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Abstract

Randomized smoothing has recently emerged as an effective tool that enables certification of
deep neural network classifiers at scale. All prior art on randomized smoothing has focused
on isotropic `p certification, which has the advantage of yielding certificates that can be easily
compared among isotropic methods via `p-norm radius. However, isotropic certification limits
the region that can be certified around an input to worst-case adversaries, i.e. it cannot
reason about other “close”, potentially large, constant prediction safe regions. To alleviate
this issue, (i) we theoretically extend the isotropic randomized smoothing `1 and `2 certificates
to their generalized anisotropic counterparts following a simplified analysis. Moreover, (ii) we
propose evaluation metrics allowing for the comparison of general certificates – a certificate is
superior to another if it certifies a superset region – with the quantification of each certificate
through the volume of the certified region. We introduce AnCer, a framework for obtaining
anisotropic certificates for a given test set sample via volume maximization. We achieve
it by generalizing memory-based certification of data-dependent classifiers. Our empirical
results demonstrate that AnCer achieves state-of-the-art `1 and `2 certified accuracy on
CIFAR-10 and ImageNet in the data-dependence setting, while certifying larger regions in
terms of volume, highlighting the benefits of moving away from isotropic analysis.

1 Introduction

The well-studied fact that Deep Neural Networks (DNNs) are vulnerable to additive imperceptible noise
perturbations has led to a growing interest in developing robust classifiers (Goodfellow et al., 2015; Szegedy
et al., 2014). A recent promising approach to achieve state-of-the-art provable robustness (i.e. a theoretical
bound on the output around every input) at the scale of ImageNet (Deng et al., 2009) is randomized smoothing
(Lecuyer et al., 2019; Cohen et al., 2019). Given an input x and a network f , randomized smoothing constructs
g(x) = Eε∼D[f(x+ ε)] such that g(x) = g(x+ δ) ∀δ ∈ R, where the certification region R is characterized by
x, f , and the smoothing distribution D. For instance, Cohen et al. (2019) showed that if D = N (0, σ2I),
then R is an `2-ball whose radius is determined by x, f and σ. Since then, there has been significant progress
towards the design of D leading to the largest R for all inputs x. The interplay between R characterized by
`1, `2 and `∞-balls, and a notion of optimal distribution D has been previously studied (Yang et al., 2020).

Despite this progress, current randomized smoothing approaches provide certification regions that are isotropic
in nature, limiting their capacity to certifying smaller and worst-case regions. We provide an intuitive example
of this behavior in Figure 1. The isotropic nature of R in prior art is due to the common assumption that
the smoothing distribution D is identically distributed (Yang et al., 2020; Kumar et al., 2020; Levine & Feizi,
2021). Moreover, comparisons between various randomized smoothing approaches were limited to methods
that produce the same `p certificate, with no clear metrics for comparing with other certificates. In this
paper, we address both concerns and present new state-of-the-art certified accuracy results on both CIFAR-10
and ImageNet datasets.

Our contributions are threefold. (i) We provide a general and simpler analysis compared to prior art (Cohen
et al., 2019; Yang et al., 2020) that paves the way for the certification of anisotropic regions characterized by
any norm, holding prior art as special cases. We then specialize our result to regions that, for a positive definite
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Figure 1: Illustration of the landscape of fy (blue corresponds to a higher confidence in y, the true label) for
a region around an input in a toy, 2-dimensional radially separable dataset. For two dataset examples, in (a)
and (b) we show the boundaries of the optimal `1 isotropic and anisotropic certificates, while (c) and (d) are
the boundaries of the optimal `2 isotropic and anisotropic certificates. A thorough discussion of this figure is
presented in Section 3.

A, are ellipsoids, i.e. ‖Aδ‖2 ≤ c, c > 0, and generalized cross-polytopes, i.e. ‖Aδ‖1 ≤ c, generalizing both `2
(Cohen et al., 2019) and `1 (Lecuyer et al., 2019; Yang et al., 2020) certification (Section 4). (ii) We introduce
a new evaluation framework to compare methods that certify general (isotropic or anisotropic) regions. We
compare two general certificates by defining that a method certifying R1 is superior to another certifying R2,
if R1 is a strict superset to R2. Further, we define a standalone quantitative metric as the volume of the
certified region, and specialize it for the cases of ellipsoids and generalized cross-polytopes (Section 5). (iii)
We propose AnCer, an anisotropic certification method that performs sample-wise (i.e. per sample in the
test set) region volume maximization (Section 6), generalizing the data-dependent, memory-based solution
from Alfarra et al. (2022). Through experiments on CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009), we show that restricting AnCer’s certification region to `1 and `2-balls outperforms state-of-the-art `1
and `2 results from previous works (Yang et al., 2020; Alfarra et al., 2022). Further, we show that the volume
of the certified regions are significantly larger than all existing methods, thus setting a new state-of-the-art
in certified accuracy. We highlight that while we effectively achieve state-of-the-art performance, it comes
at a high cost given the data-dependency requirements. A discussion of the limitations of the solution is
presented in Section 6.

Notation. We consider a base classifier f : Rn → P(K), where P(K) is a probability simplex over K
classes, i.e. f i ≥ 0 and 1>f = 1, for i ∈ {1, . . . ,K}. Further, we use (x, y) to be a sample input x and its
corresponding true label y drawn from a test set Dt, and fy to be the output of f at the correct class. We
use `p to be the typically defined ‖ · ‖p norm (p ≥ 1), and `A

p or ‖ · ‖A,p for p = {1, 2} to be a composite
norm defined with respect to a positive definite matrix A as ‖A−1/pv‖p.

2 Related Work
Verified Defenses. Since the discovery that DNNs are vulnerable against input perturbations (Goodfellow
et al., 2015; Szegedy et al., 2014), a range of methods have been proposed to build classifiers that are verifiably
robust (Huang et al., 2017; Gowal et al., 2019; Bunel et al., 2018; Salman et al., 2019b). Despite this progress,
these methods do not yet scale to the networks the community is interested in certifying (Tjeng et al., 2019;
Weng et al., 2018).

Randomized Smoothing. The first works on randomized smoothing used Laplacian (Lecuyer et al.,
2019; Li et al., 2019) and Gaussian Cohen et al. (2019) distributions to obtain `1 and `2-ball certificates,
respectively. Several subsequent works improved the performance of smooth classifiers by training the base
classifier using adversarial augmentation (Salman et al., 2019a), regularization (Zhai et al., 2019), or general
adjustments to training routines (Jeong & Shin, 2020). Recent work derived `p-norm certificates for other
isotropic smoothing distributions (Yang et al., 2020; Levine & Feizi, 2020; Zhang et al., 2019). Concurrently,
Dvijotham et al. (2020) developed a framework to handle arbitrary smoothing measures in any `p-norm;
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Figure 2: Visualization of a CIFAR-10 image x and an example x+ δ of an imperceptible change that is not
inside the optimal isotropic certified region, but is covered by the anisotropic certificate.

however, the certification process requires significant hyperparameter tuning. Similarly, Mohapatra et al.
(2020) introduces larger certificates that require higher-order information, yet do not provide a closed-form
solution. This was followed by a complementary data-dependent smoothing approach, where the parameters
of the smoothing distribution were optimized per test set sample to maximize the certified radius at an
individual input (Alfarra et al., 2022). All prior works considered smoothing with isotropic distributions and
hence certified isotropic `p-ball regions. In this paper, we extend randomized smoothing to certify anisotropic
regions, by pairing it with a generalization of the data-dependent framework (Alfarra et al., 2022) to maximize
the certified region at each input point.

