CQR 2.52 / 91.92% 1.58 / 93.20% 1.22 / 94.04% 2.42 / 92.51% 3.89 / 98.95% 3.88 / 97.78% 2.95 / 97.15% 3.90 / 99.27%
Sym CQR 2.50 / 91.30% 1.51 / 91.85% 1.11 / 92.83% 2.33 / 91.69% 3.62 / 96.29% 3.82 / 96.22% 3.33 / 97.85% 3.54 / 95.27%
LVD 2.03 / 90.19% 1.41 / 90.29% 1.22 / 90.41% 1.87 / 90.01% 3.31 / 89.52% 2.81 / 88.98% 2.86 / 94.82% 3.39 / 90.07%
R2CCP 1.86 / 89.22% 1.31 / 89.92% 1.19 / 90.57% 1.70 / 89.39% 3.05 / 86.84% 2.44 / 85.87% 1.96 / 85.43% 2.51 / 86.77%

Qwen2.5-72B-Instruct

Boosted CQR 1.69 / 86.57% 1.35 / 87.06% 1.05 / 87.38% 1.52 / 87.08% 3.35 / 81.02% 2.55 / 83.52% 1.90 / 81.84% 3.18 / 82.70%
Boosted LCP 1.75 / 86.08% 1.35 / 86.29% 0.96 / 87.77% 1.63 / 86.88% 3.45 / 80.41% 2.79 / 83.05% 1.85 / 80.79% 3.42 / 83.47%
CHR 1.48 / 81.50% 1.25 / 81.88% 1.00 / 85.97% 1.33 / 81.15% 2.59 / 74.97% 1.76 / 68.38% 1.39 / 66.84% 1.76 / 72.57%
Asym CQR 2.40 / 91.92% 1.61 / 92.88% 1.14 / 93.87% 2.04 / 92.38% 3.93 / 99.12% 3.92 / 99.17% 2.96 / 97.41% 3.90 / 99.00%
Sym CQR 2.37 / 91.51% 1.52 / 91.57% 1.06 / 93.11% 2.02 / 91.55% 3.62 / 96.67% 3.78 / 96.86% 3.37 / 98.29% 3.58 / 95.30%
LVD 1.84 / 90.43% 1.47 / 89.91% 1.20 / 90.26% 1.74 / 89.99% 3.34 / 89.01% 2.41 / 84.57% 2.65 / 92.41% 2.83 / 88.50%
R2CCP 1.74 / 89.97% 1.41 / 89.67% 1.14 / 89.70% 1.61 / 89.80% 3.07 / 87.11% 3.10 / 93.40% 1.68 / 84.80% 2.38 / 87.53%

Table 7: Comparison of interval width and coverage across conformal methods on DialSumm and ROSCOE tasks
with G-Eval. Gray marks coverage <85%, underline marks coverage between 85%–90%, and bold highlights the
smallest interval width among methods achieving ≥90% coverage for each evaluator–dimension. Asymmetric
CQR yields the highest coverage but with wider intervals; R2CCP and LVD can offer narrower intervals while still
meeting the coverage target, making them preferable when efficiency matters.

Evaluator Method DialSumm (G-Eval) ROSCOE (G-Eval)

Consistency Coherence Fluency Relevance CosmosQA DROP e-SNLI GSM8K

GPT-4o mini

Boosted CQR 1.85 / 93.33% 1.60 / 93.95% 1.00 / 93.32% 1.66 / 92.66% 3.16 / 93.40% 2.60 / 90.51% 2.16 / 89.39% 3.22 / 90.50%
Boosted LCP 1.83 / 92.94% 1.60 / 93.01% 0.96 / 93.50% 1.76 / 91.85% 3.39 / 94.46% 2.97 / 91.71% 1.96 / 92.32% 3.32 / 92.87%
CHR 1.54 / 86.65% 1.47 / 90.28% 0.96 / 89.86% 1.40 / 87.49% 2.48 / 80.31% 1.82 / 78.06% 1.30 / 72.41% 2.25 / 78.90%
Asym CQR 2.43 / 94.34% 1.86 / 95.87% 1.18 / 95.97% 2.08 / 94.68% 3.95 / 99.69% 3.89 / 98.54% 2.99 / 97.54% 3.94 / 99.27%
Sym CQR 2.40 / 94.09% 1.76 / 94.50% 1.07 / 95.01% 2.05 / 94.33% 3.60 / 96.60% 3.77 / 96.86% 3.42 / 97.50% 3.57 / 95.10%
LVD 1.90 / 93.81% 1.75 / 94.43% 1.21 / 93.81% 1.80 / 93.77% 3.20 / 91.70% 2.33 / 86.63% 3.01 / 96.89% 3.11 / 89.53%
R2CCP 1.84 / 93.32% 1.63 / 93.38% 1.15 / 93.28% 1.72 / 93.65% 3.06 / 90.31% 2.52 / 90.48% 2.16 / 92.35% 2.42 / 86.77%
OrdinalAPS 2.25 / 56.79% 2.03 / 82.21% 1.87 / 48.44% 2.07 / 66.38% 1.79 / 70.61% 1.44 / 78.57% 1.75 / 70.13% 1.36 / 75.03%
OrdinalRC 2.33 / 91.49% 3.17 / 39.46% 2.01 / 64.66% 2.21 / 83.29% 1.94 / 73.16% 1.52 / 80.73% 1.84 / 72.32% 1.44 / 75.47%

