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Abstract

Retrieve-based dialogue response selection
aims to find a proper response from a candidate
set given a multi-turn context. The sequence
representations generated by pre-trained lan-
guage models (PLMs) play key roles in the
learning of matching degree between the dia-
logue contexts and the responses. However, we
observe that different context-response pairs
sharing the same context always have a greater
similarity in the sequence representations cal-
culated by PLMs, which makes it hard to dis-
tinguish positive responses from negative ones.
Motivated by this, we propose a novel Fine-
Grained Contrastive (FGC) learning method
for the response selection task based on PLMs.
This FGC learning strategy helps PLMs to gen-
erate more distinguishable matching representa-
tions of each dialogue at fine grains, and further
make better predictions on choosing positive
responses. Empirical studies on two bench-
mark datasets demonstrate that the proposed
FGC learning method can generally and sig-
nificantly improve the model performance of
existing PLM-based matching models.'

1 Introduction

Multi-turn response selection is the task of predict-
ing the most appropriate response using a retrieval
model by measuring the matching degree between
a multi-turn dialogue context and a set of response
candidates. Most recently, pre-trained language
models (PLMs) have achieved substantial perfor-
mance improvements in multi-turn response selec-
tion (Lu et al., 2020; Gu et al., 2020; Humeau et al.,
2020). PLM-based models take the concatenation
of dialogue context and response as the input, and
utilize the matching representation (i.e., the embed-
ding of [CLS] token on the top layer) to predict
a score indicating the matching degree. By fur-
ther post-training PLMs with in-domain data and

"We will make the code public available later to facilitate
reproducing the results.

Dialogue Context Between Participants A and B
A: Hello. What kind of movies do you like?
B: Hi, I like action movies.
A: I really liked The Amazing Spider-Man 2

and Spectre they’re different but both action filled.
Positive Response
B: I have not seen Spectre. I will have to look for it.
Negative Response
B: I love chocolate on my fried ice cream cake!

Table 1: A dialogue context with a positive and a
negative response. The cosine similarity of matching
representation between positive and negative context-
response pairs is +0.870.

auxiliary self-supervised tasks (Whang et al., 2020,
2021a; Xu et al., 2021), PLMs achieve state-of-the-
art results on benchmarks.

Despite the success of PLM-based matching
models and their various variants, the cross-entropy
loss is widely used to tune the matching represen-
tations during the training of such models. Pre-
vious works (Elsayed et al., 2018; Soudry et al.,
2018) demonstrate that the cross-entropy loss is
inferior in establishing a large margin between pos-
itive and negative examples. We conduct prior
analysis and find that the average BERT represen-
tation cosine similarity between all positive and
negative examples is +0.074. A positive similar-
ity indicates the matching representation learned
with the cross entropy are not strong enough to
distinctively separate the positive and negative ex-
amples. Contrastive learning (CL) (Wang and Isola,
2020) provides a way to address the problem de-
scribed above. Employing the off-the-shelf con-
strative learning method (Chen et al., 2020; Fang
and Xie, 2020) could reduce the similarity of av-
erage positive-negative representations to -0.033.
However, the matching representation of two exam-
ples with the same context but different responses
are still too similar, with an average similarity of
+0.068. The matching representation is aggregated



from all embeddings of the dialogue context and
response. Therefore, the shared context of the
two examples above could cause the matching rep-
resentations to have higher similarities. Table 1
shows an example, although there are great differ-
ence between positive and negative responses, the
similarity of two context-response pairs is 0.870,
which is a very positive number. This number only
decreases to 0.246 with regular contrastive learn-
ing, which is still a positive number. This phe-
nomenon makes the matching representations less
distinguishable and makes it hard to separate posi-
tive pairs from negative ones.

To address the aforementioned issues, we pro-
pose a Fine-Grained Contrastive learning (FGC)
approach to fine-tune matching representations for
the response selection task. FGC introduces con-
trastive learning on each example with the same
context and different responses. In contrast to the
off-the-shelf contrastive learning method, which
takes every other context-response pair as negative
examples, FGC takes context and response as sep-
arate parts and focuses on distinguishing between
positive and negative examples with the same con-
text. Each context-response pair is converted into
an augmented pair during FGC learning via rule-
based transformation on the response utterance.
Each pair is asked to be close to its augmentation,
while the one with a positive response should be
far away from the one with a negative response.
FGC works totally in a self-supervised way that no
additional supervision is required besides the clas-
sification label used for response selection training.