3 Motivating Anisotropic Certificates

Certification approaches aim to find the safe region R, where arg maxi f i(x) = arg maxi f i(x+ δ) ∀δ ∈ R.
Recent randomized smoothing techniques perform this certification by explicitly optimizing the isotropic `p
certified region around each input (Alfarra et al., 2022), obtaining state-of-the-art performance as a result.
Despite this `p optimality, we note that any `p-norm certificate is worst-case from the perspective of that
norm, as it avoids adversary regions by limiting its certificate to the `p-closest adversary. This means that
it can only enjoy a radius that is at most equal to the distance to the closest decision boundary. However,
decision boundaries of general classifiers are complex, non-linear, and non-radially distributed with respect to
a generic input sample (Karimi et al., 2019). This is evidenced by the fact that, within a reasonably small
`p-ball around an input, there are often only a small set of adversary directions (Tramèr et al., 2017; 2018)
(e.g. see the decision boundaries in Figure 1). As such, while `p-norm certificates are useful to reason about
worst-case performance and are simple to obtain given previous works (Cohen et al., 2019; Yang et al., 2020;
Lee et al., 2019), they are otherwise uninformative in terms of the shape of decision boundaries, i.e. which
regions around the input are safe.

To visualize these concepts, we illustrate the decision boundaries of a base classifier f trained on a toy
2-dimensional, radially separable (with respect to the origin) binary classification dataset, and consider two
different input test samples (see Figure 1). We compare the optimal isotropic and anisotropic certified regions
of different shapes at these points. In Figures 1a and 1b, we compare an isotropic cross-polytope (of the
form ‖δ‖1 ≤ r) with an anisotropic generalized cross-polytope (of the form ‖Aδ‖1 ≤ r), while in Figures 1c
and 1d we compare an isotropic `2 ball (of the form ‖δ‖2 ≤ r) with an anisotropic ellipsoid (of the form
‖Aδ‖2 ≤ r). Notice that in Figures 1a and 1c, due to the curvature of the classification boundary (shown in
white), the optimal certification region is isotropic in nature, which is evidenced by the similarities of the
optimal isotropic and anisotropic certificates. On the other hand, in Figures 1b and 1d, the location of the
decision boundary allows for the anisotropic certified regions to be considerably larger than their isotropic
counterparts, as they are not as constrained by the closest decision boundary, i.e. the worst-case performance.
We note that these differences are further highlighted in higher dimensions, and we study them for a single
CIFAR-10 test set sample in Appendix A.1.

As shown, anisotropic certification reasons more closely about the shape of the decision boundaries, allowing
for further insights into constant prediction (safe) directions. In Figure 2, we present a series of test set
images x, as well as practically indistinguishable x + δ images which are not inside the optimal certified
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isotropic `2-balls for each input sample, yet are within the anisotropic certified regions. This showcases the
merits of using anisotropic certification for characterizing larger safe regions.

4 Anisotropic Certification

One of the main obstacles in enabling anisotropic certification is the complexity of the analysis required. To
alleviate this, we follow a Lipschitz argument first observed by Salman et al. (2019a) and Jordan & Dimakis
(2020) and propose a simple and general certification analysis. We start with the following two observations.
All proofs are in Appendix B.
Proposition 1. Consider a differentiable function g : Rn → R. If supx‖∇g(x)‖∗ ≤ L where ‖ · ‖∗ has a dual
norm ‖z‖ = maxx z>x s.t. ‖x‖∗ ≤ 1, then g is L-Lipschitz under norm ‖·‖∗, that is |g(x)−g(y)| ≤ L‖x−y‖.

Given the previous proposition, we formalize ‖ · ‖ certification as follows:
Theorem 1. Let g : Rn → RK , gi be L-Lipschitz continuous under norm ‖ · ‖∗ ∀i ∈ {1, . . . ,K}, and
cA = argmaxi gi(x). Then, we have argmaxi gi(x+ δ) = cA for all δ satisfying:

‖δ‖ ≤ 1
2L

(
gcA(x)−max

c
gc6=cA(x)

)
.

Theorem 1 provides an ‖ · ‖ norm robustness certificate for any L-Lipschitz classifier g under ‖ · ‖∗. The
certificate is only informative when one can attain a tight non-trivial estimate of L, ideally supx‖∇g(x)‖∗,
which is generally difficult when g is an arbitrary neural network.

Framework Recipe. In light of Theorem 1, randomized smoothing can be viewed differently as an instance
of Theorem 1 with the favorable property that the constructed smooth classifier g enjoys an analytical form
for L = supx‖∇g(x)‖∗ by design. As such, to obtain an informative ‖ · ‖ certificate, one must, for an arbitrary
choice of a smoothing distribution, compute the analytic Lipschitz constant L under ‖ · ‖∗ for g. While
there can exist a notion of “optimal” smoothing distribution for a given choice of ‖ · ‖ certificate, as in
part addressed earlier for the isotropic `1, `2 and `∞ certificates (Yang et al., 2020), this is not the focus of
this paper. The choice of the smoothing distribution in later sections is inspired by previous work for the
purpose of granting anisotropic certificates. This recipe complements randomized smoothing works based on
Neyman-Pearson’s lemma (Cohen et al., 2019) or the Level-Set and Differential Method (Yang et al., 2020).

We will deploy this framework recipe to show two specializations for anisotropic certification, namely ellipsoids
(Section 4.1) and generalized cross-polytopes (Section 4.2).1.

4.1 Certifying Ellipsoids

In this section, we consider the certification under `Σ2 norm, or ‖δ‖Σ,2 =
√
δ>Σ−1δ, that has a dual norm

‖δ‖Σ−1,2. Note that both ‖δ‖Σ,2 ≤ r and ‖δ‖Σ−1,2 ≤ r define an ellipsoid. Despite that the following results
hold for any positive definite Σ, we assume for efficiency reasons that Σ is diagonal throughout. First,
we consider the anisotropic Gaussian smoothing distribution N (0,Σ) with the smooth classifier defined as
gΣ(x) = Eε∼N (0,Σ) [f(x+ ε)]. Considering the classifier Φ−1(gΣ(x)), where Φ is the standard Gaussian CDF,
and following Theorem 1 to grant an `Σ2 certificate for Φ−1(gΣ(x)), we derive the Lipschitz constant L under
‖ · ‖Σ−1,2, in the following proposition.
Proposition 2. Φ−1(gΣ(x)) is 1-Lipschitz (i.e. L = 1) under the ‖ · ‖Σ−1,2 norm.