DSR1-Distill-Qwen-32B

Boosted CQR 1.89 / 92.91% 1.31 / 94.36% 1.08 / 94.16% 1.71 / 92.95% 3.44 / 94.69% 2.88 / 94.41% 2.27 / 95.44% 3.29 / 93.60%
Boosted LCP 1.87 / 91.83% 1.32 / 93.31% 0.98 / 93.27% 1.82 / 91.52% 3.49 / 94.76% 3.03 / 91.27% 2.01 / 92.59% 3.31 / 91.70%
CHR 1.76 / 90.78% 1.25 / 93.09% 1.03 / 92.48% 1.53 / 90.65% 2.66 / 85.95% 2.21 / 87.94% 1.83 / 90.57% 2.75 / 89.17%
Asym CQR 2.51 / 93.90% 1.58 / 95.41% 1.22 / 95.61% 2.43 / 94.35% 3.89 / 98.95% 3.88 / 97.87% 2.94 / 97.28% 3.90 / 99.37%
Sym CQR 2.49 / 93.67% 1.51 / 94.80% 1.11 / 94.58% 2.31 / 93.54% 3.61 / 96.43% 3.83 / 96.95% 3.32 / 97.98% 3.54 / 95.80%
LVD 2.04 / 93.87% 1.41 / 95.07% 1.23 / 94.74% 1.87 / 93.86% 3.34 / 94.69% 2.82 / 93.40% 2.87 / 98.55% 3.42 / 95.47%
R2CCP 1.85 / 92.87% 1.31 / 93.84% 1.19 / 93.79% 1.70 / 93.23% 3.04 / 91.29% 2.40 / 89.84% 1.90 / 90.79% 2.49 / 88.87%
OrdinalAPS 0.68 / 89.98% 0.90 / 90.52% 0.93 / 90.51% 0.68 / 90.28% 2.90 / 90.99% 2.27 / 91.24% 3.20 / 91.93% 2.98 / 91.93%
OrdinalRC 2.05 / 90.04% 3.17 / 90.30% 3.42 / 89.93% 2.17 / 89.80% 2.79 / 89.59% 2.22 / 90.73% 3.15 / 90.48% 2.86 / 90.83%

Qwen2.5-72B-Instruct

Boosted CQR 1.70 / 92.85% 1.35 / 93.90% 1.05 / 93.82% 1.52 / 92.95% 3.40 / 94.56% 2.57 / 93.30% 1.92 / 94.47% 3.22 / 92.03%
Boosted LCP 1.76 / 92.50% 1.35 / 93.38% 0.90 / 92.39% 1.62 / 92.52% 3.45 / 95.24% 2.85 / 90.95% 1.91 / 92.02% 3.38 / 92.73%
CHR 1.48 / 87.99% 1.25 / 89.46% 0.97 / 91.59% 1.34 / 88.06% 2.62 / 83.74% 1.77 / 82.92% 1.43 / 85.31% 1.78 / 82.10%
Asym CQR 2.41 / 95.10% 1.61 / 95.21% 1.14 / 95.08% 2.04 / 95.00% 3.93 / 99.42% 3.92 / 99.24% 2.95 / 97.50% 3.89 / 99.07%
Sym CQR 2.37 / 94.62% 1.51 / 94.42% 1.06 / 94.40% 2.05 / 94.91% 3.63 / 97.14% 3.78 / 97.14% 3.38 / 98.42% 3.58 / 95.73%
LVD 1.84 / 94.48% 1.48 / 94.77% 1.20 / 95.10% 1.73 / 94.04% 3.36 / 94.90% 2.41 / 92.44% 2.65 / 98.25% 2.83 / 92.47%
R2CCP 1.73 / 93.55% 1.41 / 93.72% 1.15 / 93.83% 1.60 / 93.17% 3.05 / 90.71% 3.08 / 95.65% 1.59 / 89.67% 2.39 / 89.60%
OrdinalAPS 0.61 / 90.15% 0.87 / 78.65% 0.91 / 85.01% 0.69 / 90.18% 2.78 / 89.42% 2.02 / 90.95% 2.79 / 93.25% 2.46 / 90.30%
OrdinalRC 2.57 / 89.85% 3.01 / 68.81% 3.09 / 78.40% 2.81 / 89.81% 2.85 / 90.95% 1.93 / 89.62% 2.71 / 91.40% 2.60 / 91.63%