We conduct experiments on two response se-
lection benchmarks: the Ubuntu Dialogue Cor-
pus (Lowe et al., 2015) and the Douban Cor-
pus (Wu et al.,, 2017). Our empirical results
demonstrate that FGC is able to consistently im-
prove PLMs by up to 3.2% absolute improve-
ment with an average of 1.7% absolute improve-
ment in terms of Rigp@1. Besides, We also
compare our method with standard-contrastive-
learning-enhanced PLMs, which demonstrates the
effectiveness of our proposed fine-grained con-
trastive objective.

In summary, our contributions in the paper are
three-fold:

* We propose FGC, a novel fine-grained con-
trastive learning method, which helps generate
better representations of dialogues and improves
the response selection task.

* FGC shows good generality of effectiveness with
various pre-trained language models for enhanc-
ing performance.

» Experimental results on two benchmark datasets
demonstrate that FGC can significantly improve
the performance of various strong PLM-based
matching models, including state-of-the-art ones.

2 Related Work

2.1 Multi-Turn Response Selection

Multi-turn response selection has been discussed
for a long period. Modeling dialogues with RNN-
based models has been tried first on this task (Lowe
et al., 2015; Zhou et al., 2016). However, these
methods ignore relationships among utterances by
simply concatenating the utterances together or
converting the whole context to a vector. To allevi-
ate this, Wu et al. (2017) proposed the sequential
matching network that each utterance in the context
first interacts with the response candidate, and then
the matching features are aggregated according to
the sequential order of multi-turn context. With the
rise of the self-attention mechanism, some studies
(Zhou et al., 2018; Tao et al., 2019a) explored how
to enhance representations with it. Besides, Yuan
et al. (2019) proposed a multi-hop selector to select
the relevant utterances in the dialogue context for
response matching.

Most recently, pre-trained language models (e.g.,
BERT (Devlin et al., 2019)) have shown an impres-
sive performance in the response selection. The
post-training method, which helps transfer the rep-
resentations of BERT from the general domain to
the dialogue domain, was proposed by Whang et al.
(2020) and obtained state-of-the-art results. Subse-
quent researches (Gu et al., 2020; Lu et al., 2020)
focused on incorporating speaker information into
BERT and showed its effectiveness in multi-turn
response selection. Further, self-supervised learn-
ing has been introduced into this task. Whang
et al. (2021a) and Xu et al. (2021) indicated that
incorporating well-designed self-supervised tasks
according to the characteristics of the dialogue data
into BERT fine-tuning can help with the multi-turn
response selection. Han et al. (2021) proposed a
fine-grained post-training method for enhancing
the pre-trained language model, while the post-
training process is computationally expensive than
fine-tuning a classification model. Su et al. (2020)
proposed a hierarchical curriculum learning frame-
work for improving response selection with PLMs.



2.2 Contrastive Learning for NLP

There have been several investigations for con-
trastive learning for neural models, primarily in
the computer vision domain. Oord et al. (2018)
proposed a framework for contrastive learning to
learn visual representations based on contrastive
predictive coding, which predicts the features in
latent space by using powerful autoregressive mod-
els. Khosla et al. (2020) investigated supervised
contrastive learning, allowing to leverage label in-
formation effectively. Following this trend, some
researchers verified the effectiveness of construc-
tive learning in specific NLP tasks. For eaxmple,
Fang and Xie (2020) proposed pre-training lan-
guage representation models with a contrastive self-
supervised learning objective at the sentence level,
outperforming previous methods on a subset of
GLUE tasks. Gunel et al. (2021) combined the
cross-entropy with a supervised contrastive learn-
ing objective, showing improvements over fine-
tuning RoBERTa-Large on multiple datasets of the
GLUE benchmark. Our work differs from previous
works in that we do not directly make contrast on
one example with all the other examples, as the
granularity of negative samples constructed using
this approach is too coarse to provide sufficient
discrimination with the positive ones.