Since Φ−1 is a strictly increasing function, by combining Proposition 2 with Theorem 1, we have:
Corollary 1. Let cA = arg maxi giΣ(x) , then arg maxi giΣ(x+ δ) = cA for all δ satisfying:

‖δ‖Σ,2 ≤
1
2

(
Φ−1 (gcA

Σ (x))− Φ−1
(

max
c
gc6=cA

Σ (x)
))

.

Corollary 1 holds the `2 certification from Zhai et al. (2019) as a special case for when Σ = σ2I.2
1Our analysis also grants a certificate for a mixture of Gaussians smoothing distribution (see Appendix B.1).
2A similar result was derived in the appendix of Fischer et al. (2020); Li et al. (2020) with a more involved analysis by

extending Neyman-Pearson’s lemma.
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4.2 Certifying Generalized Cross-Polytopes

Here we consider certification under the `Λ1 norm defining a generalized cross-polytope, i.e. the set {δ : ‖δ‖Λ,1 =
‖Λ−1δ‖1 ≤ r}, as opposed to the `1-bounded set that defines a cross-polytope, i.e. {δ : ‖δ‖1 ≤ r}. As with the
ellipsoid case and despite that the following results hold for any positive definite Λ, for the sake of efficiency, we
assume Λ to be diagonal throughout. For generalized cross-polytope certification, we consider an anisotropic
Uniform smoothing distribution U , which defines the smooth classifier gΛ(x) = Eε∼U [−1,1]n [f(x + Λε)].
Following Theorem 1 and to certify under the `Λ1 norm, we compute the Lipschitz constant of gΛ under the
‖Λx‖∞ norm, which is the dual norm of ‖ · ‖Λ,1 (see Appendix B), in the next proposition.
Proposition 3. The classifier gΛ is 1/2-Lipschitz (i.e. L = 1/2) under the ‖Λx‖∞ norm.

Similar to Corollary 1, by combining Proposition 3 with Theorem 1, we have that:
Corollary 2. Let cA = arg maxi giΛ(x) , then arg maxi giΛ(x+ δ) = cA for all δ satisfying:

‖δ‖Λ,1 = ‖Λ−1δ‖1 ≤
(
gcA

Λ (x)−max
c
gc 6=cA

Λ (x)
)
.

Corollary 2 holds the `1 certification from Yang et al. (2020) as a special case for when Λ = λI.

5 Evaluating Anisotropic Certificates

With the anisotropic certification framework presented in the previous section, the question arises: “Given
two general (isotropic or anisotropic) certification regions R1 and R2, how can one effectively compare them?”.
We propose the following definition to address this issue.
Definition 1. For a given input point x, consider the two certification regions R1 and R2 obtained for
two classifiers f1 and f2, i.e. A1 = {δ : arg maxc f c1(x) = arg maxc f c1(x + δ),∀δ ∈ R1} and A2 = {δ :
arg maxc f c2(x) = arg maxc f c2(x + δ),∀δ ∈ R2} where arg maxc f c1(x) = arg maxc f c2(x). We say A1 is a
"superior certificate" to A2 (i.e. A1 � A2), if and only if, A1 ⊃ A2.

This definition is a natural extension from the radius-based comparison of `p-ball certificates, providing a
basis for evaluating anisotropic certification. To compare an anisotropic to an isotropic region of certification,
it is not immediately clear how to (i) check that an anisotropic region is a superset to the isotropic region,
and (ii) if it were a superset, how to quantify the improvement of the anisotropic region over the isotropic
counterpart. In Sections 5.1 and 5.2, we tackle these issues for the particular cases of ellipsoid and generalized
cross-polytope certificates.

5.1 Evaluating Ellipsoid Certificates

Comparing `2−Balls to `Σ2−Ellipsoids (Specialization of Definition 1). Recall that if Σ = σ2I, our
ellipsoid certification in Corollary 1 recovers as a special case the isotropic `2-ball certification of Cohen et al.
(2019); Salman et al. (2019a); Zhai et al. (2019). Consider the certified regions R1 = {δ : ‖δ‖2 ≤ σ̃r1} and
R2 = {δ : ‖δ‖Σ,2 =

√
δ>Σ−1δ ≤ r2} for given r1, r2 > 0. Since we take Σ = diag({σ2

i }ni=1), the maximum
enclosed `2-ball for the ellipsoid R2 is given by the set R3 = {δ : ‖δ‖2 ≤ mini σir2}, and thus R2 ⊇ R3.
Therefore, it suffices that R3 ⊇ R1 (i.e. mini σir2 ≥ σ̃r1), to say that R2 is a superior certificate to the
isotropic R1 as per Definition 1.

Quantifying `Σ2 Certificates. The aforementioned specialization is only concerned with whether our
ellipsoid certified region R2 is “superior” to the isotropic `2-ball without quantifying it. A natural solution
is to directly compare the volumes of the certified regions. Since the volume of an ellipsoid given by R2 is
V(R2) = rn

2
√
πn/Γ(n/2+1)

∏n
i=1 σi (Kendall, 2004), we directly compare the proxy radius R̃ defined for R2 as

R̃ = r2
n
√∏n

i σi, since larger R̃ correspond to certified regions with larger volumes. Note that R̃, which is the
nth root of the volume up to a constant factor, can be seen as a generalization to the certified radius in the
case when σi = σ ∀i.
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5.2 Evaluating Generalized Cross-Polytope Certificates

Comparing `1−Balls to `Λ1−Generalized Cross-Polytopes (Specialization of Definition 1). Con-
sider the certificates S1 = {δ : ‖δ‖1 ≤ λ̃r1}, S2 = {δ : ‖δ‖Λ,1 = ‖Λ−1δ‖1 ≤ r2}, and S3 = {δ : ‖δ‖1 ≤
mini λir2}, where we take Λ = diag({λi}ni=1). Note that since S2 ⊇ S3, then as per Definition 1, it suffices
that S3 ⊇ S1 (i.e. mini λir2 ≥ λ̃r1) to say that the anisotropic generalized cross-polytope S2 is superior to
the isotropic `1-ball S1.

Quantifying `Λ1 Certificates. Following the approach proposed in the `Σ2 case, we quantitatively compare
the generalized cross-polytope certification of Corollary 2 to the `1 certificate through the volumes of the two
regions. We first present the volume of the generalized cross-polytope.
Proposition 4. V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n

n!
∏
i λi.

Following this definition, we define the proxy radius for S2 in this case to be R̃ = r2
n
√∏n

i=1 λi. As with the
`2 case, larger R̃ correspond certified regions with larger volumes. As in the ellipsoid case, R̃ can be seen as a
generalization to the certified radius when λi = λ ∀i.