Table 8: Comparison of narrow discrete intervals and coverage across methods on DialSumm and ROSCOE with
G-Eval. Gray marks coverage < 85%, underline marks coverage between 85%–90%, and bold highlights the
smallest interval width among methods achieving ≥ 90% coverage for each evaluator–dimension. Comparing with
Table 7, we could find that all coverage rates improve due to boundary adjustment, while the interval widths remain
comparable. For ordinal CP methods, since they directly produce discrete intervals, boundary adjustment has no
influence to their intervals for the bounaries are already on the potential labels{1.00, 1.33, ..., 4.67, 5.00}.
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Model Judge Dataset 0.5 0.1 0

GPT-4o-mini

G-Eval

Cosmos 3.0612± 0.5594 / 90.31%± 7.07% 3.0847± 0.5371 / 87.31%± 8.17% 3.0864± 0.5335 / 86.77%± 7.98%
DROP 2.5230± 0.4804 / 90.48%± 5.53% 2.5410± 0.4402 / 87.30%± 6.03% 2.5431± 0.4363 / 86.70%± 5.87%
e-SNLI 2.1562± 0.4732 / 92.35%± 6.88% 2.1932± 0.4282 / 88.30%± 7.15% 2.1953± 0.4264 / 88.01%± 7.17%
GSM8K 2.4205± 0.7782 / 86.77%± 7.63% 2.4283± 0.7639 / 85.10%± 7.50% 2.4298± 0.7626 / 84.67%± 8.00%

SocREval

Cosmos 2.9294± 0.4597 / 89.46%± 7.01% 2.9586± 0.4396 / 86.73%± 7.80% 2.9618± 0.4350 / 85.85%± 7.79%
DROP 2.4125± 0.8208 / 89.21%± 9.21% 2.4271± 0.7631 / 85.40%± 10.04% 2.4300± 0.7600 / 84.73%± 9.97%
e-SNLI 1.7076± 0.5804 / 90.11%± 8.41% 1.7467± 0.4878 / 84.99%± 8.23% 1.7480± 0.4842 / 84.02%± 8.62%
GSM8K 2.0943± 1.1782 / 86.93%± 8.15% 2.1452± 1.0893 / 85.70%± 7.95% 2.1452± 1.0866 / 85.07%± 7.87%

DSR1-Distill-Qwen-32B

G-Eval

Cosmos 3.0357± 0.4873 / 91.29%± 5.71% 3.0474± 0.4629 / 87.35%± 6.04% 3.0489± 0.4601 / 86.84%± 5.87%
DROP 2.4000± 0.6406 / 89.84%± 7.80% 2.4360± 0.5746 / 86.48%± 7.94% 2.4385± 0.5714 / 85.87%± 8.05%
e-SNLI 1.8952± 0.4948 / 90.79%± 7.39% 1.9532± 0.4343 / 86.06%± 6.95% 1.9585± 0.4315 / 85.43%± 7.02%
GSM8K 2.4865± 0.8454 / 88.87%± 9.31% 2.5067± 0.8065 / 87.07%± 9.04% 2.5078± 0.8053 / 86.77%± 8.89%

SocREval

Cosmos 2.9094± 0.6323 / 90.58%± 7.92% 2.9365± 0.5718 / 87.76%± 8.45% 2.9378± 0.5689 / 86.97%± 8.37%
DROP 2.2457± 0.6021 / 89.97%± 8.61% 2.2906± 0.5369 / 86.92%± 9.06% 2.2931± 0.5342 / 86.35%± 9.08%
e-SNLI 1.7965± 0.5139 / 92.35%± 7.77% 1.8413± 0.4481 / 88.45%± 8.00% 1.8450± 0.4443 / 87.87%± 7.92%
GSM8K 1.8238± 1.2189 / 86.93%± 7.45% 1.8767± 1.1507 / 85.67%± 7.30% 1.8796± 1.1480 / 85.33%± 7.02%

Qwen2.5-72B-Instruct

G-Eval

Cosmos 3.0529± 0.5262 / 90.71%± 6.80% 3.0624± 0.5089 / 87.82%± 8.11% 3.0652± 0.5059 / 87.11%± 8.10%
DROP 3.0765± 0.9169 / 95.65%± 5.33% 3.0954± 0.8907 / 93.68%± 7.50% 3.0964± 0.8894 / 93.40%± 7.74%
e-SNLI 1.5885± 0.4282 / 89.67%± 6.42% 1.6737± 0.3734 / 85.28%± 6.56% 1.6792± 0.3694 / 84.80%± 6.89%
GSM8K 2.3922± 0.6387 / 89.60%± 4.34% 2.3778± 0.6328 / 87.93%± 5.71% 2.3782± 0.6323 / 87.53%± 5.95%

SocREval

Cosmos 2.8786± 0.5572 / 89.29%± 7.43% 2.8999± 0.5210 / 86.16%± 8.76% 2.8996± 0.5176 / 85.34%± 8.46%
DROP 2.3446± 0.6459 / 90.00%± 7.90% 2.3832± 0.5883 / 86.92%± 8.14% 2.3852± 0.5854 / 86.25%± 8.22%
e-SNLI 1.5461± 0.6282 / 90.20%± 8.42% 1.5854± 0.5467 / 85.43%± 8.44% 1.5897± 0.5397 / 84.50%± 8.75%
GSM8K 1.9602± 1.0970 / 88.57%± 7.01% 2.0026± 1.0422 / 87.07%± 7.14% 2.0015± 1.0391 / 86.73%± 7.09%

Table 9: R2CCP interval width and coverage under boundary adjustments 0.5, 0.1, and 0 for three models, two judge
frameworks, and four reasoning datasets (width±std / coverage%± std) based on 30 random trials: all coverages
improve.

