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Abstract

Retrieve-based dialogue response selection001
aims to find a proper response from a candidate002
set given a multi-turn context. The sequence003
representations generated by pre-trained lan-004
guage models (PLMs) play key roles in the005
learning of matching degree between the dia-006
logue contexts and the responses. However, we007
observe that different context-response pairs008
sharing the same context always have a greater009
similarity in the sequence representations cal-010
culated by PLMs, which makes it hard to dis-011
tinguish positive responses from negative ones.012
Motivated by this, we propose a novel Fine-013
Grained Contrastive (FGC) learning method014
for the response selection task based on PLMs.015
This FGC learning strategy helps PLMs to gen-016
erate more distinguishable matching representa-017
tions of each dialogue at fine grains, and further018
make better predictions on choosing positive019
responses. Empirical studies on two bench-020
mark datasets demonstrate that the proposed021
FGC learning method can generally and sig-022
nificantly improve the model performance of023
existing PLM-based matching models.1024

1 Introduction025

Multi-turn response selection is the task of predict-026

ing the most appropriate response using a retrieval027

model by measuring the matching degree between028

a multi-turn dialogue context and a set of response029

candidates. Most recently, pre-trained language030

models (PLMs) have achieved substantial perfor-031

mance improvements in multi-turn response selec-032

tion (Lu et al., 2020; Gu et al., 2020; Humeau et al.,033

2020). PLM-based models take the concatenation034

of dialogue context and response as the input, and035

utilize the matching representation (i.e., the embed-036

ding of [CLS] token on the top layer) to predict037

a score indicating the matching degree. By fur-038

ther post-training PLMs with in-domain data and039

1We will make the code public available later to facilitate
reproducing the results.

Dialogue Context Between Participants A and B
A: Hello. What kind of movies do you like?
B: Hi, I like action movies.
A: I really liked The Amazing Spider-Man 2

and Spectre they’re different but both action filled.
Positive Response
B: I have not seen Spectre. I will have to look for it.
Negative Response
B: I love chocolate on my fried ice cream cake!

Table 1: A dialogue context with a positive and a
negative response. The cosine similarity of matching
representation between positive and negative context-
response pairs is +0.870.

auxiliary self-supervised tasks (Whang et al., 2020, 040

2021a; Xu et al., 2021), PLMs achieve state-of-the- 041

art results on benchmarks. 042

Despite the success of PLM-based matching 043

models and their various variants, the cross-entropy 044

loss is widely used to tune the matching represen- 045

tations during the training of such models. Pre- 046

vious works (Elsayed et al., 2018; Soudry et al., 047

2018) demonstrate that the cross-entropy loss is 048

inferior in establishing a large margin between pos- 049

itive and negative examples. We conduct prior 050

analysis and find that the average BERT represen- 051

tation cosine similarity between all positive and 052

negative examples is +0.074. A positive similar- 053

ity indicates the matching representation learned 054

with the cross entropy are not strong enough to 055

distinctively separate the positive and negative ex- 056

amples. Contrastive learning (CL) (Wang and Isola, 057

2020) provides a way to address the problem de- 058

scribed above. Employing the off-the-shelf con- 059

strative learning method (Chen et al., 2020; Fang 060

and Xie, 2020) could reduce the similarity of av- 061

erage positive-negative representations to -0.033. 062

However, the matching representation of two exam- 063

ples with the same context but different responses 064

are still too similar, with an average similarity of 065

+0.068. The matching representation is aggregated 066
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from all embeddings of the dialogue context and067