6 AnCer: Sample-wise Volume Maximization for Anisotropic Certification

Given the results from the previous sections, we are now equipped to certify anisotropic regions, in particular
ellipsoids and generalized cross-polytopes. As mentioned in Section 4, these regions are generally defined as
R = {δ : ‖δ‖Θ,p ≤ rp} for a given parameter of the smoothing distribution Θ = diag ({θi}ni=1), an `p-norm
(p ∈ {1, 2}), and a gap value of rp ∈ R+. At this point, one could simply take an anisotropic distribution
with arbitrarily chosen parameters Θ and certify a trained network at any input point x, in the style of what
was done in the previous randomized smoothing literature with isotropic distributions. However, the choice
of Θ is more complex in the anisotropic case. A fixed choice of anisotropic Θ could severely underperform the
isotropic case – take, for example, the anisotropic distribution of Figure 1d applied to the input of Figure 1c.

Instead of taking a fixed Θ, we generalize the framework introduced by Alfarra et al. (2022), where parameters
of the smoothing distribution are optimized per input test point (i.e. in a sample-wise fashion) so as to
maximize the resulting certificate. The goal of the optimization in (Alfarra et al., 2022) is, at a point x,
to maximize the isotropic `2 region described in Section 4.1 (i.e. {δ : ‖δ‖2 ≤ σxrp(x, σx))}), where rp is
the gap and a function of x and σx ∈ R+. In the isotropic `p case, this generalizes to maximizing the
region {δ : ‖δ‖p ≤ θxrp (x, θx)}, which can be achieved by maximizing radius θxrp (x, θx) through θx ∈ R+,
obtaining r∗iso (Alfarra et al., 2022).

For the general anisotropic case, we propose AnCer, whose objective is to maximize the volume of the
certified region through the proxy radius, while satisfying the superset condition with respect to the maximum
isotropic `2 radius, r∗iso. In the case of the ellipsoids and generalized cross-polytopes as presented in Sections 5.1
and 5.2, respectively, AnCer’s optimization problem can be written as:

arg max
Θx

rp (x,Θx) n

√∏
i

θxi s.t. min
i

θxi r
p (x,Θx) ≥ r∗iso (1)

where rp (x,Θx) is the gap value under the anisotropic smoothing distribution. We iteratively solve a relaxed
version of Equation equation 1 , with further details presented in Appendix C.

Memory-based Anisotropic Certification. While each of the classifiers induced by the parameter Θx, i.e.
gΘx , is robust by definition as presented in Section 4, the certification of the overall data-dependent classifier
is not necessarily sound due to the optimization procedure for each x. This is a known issue in certifying
data-dependent classifiers, and is addressed by Alfarra et al. (2022) through the use of a memory-based
procedure. In Appendix D, we present an adapted version of this algorithm to AnCer. All subsequent
results are obtained following this procedure.

Limitations of AnCer. Given AnCer uses a memorization procedure similar to the one presented
in Alfarra et al. (2022), it incurs limitations on memory and runtime complexity. The main limitations of the
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memory-based certification are outlined in Appendix E of Alfarra et al. (2022). The anisotropic case increases
on the complexity of the isotropic framework by the increased runtime of specific functions presented in
Appendix D. Certification runtime comparisons are in Section 7.4.

Further, note that in memory-based data-dependent certification there is a single procedure for both
certification and inference in contrast with the fixed σ setting from Cohen et al. (2019). While the linear
runtime dependency on memory size might appear daunting for the deployment of such a system, there are a
few factors that could mitigate the cost. Firstly, in practice the models deployed get regularly updated in
deployment, and the memory should be reset in those situations. Secondly, there are possible solutions which
might attain sublinear runtime for the post-certification stage, such as the application of k-d trees to reduce
the space of comparisons and speed-up the process. As such, we believe AnCer to be suited to applications
in offline scenarios, where improved robustness is desired and inference time is not a critical issue.

A further limitation of the memorization procedure has to do with the impact of the order in which inputs
are certified on the overall statistics obtained. Within a memory-based framework, certifying x2 with x1
in memory can be different from certifying x1 with x2 in memory if they intersect. In practice, given the
low number of intersections observed with the original certified regions, this effect was almost negligible in
the results presented in Section 7. For fairness of comparison with non-memory based methods, we report
"worst-case" results for AnCer in which we abstain from deciding whenever an intersection of two certified
regions occurs.

7 Experiments

We now study the empirical performance of AnCer to obtain `Σ2 , `Λ1 , `2 and `1 certificates on networks
trained using randomized smoothing methods found in the literature. In this section, we show that AnCer is
able to achieve (i) improved performance on those networks in terms of `2 and `1 certification when compared
to certification baselines that smooth using a fixed isotropic σ (Fixed σ) (Cohen et al., 2019; Yang et al.,
2020; Salman et al., 2019a; Zhai et al., 2019) or a data-dependent and memory-based isotropic one (Isotropic
DD) (Alfarra et al., 2022); and (ii) a significant improvement in terms of the `Σ2 and `Λ1 -norm certified
region obtained by the same methods – compared by computing the proxy radius of the certified regions –
thus generally satisfying the conditions of a superior certificate proposed in Definition 1. Note that both
data-dependent approaches (Isotropic DD and AnCer) use memory-based procedures. As such, the gains
described in this section constitute a trade-off given the limitations of the method described in Section 6.

We follow an evaluation procedure as similar as possible to the ones described in Cohen et al. (2019); Yang
et al. (2020); Salman et al. (2019a); Zhai et al. (2019) by using code and pre-trained networks whenever
available and by performing experiments on CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009),
certifying the entire CIFAR-10 test set and a subset of 500 examples from the ImageNet test set. For the
implementation of AnCer, we solve Equation equation 1 with Adam for 100 iterations, where the certification
gap rp(x,Θx) is estimated at each iteration using 100 noise samples per test point (see Appendix C) and
Θx in Equation equation 1 is initialized with the Isotropic DD solution from Alfarra et al. (2022). Further
details of the setup can be found in Appendix E.

As in previous works, `p certified accuracy at radius R is defined as the portion of the test set Dt for which
the smooth classifier correctly classifies with an `p certification radius of at least R. In a similar fashion, we
define the anisotropic `Σ2 /`Λ1 certified accuracy at a proxy radius of R̃ (as defined in Section 5) to be the portion
of Dt in which the smooth classifier classifies correctly with an `Σ2 /`Λ1 -norm certificate of an nth root volume of
at least R̃. We also report average certified radius (ACR) defined as Ex,y∼Dt [Rx1(g(x) = y)] (Alfarra et al.,
2022; Zhai et al., 2019) as well as average certified proxy radius (ACR̃) defined as Ex,y∼Dt [R̃x1(g(x) = y)],
where Rx and R̃x denote the radius and proxy radius at x with a true label y for a smooth classifier g. Recall
that in the isotropic case, the proxy radius is, by definition, the same as the radius for a given `p-norm. For
each classifier, we ran experiments on the σ values reported in the original work (with the exception of Yang
et al. (2020), see Section 7.2). For the sake of brevity, we report in this section the top-1 certified accuracy
plots, ACR and ACR̃ per radius across σ, as in Salman et al. (2019a); Zhai et al. (2019); Alfarra et al. (2022).
The performance of each method per σ is presented in Appendix G.
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Figure 3: Distribution of top-1 certified accuracy as a function of `2 radius (top) and `Σ2 -norm proxy radius
(bottom) obtained by different certification methods on CIFAR-10 and ImageNet.

