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Abstract

Transformer-based large models, such as GPT, are
known for their performance and ability to effectively
address tasks. Transformer-based models often have
many parameters, which are trained to achieve high-
performance levels. As a result, they cannot be
run locally on devices with smaller memory sizes,
such as mobile phones, necessitating the use of these
models remotely by sending the data to the cloud.
This exposes us to privacy concerns over sending
confidential data to the server, among others. In
this work, we propose a method to make these large
models easier to run on devices with much smaller
memory while sacrificing little to no performance.
We investigate quaternion neural networks, which
can reduce the number of parameters to one-fourth
of the original real-valued model when employed
efficiently. Additionally, we explore sparse networks
created by pruning weights as a method of parameter
reduction, following the Lottery Ticket Hypothesis.
We perform the experiments on vision and lan-

guage tasks on their respective datasets. We observe
that pruned quaternion models perform better than
the real-valued models in severely sparse conditions.

1 Introduction

The advent of powerful transformer-based models
such as GPT-4 [1], LLaMA [2], Mistral [3][4], Vision
Transformer (ViT) [5], ViTDet [6], and DINO [7] has
revolutionized various domains, including natural
language processing, computer vision, and image
classification. However, the sheer scale of these
models poses significant deployment challenges, with
their massive parameter counts and computational
requirements rendering them impractical for edge
devices. For instance, running the smallest LLaMA
3 model (8B parameters) on a Raspberry Pi 5 (8GB)
yields a meager 1-2 tokens per second (experiment
done using ollama).

Hence, we take up addressing this challenge of re-
ducing the number of parameters, thereby reducing
the burden of tuning a large number of parameters.

∗Corresponding Author.

Techniques like Mixture of Experts (MoE) mod-
els like Mixtral [4] and knowledge distillation have
been explored to alleviate these challenges. MoEs
selectively utilize multiple sub-models based on in-
put data, enabling faster inference while keeping the
output quality and total number of parameters high.

The pursuit of efficient model deployment has led
to the exploration of various techniques, including
quantization, which reduces model weight precision
[8]. While effective, these methods often compro-
mise on accuracy. On the other hand, pruning meth-
ods like SparseGPT [9] have demonstrated one-shot
pruning to around 50-60% of the weights while main-
taining similar performance. However, given the
large size of transformer-based models, even a 50-
60% reduction may not be sufficient to fully address
the computational challenges they present.

To further reduce the number of parameters, we
explore the application of the Lottery Ticket Hy-
pothesis (LTH) [10] to transformers [11–13], and the
use of quaternion-valued weights in transformers [14–
16], both of which have been implemented separately
in previous studies. For instance, LTH has been suc-
cessfully applied to pre-trained BERT networks [12]
and vision transformers [13], while quaternion net-
works have shown promise in various tasks such
as facial expression recognition [16], NLP [14, 17],
and hyperspectral image classification [15]. In this
work, we combine these approaches, applying LTH
to quaternion transformers, and make the following
research contributions:

1. Apply Lottery Ticket Hypothesis (LTH) to
Quaternion transformers.

2. Demonstrate that quaternion-valued lottery
tickets perform better than real-valued lottery
tickets at higher sparsities across various com-
puter vision as well as natural language process-
ing tasks.

3. Release a PyPi package called qytorch1 for
easy implementation of quaternion layers in
PyTorch.

1https://pypi.org/project/qytorch/
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Figure 1. Construction of the real weight matrix from
quaternion components

2 Background

In this section, we introduce quaternions and the
Lottery Ticket Hypothesis, which serve as the foun-
dation for our work.