Model Dataset Dimension 0.167 (Full Adjustment) 0.1 0

GPT-4o-mini

SummEval

Consistency 0.6753± 0.2026 / 92.15%± 2.25% 0.6800± 0.1951 / 91.68%± 2.33% 0.6858± 0.1859 / 90.88%± 2.49%
Coherence 2.6186± 0.1522 / 92.81%± 2.37% 2.6201± 0.1497 / 91.54%± 2.69% 2.6243± 0.1466 / 89.63%± 3.12%
Fluency 0.9116± 0.1673 / 90.99%± 2.06% 0.9166± 0.1657 / 90.49%± 2.29% 0.9213± 0.1641 / 89.36%± 2.71%
Relevance 1.9688± 0.1288 / 93.38%± 1.96% 1.9693± 0.1244 / 91.90%± 2.19% 1.9705± 0.1215 / 89.70%± 2.50%

DialSumm

Consistency 1.8443± 0.1299 / 93.32%± 1.85% 1.8425± 0.1298 / 92.03%± 1.96% 1.8436± 0.1287 / 90.13%± 2.39%
Coherence 1.6264± 0.1363 / 93.38%± 2.68% 1.6274± 0.1354 / 92.10%± 3.08% 1.6256± 0.1337 / 90.15%± 3.38%
Fluency 1.1504± 0.1187 / 93.28%± 2.03% 1.1484± 0.1237 / 91.87%± 2.56% 1.1357± 0.1226 / 89.64%± 2.92%
Relevance 1.7161± 0.1398 / 93.65%± 2.06% 1.7178± 0.1391 / 92.15%± 2.32% 1.7209± 0.1395 / 90.11%± 2.75%

DeepSeek-R1-Distill-Qwen-32B

SummEval

Consistency 0.6804± 0.1521 / 91.57%± 2.17% 0.6876± 0.1437 / 91.02%± 2.11% 0.6941± 0.1343 / 90.44%± 2.09%
Coherence 2.2972± 0.1161 / 93.22%± 1.65% 2.2994± 0.1169 / 91.91%± 1.88% 2.3042± 0.1172 / 90.12%± 2.13%
Fluency 0.8886± 0.1605 / 91.80%± 1.82% 0.8907± 0.1561 / 91.09%± 2.00% 0.8926± 0.1512 / 90.09%± 2.08%
Relevance 1.9935± 0.1557 / 92.96%± 2.09% 1.9951± 0.1514 / 91.72%± 2.35% 1.9984± 0.1482 / 89.84%± 2.90%

DialSumm

Consistency 1.8534± 0.1426 / 92.87%± 2.01% 1.8574± 0.1397 / 91.43%± 2.10% 1.8601± 0.1371 / 89.22%± 2.62%
Coherence 1.3113± 0.1082 / 93.84%± 1.85% 1.3126± 0.1077 / 92.28%± 2.14% 1.3138± 0.1068 / 89.92%± 2.76%
Fluency 1.1903± 0.1368 / 93.79%± 1.78% 1.1915± 0.1349 / 92.58%± 2.03% 1.1859± 0.1348 / 90.57%± 2.35%
Relevance 1.6952± 0.1660 / 93.23%± 1.89% 1.6982± 0.1639 / 91.70%± 2.16% 1.7043± 0.1601 / 89.39%± 2.57%

Qwen2.5-72B-Instruct

SummEval

Consistency 0.5876± 0.1520 / 91.83%± 1.92% 0.5973± 0.1447 / 91.47%± 1.88% 0.6122± 0.1341 / 90.73%± 2.02%
Coherence 2.4308± 0.1457 / 92.78%± 2.07% 2.4331± 0.1444 / 91.53%± 2.19% 2.4367± 0.1426 / 89.54%± 2.48%
Fluency 0.9494± 0.1180 / 92.12%± 1.46% 0.9500± 0.1216 / 91.38%± 1.76% 0.9527± 0.1218 / 90.17%± 1.92%
Relevance 1.9765± 0.1257 / 93.72%± 1.78% 1.9776± 0.1253 / 92.50%± 2.06% 1.9789± 0.1237 / 90.45%± 2.49%