7.1 Ellipsoid certification (`2 and `Σ2 -norm certificates)

We perform the comparison of `2-ball vs. `Σ2 -ellipsoid certificates via Gaussian smoothing using networks
trained following the procedures defined in Cohen et al. (2019), Salman et al. (2019a), and Zhai et al. (2019).
For each of these, we report results on ResNet18 trained using σ ∈ {0.12, 0.25, 0.5, 1.0} for CIFAR-10, and
ResNet50 using σ ∈ {0.25, 0.5, 1.0} for ImageNet. For details of the training procedures, see Appendix E.1.
Figure 3 plots top-1 certified accuracy as a function of the `2 radius (top) and of the `Σ2 -norm proxy radius
(bottom) per trained network and dataset, while Table 1 presents an overview of the certified accuracy at
various `2 radii, as well as `2 ACR and `Σ2 -norm ACR̃. Recall that, following the considerations in Section 5.1,
the `2 certificate obtained through AnCer is the maximum enclosed isotropic `2-ball in the `Σ2 ellipsoid.
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Figure 4: Distribution of top-1 certified ac-
curacy as a function of `1 radius (top) and
`Λ1 -norm proxy radius (bottom) obtained by
different certification methods on CIFAR-10
and ImageNet.

First, we note that sample-wise certification (Isotropic DD and
AnCer) achieves higher certified accuracy than fixed σ across
the board. This mirrors the findings in Alfarra et al. (2022),
since certifying with a fixed σ for all samples struggles with
the robustness/accuracy trade-off first mentioned in Cohen
et al. (2019), whereas the data-dependent solutions explicitly
optimize σ per sample to avoid it. More importantly, AnCer
achieves new state-of-the-art `2 certified accuracy at most
radii in Table 1, e.g. at radius 0.5 AnCer brings certified
accuracy to 77% (from 66%) and 70% (from 62%) on CIFAR-
10 and ImageNet, respectively, yielding relative percentage
improvements in ACR between 13% and 47% when compared
to Isotropic DD. While the results are significant, it might
not be immediately clear why maximizing the volume of an
ellipsoid with AnCer results in a larger maximum enclosed
`2-ball certificate in `Σ2 ellipsoid when compared to optimizing
the `2-ball with Isotropic DD. We explore this phenomenon
in Appendix 7.3.

As expected, AnCer substantially improves `Σ2 ACR̃ com-
pared to Isotropic DD in all cases – with relative improvements
in ACR̃ between 38% and 63% over both datasets. The joint
results, certification with `2 and `Σ2 , establish that AnCer certifies the `2-ball region obtained by previous
approaches, in addition to a much larger region captured by the `Σ2 certified accuracy and ACR̃, and therefore
is, according to Definition 1, generally superior to the Isotropic DD one.
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Table 1: Comparison of top-1 certified accuracy at different `2 radii, `2 average certified radius (ACR) and
`Σ2 average certified proxy radius (ACR̃) obtained by using the isotropic σ used for training the networks
(Fixed σ); the isotropic data-dependent (Isotropic DD) optimization scheme from Alfarra et al. (2022); and
AnCer’s data-dependent anisotropic optimization.

CIFAR-10 Certification Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.25 0.5 1.0 1.5 2.0 2.5

Cohen
Cohen et al. (2019)

Fixed σ 86 71 51 27 14 6 2 0.722 0.722
Isotropic DD 82 76 62 39 24 14 8 1.117 1.117
AnCer 86 85 77 53 31 17 10 1.449 1.772

SmoothAdv
Salman et al. (2019a)

Fixed σ 82 72 55 32 19 9 5 0.834 0.834
Isotropic DD 82 75 63 40 25 15 7 1.011 1.011
AnCer 83 81 73 48 30 17 8 1.224 1.573

MACER
Zhai et al. (2019)

Fixed σ 87 76 59 37 24 14 9 0.970 0.970
Isotropic DD 88 80 66 40 17 9 6 1.007 1.007
AnCer 84 80 67 34 15 11 9 1.136 1.481

ImageNet Certification Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.5 1.0 1.5 2.0 2.5 3.0

Cohen
Cohen et al. (2019)

Fixed σ 70 56 41 31 19 14 12 1.098 1.098
Isotropic DD 71 59 46 36 24 19 15 1.234 1.234
AnCer 70 70 62 61 42 36 29 1.810 1.981

SmoothAdv
Salman et al. (2019a)

Fixed σ 65 59 44 38 26 20 18 1.287 1.287
Isotropic DD 66 62 53 41 32 24 20 1.428 1.428
AnCer 66 66 62 58 44 37 32 1.807 1.965

7.2 Generalized Cross-Polytope certification (`1 and `Λ1 -norm certificates)

To investigate `1-ball vs. `Λ1 -generalized cross-polytope certification via Uniform smoothing, we compare
AnCer to the `1 state-of-the-art results from RS4A (Yang et al., 2020). While the authors of the original
work report best certified accuracy based on 15 networks trained at different σ levels between 0.15 and
3.5 on CIFAR-10 (WideResNet40) and ImageNet (ResNet50) and due to limited computational resources,
we perform the analysis on a subset of those networks with σ = {0.25, 0.5, 1.0}. We reproduce the results
in Yang et al. (2020) as closely as possible, with details of the training procedure presented in Appendix E.2.
Figure 4 shows the top-1 certified accuracy as a function of the `1 radius (top) and of the `Λ1 -norm proxy
radius (bottom) for RS4A, and Table 2 shows an overview of the certified accuracy at various `1 radii, as
well as `1 ACR and `Λ1 ACR̃. As with the ellipsoid case, we notice that AnCer outperforms both Fixed σ
and Istropic DD for most `1 radii, establishing new state-of-the-art results in CIFAR-10 at radii 0.5 and 1.0,
and ImageNet at radii 0.5 (compared to previous results reported in Yang et al. (2020)). Once more and as
expected, AnCer significantly improves the `Λ1 ACR̃ for all radii, pointing to substantially larger cerficates
than the isotropic case. These results also establish that AnCer certifies the `1-ball region obtained by
previous work, in addition to the larger region obtained by the `Λ1 certificate, and thus we can consider it
superior (with respect to Definition 1) to Isotropic DD.