response. Therefore, the shared context of the068

two examples above could cause the matching rep-069

resentations to have higher similarities. Table 1070

shows an example, although there are great differ-071

ence between positive and negative responses, the072

similarity of two context-response pairs is 0.870,073

which is a very positive number. This number only074

decreases to 0.246 with regular contrastive learn-075

ing, which is still a positive number. This phe-076

nomenon makes the matching representations less077

distinguishable and makes it hard to separate posi-078

tive pairs from negative ones.079

To address the aforementioned issues, we pro-080

pose a Fine-Grained Contrastive learning (FGC)081

approach to fine-tune matching representations for082

the response selection task. FGC introduces con-083

trastive learning on each example with the same084

context and different responses. In contrast to the085

off-the-shelf contrastive learning method, which086

takes every other context-response pair as negative087

examples, FGC takes context and response as sep-088

arate parts and focuses on distinguishing between089

positive and negative examples with the same con-090

text. Each context-response pair is converted into091

an augmented pair during FGC learning via rule-092

based transformation on the response utterance.093

Each pair is asked to be close to its augmentation,094

while the one with a positive response should be095

far away from the one with a negative response.096

FGC works totally in a self-supervised way that no097

additional supervision is required besides the clas-098

sification label used for response selection training.099

We conduct experiments on two response se-100

lection benchmarks: the Ubuntu Dialogue Cor-101

pus (Lowe et al., 2015) and the Douban Cor-102

pus (Wu et al., 2017). Our empirical results103

demonstrate that FGC is able to consistently im-104

prove PLMs by up to 3.2% absolute improve-105

ment with an average of 1.7% absolute improve-106

ment in terms of R10@1. Besides, We also107

compare our method with standard-contrastive-108

learning-enhanced PLMs, which demonstrates the109

effectiveness of our proposed fine-grained con-110

trastive objective.111

In summary, our contributions in the paper are112

three-fold:113

• We propose FGC, a novel fine-grained con-114

trastive learning method, which helps generate115

better representations of dialogues and improves116

the response selection task.117

• FGC shows good generality of effectiveness with 118

various pre-trained language models for enhanc- 119

ing performance. 120

• Experimental results on two benchmark datasets 121

demonstrate that FGC can significantly improve 122

the performance of various strong PLM-based 123

matching models, including state-of-the-art ones. 124

2 Related Work 125

2.1 Multi-Turn Response Selection 126

Multi-turn response selection has been discussed 127

for a long period. Modeling dialogues with RNN- 128

based models has been tried first on this task (Lowe 129

et al., 2015; Zhou et al., 2016). However, these 130

methods ignore relationships among utterances by 131

simply concatenating the utterances together or 132

converting the whole context to a vector. To allevi- 133

ate this, Wu et al. (2017) proposed the sequential 134

matching network that each utterance in the context 135

first interacts with the response candidate, and then 136

the matching features are aggregated according to 137

the sequential order of multi-turn context. With the 138

rise of the self-attention mechanism, some studies 139

(Zhou et al., 2018; Tao et al., 2019a) explored how 140

to enhance representations with it. Besides, Yuan 141

et al. (2019) proposed a multi-hop selector to select 142

the relevant utterances in the dialogue context for 143

response matching. 144

Most recently, pre-trained language models (e.g., 145

BERT (Devlin et al., 2019)) have shown an impres- 146

sive performance in the response selection. The 147

post-training method, which helps transfer the rep- 148

resentations of BERT from the general domain to 149

the dialogue domain, was proposed by Whang et al. 150

(2020) and obtained state-of-the-art results. Subse- 151

quent researches (Gu et al., 2020; Lu et al., 2020) 152

focused on incorporating speaker information into 153

BERT and showed its effectiveness in multi-turn 154

response selection. Further, self-supervised learn- 155

ing has been introduced into this task. Whang 156

et al. (2021a) and Xu et al. (2021) indicated that 157

incorporating well-designed self-supervised tasks 158

according to the characteristics of the dialogue data 159

into BERT fine-tuning can help with the multi-turn 160

response selection. Han et al. (2021) proposed a 161

fine-grained post-training method for enhancing 162

the pre-trained language model, while the post- 163

training process is computationally expensive than 164

fine-tuning a classification model. Su et al. (2020) 165

proposed a hierarchical curriculum learning frame- 166

work for improving response selection with PLMs. 167
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2.2 Contrastive Learning for NLP168