2.1 Transformer Self Attention

f(x) = softmax

(
(x ·W r

q ) · (x ·W r
k )

T

√
d′

)
· (x ·W r

v )

(1)

The self-attention mechanism in transformers com-
putes a weighted representation of the input by first
generating the Query (Q), Key (K), and Value (V )
matrices through linear transformations of the input
x ∈ R(n,d) using three real weight matrices, W r

Q,

W r
K , and W r

V ∈ R(d,d′). Attention scores, calculated
as the cosine similarity between each vector in Q
and each vector in K, are obtained by multiplying
the Q and K matrices, followed by normalization
and the application of the softmax function. The
resulting values are then multiplied by the V ma-
trix to produce the final output. This process is
summarized by the equation 1.

2.2 Quaternion Networks

Quaternions are mathematical constructs widely
used in computer graphics, simulations, and other
applications. These can be represented as four-
dimensional extensions of complex numbers, ex-
pressed as q = a+bi+cj+dk, where a, b, c, and d are
real numbers, and i, j, k are imaginary components.
In neural networks, quaternion representations re-
duce computational requirements. Calculations are
facilitated by representing quaternions in matrix
notation, as shown in Eq 2.

q =


a −b −c −d
b a −d c
c d a −b
d −c b a

 (2)

As illustrated in Figure 1, using quaternions to
represent the weights reduces the number of parame-
ters by four times while maintaining performance at
least as good or sometimes even better [18]. A real
weight matrix W r with m×n weights, where m and
n are multiples of 4, can represent four m

4 × n
4 dimen-

sional quaternion weight matrices W qr ,W qi ,W qj

and W qk (representing r, i, j, and k components
of quarternion weight matrix W q). This results
in a total of 4 × m

4 × n
4 = m×n

4 weights, which is
four times fewer than the real-valued representation.
W qr ,W qi ,W qj and W qk matrices are concatenated
as shown in Eq 3 and Fig 1 to create the W r.

W r =


W qr W qi W qj W qk

W qi W qr W qk W qj

W qj W qk W qr W qi

W qk W qj W qi W qr

 (3)

2.3 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) proposed by
Frankle et al. [10] states that within a randomly
initialized neural network, there exists a subnetwork
that can match the original network’s test accuracy
when trained in isolation. This subnetwork, called
the “winning ticket”, achieves comparable accuracy
after training for at most the same number of itera-
tions as the original network. Mathematically, this
means that for a network Q with minimum valida-
tion loss l1 at iteration j1, there exists a subnetwork
Q′ with fewer parameters that reaches its minimum
validation loss l2 at iteration j2, where j2 ≤ j1 and
l2 ≤ l1.

3 Methodology

We designed custom Quaternion Layers for Linear,
Convolutional, Self Attention, and Transformer Lay-
ers, mirroring the functionality of their PyTorch
real-valued counterparts. This is released as a PyPi
package called qytorch. For our experiments, we
developed quaternion versions of Vision Transformer
(ViT) and nanoGPT using qytorch, which allowed
us to maintain consistency with the real counterpart
of the existing architecture and implementation.
In the context of Quaternion Transformers, the

self-attention mechanism involves three weights:
Query (W q

Q), Key (W q
K), and Value (W q

V ). Each of
the three contain 4 small weight matrices correspond-
ing to the r, i, j annd k components of a quaternion
as shown in Fig 2. Using these 12 quaternion weights
(W q

Q,K,V ) we construct the 3 real weight matrices
(W r

Q,K,V ) following Fig 1.
We conducted a series of reset-train-prune experi-

ments using L1 unstructured pruning. At each prun-
ing iteration, a fraction p (prune rate) of the weights
in the r, i, j, k components of the three W q

Q,K,V
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Figure 2. Self attention in quaternion setting

weights was pruned. Each of the 12 matrices were
pruned independently. This process, detailed in Al-
gorithm 1, was repeated np times. By fixing the seed
before reinitializing the model, we ensure that the
model parameters are reset to the same values each
time. The pruning was designed such that (1− p)np

resulted in a sparsity level below 1%.