3 Background

3.1 Task Formalization

The response selection task is to select the best
candidate to respond a given multi-turn dialogue
context from a pool of candidate responses. Sup-
pose that we have a dataset D = {¢;, ry, ?/i}i]\;p
where ¢; = {u}, -+ ,u]""} is a multi-turn dialogue
context with n; turns, r; denotes a candidate re-
sponse, and y; € {0, 1} denotes a label with y; = 1
indicating r; a proper response for ¢; and otherwise
y; = 0. Our goal is to estimate a matching model
y = f(-,-) from D. For any given context-response
pair (c,7), f(c, r) returns a score that reflects the
matching degree between c and r.

3.2 Pre-trained Language Model for Response
Selection

As atrend in these years, pre-trained language mod-
els, e.g., BERT(Devlin et al., 2019), have been
widely studied and adapted into numerous NLP
tasks, showing several state-of-the-art results. Dia-
logue response selection is one of them.

Applying a pre-trained language model into re-
sponse selection usually involves two steps. The

first step is to make domain-adaptive post-training,
which continues to train a standard pre-trained lan-
guage model with a domain-specific corpus. This
step helps to transfer the original pre-trained lan-
guage model into the target domain.

The second step is to fine-tune the post-trained
model with the response selection task. Given a
context ¢ = {uy, -, Uy} where u; is the t-th
turn of the dialog context, and a response 7, the
model is asked to predict a score ¢ to represent
the matching degree between c and r. To achieve
this, a special token [EOT] is added at the end
of each turn to distinguish them in the context c.
Utterances from both the context ¢ and response r
are concatenated with separator [EOT] and [SEP]
between them. Taking z as input, BERT returns a
sequence of vectors with the same length as z. The
output of the first place s|crs; is an aggregated
representation vector that holds the information of
interaction between context ¢ and response r. A
relevance score g is computed based on s[c15; and
optimized through a binary classification loss.

Yy = U(WselS[CLS] + b)
£sel = - (y logg + (1 - y) log(l - Q)) )

where W g, and b are parameters and ¢ denotes for
the ground truth binary label.

4 Methodology

4.1 Overview

ey

In this paper, we propose the Fine-Grained
Contrastive Learning method (FGC) for learn-
ing PLMs-based matching models. It consists of
two complementary contrastive objectives: (1) an
instance-view contrastive objective (IVC); and (2)
a category-view contrastive objective (CVC). Fig-
ure 1 demonstrates the joint effects of the two con-
trastive objectives on the space of matching repre-
sentations. The IVC objective pushes away exam-
ples with the same context and different responses,
making the model easier to distinguish between
positive and negative responses. However, only
pushing the examples with the same context away
increases the risk of instances with different con-
texts getting closer in the representation space. As a
remedy, the CVC objective further pulls all context-
response pairs into two distinguishable clusters in
the matching space according to whether the pair is
positive or not. These two objectives are introduced
in 4.3 and 4.4 respectively. For simplicity, we take
BERT as an example in the following sections in
the following sections.
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Figure 1: FGC contains two objectives. IVC pushes away examples with the same context but different responses
(icons in the same shape), while examples that belong to different categories may still be similar (as shown in orange
boxes). CVC further solves this problem by pulling all examples into two distinguishable clusters.

4.2 Dialogue Data Augmentation

Data augmentation takes an important role in con-
trastive learning (Zoph et al., 2020; Ho and Vas-
concelos, 2020). Similar to standard contrastive
learning (e.g., CERT), the first step of FGC is to
create augmentations for every context-response
pair. Given a context-response pair, we take an aug-
mentation method on the response to generate an
augmented response. The context and augmented
response pair form the augmentation of the origi-
nal context-response pair. In order to fine-grained
control the difference between a pair and its cor-
responding augmentation and easily perform aug-
mentation on various languages, a fully unsuper-
vised rule-based utterance augmentation method
is adopted for utterance augmentation. Inspired
by (Wei and Zou, 2019), we adopt three types of
augmentation operations:

* Random deletion: Each token in the utterance
is randomly and independently deleted with a
probability pge;.