There have been several investigations for con-169

trastive learning for neural models, primarily in170

the computer vision domain. Oord et al. (2018)171

proposed a framework for contrastive learning to172

learn visual representations based on contrastive173

predictive coding, which predicts the features in174

latent space by using powerful autoregressive mod-175

els. Khosla et al. (2020) investigated supervised176

contrastive learning, allowing to leverage label in-177

formation effectively. Following this trend, some178

researchers verified the effectiveness of construc-179

tive learning in specific NLP tasks. For eaxmple,180

Fang and Xie (2020) proposed pre-training lan-181

guage representation models with a contrastive self-182

supervised learning objective at the sentence level,183

outperforming previous methods on a subset of184

GLUE tasks. Gunel et al. (2021) combined the185

cross-entropy with a supervised contrastive learn-186

ing objective, showing improvements over fine-187

tuning RoBERTa-Large on multiple datasets of the188

GLUE benchmark. Our work differs from previous189

works in that we do not directly make contrast on190

one example with all the other examples, as the191

granularity of negative samples constructed using192

this approach is too coarse to provide sufficient193

discrimination with the positive ones.194

3 Background195

3.1 Task Formalization196

The response selection task is to select the best197

candidate to respond a given multi-turn dialogue198

context from a pool of candidate responses. Sup-199

pose that we have a dataset D = {ci, ri, yi}Ni=1,200

where ci = {u1i , · · · , u
ni
i } is a multi-turn dialogue201

context with ni turns, ri denotes a candidate re-202

sponse, and yi ∈ {0, 1} denotes a label with yi = 1203

indicating ri a proper response for ci and otherwise204

yi = 0. Our goal is to estimate a matching model205

y = f(·, ·) from D. For any given context-response206

pair (c, r), f(c, r) returns a score that reflects the207

matching degree between c and r.208

3.2 Pre-trained Language Model for Response209

Selection210

As a trend in these years, pre-trained language mod-211

els, e.g., BERT(Devlin et al., 2019), have been212

widely studied and adapted into numerous NLP213

tasks, showing several state-of-the-art results. Dia-214

logue response selection is one of them.215

Applying a pre-trained language model into re-216

sponse selection usually involves two steps. The217

first step is to make domain-adaptive post-training, 218

which continues to train a standard pre-trained lan- 219

guage model with a domain-specific corpus. This 220

step helps to transfer the original pre-trained lan- 221

guage model into the target domain. 222

The second step is to fine-tune the post-trained 223

model with the response selection task. Given a 224

context c = {u1, · · · , um} where ut is the t-th 225

turn of the dialog context, and a response r, the 226

model is asked to predict a score ŷ to represent 227

the matching degree between c and r. To achieve 228

this, a special token [EOT] is added at the end 229

of each turn to distinguish them in the context c. 230

Utterances from both the context c and response r 231

are concatenated with separator [EOT] and [SEP] 232

between them. Taking x as input, BERT returns a 233

sequence of vectors with the same length as x. The 234

output of the first place s[CLS] is an aggregated 235

representation vector that holds the information of 236

interaction between context c and response r. A 237

relevance score ŷ is computed based on s[CLS] and 238

optimized through a binary classification loss. 239

ŷ = σ(Wsels[CLS] + b)

Lsel = − (y log ŷ + (1− y) log(1− ŷ)) ,
(1) 240

where Wsel and b are parameters and ŷ denotes for 241

the ground truth binary label. 242

4 Methodology 243

4.1 Overview 244

In this paper, we propose the Fine-Grained 245

Contrastive Learning method (FGC) for learn- 246

ing PLMs-based matching models. It consists of 247

two complementary contrastive objectives: (1) an 248

instance-view contrastive objective (IVC); and (2) 249

a category-view contrastive objective (CVC). Fig- 250

ure 1 demonstrates the joint effects of the two con- 251

trastive objectives on the space of matching repre- 252

sentations. The IVC objective pushes away exam- 253

ples with the same context and different responses, 254

making the model easier to distinguish between 255

positive and negative responses. However, only 256

pushing the examples with the same context away 257

increases the risk of instances with different con- 258

texts getting closer in the representation space. As a 259

remedy, the CVC objective further pulls all context- 260

response pairs into two distinguishable clusters in 261

the matching space according to whether the pair is 262

positive or not. These two objectives are introduced 263

in 4.3 and 4.4 respectively. For simplicity, we take 264

BERT as an example in the following sections in 265

the following sections. 266
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IVC

Vector Space Vector Space
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Figure 1: FGC contains two objectives. IVC pushes away examples with the same context but different responses
(icons in the same shape), while examples that belong to different categories may still be similar (as shown in orange
boxes). CVC further solves this problem by pulling all examples into two distinguishable clusters.