Algorithm 1 Reset-Train-Prune Process for Trans-
formers

Set the value p (p ∈ (0, 1))
for i in 0 to np − 1 do

1. Fix seed and Reinitialize model parame-
ters

2. Train model for required number of epochs
3. Prune the W q

Q,W
q
K ,W q

V weight matri-
ces, removing a fraction p of the weights com-
pared to what was left before pruning
end for

3.1 Implementation Details

• Quaternion: Following [19, 20], we kept the
norm layers, bias, and embedding and class
tokens (in ViT) as real-valued, since they col-
lectively contribute less than 1% to the total
number of parameters. Moreover, norm weights
and bias being 1D arrays, we generally cannot
convert them to quaternion matrices which re-
quire last two dimentions to be multiple of four.
Additionally, existing literature on quaternion-
based norm layers are slow and do not reduce
parameter counts.

• Pruning: We strategically excluded specific
layers from pruning, including norm layers, bi-
ases, positional embedding, and the class token
in Vision Transformer (ViT), as they barely con-
tribute to the overall model size. But in case of

Task Model Dataset
#params

Prune Rate
Real Quat

Vision ViT
CIFAR10 1.1M 0.3M 0.4
CIFAR100 1.2M 0.3M 0.4
MedMNIST 28.95M 7.72M 0.3

Language nanoGPT Shakespeare 10.65M 2.79M 0.3, 0.5, 0.7

Table 1. Summary of all the experiments performed,
the models used, their parameter counts, and the pruning
percentages used for each.

smaller models like our ViT (4.1.1), these layers
account for approximately 1-2% of the model’s
parameters, which although becomes significant
in extremely sparse conditions, do not cause
much problems. We experimented with prun-
ing norm weights and bias weights, observing
that pruning norm weights hurts performance
more than pruning bias weights.

• Resetting: All the weights and biases were
reset without any deviation.

4 Experiments

In this section, we give the details of the exper-
iments we conducted. We explored the two most
popular tasks where transformers frequently find use
in Computer Vision and Language Modelling. On
the vision front, we tried the well-known model ViT,
which generally has many parameters and performs
pretty well in various vision tasks. To evaluate the
performance of our approach on the language task,
we use the nanoGPT model. The summary of the
experiments performed, the models used, and their
parameter count has been provided in table 1.

4.1 Computer Vision

We performed the experiments to show the efficiency
of our proposed method on vision tasks. The pri-

3



Dataset
Classes (with
dummies)

Number of
Channels

Number of
Train Images

PathMNIST 9 → 12 3 89996
DermaMNIST 7 → 8 3 7007
OCTMNIST 4 → 4 1 97477

PneumoniaMNIST 2 → 4 1 4708
RetinaMNIST 5 → 8 3 5368
BreastMNIST 2 → 4 1 546
BloodMNIST 8 → 8 3 11959
TissueMNIST 8 → 8 1 165466
OrganAMNIST 11 → 12 1 34561
OrganCMNIST 11 → 12 1 12975
OrganSMNIST 11 → 12 1 13932

Table 2. Summary of the used MedMNIST datasets.

mary task we address is the classification on im-
age datasets, CIFAR10, CIFAR100 and different
datasets in MedMNIST. The summary of these
datasets is given in the table 2.

4.1.1 Vision Transformer on CIFAR10 and
CIFAR100

We modified the Vision Transformer (ViT) [21] mod-
els for our experiments, adjusting the number of
transformer layers and embedding dimensions to
optimize accuracy. For the small CIFAR10 dataset,
we used a compact model with 6 transformer lay-
ers, an embedding dimension of 64, 8 heads, and
an MLP size of 512, resulting in approximately 1.2
million initial parameters in real for both CIFAR10
and CIFAR100. The quaternion-based model had
around 0.3 million parameters. We observed that,
ViT models easily overfit on small datasets like CI-
FAR, which is why we took this approach. Figures
3(a) and 3(b) illustrate the performance of our model
on the CIFAR10 and CIFAR100 datasets.