7.3 Why does AnCer improve upon Isotropic DD’s `p certificates?

As observed in Sections 7.1 and 7.2, AnCer’s `2 and `1 certificates outperform the corresponding certificates
obtained by Isotropic DD. To explain this, we compare the `2 certified region obtained by AnCer, defined in
Section 6 as {δ : ‖δ‖2 ≤ mini σxi r(x,Σx)}, to the one by Isotropic DD defined as {δ : ‖δ‖2 ≤ σxr(x, σx)}. We
observe that the radius of both of these certificates can be separated into a σ-factor (σx vs. σxmin = mini σxi )
and a gap-factor (r(x, σx) vs. r(x,Σx)). We posit the seemingly surprising result can be attributed to the
computation of the gap-factor r using an anisotropic, optimized distribution. However, another potential
explanation would be that AnCer benefits from a prematurely stopped initialization provided by Isotropic
DD, thus achieving a better σxmin than the isotropic σx when given further optimization iterations.
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Table 2: Comparison of top-1 certified accuracy at different `1 radii, `1 average certified radius (ACR) and
`Λ1 average certified proxy radius (ACR̃) obtained by using the isotropic σ used for training the networks
(Fixed σ); the isotropic data-dependent (Isotropic DD) optimization scheme from Alfarra et al. (2022); and
AnCer’s data-dependent anisotropic optimization.

CIFAR-10 Certification Accuracy @ `1 radius (%)
`1 ACR `Λ1 ACR̃0.0 0.25 0.5 0.75 1.0 1.5 2.0

RS4A
Yang et al. (2020)

Fixed σ 92 83 75 71 46 0 0 0.775 0.775
Isotropic DD 92 89 82 76 58 6 2 0.946 0.946
AnCer 92 90 84 80 63 6 2 0.980 1.104

ImageNet

RS4A
Yang et al. (2020)

Fixed σ 78 73 67 63 0 0 0 0.683 0.683
Isotropic DD 79 76 70 65 46 0 0 0.729 0.729
AnCer 78 76 70 66 48 0 0 0.730 1.513
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Figure 5: Histograms of the values of the
σ-factor (left) and gap r (right) obtained by
AnCer initialized with Isotropic DD, and
Isotropic DD when allowed to run for 100
iterations more than the baseline. Vertical
lines plot the median of the data.

To investigate this, we take the optimized parameters from the
Isotropic DD experiments on SmoothAdv for an initial σ =
0.25 on CIFAR-10, and run the optimization step of Isotropic
DD for 100 iterations more than its default number of iterations
from Alfarra et al. (2022), so as to match the total number
of optimization steps between Isotropic DD and AnCer. The
histograms of σx or σxmin and the gap-factor r, i.e. the two
factors from the `2 certification results, are presented in Figure 5.
While σx for Isotropic DD is similar in distribution to AnCer’s
σxmin, the distribution of the two gaps, r(x, σx) and r(x,Σx),
are quite different. In particular, the AnCer certification gap is
significantly larger when compared to Isotropic DD, and is the
main contributor to the improvement in the `2-ball certificate
of AnCer. That is to say, AnCer generates Σx that is better
aligned with the decision boundaries, and hence increases the
confidence of the smooth classifier.

7.4 Certification Runtime

Table 3: Average certification time for each
sample per architecture used: (a) ResNet18
(`2, `Σ2 on CIFAR-10), (b) WideResNet40
(`1, `Λ1 on CIFAR-10), and (c) ResNet50
(ImageNet).

Fixed σ Isotropic DD AnCer

(a) 1.6s 1.8s 2.7s
(b) 7.4s 9.5s 11.5s
(c) 109.5s 136.0s 147.0s

The certification procedures of Isotropic DD and AnCer trade-
off improved certified accuracy for runtime, since they require a
sample-wise optimization to be run prior to the Certify step
described in Cohen et al. (2019), and a memory-based step as
per Alfarra et al. (2022). The runtime of the optimization and
certification procedures is roughly equal for `1, `2, `Σ2 and `Λ1
certification, and mostly depends on network architecture. As
such, we report the average certification runtime for a test set
sample on an NVIDIA Quadro RTX 6000 GPU for Fixed σ,
Isotropic DD and AnCer (including the isotropic initialization
step) in Table 3. We observe that the overall run time overhead
for AnCer is not significant as compared to its certification gains.

8 Conclusion

We lay the theoretical foundations for anisotropic certification through a simple analysis, propose a metric
for comparing general robustness certificates, and introduce AnCer, a certification procedure that estimates
the parameters of the anisotropic smoothing distribution to maximize the certificate. Our experiments show
that AnCer achieves state-of-the-art `1 and `2 certified accuracy in the data-dependent setting.
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A Qualitative Motivation of Anisotropic Certification

A.1 Visualizing CIFAR-10 Optimized Isotropic vs. Anisotropic Certificates

1

2

Anistropic
Isotropic

(a)

3072

1

Anistropic
Isotropic

(b)

Figure 6: Illustration of the landscape of fy for points
around an input point x, and two projections of an
isotropic `2 certified region and an anisotropic `Σ2 2-
norm region on a CIFAR-10 dataset example to a subset
of two eigenvectors of the Hessian of fy (blue regions
correspond to a higher confidence in y).

To extend the illustration in Figure 1 to a higher
dimensional input, we now analyze an example of the
isotropic `2 certification of randomized smoothing
with N (0, σ2I), where σ is optimized per input Al-
farra et al. (2022), against AnCer, certifying an
anisotropic region characterized by a diagonal `Σ2 -
norm. To do so, we consider a CIFAR-10 Krizhevsky
(2009) dataset point x, where the input is of size
(32x32x3). We perform the 2D analysis by consid-
ering the regions closest to a decision boundary. To
do so, and following Moosavi-Dezfooli et al. (2019),
we compute the Hessian of fy(x) with respect to x
where y is the true label for x with f classifying x
correctly, i.e. y = arg maxi f i(x). In addition to the
Hessian, we also compute its eigenvector decomposi-
tion, yielding the eigenvectors {νi}, i ∈ {1, . . . , 3072}
ordered in descending order of the absolute value of
the respective eigenvalues. In Figure 6a, we show
the projection of the landscape of fy in the highest
curvature directions, i.e. ν1 and ν2. Note that the
isotropic certification, much as in Figure 1c, in these 2 dimensions is nearly optimal when compared to the
anisotropic region. However, if we take the same projection with respect to the eigenvectors with the lowest
and highest eigenvalues, i.e. ν1 and ν3072, the advantages of the anisotropic certification become clear as
shown in Figure 6b.

B Anisotropic Certification and Evaluation Proofs

Proposition 1 (restatement). Consider a differentiable function g : Rn → R. If supx‖∇g(x)‖∗ ≤ L where
‖ · ‖∗ has a dual norm ‖z‖ = maxx z>x s.t. ‖x‖∗ ≤ 1, then g is L-Lipschitz under norm ‖ · ‖∗, that is
|g(x)− g(y)| ≤ L‖x− y‖.