DialSumm

Consistency 1.7319± 0.1106 / 93.55%± 1.59% 1.7350± 0.1083 / 92.16%± 1.91% 1.7368± 0.1050 / 89.97%± 2.18%
Coherence 1.4060± 0.1115 / 93.72%± 1.97% 1.4079± 0.1086 / 92.07%± 2.36% 1.4094± 0.1076 / 89.67%± 2.81%
Fluency 1.1518± 0.1265 / 93.83%± 2.29% 1.1475± 0.1345 / 92.37%± 2.74% 1.1376± 0.1398 / 89.70%± 3.42%
Relevance 1.5966± 0.1742 / 93.17%± 2.02% 1.6015± 0.1714 / 91.82%± 2.43% 1.6071± 0.1682 / 89.80%± 2.85%

Table 10: R2CCP interval width and coverage under boundary adjustments of 0.5, 0.1, and 0 for three models on
SummEval and DialSumm across four dimensions (width±std / coverage%±std): all coverages improve.
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Evaluator Method Coherence Consistency Fluency Relevance

MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ

GPT-4omini

Raw Score 3.787 1.711 0.205 0.172 1.000 0.772 0.656 0.547 2.111 1.171 0.400 0.344 1.278 0.874 0.668 0.564
Weighted Sum 3.701 1.699 0.218 0.162 0.825 0.704 0.702 0.546 1.688 1.066 0.434 0.338 1.175 0.855 0.703 0.549
OrdinalAPS 0.834 0.733 0.287 0.236 2.284 1.358 0.685 0.572 2.358 1.327 0.414 0.345 1.802 1.137 0.639 0.524
Con_R2CCP 0.344 0.454 0.396 0.300 0.391 0.489 0.688 0.532 0.173 0.309 0.433 0.340 0.338 0.445 0.716 0.563
Dis_R2CCP 0.348 0.453 0.385 0.313 0.395 0.489 0.684 0.553 0.178 0.309 0.418 0.364 0.342 0.446 0.714 0.584

DSR1-Qwen-32B

Raw Score 2.908 1.412 0.396 0.329 1.422 0.952 0.589 0.497 2.454 1.383 0.414 0.356 1.214 0.829 0.555 0.461
Weighted Sum 2.149 1.241 0.456 0.343 0.652 0.614 0.642 0.491 2.115 1.287 0.452 0.347 0.674 0.625 0.621 0.476
OrdinalAPS 0.124 0.276 0.476 0.411 0.078 0.215 0.641 0.552 0.127 0.297 0.367 0.325 0.092 0.237 0.555 0.474
Con_R2CCP 0.211 0.348 0.627 0.488 0.451 0.509 0.668 0.512 0.185 0.315 0.460 0.356 0.348 0.450 0.721 0.563
Dis_R2CCP 0.215 0.347 0.615 0.511 0.455 0.508 0.665 0.534 0.188 0.314 0.455 0.389 0.352 0.450 0.716 0.581

Qwen2.5-72B

Raw Score 3.934 1.775 0.321 0.267 1.344 0.897 0.704 0.599 2.796 1.420 0.478 0.406 1.812 1.070 0.609 0.521
Weighted Sum 3.693 1.746 0.358 0.266 1.076 0.819 0.737 0.577 2.575 1.335 0.499 0.386 1.552 1.014 0.660 0.516
OrdinalAPS 0.192 0.379 0.436 0.385 0.080 0.209 0.709 0.617 0.133 0.293 0.398 0.352 0.105 0.244 0.610 0.528
Con_R2CCP 0.241 0.381 0.583 0.450 0.370 0.467 0.737 0.577 0.169 0.306 0.489 0.380 0.311 0.424 0.727 0.578
Dis_R2CCP 0.245 0.380 0.574 0.471 0.373 0.467 0.734 0.594 0.174 0.306 0.485 0.419 0.315 0.424 0.722 0.594

Table 11: Midpoints experiment on DialSumm: The midpoints substantially reduce MSE and MAE while boosting
Spearman’s ρ and Kendall’s τ across all evaluators and dimensions, outperforming both Raw Score and Weighted
Sum. Bold indicates better performance than baselines, underlined denotes comparable performance, and gray
indicates worse performance.

Evaluator Method CosmosQA DROP e-SNLI GSM8k

MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ

GPT-4o-mini

Raw Score 1.780 1.044 0.483 0.406 1.843 0.951 0.490 0.411 2.719 1.210 0.340 0.288 2.216 0.909 0.586 0.516
Weighted Sum 1.704 1.065 0.490 0.371 1.651 0.894 0.516 0.391 2.610 1.221 0.357 0.273 2.169 0.936 0.577 0.458
OrdinalAPS 1.719 1.087 0.466 0.385 1.374 0.869 0.523 0.432 2.141 1.142 0.358 0.290 1.970 1.001 0.585 0.495
Con_R2CCP 2.035 1.223 0.366 0.282 1.509 1.034 0.458 0.353 1.045 0.865 0.239 0.189 2.307 1.282 0.493 0.396
Dis_R2CCP 2.044 1.220 0.348 0.293 1.526 1.024 0.469 0.402 1.061 0.854 0.231 0.206 2.317 1.277 0.501 0.434