* Random swaping: Each token in the utterance
is randomly swapped with another token in the
utterance with a probability ps.ap.

* Synonym replacing: Randomly replace a non-
stop-word token to one of its synonyms with a
probability pgy,.

Given a response utterance r and an augmenta-
tion strength p € [0, 1], we randomly pick out one
of these three augmentation methods and then ap-
ply the augmentation on the utterance with the prob-
ability being p. After augmentation, the response
r is converted into another augmented response 7.
The augmentation strength p is a hyper-parameter
that controls how much difference is there between
r and 7. A smaller p brings less variety to r, which
makes it easier to cluster 7 and its augmentation 7,
as well as distancing positive and negative response
pairs, while a larger p may potentially introduce

too much noise into model training, which harms
the representation learning and further influence
the response selection task.

4.3 Instance-View Contrastive Objective

Positive Examples Negative Examples

Maximize

Minimize 24;] Minimize @
BERT BERT BERT BERT
U U

l Rule-based Utterance Augmentation Module

Figure 2: An overview of IVC. The input is a dialogue
context ¢ and a pair of positive and negative responses
(r+, r—). Both responses are augmented to form a
new pair (r+, r—). BERT takes four examples as input
and outputs a projection vector z for each of them. IVC
aims to maximize the dissimilarity of z between positive
examples and negative examples, as well as maintains
high cohesion within positive and negative cases.

The instance-view contrastive (IVC) objective
aims at introducing more discrepancy between
a pair of examples with the same context and
positive/negative responses. Feeding a context-
response pair into BERT, BERT helps to make inter-
nal interactions by attention mechanism and gener-
ate latent vectors representing the pair. The output
vector of the [CLS] position s;c1s; stands for a
aggregated sequence representation of both con-
text and response. We also take this vector as the
matching representation used for contrastive learn-
ing. Moreover, we apply another projection layer to
convert S[crs; into a smaller vector z. This projec-
tion is made through an MLP with one hidden layer.
Through this projection, each coherent pair with
positive responses (¢;, 7;+) is transformed into a
projection vector z;+, and each incoherent pair
(¢, r;—) is transformed into z;—. The augmenta-
tions of the positive and negative pairs are also



converted into two vectors, i.€., z;+ and z; —. Here
+ and — indicates the item belongs to the positive
class or the negative class, and the bar indicates
this item comes from an augmented example.

As illustrated by Ethayarajh (2019) and Li et al.
(2020), the embedding vectors of different utter-
ances are distributed in a narrow cone of the vector
space, showing less distinguishability. This phe-
nomenon is even worse when two utterances are
semantically similar, e.g., two examples sharing
the same context. Thus, we leverage the IVC ob-
jective on these projection vectors z to distinguish
between positive and negative responses given the
same context. [VC objective regards the projection
vector z as a representation of response r given con-
text c. This loss is applied on the projection vector
z, which helps to maximize the similarity between
a response with its augmentation given the same
context, as well as minimize the similarity between
each positive response and negative response pair.
The maximum and minimum are achieved as a set
of pair-wise comparisons, i.e.,

Vi sim(z;+,7z;+) >
sim(z;+,z,—), sim(z;+, Z;—)
sim(z;+, z,— ), sim(z;+,%;,—) 2
Vi sim(z;—,z2—;) >
sim(z;—, z;+), sim(z;—, z;+)
sim(z;—, z;+), sim(z;—, z; +).
Here we use the NT-Xent Loss (Chen et al., 2020)
to model the similarities of projection vectors. By
writing this pair-wise comparison into a loss func-
tion, the IVC loss is formulated as

exp(sim(z,z)/7)

{(z,2) = —log > exp(sim(z,z)/7)
2 FZ
N 3
Live=Y_ ((zi+ Zt) +1(2i—,%i—)),
=1

where 7 > 0 is a scalar temperature parameter
that controls the separation of positive and negative
classes; zj ranges from {z+,z+,z—,zZ—};and N
is the total number of examples.

Notice that the IVC objective aims to sepa-
rate the representation of positive and negative re-
sponses given the same context, so that we do not
take all other in-batch examples as negative exam-
ples in the same way as in standard contrastive
learning.