Due to the quaternion layer limitation that input
and output neurons must be a multiple of 4 [22–
24], we added two dummy classes to the CIFAR10
dataset, making the model output three quaternions
corresponding to 12 classes. This approach had no
distinguishable impact on the learning statistics but
allowed us to use purely quaternion models.

4.1.2 Vision Transformer on MedMNIST

We conduct experiments on the MedMNIST dataset
[25] [26], a comprehensive repository of 12 medical
image datasets. The dataset’s diversity, featuring
varying numbers of classes, images, and channels,
makes it well-suited for evaluating our models’ per-
formance under different conditions.

We use the Vision Transformer (ViT) model with
modified specifications: 8 transformer blocks, each
with 8 attention heads, a ViT patch size of 7, self-
attention embedding dimension of 768, prediction
head MLP size of 768, and dropout regularization
with a rate of 0.1.

We deliberately designed the model to have a
lower weight count for the MLP layers compared

to the transformer weights. Initially, we found that
the MLP had a significant weight count in the ViT-
Base configuration [5]. We reduced the MLP size
to address this, minimizing its contribution to the
total weight count. While increasing transformer
properties (e.g., number of heads or layers) didn’t
significantly impact accuracy, boosting MLP layer
characteristics substantially improved performance.
However, we prioritized transformer characteristics,
maintaining a low MLP size and high transformer
properties.
The results, as shown in Figures 3(c) and 3(d),

are consistent with our MedMNIST experiments,
demonstrating that the quaternion model’s perfor-
mance remains high till a much higher sparsity level
compared to the real-valued model.

4.2 Language Modeling

We implement Quaternion and LTH pruning on the
NanoGPT model using the Shakespeare [27] dataset,
which contains 40,000 lines of Shakespeare’s plays.
The nanoGPT model [28] generates the next most
probable token based on a given context.

We trained the nanoGPT model with original hy-
perparameters and seeds to reproduce the results
from the original work. The dataset has approxi-
mately 64 characters (rounded to a multiple of 4),
where each character is treated as a token.

The full real model has about 10.65M parameters,
while the quaternion version has about 2.7M param-
eters. We prune the nanoGPT model using three
rates: 0.3, 0.5, and 0.7.

4.2.1 Perplexity Score

Perplexity score is calculated as PPL(X) =
exp(−

∑
p(x) log q(x)) (p(x) and q(x) denotes out-

put and true probabilities respectively). A lower
perplexity score indicates better performance, while
a higher score suggests that the model is less accu-
rate or more “perplexed” by the query.

5 Results and Discussion

5.1 Computer Vision

Figures 3 show that the quaternion model’s per-
formance is comparable to the real-valued model
inspite of having one-fourth the number of weights,
achieving similar accuracy with fewer parameters.
Additional results confirming similar observations
are also shown in figure 9 in Appendix which con-
tains our results related to the MedMNIST dataset.
In figure 4, we observe the different values of

weights and their frequency of occurrence during
pruning iterations. The insignificant weights closer
to zero are pruned, revealing the effective weights

4
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Figure 3. Graph of highest accuracy achieved on full training after each pruning in real and quaternion versions
of ViT on CIFAR10, CIFAR100 and two medMNISTs. Other results are in appendix.
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Figure 4. trained nanoGPT weight distribution across pruning iterations for real and quat on Shakespeare dataset

contributing to inference. As we prune the model,
the number of remaining weights decreases signifi-
cantly. The near-zero weights are pruned in every
iteration, making the distribution two peaks away
from zero. Similar results can be seen in figure 6,
which corresponds to the MedMNIST dataset.

5.2 Language Modeling
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Figure 5. Perplexity scores of real and quaternion mod-
els at different pruning iterations, shown with respect
to the percentage of weights remaining relative to the
original number of weights in the unpruned real-valued
model.