Proof. Consider some x, y ∈ Rn and a parameterization in t as γ(t) = (1− t)x+ ty ∀t ∈ [0, 1]. Note that
γ(0) = x and γ(1) = y. By the Fundamental Theorem of Calculus we have:

|g(y)− g(x)| = |g(γ(1))− g(γ(0))| =
∣∣∣∣∫ 1

0

dg(γ(t))
dt

dt

∣∣∣∣ =
∣∣∣∣∫ 1

0
∇g>∇γdt

∣∣∣∣ ≤ ∫ 1

0

∣∣∇g>∇γ∣∣ dt
≤
∫ 1

0
‖∇g(x)‖∗‖∇γ(t)‖dt ≤ L‖y − x‖

Theorem 1 (restatement). Let g : Rn → RK , gi be L-Lipschitz continuous under norm ‖·‖∗ ∀i ∈ {1, . . . ,K},
and cA = argmaxi gi(x). Then, we have argmaxi gi(x+ δ) = cA for all δ satisfying:

‖δ‖ ≤ 1
2L

(
gcA(x)−max

c
gc6=cA(x)

)
.

Proof. Take cB = arg maxc gc 6=cA(x). By Proposition 1, we get:

|gcA(x+ δ)− gcA(x)| ≤ L‖δ‖ =⇒ gcA(x+ δ) ≥ gcA(x)− L‖δ‖
|gcB (x+ δ)− gcB (x)| ≤ L‖δ‖ =⇒ gcB (x+ δ) ≤ gcB (x) + L‖δ‖
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By subtracting the inequalities and re-arranging terms, we have that as long as gcA(x)−L‖δ‖ > gcB (x)+L‖δ‖,
i.e. the bound in the Theorem, then gcA(x+ δ) > gcB (x+ δ), completing the proof.

Proposition 2 (restatement). Consider gΣ(x) = Eε∼N (0,Σ) [f(x+ ε)]. Φ−1(gΣ(x)) is 1-Lipschitz (i.e. L = 1)
under the ‖ · ‖Σ−1,2 norm.

Proof. To prove Proposition 2, one needs to show that Φ−1(giΣ(x)) ∀i is 1-Lipschitz under the ‖ · ‖Σ−1,2 norm.
For ease of notation, we drop the superscript giΣ and use only g. We want to show that ‖∇Φ−1(gΣ(x))‖Σ−1,2 =
‖Σ1/2∇Φ−1(gΣ(x))‖2 ≤ 1. Following the argument presented in Salman et al. (2019a), it suffices to show that,
for any unit norm direction u and p = gΣ(x), we have:

u>Σ 1
2∇gΣ(x) ≤ 1√

2π
exp

(
−1

2(Φ−1(p))2
)
. (2)

We start by noticing that:

u>Σ 1
2∇gΣ(x) = 1

(
√

2π)n
√
|Σ|

∫
Rn

f(t)u>Σ 1
2 Σ−1(t− x) exp

(
−1

2(x− t)Σ−1(x− t)
)
dnt

= Es∼N (0,I)[f(x+ Σ 1
2 s)u>s] = Ev∼N (0,Σ)[f(x+ v)u>Σ− 1

2 v].

We now need to find the optimal f∗ : Rn → [0, 1] that satisfies gΣ(x) = Ev∼N (0,Σ)[f(x + v)] = p while
maximizing the left hand size Ev∼N (0,Σ)[f(x+ v)u>Σ− 1

2 v]. We argue that the maximizer is the following
function:

f∗(x+ v) = 1

{
u>Σ− 1

2 v ≥ −Φ−1(p)
}
.

To prove that f∗ is indeed the optimal maximizer, we first show feasibility. (i): It is clear that f∗ : Rn → [0, 1].
(ii) Note that:

Ev∼N (0,Σ))

[
1

{
u>Σ− 1

2 v ≥ −Φ−1(p)
}]

= Px∼N (0,1)(x ≥ −Φ−1(p)) = 1− Φ(−Φ−1(p)) = p.

To show the optimality of f∗, we show that it attains the right upper bound:

Ev∼N (0,Σ))

[
u>Σ− 1

2 v1
{
u>Σ− 1

2 v ≥ −Φ−1(p)
}]

= Ex∼N (0,1)

[
x1
{
x ≥ −Φ−1(p)

} ]
= 1√

2π

∫ ∞
−Φ−1(p)

x exp
(
−1

2x
2
)
dx

= 1√
2π

exp
(
−1

2(Φ−1(p))2
)

obtaining the bound from Equation equation 2, and thus completing the proof.

Proposition 3 (restatement). Consider gΛ(x) = Eε∼U [−1,1]n [f(x+ Λε)]. The classifier giΛ ∀i is 1/2-Lipschitz
(i.e. L = 1/2) under the ‖Λx‖∞ norm.

Proof. We begin by observing that the dual norm of ‖x‖Λ,1 = ‖Λ−1x‖1 is ‖x‖∗ = ‖Λx‖∞, since:

max
‖Λ−1x‖1≤1

x>y = max
‖z‖1≤1

y>Λz = ‖Λy‖∞.

Without loss of generality, we analyze ∂gi
/∂x1. Let x̂ = [x2, . . . , xn] ∈ Rn−1, then:

λ1∂g
i

∂x1
= λ1

(2λ)n
∂

∂x1

∫
[−1,1]n−1

∫ 1

−1
f i(x1 + λ1ε1, x̂+ Λ̂ε̂)dε1dn−1ε̂

= 1
2n

∫
[−1,1]n−1

(f i(x1 + 1, x̂+ Λ̂ε̂)− f i(x1 − 1, x̂+ Λ̂ε̂))dn−1ε̂
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Thus, ∣∣∣∣λ1∂g
i

∂x1

∣∣∣∣ ≤ 1
2n
∏n
j=2 λj

∫
[−1,1]n−1

∣∣∣f i(x1 + 1, x̂+ Λ̂ε̂)− f i(x1 − 1, x̂+ Λ̂ε̂)
∣∣∣ dn−1ε̂ ≤ 1

2 .

The second and last steps follow by the change of variable t = x1 + λ1ε1 and Leibniz rule. Following
a symmetric argument,

∣∣λj∂gi
/∂xj

∣∣ ≤ 1/2 ∀i resulting in having ‖Λ∇gi(x)‖∞ = maxi λi
∣∣∂gi

/∂xi

∣∣ ≤ 1/2 ∀i
concluding the proof.

Proposition 4 (restatement). V
(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n

n!
∏
i λi.

Proof. Take A = rΛ−1 = diag(1/rλ1, . . . , 1/rλn) = diag(a1, . . . , an).

We can re-write the region as {x :
∑
i ai|xi| ≤ 1}, from which it is clear to see that this region is an origin

centered, axis-aligned simplex with the set of vertices V = {±1/aiei}ni=1, where ei is the standard basis vector
i.