4.2 Dialogue Data Augmentation267

Data augmentation takes an important role in con-268

trastive learning (Zoph et al., 2020; Ho and Vas-269

concelos, 2020). Similar to standard contrastive270

learning (e.g., CERT), the first step of FGC is to271

create augmentations for every context-response272

pair. Given a context-response pair, we take an aug-273

mentation method on the response to generate an274

augmented response. The context and augmented275

response pair form the augmentation of the origi-276

nal context-response pair. In order to fine-grained277

control the difference between a pair and its cor-278

responding augmentation and easily perform aug-279

mentation on various languages, a fully unsuper-280

vised rule-based utterance augmentation method281

is adopted for utterance augmentation. Inspired282

by (Wei and Zou, 2019), we adopt three types of283

augmentation operations:284

• Random deletion: Each token in the utterance285

is randomly and independently deleted with a286

probability pdel.287

• Random swaping: Each token in the utterance288

is randomly swapped with another token in the289

utterance with a probability pswap.290

• Synonym replacing: Randomly replace a non-291

stop-word token to one of its synonyms with a292

probability psyn.293

Given a response utterance r and an augmenta-294

tion strength p ∈ [0, 1], we randomly pick out one295

of these three augmentation methods and then ap-296

ply the augmentation on the utterance with the prob-297

ability being p. After augmentation, the response298

r is converted into another augmented response r̄.299

The augmentation strength p is a hyper-parameter300

that controls how much difference is there between301

r and r̄. A smaller p brings less variety to r, which302

makes it easier to cluster r and its augmentation r̄,303

as well as distancing positive and negative response304

pairs, while a larger p may potentially introduce305

too much noise into model training, which harms 306

the representation learning and further influence 307

the response selection task. 308

4.3 Instance-View Contrastive Objective 309

Negative ExamplesPositive Examples

𝑧+

𝑐 𝑟+

BERT

ҧ𝑧+

𝑐 ҧ𝑟+

BERT

𝑧-

𝑐 𝑟-

BERT

ҧ𝑧-

𝑐 ҧ𝑟-

BERT

Minimize
Minimize Maximize

Rule-based Utterance Augmentation Module

Figure 2: An overview of IVC. The input is a dialogue
context c and a pair of positive and negative responses
(r+, r−). Both responses are augmented to form a
new pair (̄r+, r̄−). BERT takes four examples as input
and outputs a projection vector z for each of them. IVC
aims to maximize the dissimilarity of z between positive
examples and negative examples, as well as maintains
high cohesion within positive and negative cases.

The instance-view contrastive (IVC) objective 310

aims at introducing more discrepancy between 311

a pair of examples with the same context and 312

positive/negative responses. Feeding a context- 313

response pair into BERT, BERT helps to make inter- 314

nal interactions by attention mechanism and gener- 315

ate latent vectors representing the pair. The output 316

vector of the [CLS] position s[CLS] stands for a 317

aggregated sequence representation of both con- 318

text and response. We also take this vector as the 319

matching representation used for contrastive learn- 320

ing. Moreover, we apply another projection layer to 321

convert s[CLS] into a smaller vector z. This projec- 322

tion is made through an MLP with one hidden layer. 323

Through this projection, each coherent pair with 324

positive responses (ci, ri+) is transformed into a 325

projection vector zi+, and each incoherent pair 326

(ci, ri−) is transformed into zi−. The augmenta- 327

tions of the positive and negative pairs are also 328
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converted into two vectors, i.e., z̄i+ and z̄i−. Here329

+ and − indicates the item belongs to the positive330

class or the negative class, and the bar indicates331

this item comes from an augmented example.332

As illustrated by Ethayarajh (2019) and Li et al.333

(2020), the embedding vectors of different utter-334

ances are distributed in a narrow cone of the vector335

space, showing less distinguishability. This phe-336

nomenon is even worse when two utterances are337

semantically similar, e.g., two examples sharing338

the same context. Thus, we leverage the IVC ob-339

jective on these projection vectors z to distinguish340

between positive and negative responses given the341

same context. IVC objective regards the projection342

vector z as a representation of response r given con-343

text c. This loss is applied on the projection vector344

z, which helps to maximize the similarity between345

a response with its augmentation given the same346

context, as well as minimize the similarity between347

each positive response and negative response pair.348

The maximum and minimum are achieved as a set349

of pair-wise comparisons, i.e.,350

∀i sim(zi+, z̄i+) >

sim(zi+, zi−), sim(zi+, z̄i−)

sim(z̄i+, zi−), sim(z̄i+, z̄i−)

∀i sim(zi−, z̄−i) >

sim(zi−, zi+), sim(zi−, z̄i+)

sim(z̄i−, zi+), sim(z̄i−, z̄i+).