4.4 Category-View Contrastive Objective

The IVC objective ensures a high difference be-
tween examples with the same context, while it
cannot guarantee that the learned representations
are suitable for classification. The representations
of a positive example may be close to the represen-
tation of another negative example with a different
context, as is shown in Figure 1. Thus, we in-
troduce another category-view contrastive (CVC)
objective into model training. The category-view
contrastive objective aims at bunching examples
that belong to the same category into a cluster and
separate these two clusters.

There are two categories for the response selec-
tion task, i.e., the positive category that indicates
the response is a proper response for the given con-
text, and the negative category in vise versa. The
CVC objective is applied between examples from
the two classes. It captures the similarity of projec-
tion vectors of the same class and contrasts them
with projection vectors from the other class, i.e.,

Vi, j, k,l sim(z;+,z;+) > sim(z,+,2,—) @

Vi, j, k,l sim(z;—,z;—) > sim(z,+,2,—).

This category-view contrastive loss works with
a batch of representation vectors of size 2N, where
the number of both positive examples and negative
examples is N. Denote {z1,22, - ,Zon—_1,Z2N}
to be all representation vectors in a batch, where
{z1,22, -+ ,2N} are representation vectors for
positive examples and their augmentations, and
{ZN+1,2ZN+42,- -+ ,ZoN} are representation vec-
tors for negative examples and their representa-
tions. The CVC objective works as an additional
restriction to punish the high similarity between
positive-negative pairs and low similarity within
all positive and negative examples. The following
formulas give this loss:

exp(z; - z;/7)
> iz ©XD(2i - 2 /T)

LN
Leove=—3—7 YN 1551z, 2))

i=1 i#j

l(z;,2;) = log

&)

Finally, the BERT model is fine-tuned with the
standard response selection loss Ls.1 and both IVC
and CVC loss. A weighted summation is computed
as

L= ﬁsel + )\(ﬁivc + ECUC)7 (6)



where A is a hyper-parameter that controls the
balance between response selection loss and con-
trastive loss. The model is optimized by minimiz-
ing the overall loss value.

5 Experiments

5.1 Dataset

* Ubuntu Dialogue Corpus V1
The Ubuntu Dialogue Corpus V1 (Lowe et al.,
2015) is a domain-specific multi-turn conversa-
tion dataset. Conversations in this dataset are
dumped from the multi-party chat room whose
topic is the Ubuntu operating system.

¢ Douban Corpus
The Douban Corpus(Wu et al., 2017) is a Chinese
dataset collected from an online social network
website named Douban. Douban Corpus is an
open-domain conversation corpus, whose topic
is much wider than that of Ubuntu Corpus.

The statistics of these two datasets are shown in
Table 2. These two datasets vary greatly in both
language and topic. Following previous works, we
take R19@ks as evaluation metrics, which mea-
sures the probability of having the positive re-
sponse in the top k ranked responses. We take
k ={1,2,5} for model evaluation.

Dataset Ubuntu Douban

Train  Val Test | Train Val Test
# dialogues | IM 500K 500K | IM 50K 6670
#pos:#neg 1:1 1:9 1:9 1:1 I:1  1.2:88
#avgturns | 10.13 10.11 10.11 | 6.69 6.75 645

Table 2: Statistics of two datasets.

5.2 Baseline Methods

We introduce FGC into several open-sourced PLM-
based models, including BERT and ELECTRA. We
also test the effectiveness of FGC on variants of
BERT model, including BERT-small (H=4, L=4,
H=512), BERT with domain-adaptive post train-
ing named BERT-DPT (Whang et al., 2020), and
BERT with self-supervised tasks named BERT-
UMS (Whang et al., 2021b). Several non-PLM-
based models are also compared.’

5.3 Implementation Details

All models are implemented based on Pytorch and
Huggingface’s implementation. Each PLM model

2A pre-trained Chinese BERT-Small is not available, thus
we do not conduct experiments on it.

is trained for 5 epochs with a learning rate begin-
ning from 3e-6 to 0 with a linear learning rate decay.
Our model is trained on 8 Nvidia Tesla A100 GPUs
with 40GB memory.