DSR1-Qwen-32B

Raw Score 2.353 1.166 0.396 0.335 2.156 0.977 0.478 0.419 3.090 1.466 0.225 0.199 2.300 0.906 0.596 0.538
Weighted Sum 1.805 1.157 0.462 0.348 1.281 0.913 0.551 0.422 2.144 1.286 0.279 0.214 1.907 1.045 0.602 0.476
OrdinalAPS 1.836 1.163 0.433 0.366 1.305 0.916 0.558 0.464 1.874 1.185 0.268 0.233 2.247 1.387 0.554 0.497
Con_R2CCP 1.931 1.172 0.440 0.344 1.485 1.003 0.491 0.380 0.904 0.802 0.423 0.334 2.232 1.283 0.540 0.432
Dis_R2CCP 1.936 0.999 0.407 0.345 1.518 0.999 0.478 0.406 0.916 0.792 0.405 0.355 2.256 1.281 0.539 0.472

Qwen2.5-72B

Raw Score 1.964 1.179 0.420 0.364 1.797 0.928 0.498 0.421 1.920 1.173 0.359 0.304 1.911 0.820 0.653 0.589
Weighted Sum 1.840 1.166 0.484 0.367 1.381 0.867 0.569 0.437 1.615 1.101 0.388 0.292 1.767 0.857 0.662 0.529
OrdinalAPS 1.775 1.158 0.460 0.385 1.183 0.852 0.582 0.485 1.391 1.001 0.484 0.414 1.816 1.168 0.639 0.561
Con_R2CCP 1.992 1.207 0.429 0.329 1.789 1.124 0.584 0.453 0.796 0.727 0.471 0.372 2.021 1.174 0.566 0.460
dis_R2CCP 2.004 1.200 0.390 0.327 1.801 1.121 0.573 0.487 0.816 0.716 0.455 0.400 2.044 1.173 0.578 0.511

Table 12: Midpoints experiment on ROSCOE evaluated by G-Eval. Bold indicates better performance than baselines,
underlined denotes comparable performance, and gray indicates worse performance.

Evaluator Method CosmosQA DROP e-SNLI GSM8k

MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ MSE MAE ρ τ

GPT-4o-mini

Raw Score 1.780 1.044 0.483 0.406 2.969 1.284 0.202 0.168 1.096 0.841 0.551 0.496 4.103 1.613 0.173 0.148
Weighted Sum 1.704 1.065 0.490 0.371 1.408 0.905 0.563 0.429 1.054 0.849 0.574 0.460 1.612 0.771 0.649 0.523
OrdinalAPS 1.719 1.034 0.466 0.412 1.447 0.958 0.555 0.449 1.108 0.880 0.567 0.486 1.672 0.794 0.654 0.571
Con_R2CCP 1.904 1.170 0.430 0.330 1.560 1.017 0.495 0.386 0.725 0.716 0.509 0.408 2.061 1.154 0.569 0.470
Dis_R2CCP 1.917 1.165 0.415 0.348 1.578 1.013 0.493 0.421 0.753 0.711 0.505 0.453 2.095 1.144 0.589 0.527

DSR1-Qwen-32B

Raw Score 2.130 1.128 0.500 0.432 1.443 0.803 0.630 0.564 0.693 0.629 0.581 0.531 1.445 0.628 0.707 0.640
Weighted Sum 2.016 1.107 0.525 0.398 1.446 0.825 0.639 0.503 0.668 0.632 0.622 0.496 1.425 0.645 0.664 0.522
OrdinalAPS 1.862 1.128 0.484 0.399 1.305 0.900 0.573 0.508 0.663 0.653 0.631 0.555 1.395 0.830 0.696 0.628
Con_R2CCP 1.853 1.151 0.468 0.362 1.264 0.914 0.602 0.476 0.717 0.708 0.615 0.490 1.849 1.048 0.595 0.477
Dis_R2CCP 1.875 1.146 0.595 0.515 1.290 0.907 0.595 0.515 0.734 0.695 0.580 0.517 1.891 1.045 0.637 0.577

Qwen2.5-72B

Raw Score 1.737 0.975 0.533 0.444 1.313 0.730 0.610 0.536 0.590 0.488 0.651 0.591 1.387 0.653 0.730 0.663
Weighted Sum 1.688 0.986 0.527 0.407 1.290 0.735 0.603 0.475 0.558 0.499 0.665 0.540 1.388 0.659 0.681 0.557
OrdinalAPS 1.622 0.991 0.542 0.450 1.281 0.744 0.610 0.526 0.543 0.543 0.650 0.575 1.390 0.667 0.727 0.657
Con_R2CCP 1.897 1.162 0.446 0.348 1.378 0.968 0.556 0.456 0.609 0.656 0.597 0.482 1.823 1.063 0.648 0.556
dis_R2CCP 1.910 1.156 0.442 0.375 1.403 0.965 0.541 0.487 0.632 0.652 0.595 0.533 1.849 1.057 0.653 0.596

Table 13: Midpoints experiment on ROSCOE evaluated by SocREval. Bold indicates better performance than
baselines, underlined denotes comparable performance, and gray indicates worse performance.
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Reprompt on ROSCOE by DeepSeek-R1-Distill-Qwen-32B with SocREval

Let me show you our evaluation record. Based on all these information, make decision and give me final score.