(2)351

Here we use the NT-Xent Loss (Chen et al., 2020)352

to model the similarities of projection vectors. By353

writing this pair-wise comparison into a loss func-354

tion, the IVC loss is formulated as355

l(z, z̄) = − log
exp(sim(z, z̄)/τ)∑

zk ̸=z

exp(sim(z, zk)/τ)

Livc =

N∑
i=1

(l (zi+, z̄i+) + l (zi−, z̄i−)) ,

(3)356

where τ > 0 is a scalar temperature parameter357

that controls the separation of positive and negative358

classes; zk ranges from {z+, z̄+, z−, z̄−}; and N359

is the total number of examples.360

Notice that the IVC objective aims to sepa-361

rate the representation of positive and negative re-362

sponses given the same context, so that we do not363

take all other in-batch examples as negative exam-364

ples in the same way as in standard contrastive365

learning.366

4.4 Category-View Contrastive Objective 367

The IVC objective ensures a high difference be- 368

tween examples with the same context, while it 369

cannot guarantee that the learned representations 370

are suitable for classification. The representations 371

of a positive example may be close to the represen- 372

tation of another negative example with a different 373

context, as is shown in Figure 1. Thus, we in- 374

troduce another category-view contrastive (CVC) 375

objective into model training. The category-view 376

contrastive objective aims at bunching examples 377

that belong to the same category into a cluster and 378

separate these two clusters. 379

There are two categories for the response selec- 380

tion task, i.e., the positive category that indicates 381

the response is a proper response for the given con- 382

text, and the negative category in vise versa. The 383

CVC objective is applied between examples from 384

the two classes. It captures the similarity of projec- 385

tion vectors of the same class and contrasts them 386

with projection vectors from the other class, i.e., 387

∀i, j, k, l sim(zi+, zj+) > sim(zk+, zl−)

∀i, j, k, l sim(zi−, zj−) > sim(zk+, zl−).
(4) 388

This category-view contrastive loss works with 389

a batch of representation vectors of size 2N , where 390

the number of both positive examples and negative 391

examples is N . Denote {z1, z2, · · · , z2N−1, z2N} 392

to be all representation vectors in a batch, where 393

{z1, z2, · · · , zN} are representation vectors for 394

positive examples and their augmentations, and 395

{zN+1, zN+2, · · · , z2N} are representation vec- 396

tors for negative examples and their representa- 397

tions. The CVC objective works as an additional 398

restriction to punish the high similarity between 399

positive-negative pairs and low similarity within 400

all positive and negative examples. The following 401

formulas give this loss: 402

l(zi, zj) = log
exp(zi · zj/τ)∑
i ̸=r exp(zi · zr/τ)

Lcvc = − 1

N − 1

2N∑
i=1

∑
i ̸=j

1ȳi=ȳj l(zi, zj)

(5) 403

. 404

Finally, the BERT model is fine-tuned with the 405

standard response selection loss Lsel and both IVC 406

and CVC loss. A weighted summation is computed 407

as 408

L = Lsel + λ(Livc + Lcvc), (6) 409
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where λ is a hyper-parameter that controls the410

balance between response selection loss and con-411

trastive loss. The model is optimized by minimiz-412

ing the overall loss value.413

5 Experiments414

5.1 Dataset415

• Ubuntu Dialogue Corpus V1416

The Ubuntu Dialogue Corpus V1 (Lowe et al.,417

2015) is a domain-specific multi-turn conversa-418

tion dataset. Conversations in this dataset are419

dumped from the multi-party chat room whose420

topic is the Ubuntu operating system.421

• Douban Corpus422

The Douban Corpus(Wu et al., 2017) is a Chinese423

dataset collected from an online social network424

website named Douban. Douban Corpus is an425

open-domain conversation corpus, whose topic426

is much wider than that of Ubuntu Corpus.427

The statistics of these two datasets are shown in428

Table 2. These two datasets vary greatly in both429

language and topic. Following previous works, we430

take R10@ks as evaluation metrics, which mea-431

sures the probability of having the positive re-432

sponse in the top k ranked responses. We take433

k = {1, 2, 5} for model evaluation.434

Dataset
Ubuntu Douban

Train Val Test Train Val Test

# dialogues 1M 500K 500K 1M 50K 6670
#pos:#neg 1:1 1:9 1:9 1:1 1:1 1.2:8.8
# avg turns 10.13 10.11 10.11 6.69 6.75 6.45

Table 2: Statistics of two datasets.