5.4 Experimental Results

The comparison between PLMs and FGC-
enhanced PLMs is shown in Table 3. All PLM-
based methods outperform non-PLM-based meth-
ods. By adding our proposed FGC into PLM-based
models, the performance of all models is signifi-
cantly improved. The maximum improvement of a
standard-sized BERT for the two datasets are 1.9%
and 3.2% respectively in terms of Rjg@1. The
average performance improvement also achieves
1.1% and 2.2%. Besides, our proposed method can
also enhance the current state-of-the-art method
BERT-UMS by 1.1% and 0.8% on two datasets in
terms of Rjg@1. In addition to a standard-sized
BERT model, we also find an absolute gain of 0.9%
by adding FGC on the BERT-Small model, which
is about 10x smaller than a standard one. The
success of these two datasets demonstrates the ef-
fectiveness of our proposed FGC across different
models, languages, and dialogue topics on multi-
turn response selection.

FGC separates representation vectors of exam-
ples into different latent spaces according to their
type of relevance between contexts and responses.
On the one hand, IVC helps distinguish between
positive and negative responses given the same con-
text. On the other hand, CVC separates represen-
tations of examples from two categories so that
these representations can have better distinguisha-
bility. As a result, the matching representation of
context-response pairs for positive and negative re-
sponses are forced to stay away from each other.
These better representations ensures higher accu-
racy in selecting the positive response given a set
of candidate responses.

6 Closer Analysis

We conduct closer analysis with BERT-DPT since
combining post-training and fine-tuning is the
most popular manner of applying BERT for down-
streaming tasks. The Ubuntu Corpus is used in the
following analysis.

6.1 Ablation Studies ] o
As we add two contrastive learning objectives into

training for response selection, we test the gain of
each objective. The results are shown in Table 4. It
can be observed from the table that both IVC and



Models Ubuntu Douban
Rip@1 R @2 R p@5 | MAP MRR P@1 R;p@1 R1(@2 R(@5
non-PLM-based methods
Multi-View (Zhou et al., 2016) 0.662 0.801 0.951 | 0505 0.543 0342 0.292 0.350 0.729
SMN (Wu et al., 2017) 0.726 0.847 0.961 | 0.529 0.569 0.397 0.233 0.396 0.724
DUA (Zhang et al., 2018) 0.752 0.868 0.961 | 0.551 0.599 0421 0.243 0.421 0.780
DAM (Zhou et al., 2018) 0.767 0.874 0.961 | 0.550 0.601 0427 0.254 0.410 0.757
MREN (Tao et al., 2019a) 0.786 0.886 0976 | 0.571 0.617 0.448 0.276 0.435 0.783
Iol (Tao et al., 2019b) 0.796 0.894 0974 | 0.573 0.621 0.444 0.269 0.451 0.786
IMN (Gu et al., 2019) 0.794 0.889 0.974 | 0576 0.618 0.441 0.268 0.458 0.796
MSN (Yuan et al., 2019) 0.800 0.899 0.978 | 0.587 0.632 0470 0.295 0.452 0.788
PLM-based Methods

BERT 0.820 0.906 0.978 | 0597 0.634 0.448 0.279 0.489 0.823
BERT+FGC 0.829 0.910 0.980 | 0.614 0.653 0.495 0.312 0.495 0.850
BERT-DPT (Whang et al., 2020) 0.862 0.935 0.987 | 0.609 0.645 0.463 0.290 0.505 0.838
BERT-DPT+FGC 0.881 0.945 0.990 | 0.620 0.660 0.495 0.322 0.495 0.850
BERT-UMS (Whang et al., 2021b) | 0.875 0.942 0.988 | 0.625 0.664 0499 0.318 0.482 0.858
BERT-UMS+FGC 0.886 0.948 0.990 | 0.627 0.670 0.500 0.326 0.512 0.869
ELECTRA 0.826 0.908 0978 | 0.602 0.642 0465 0.287 0.483 0.839
ELECTRA+FGC 0.832 0.912 0.980 | 0.625 0.668 0.499 0.313 0.502 0.850
BERT-Small 0.792 0.888 0.972 N/A N/A N/A N/A N/A N/A
BERT-Small+FGC 0.800 0.890 0974 | NJA  N/A N/A N/A N/A N/A

Table 3: Evaluation results on the two data sets. Numbers in bold indicate that the PLM-based models using FGC
outperforms the original models with a significance level p-value < 0.05.