Initial Prompt:
{{Prompt in 1st round}}

Initial Response:
{{Response in 1st round}}

Reprompt and Regrade:

Thank you for your initial evaluation!

To help you arrive at a final score that more closely aligns with human expert judgment, we have constructed a 90%
confidence interval for this task using conformal prediction based on your past scoring records. This interval is provided
to help you gauge the uncertainty in your recent assessment, which we hope will enhance your evaluation.

Interval Information: The confidence interval we have provided is {{Interval}}. Please keep in mind that there is
approximately a 90% probability that the expert’s score lies within this interval, and a 10% probability that it lies outside.

— Your Objective: Acting as a human expert, use the interval information along with the recent evaluation task to
decide whether and how to adjust the initial score.

— Below are some decision-making suggestions for your reference, but we also encourage you to apply your own
independent thinking to align as closely as possible with human expert judgment.

Decision-Making Suggestions:

1. Key Dimensions to Consider:
• Original Score Confidence: Your confidence level in the score you just assigned;
• Interval Position: Whether the original score falls inside or outside the interval;
• Interval Width: Whether the interval is narrow (e.g., ≤ 2.0) or wide (e.g., ≥ 2.0);
• Potential Labels: What specific label options lie within the interval (e.g., {3.00, 4.00} for an example

interval [3,4]).

2. Advice on Decision, Reasoning, and Explanation:
• High Confidence & Score Within a Narrow Interval: If the interval is narrow and your score is validated

by the interval boundaries, you may confidently retain your original score, provided you believe your
evaluation and explanation are seamless. You may also make minor adjustments within the interval where
you think the score is most plausible.

• High Confidence & Score Outside a Narrow Interval: Although there is a small probability (<10%) that
you are correct, we encourage you to question your initial judgment, reconsider the evaluation, and consider
adjusting the score to the most probable point within the interval, or retain the original score with a brief
justification.

• Low Confidence & Any Interval: Use the interval to guide a careful re-examination of the task. For
example, consider why an expert rating might take a certain value within the interval and whether that
reasoning is sound. After reflection, if you find a value most reasonable, you may choose that score.

• Challenging the Interval: You have the right to firmly believe that the true score cannot possibly fall
within the provided interval. However, since we guarantee that the interval covers the expert score 90% of
the time, your challenge likely indicates an error in expert judgment. If your explanation convinces us, this
would be a valuable discovery. Generally, though, we prefer to treat the expert judgment as ground truth.

Please use the suggestions above to produce a new final score through a step-by-step chain of thought:
1. Your confidence level in the original score (high/medium/low) and the reason;
2. How the interval width, potential labels and the position of the original score influence your judgment;
3. Your adjustment action (retain/minor adjustment/re-examination/other) and the rationale;
4. The final score you assign.

Finally, please first state your final evaluated score (1–5), followed by your explanation:

Final Score:

Figure 6: In our reprompting, the dialogue in 1st round are fed into the 2nd-round re-evaluation, and the judge is
supplied with explicit guidance on how to leverage the interval for decision-making. For example, verbalize its
confidence, assessing the initial score’s position relative to the interval, and even challenge the interval’s reliability.
This prompt induces DeepSeek-R1-Distill-Qwen-32B to emulate a human-like reasoning process during inference,
thereby allowing us to analyze how interval evaluations influence final judgments.
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Dataset Width / Coverage Method MSE MAE ρ τ

CosmosQA 2.60 / 89.80%

Initial Raw 2.204082 1.163265 0.480293 0.419364
Reprompt Raw 2.193877 1.153061 0.476310 0.417798
Initial Weighted 2.052884 1.133203 0.508314 0.390947

Reprompt Weighted 2.111918 1.167847 0.499106 0.377264

DROP 1.67 / 89.52%

Initial Raw 1.371429 0.800000 0.603949 0.551028
Reprompt Raw 1.380952 0.809524 0.603821 0.550921
Initial Weighted 1.333399 0.800079 0.612075 0.485937

Reprompt Weighted 1.345206 0.814889 0.634605 0.503989

e-SNLI 1.26 / 89.47%

Initial Raw 0.684211 0.631579 0.561363 0.517585
Reprompt Raw 0.657895 0.631579 0.595460 0.548320
Initial Weighted 0.610842 0.623154 0.639802 0.512257

Reprompt Weighted 0.605095 0.638822 0.646223 0.517462

GSM8K 1.14 / 92.00%

Initial Raw 0.860000 0.420000 0.816251 0.747567
Reprompt Raw 0.850000 0.410000 0.819313 0.755605
Initial Weighted 0.840141 0.437920 0.763763 0.599531

Reprompt Weighted 0.833816 0.463369 0.738347 0.590121

Table 14: Reprompting the LLM with confidence intervals reinforces its original judgments since initial scores
already lie within those intervals, the model makes trivial adjustments, revealing that it might be hard for interval
alone to correct inherent bias since there is no significant difference in each metric for comparison.