5.2 Baseline Methods435

We introduce FGC into several open-sourced PLM-436

based models, including BERT and ELECTRA. We437

also test the effectiveness of FGC on variants of438

BERT model, including BERT-small (H=4, L=4,439

H=512), BERT with domain-adaptive post train-440

ing named BERT-DPT (Whang et al., 2020), and441

BERT with self-supervised tasks named BERT-442

UMS (Whang et al., 2021b). Several non-PLM-443

based models are also compared.2444

5.3 Implementation Details445

All models are implemented based on Pytorch and446

Huggingface’s implementation. Each PLM model447

2A pre-trained Chinese BERT-Small is not available, thus
we do not conduct experiments on it.

is trained for 5 epochs with a learning rate begin- 448

ning from 3e-6 to 0 with a linear learning rate decay. 449

Our model is trained on 8 Nvidia Tesla A100 GPUs 450

with 40GB memory. 451

5.4 Experimental Results 452

The comparison between PLMs and FGC- 453

enhanced PLMs is shown in Table 3. All PLM- 454

based methods outperform non-PLM-based meth- 455

ods. By adding our proposed FGC into PLM-based 456

models, the performance of all models is signifi- 457

cantly improved. The maximum improvement of a 458

standard-sized BERT for the two datasets are 1.9% 459

and 3.2% respectively in terms of R10@1. The 460

average performance improvement also achieves 461

1.1% and 2.2%. Besides, our proposed method can 462

also enhance the current state-of-the-art method 463

BERT-UMS by 1.1% and 0.8% on two datasets in 464

terms of R10@1. In addition to a standard-sized 465

BERT model, we also find an absolute gain of 0.9% 466

by adding FGC on the BERT-Small model, which 467

is about 10× smaller than a standard one. The 468

success of these two datasets demonstrates the ef- 469

fectiveness of our proposed FGC across different 470

models, languages, and dialogue topics on multi- 471

turn response selection. 472

FGC separates representation vectors of exam- 473

ples into different latent spaces according to their 474

type of relevance between contexts and responses. 475

On the one hand, IVC helps distinguish between 476

positive and negative responses given the same con- 477

text. On the other hand, CVC separates represen- 478

tations of examples from two categories so that 479

these representations can have better distinguisha- 480

bility. As a result, the matching representation of 481

context-response pairs for positive and negative re- 482

sponses are forced to stay away from each other. 483

These better representations ensures higher accu- 484

racy in selecting the positive response given a set 485

of candidate responses. 486

6 Closer Analysis 487

We conduct closer analysis with BERT-DPT since 488

combining post-training and fine-tuning is the 489

most popular manner of applying BERT for down- 490

streaming tasks. The Ubuntu Corpus is used in the 491

following analysis. 492

6.1 Ablation Studies 493
As we add two contrastive learning objectives into 494

training for response selection, we test the gain of 495

each objective. The results are shown in Table 4. It 496

can be observed from the table that both IVC and 497
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Models
Ubuntu Douban

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5
non-PLM-based methods

Multi-View (Zhou et al., 2016) 0.662 0.801 0.951 0.505 0.543 0.342 0.292 0.350 0.729
SMN (Wu et al., 2017) 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724
DUA (Zhang et al., 2018) 0.752 0.868 0.961 0.551 0.599 0.421 0.243 0.421 0.780
DAM (Zhou et al., 2018) 0.767 0.874 0.961 0.550 0.601 0.427 0.254 0.410 0.757
MRFN (Tao et al., 2019a) 0.786 0.886 0.976 0.571 0.617 0.448 0.276 0.435 0.783
IoI (Tao et al., 2019b) 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786
IMN (Gu et al., 2019) 0.794 0.889 0.974 0.576 0.618 0.441 0.268 0.458 0.796
MSN (Yuan et al., 2019) 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788

PLM-based Methods
BERT 0.820 0.906 0.978 0.597 0.634 0.448 0.279 0.489 0.823
BERT+FGC 0.829 0.910 0.980 0.614 0.653 0.495 0.312 0.495 0.850
BERT-DPT (Whang et al., 2020) 0.862 0.935 0.987 0.609 0.645 0.463 0.290 0.505 0.838
BERT-DPT+FGC 0.881 0.945 0.990 0.620 0.660 0.495 0.322 0.495 0.850
BERT-UMS (Whang et al., 2021b) 0.875 0.942 0.988 0.625 0.664 0.499 0.318 0.482 0.858
BERT-UMS+FGC 0.886 0.948 0.990 0.627 0.670 0.500 0.326 0.512 0.869
ELECTRA 0.826 0.908 0.978 0.602 0.642 0.465 0.287 0.483 0.839
ELECTRA+FGC 0.832 0.912 0.980 0.625 0.668 0.499 0.313 0.502 0.850
BERT-Small 0.792 0.888 0.972 N/A N/A N/A N/A N/A N/A
BERT-Small+FGC 0.800 0.890 0.974 N/A N/A N/A N/A N/A N/A

Table 3: Evaluation results on the two data sets. Numbers in bold indicate that the PLM-based models using FGC
outperforms the original models with a significance level p-value < 0.05.