Strategy Rip@1 R;g@2 R;0@5
BERT-DPT + FGC  0.881 0.944 0.990
-IvC 0.866 0.935 0.986
-CVvC 0.877 0.941 0.988
BERT-DPT 0.862 0.935 0.987

Table 4: Ablation Analysis on the Ubuntu corpus.

CVC can enhance the performance on response se-
lection, with an absolute improvement of 1.4% and
0.4% respectively in terms of Rjg@1. By applying
these two contrastive objectives together, we obtain
an absolute improvement of 1.9% based on the post-
trained BERT model. Both of the two contrastive
objectives share the same purpose of separating
the representation of examples with positive and
negative responses, and thus there is a performance
overlap by adding these two objectives.

6.2 Sensitive Analysis

Temperature Temperature 7 works as a hyperpa-
rameter that controls the punishment on the degree
of separation of positive and negative classes. A
smaller 7 gives more power to pull away examples
from different classes. We test how this hyperpa-
rameter can influence the response selection per-
formance. We test 7 in the range of {0.1,0.5,1}
on FGC and the results are shown in Table 5. FGC
achieves the best performance when 7 is set to be
0.5, while the performance drops given a smaller

or a bigger 7. A suitable 7 can provide a proper
differentiation that is neither too strong nor too
weak, keeping a balance between contrastive and
response selection objectives.

Temperature T Rip@1 R;p@2 R;9@5
BERT-DPT 0.862 0.935 0.987
+ FGC (r=0.1) 0.872 0.939 0.990
+FGC (r=0.5) 0.881 0.944 0.990
+FGC (r=1.0) 0.876 0.938 0.990

Table 5: Influence of temperature 7 in FGC.

Utterance Augmentation Strength Utterance
augmentation plays an important role in contrastive
learning. A dialogue with a context and a positive
response is drawn closer to its augmentation while
pushed far away from the dialogue with the same
context but a negative response. The strength of
utterance augmentation decides the boundary of
each cluster. We conduct experiments to test how
augmentation strength can influence response selec-
tion accuracy. We range the augmentation strength
p from {0.1,0.2,0.5}, and the testing results are
shown in Table 6. It achieves the best performance
when p = 0.2. Augmentation strength being ei-
ther too large or too small may harm the clustering.
On the one hand, a too-large p brings too much
noise into the clustering process, which blurs the
boundary between positive and negative examples.
On the other hand, a too-small p cannot provide



enough variation to the utterance, which harms the
generalization of identifying positive responses.

Augment Strength p Rjp@1 R;g@2 R;9@5

BERT-DPT 0.862  0.935  0.987
+ FGC (p=0.1) 0.874 0938  0.989
+ FGC (p=0.2) 0.881 0.944  0.990
+ FGC (p=0.5) 0872 0935  0.990

Table 6: Influence of augmentation strength p in FGC.

6.3 Discussion

Effect of Data Augmentation Alone Data aug-
mentation, working as a kind of data noise, shows
a positive effect on training models with robustness
in natural language processing. One may concern
that can data augmentation alone help with the re-
sponse selection task. We conducted experiments
with data augmentation alone, i.e., no contrastive
learning strategy is included. The results are shown
in Table 7. It can be observed from the table that
data augmentation alone cannot enhance the model
but even harm the accuracy significantly. Data aug-
mentation methods should work with fine-grained
contrastive learning to make positive effects for the
multi-turn response selection task.

‘ Ubuntu Douban
BERT-DPT | 0.862 0.290
+Aug 0.837 (-2.5%) 0.278 (-1.2%)
BERT-UMS | 0.875 0.318
+Aug 0.851 (-2.4%) 0.292 (-2.6%)

Table 7: Performance with data augmentation alone.