The performance of the nanoGPT model on the
Shakespeare dataset for all prune rates is shown in

Figure 5 using perplexity scores. The figure com-
pares the perplexity scores of quaternion and real-
valued models with respect to the percentage of
weights remaining relative to the unpruned real-
valued model. It demonstrates that quaternion-
valued models, which originally have approximately
four times fewer weights, maintain their performance
even when further pruned, resulting in lower per-
plexity scores compared to the real-valued versions.

5.3 ViT on MedMNIST weight dis-
tributions graphs

Figure 6 displays the trained weight distribu-
tions of Vision Transformer (ViT) models on two
MedMNIST datasets, PathMNIST and OCTMNIST,
across different pruning iterations. The histograms
show the number of weights whose values fall within
each bin.
In unpruned models, a significant portion of

weights are concentrated near zero, indicating they
don’t contribute significantly to predictions. As
we prune, the remaining weights adjust themselves,
converging to a value not very close to zero. This
suggests the model finds an alternative optimum
that doesn’t rely on very small weights.

Quaternion weights exhibit a higher standard de-
viation than real-valued counterparts, indicating
diverse values. They respond better to pruning,
with larger middle gap sizes in quaternion models
compared to real models.
Unlike Figure 4, we don’t see a clear Gaussian

distribution. Individual ViT layers follow Gaussian
distributions with mean close to zero but different
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Figure 6. Trained ViT weight distribution across pruning iterations for real and quaternion models on two
MedMNIST datasets. The columns show the weight distribution for unpruned, prune iteration 2, prune iteration
4, and prune iteration 12 in order. The rows stand for PathMNIST real, PathMNIST quaternion, OCTMNIST
real, and OCTMNIST quaternion models respectively.

standard deviations. The sum of these distributions
results in a non-Gaussian overall weight distribu-
tion, more pronounced in the third column (prune
iteration 4), where two distinct peaks are visible.
This trend is consistent across all MedMNIST

datasets and CIFAR datasets used in our experi-
ments.

6 Conclusion

In this work, we explore the use of Quaternion vari-
ations in Transformer models to reduce weight pa-
rameters by one-fourth compared to traditional real-
valued Transformers. We also test the effectiveness
of the Lottery Ticket Hypothesis in pruning these
Quaternion-based models and compare their perfor-
mance with real-valued Transformers.

One limitation of our approach is that Quaternion
neural networks require the number of input and
output features to be multiples of four. While this
constraint is generally not problematic for hidden
layers, as large neural networks often use feature
sizes that are large powers of two, it can pose a chal-
lenge for input and output layers where feature sizes

may not align with this requirement. We are ac-
tively exploring methods to overcome this limitation,
ensuring broader applicability of Quaternion-based
models across different layers and architectures.
Looking ahead, combining our approach with

methods like quantization [8], pruning [29–31], and
a mixture of experts [32] can lead to even more
efficient and deployable models that maintain per-
formance on various devices. We are also inter-
ested in investigating the impact of other complex
space transformations of weights, such as octonions,
and the direct conversion of real trained weights to
quaternions without or with minimal training.

Acknowledgements

This work was partially funded by the Microsoft
Academic Partnership Grant (MAPG) 2023 and
NISER-RIN4001.

6



References

[1] OpenAI. GPT-4 Technical Report. 2024. arXiv:
2303.08774 [cs.CL].

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A.
Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Es-
iobu, J. Fernandes, J. Fu, W. Fu, B. Fuller,
C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V.
Kerkez, M. Khabsa, I. Kloumann, A. Korenev,
P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T.
Mihaylov, P. Mishra, I. Molybog, Y. Nie, A.
Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Sub-
ramanian, X. E. Tan, B. Tang, R. Taylor, A.
Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov,
Y. Zhang, A. Fan, M. Kambadur, S. Narang,
A. Rodriguez, R. Stojnic, S. Edunov, and T.
Scialom. Llama 2: Open Foundation and Fine-
Tuned Chat Models. 2023. arXiv: 2307.09288
[cs.CL].