Strategy R10@1 R10@2 R10@5
BERT-DPT + FGC 0.881 0.944 0.990

- IVC 0.866 0.935 0.986
- CVC 0.877 0.941 0.988

BERT-DPT 0.862 0.935 0.987

Table 4: Ablation Analysis on the Ubuntu corpus.

CVC can enhance the performance on response se-498

lection, with an absolute improvement of 1.4% and499

0.4% respectively in terms of R10@1. By applying500

these two contrastive objectives together, we obtain501

an absolute improvement of 1.9% based on the post-502

trained BERT model. Both of the two contrastive503

objectives share the same purpose of separating504

the representation of examples with positive and505

negative responses, and thus there is a performance506

overlap by adding these two objectives.507

6.2 Sensitive Analysis508

Temperature Temperature τ works as a hyperpa-509

rameter that controls the punishment on the degree510

of separation of positive and negative classes. A511

smaller τ gives more power to pull away examples512

from different classes. We test how this hyperpa-513

rameter can influence the response selection per-514

formance. We test τ in the range of {0.1, 0.5, 1}515

on FGC and the results are shown in Table 5. FGC516

achieves the best performance when τ is set to be517

0.5, while the performance drops given a smaller518

or a bigger τ . A suitable τ can provide a proper 519

differentiation that is neither too strong nor too 520

weak, keeping a balance between contrastive and 521

response selection objectives. 522

Temperature τ R10@1 R10@2 R10@5
BERT-DPT 0.862 0.935 0.987

+ FGC (τ=0.1) 0.872 0.939 0.990
+ FGC (τ=0.5) 0.881 0.944 0.990
+ FGC (τ=1.0) 0.876 0.938 0.990

Table 5: Influence of temperature τ in FGC.

Utterance Augmentation Strength Utterance 523

augmentation plays an important role in contrastive 524

learning. A dialogue with a context and a positive 525

response is drawn closer to its augmentation while 526

pushed far away from the dialogue with the same 527

context but a negative response. The strength of 528

utterance augmentation decides the boundary of 529

each cluster. We conduct experiments to test how 530

augmentation strength can influence response selec- 531

tion accuracy. We range the augmentation strength 532

p from {0.1, 0.2, 0.5}, and the testing results are 533

shown in Table 6. It achieves the best performance 534

when p = 0.2. Augmentation strength being ei- 535

ther too large or too small may harm the clustering. 536

On the one hand, a too-large p brings too much 537

noise into the clustering process, which blurs the 538

boundary between positive and negative examples. 539

On the other hand, a too-small p cannot provide 540

7



enough variation to the utterance, which harms the541

generalization of identifying positive responses.542

Augment Strength p R10@1 R10@2 R10@5
BERT-DPT 0.862 0.935 0.987

+ FGC (p=0.1) 0.874 0.938 0.989
+ FGC (p=0.2) 0.881 0.944 0.990
+ FGC (p=0.5) 0.872 0.935 0.990

Table 6: Influence of augmentation strength p in FGC.

6.3 Discussion543

Effect of Data Augmentation Alone Data aug-544

mentation, working as a kind of data noise, shows545

a positive effect on training models with robustness546

in natural language processing. One may concern547

that can data augmentation alone help with the re-548

sponse selection task. We conducted experiments549

with data augmentation alone, i.e., no contrastive550

learning strategy is included. The results are shown551

in Table 7. It can be observed from the table that552

data augmentation alone cannot enhance the model553

but even harm the accuracy significantly. Data aug-554

mentation methods should work with fine-grained555

contrastive learning to make positive effects for the556

multi-turn response selection task.557

Ubuntu Douban
BERT-DPT 0.862 0.290

+Aug 0.837 (-2.5%) 0.278 (-1.2%)
BERT-UMS 0.875 0.318

+Aug 0.851 (-2.4%) 0.292 (-2.6%)

Table 7: Performance with data augmentation alone.