Compare with Standard Contrastive Learn-
ing The main difference between our proposed
FGC and standard contrastive learning (e.g.,
CERT (Fang and Xie, 2020) and SimCSE (Gao
et al., 2021)) is that we only take examples with
the same context but different responses as nega-
tive examples, instead of using in-batch examples
as negative ones. We compare FGC with those
methods, whose results are shown in Table 8. Stan-
dard contrastive learning can bring less gain (or
even harm) on the response selection task, while
contrastive learning with fine-grained negative ex-
amples leads to a significant gain on this task.

Similarity between Examples The goal of FGC
is to enlarge distances between dialogue exam-
ples with the same context and different responses.
To estimate how effective this target is achieved,
we compute two average cosine similarities: (1)

Contrastive Method Rip@1 Rjp@2 R;g@5
BERT-DPT 0.862 0.935 0.987
BERT-DPT + CERT 0.855 0.931 0.985
BERT-DPT + SimCSE  0.864  0.936 0.987
BERT-DPT + FGC 0.881 0.944  0.990

Table 8: Result on comparing with regular contrastive
learning methods.

instance-level similarity, which is the average simi-
larity between dialogue pairs with the same context
but different responses; and (2) category-level sim-
ilarity, which is the average similarity between all
positive examples and negative examples. As can
be seen from Table 9, both similarities are lowered
from a positive value indicating positive correlation
into a negative value indicating negative correlation
by adding FGC. By introducing better distinguisha-
bility into dialogue representations, our proposed
FGC helps to make better response predictions ef-
fectively. Though these two similarities can also
be lowered by adding IVC alone, the category sim-
ilarity is not small enough to separate the two cate-
gories well. This shortcoming is compensated by
further applying CVC as an additional training ob-
jective. Besides, CVC alone can neither provide
a sufficiently low level of instance-level similarity
that separates examples with the same context.

Strategy Ins Sim  Cat Sim

BERT-DPT +0.074  +0.064
+1IvC -0.178  -0.015
+CVC +0.052  -0.109

BERT-DPT + FGC  -0.111  -0.131

Table 9: Similarity Analysis on the Ubuntu corpus.

7 Conclusion

In this paper, we propose FGC, a fine-grained con-
trastive learning method, which helps to improve
the multi-turn response selection task with PLM-
based models. FGC consists of an instance-view
contrastive (IVC) objective that helps to differen-
tiate positive response and negative response with
the same context, and a category-view contrastive
(CVC) objective that separate positive examples
and negative examples into two distinguishable
clusters. Experiments and analysis on two bench-
mark datasets and five PLM-based models demon-
strates the effectiveness of FGC to significantly
improve the performance of multi-turn dialogue
response selection.
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A More Implementation Details

Domain-adaptive Post-training For domain-
adaptive post-training, we take the same hyper-
parameter settings as BERT-DPT (Whang et al.,
2020). Concretely, the maximum length of input
dialogue is set to be 512. A full dialogue is ran-
domly cut into a shorted token sequence with a
probability of 10%. A masked language model loss
and a next sentence prediction loss is optimized
jointly during post-training. For the masked lan-
guage model training, we masked each token with
a probability of 15%. The post-training process
traverses all the dialogues for 10 iterations, and
the words that are masked during each iteration are
independently sampled.

Fine-tuning for Response Selection The model
is fine-tuned with the response selection task. The
projection layer for transforming [CLS] vectors
into projection vectors z is an MLP with one hid-
den layer with hidden size being 256. For dia-
logues longer than 512 (i.e. the maximum length
supported by BERT), we discard the beginning of
its context while keeps a complete response, as
the latter part of the dialogue context may have
stronger relevance with the response. We take an
AdamW optimizer(Loshchilov and Hutter, 2019)
with linear learning rate decay for fine-tuning. The
initial learning rate is 3 * 1075, and gradually de-
creases to 0 within 5 epochs. The A for controlling
the balance between response selection loss and
contrastive loss is set to be 1.

All pre-trained language model checkpoints are
downloaded from huggingface?, with their names
as the keys except for BERT-Small. For the BERT-
Small model, the pre-trained model checkpoint
is downloaded with model name “‘prajjwall/bert-
small”. Each model is trained by 3 times, and the
best results among them are reported.

3https://huggingface.co/
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