[3] A. Q. Jiang, A. Sablayrolles, A. Mensch, C.
Bamford, D. S. Chaplot, D. de las Casas, F.
Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L.
Scao, T. Lavril, T. Wang, T. Lacroix, and
W. E. Sayed. Mistral 7B. 2023. arXiv: 2310.
06825 [cs.CL].

[4] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Men-
sch, B. Savary, C. Bamford, D. S. Chaplot, D.
de las Casas, E. B. Hanna, F. Bressand, G.
Lengyel, G. Bour, G. Lample, L. R. Lavaud,
L. Saulnier, M.-A. Lachaux, P. Stock, S. Sub-
ramanian, S. Yang, S. Antoniak, T. L. Scao, T.
Gervet, T. Lavril, T. Wang, T. Lacroix, and
W. E. Sayed. Mixtral of Experts. 2024. arXiv:
2401.04088 [cs.LG].

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D.
Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et
al. “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale”. In:
International Conference on Learning Repre-
sentations. 2020.

[6] Y. Li, H. Mao, R. Girshick, and K. He. “Ex-
ploring plain vision transformer backbones for
object detection”. In: European conference on
computer vision. Springer. 2022, pp. 280–296.

[7] M. Caron, H. Touvron, I. Misra, H. Jegou,
J. Mairal, P. Bojanowski, and A. Joulin.
“Emerging Properties in Self-Supervised Vi-
sion Transformers”. In: 2021 IEEE/CVF In-
ternational Conference on Computer Vision
(ICCV). IEEE. 2021, pp. 9630–9640.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko.
“Quantization and Training of Neural Net-
works for Efficient Integer-Arithmetic-Only
Inference”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition.
2018, pp. 2704–2713. doi: 10 . 1109 / CVPR .
2018.00286.

[9] E. Frantar and D. Alistarh. “Sparsegpt: Mas-
sive language models can be accurately pruned
in one-shot”. In: International Conference on
Machine Learning. PMLR. 2023, pp. 10323–
10337.

[10] J. Frankle and M. Carbin. “The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural
Networks”. In: International Conference on
Learning Representations. 2019. url: https:
//openreview.net/forum?id=rJl-b3RcF7.

[11] C. Brix, P. Bahar, and H. Ney. “Successfully
Applying the Stabilized Lottery Ticket Hy-
pothesis to the Transformer Architecture”. In:
Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.
2020, pp. 3909–3915.

[12] T. Chen, J. Frankle, S. Chang, S. Liu, Y.
Zhang, Z. Wang, and M. Carbin. “The lot-
tery ticket hypothesis for pre-trained bert
networks”. In: Advances in neural informa-
tion processing systems 33 (2020), pp. 15834–
15846.

[13] X. Shen, Z. Kong, M. Qin, P. Dong, G. Yuan,
X. Meng, H. Tang, X. Ma, and Y. Wang. “Data
level lottery ticket hypothesis for vision trans-
formers”. In: Proceedings of the Thirty-Second
International Joint Conference on Artificial
Intelligence. 2023, pp. 1378–1386.

[14] Y. Tay, A. Zhang, A. T. Luu, J. Rao, S. Zhang,
S. Wang, J. Fu, and S. C. Hui. “Lightweight
and Efficient Neural Natural Language Pro-
cessing with Quaternion Networks”. In: Pro-
ceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Ed.
by A. Korhonen, D. Traum, and L. Màrquez.
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7 Appendix

In this section, we expand on the experiments con-
ducted in the paper. Further results on nanoGPT
and vision transformer on MedMNIST are reported
here.

7.1 nanoGPT perplexity by iteration

The performance of the nanoGPT model during each
pruning iteration is detailed in Figure 7. This figure
compares the perplexity scores of quaternion- and
real-valued models at each iteration, illustrating how
the perplexity score increases as more weights are
pruned. The results highlight that, despite an in-
crease in perplexity due to the pruning, quaternion-
valued models tend to maintain lower perplexity
scores compared to real-valued models, particularly
in later iterations. This behavior suggests that
quaternion models are more resilient to pruning,
maintaining performance even as the sparsity level
increases.
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Figure 7. Perplexity scores (y-axis) of real and quater-
nion models across different pruning iterations (x-axis)
for the nanoGPT model.