Compare with Standard Contrastive Learn-558

ing The main difference between our proposed559

FGC and standard contrastive learning (e.g.,560

CERT (Fang and Xie, 2020) and SimCSE (Gao561

et al., 2021)) is that we only take examples with562

the same context but different responses as nega-563

tive examples, instead of using in-batch examples564

as negative ones. We compare FGC with those565

methods, whose results are shown in Table 8. Stan-566

dard contrastive learning can bring less gain (or567

even harm) on the response selection task, while568

contrastive learning with fine-grained negative ex-569

amples leads to a significant gain on this task.570

Similarity between Examples The goal of FGC571

is to enlarge distances between dialogue exam-572

ples with the same context and different responses.573

To estimate how effective this target is achieved,574

we compute two average cosine similarities: (1)575

Contrastive Method R10@1 R10@2 R10@5
BERT-DPT 0.862 0.935 0.987
BERT-DPT + CERT 0.855 0.931 0.985
BERT-DPT + SimCSE 0.864 0.936 0.987
BERT-DPT + FGC 0.881 0.944 0.990

Table 8: Result on comparing with regular contrastive
learning methods.

instance-level similarity, which is the average simi- 576

larity between dialogue pairs with the same context 577

but different responses; and (2) category-level sim- 578

ilarity, which is the average similarity between all 579

positive examples and negative examples. As can 580

be seen from Table 9, both similarities are lowered 581

from a positive value indicating positive correlation 582

into a negative value indicating negative correlation 583

by adding FGC. By introducing better distinguisha- 584

bility into dialogue representations, our proposed 585

FGC helps to make better response predictions ef- 586

fectively. Though these two similarities can also 587

be lowered by adding IVC alone, the category sim- 588

ilarity is not small enough to separate the two cate- 589

gories well. This shortcoming is compensated by 590

further applying CVC as an additional training ob- 591

jective. Besides, CVC alone can neither provide 592

a sufficiently low level of instance-level similarity 593

that separates examples with the same context. 594

Strategy Ins Sim Cat Sim
BERT-DPT +0.074 +0.064

+ IVC -0.178 -0.015
+ CVC +0.052 -0.109

BERT-DPT + FGC -0.111 -0.131

Table 9: Similarity Analysis on the Ubuntu corpus.

7 Conclusion 595

In this paper, we propose FGC, a fine-grained con- 596

trastive learning method, which helps to improve 597

the multi-turn response selection task with PLM- 598

based models. FGC consists of an instance-view 599

contrastive (IVC) objective that helps to differen- 600

tiate positive response and negative response with 601

the same context, and a category-view contrastive 602

(CVC) objective that separate positive examples 603

and negative examples into two distinguishable 604

clusters. Experiments and analysis on two bench- 605

mark datasets and five PLM-based models demon- 606

strates the effectiveness of FGC to significantly 607

improve the performance of multi-turn dialogue 608

response selection. 609
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A More Implementation Details789

Domain-adaptive Post-training For domain-790

adaptive post-training, we take the same hyper-791

parameter settings as BERT-DPT (Whang et al.,792

2020). Concretely, the maximum length of input793

dialogue is set to be 512. A full dialogue is ran-794

domly cut into a shorted token sequence with a795

probability of 10%. A masked language model loss796

and a next sentence prediction loss is optimized797

jointly during post-training. For the masked lan-798

guage model training, we masked each token with799

a probability of 15%. The post-training process800

traverses all the dialogues for 10 iterations, and801

the words that are masked during each iteration are802

independently sampled.803

Fine-tuning for Response Selection The model804

is fine-tuned with the response selection task. The805

projection layer for transforming [CLS] vectors806

into projection vectors z is an MLP with one hid-807

den layer with hidden size being 256. For dia-808

logues longer than 512 (i.e. the maximum length809

supported by BERT), we discard the beginning of810

its context while keeps a complete response, as811

the latter part of the dialogue context may have812

stronger relevance with the response. We take an813

AdamW optimizer(Loshchilov and Hutter, 2019)814

with linear learning rate decay for fine-tuning. The815

initial learning rate is 3 ∗ 10−5, and gradually de-816

creases to 0 within 5 epochs. The λ for controlling817

the balance between response selection loss and818

contrastive loss is set to be 1.819

All pre-trained language model checkpoints are820

downloaded from huggingface3, with their names821

as the keys except for BERT-Small. For the BERT-822

Small model, the pre-trained model checkpoint823

is downloaded with model name “prajjwal1/bert-824

small”. Each model is trained by 3 times, and the825

best results among them are reported.826

3https://huggingface.co/
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