Reprompt Response of LLM Judge: Ground truth is 1 in this example (DROP of ROSCOE).

Final Score: 2

Explanation:

1. Confidence Level: High confidence in the original score of 2. The generated response incor-
rectly stated the number of losses, which was a clear error.

2. Interval Consideration: The confidence interval [1.00, 3.00] suggests that the score is likely
within this range. The original score of 2 falls within this interval, aligning with the expert
judgment.

3. Adjustment Action: Retain the original score of 2. The reasoning remains sound as the
generated response had a factual error, leading to a lower quality score.

4. Rationale: The generated response’s error in interpreting the team’s record significantly impacts
its quality, justifying the score of 2.

Figure 7: Example 1 of an LLM judge’s reprompted scoring and rationale. In this example, its initial raw score is 2
and initial weighted score is 1.65. After reprompting, the judge more firmly believe that 2 is right since its weighted
score become 2.04, which representing a shift in judgment distributions. However, the ground truth of this is 1.
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Reprompt Response of LLM Judge: Ground truth is 2 in this example (GSM8K of ROSCOE).

Final Score: 2

Explanation: After reviewing the generated response and considering the confidence interval
[1.00, 2.00], I remain confident that the original score of 2 is appropriate. The generated response
incorrectly calculated the water intake rate and the time taken, leading to an overestimation of the
water taken on. The correct approach, as detailed in my own response, results in 16 liters, whereas
the generated response arrived at 160 liters. The interval suggests that the score is likely within 1 to
2, and since the response is incorrect but shows some understanding, a score of 2 is justified.

Figure 8: Example 2 of an LLM judge’s reprompted scoring and rationale. In this example, its initial raw score is 2
and initial weighted score is 1.81. After reprompting, the judge more firmly believe that 2 is right since its weighted
score become 2.02, which representing a shift in judgment distributions. In this example, the ground truth is 2.

Reprompt Response of LLM Judge: Ground truth is 3 in this example (CosmosQA of
ROSCOE).

Final Score: 4

Explanation: 1. Confidence in Original Score: High. The initial evaluation correctly identified
that Sam’s understanding supports the Claim, though it could have elaborated more on the context.
2. Interval Consideration: The interval [1.00, 5.00] is wide, allowing for a range of scores. The
original score of 4 falls comfortably within this interval, suggesting it is plausible.
3. Adjustment Action: Retain. The reasoning aligns well with the provided information, and the
score accurately reflects the quality of the generated response.
4. Rationale: The generated response correctly answers the question but could have provided more
depth. However, it sufficiently supports the Claim, warranting a score of 4.

Figure 9: Example 3 of an LLM judge’s reprompted scoring and rationale. In this example, its initial raw score is 4
and initial weighted score is 3.82. After reprompting, the judge more firmly believe that 4 is right since its weighted
score become 3.97, which representing a shift in judgment distributions. In this example, the ground truth is 3.

Reprompt Response of LLM Judge: Ground truth is 5 in this example (Consistency of
SummEval).

Final Score: 4

Explanation:
1. Confidence in Original Score: High. The initial evaluation correctly assessed the summary’s

accuracy without factual errors.
2. Omitted Details: The summary fails to mention Vanessa’s profession and the police appeal,

which are key elements of the source text.
3. Interval Consideration: The confidence interval [4.67, 5.00] indicates that a higher score is

possible under the uncertainty model.
4. Adjustment Action: Retain. Despite the interval’s suggestion, the omission of critical details

justifies keeping the score at 4.

Figure 10: Example of an LLM judge’s reprompted scoring and rationale. This response shows that though we
guarantee the help of confidence interval, the LLM judge still insist its choice thus fails to reduce the bias.
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Reprompt Response of LLM Judge: Ground truth is 5 in this example (Consistency of
SummEval).

Final Score: 4

Explanation:
1. Confidence in Original Score: High. The summary accurately reflects the main points

without introducing inaccuracies, though it omits some details.
2. Interval Consideration: The interval [4.67, 5.00] suggests a higher score is expected.

However, the summary’s omission of Pereira’s contract and other clubs’ interest justifies a
slightly lower score.

3. Adjustment Action: Retain the original score of 4. The summary’s focus on Orlando
City’s interest makes the omissions acceptable, maintaining consistency without misleading
information.

4. Final Score: 4. The summary is truthful and consistent, though less comprehensive, warrant-
ing a score within the lower end of the interval.

Figure 11: Example of an LLM judge’s reprompted scoring and rationale. This response shows that though we
guarantee the help of confidence interval, the LLM judge still insist its choice thus fails to reduce the bias.
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