7.2 MedMNIST real vs quat perfor-
mance

The results of the MedMNIST experiments are com-
piled in Figure 9, which displays the highest accuracy
achieved on the full training dataset after each prun-
ing iteration. The figure compares the performance
of the real-valued and quaternion versions of the Vi-
sion Transformer (ViT) across various MedMNIST
datasets, using a prune rate of 0.3. The consistent
patterns observed across all experiments further re-
inforce the resilience of quaternion models, as they
tend to maintain higher accuracy levels compared
to their real-valued counterparts, even as pruning
progresses.
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Figure 8. Perplexity scores of real and quaternion mod-
els at different pruning iterations, shown with respect
to the exact number of weights remaining.

7.3 Demo Code to implement Quater-
nion Self Attention Layer in py-
torch

Here I have implemented the Quaternion Self Atten-
tion Layer (QSelfAttension) using Pytorch. Here
we have two helper functions: self attention and
quat to real. The self attention function is
used to calculate the self-attention given the in-
put tensor and the real weights. The quat to real

function is used to convert the quaternion weights to
real weights. Finally there is the QSelfAttention

class which is used to implement the quaternion self
attention layer.
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Figure 9. Graph of Highest Accuracy achieved on full training, after each pruning, in real and quat versions of
Vision Transformer (ViT) trained on the MedMNIST dataset with a prune rate of 0.3.
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1 import torch

2 import torch.nn.functional as F

3 import torch.nn as nn

4 import math

5

6 def self_attention(x, Wq=None , Wk=None , Wv=None):

7

8 Q = x @ Wq if Wq is not None else x

9 K = x @ Wk if Wk is not None else x

10 V = x @ Wv if Wv is not None else x

11

12 d_prime = Wq.shape [1] if Wq is not None else x.shape [1]

13

14 attention_weights = F.softmax(Q @ K.T / d_prime **0.5, dim=-1)

15 output = attention_weights @ V

16

17 return output

18

19 def quat_to_real(r, i, j, k):

20 return torch.cat([ torch.cat([r, -i, -j, -k], dim=0),

21 torch.cat([i, r, -k, j], dim=0),

22 torch.cat([j, k, r, -i], dim=0),

23 torch.cat([k, -j, i, r], dim=0)], dim =1)

24

25 class QSelfAttension(nn.Module):

26 def __init__(self , in_features: int , out_features: int) -> None:

27 assert in_features % 4 == 0 and out_features % 4 == 0, "in_channels and

out_channels must be divisible by 4"

28

29 super().__init__ ()

30 self.in_features = in_features

31 self.out_features = out_features

32

33 for QKV in ["Q", "K", "V"]:

34 for rijk in ["r", "i", "j", "k"]:

35 self.register_parameter(

36 f"{QKV}{rijk}",

37 nn.Parameter(torch.empty(( out_features //4, in_features //4)))

38 )

39 self.reset_parameters ()

40

41 def reset_parameters(self) -> None:

42 for QKV in ["Q", "K", "V"]:

43 for rijk in ["r", "i", "j", "k"]:

44 nn.init.kaiming_uniform_(

45 getattr(self , f"{QKV}{rijk}"),

46 a=math.sqrt (5)

47 )

48

49 def forward(self , x: torch.Tensor) -> torch.Tensor:

50 Wq_real = quat_to_real(self.Qr, self.Qi, self.Qj , self.Qk)

51 Wk_real = quat_to_real(self.Kr, self.Ki, self.Kj , self.Kk)

52 Wv_real = quat_to_real(self.Vr, self.Vi, self.Vj , self.Vk)

53 return self_attention(x, Wq_real , Wk_real , Wv_real)
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