Define the sets of vertices Vt = V \ {−1/anen} and Vb = V \ {1/anen}. Given the symmetry around the
origin, each of these sets defines an n-dimensional hyperpyramid with a shared base Bn−1 given by the
n − 1-dimensional hyperplane defined by all vertices where xn = 0, and an apex at the vertex 1/anen (or
−1/anen in the case of Vb). The volume of each of these n − 1-dimensional hyperpyramids is given by
V(Bn−1)/nan (Kendall (2004)), yielding a total volume of Vn = 2

n
1
an
V(Bn−1). The same argument can be

applied to compute V(Bn−1) which is a union of two n−1-dimensional hyperpyramids. This forms a recursion
that completes the proof.

Proof. (Alternative Proof.) We consider the case that Λ−1 is a general positive definite matrix that is not
necessarily diagonal. Note that V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= V

(
{δ : ‖(rΛ)−1δ‖1 ≤ 1}

)
= rn|Λ|V ({δ : ‖δ‖1 ≤ 1})

where |rΛ| denotes the determinant. The last equality follows by the volume of a set under a linear map and
noting that {δ : ‖(rΛ)−1δ‖1 ≤ 1} = {rΛδ : ‖δ‖1 ≤ r}. At last, {δ : ‖δ‖1 ≤ 1} can be expressed as the disjoint
union of 2n simplexes. Thus, we have V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n

/n!|Λ| since the volume of a simplex is
1/n! completing the proof.

For completeness, we supplement the previous result with bounds on the volume that may be useful for
future readers.
Proposition 5. For any positive definite Λ−1 ∈ Rn×n, we have the following:(

2r
n

)n
V
(
Z(Λ)

)
≤ V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
≤ (2r)nV (Z(Λ))

where V (Z(Λ)) =
√
|Λ>Λ| which is the volume of the zonotope with a generator matrix Λ.

Proof. Let S1 = {δ : ‖Λ−1δ‖1 ≤ r}, S∞ = {δ : ‖Λ−1δ‖∞ ≤ r} and Sn∞ = {δ : n‖Λ−1δ‖∞ ≤ r}. Since
‖Λ−1δ‖∞ ≤ ‖Λ−1δ‖1 ≤ n‖Λ−1δ‖∞, then S∞ ⊇ S1 ⊇ Sn∞. Therefore, we have V(S∞) ≥ V(S1) ≥ V(Sn∞). At
last note that, Sn∞ = { rnΛδ : ‖δ‖∞ ≤ 1} and that with the change of variables δ = 2u − 1n where 1n is a
vector of all ones, we have Sn∞ = Z

( 2r
n Λ
)
⊕ −rn Λ1n where ⊕ is a Minkowski sum and noting that r

nΛ1n is a
single point in Rn. Therefore, V

(
Z
(

2r
n Λ
)
⊕ −rn Λ1n

)
= (2r/n)n V (Z(Λ)). The upper bound follows with a

similar argument completing the proof.

B.1 Certification under Gaussian Mixture Smoothing Distribution

We consider a general, K-component, zero-mean Gaussian mixture smoothing distribution G such that:

G({αi,Σi}Ki=1) :=
K∑
i=1

αiN (0,Σi), s.t.
∑
i

αi = 1, 0 < αi ≤ 1 (3)
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Given f and as per the recipe described in Section 4, we are interested in the Lipschitz constant of the smooth
classifier gG(x) = (f ∗ G)(x) =

∑K
i αigΣi =

∑K
i αi(f ∗ N (0,Σi)) =

∑
i αigΣi(x) where gΣi is defined as in

the Gaussian case.

Note the weaker bound when compared to Proposition 2, for each of the Gaussian components presented in
the following proposition.
Proposition 6. gΣ is

√
2/π-Lipschitz under ‖.‖Σ−1,2 norm.

Proof. Following a similar argument to the proof of Proposition 2, we get:

u>Σ 1
2∇gΣ(x) ≤ 1

(2π)n/2
√
|Σ|

∫
Rn

|u>Σ− 1
2 (t− x)| exp

(
−1

2(x− t)>Σ−1(x− t)
)
dnt

= Es∼N (0,I)
[
|u>s|

]
= Ev∼N (0,1) [|v|] =

√
2/π.

With Proposition 6, we obtain a Lipschitz constant for a Gaussian mixture smoothing distribution as:
Proposition 7. gG is

√
π/2-Lipschitz under ‖δ‖B−1,2 norm, where B−1 =

∑K
i αiΣ

−1
i .

Proof.

|gG(x+ δ)− gG(x)| ≤
∑
i

αi|gΣi(x+ δ)− gΣi(x)|

≤
√
π

2
∑
i

αi‖δ‖Σi,2 ≤
√
π

2

√√√√δ>

(∑
i

αiΣ−1
i

)
δ =

√
π

2 ‖δ‖B,2,

Obtained by first applying the triangle inequality, then Proposition 2 followed by Jensen’s inequality.

Thus yielding the following certificate by combining Proposition 7 and Theorem 1.
Corollary 3. Let cA = arg maxi gG(x) , then arg maxi giG(x+ δ) = cA for all δ satisfying:

‖δ‖B,2 ≤
1√
2π

(
gcA

G (x)−max
c
gc6=cA

G (x)
)
.

where B−1 =
∑K
i αiΣ

−1
i .

C AnCer Optimization

In this section we detail the implementation choices required to solving Equation equation 1. For ease of
presentation, we restate the AnCer optimization problem (with Θx = diag({θxi }ni=1)):

arg max
Θx

rp (x,Θx) n

√∏
i

θxi s.t. min
i

θxi r
p (x,Θx) ≥ r∗iso,

where rp (x,Θx) is the gap value under the anisotropic smoothing distribution, and r∗iso is the optimal isotropic
radius, i.e. θ̄xrp(x, θ̄x) for θ̄x ∈ R+. This is a nonlinear constrained optimization problem that is challenging
to solve. As such, we relax it, and solve instead:

arg max
Θx

rp (x,Θx) n

√∏
i

θxi + κmin
i

θxi r
p (x,Θx) s.t. θxi ≥ θ̄x

given a hyperparameter κ ∈ R+. While the constraint θxi ≥ θ̄x is not explicitly required to enforce the
superset condition over the isotropic case, it proved itself beneficial from an empirical perspective. To sample
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from the distribution parameterized by Θx (in our case, either a Gaussian or Uniform), we make use of the
reparameterization trick, as in Alfarra et al. (2022). The solution of this optimization problem can be found
iteratively by performing projected gradient ascent.

A standalone implementation for the AnCer optimization stage is presented in Listing 1, whereas the full
code integrated in our code base is available as supplementary material. To perform certification, we simply
feed the output of this optimization to the certification procedure from Cohen et al. (2019).
import torch
from torch . autograd import Variable
from torch . distributions . normal import Normal

class Certificate ():
def compute_proxy_gap (self , logits : torch . Tensor ):

raise NotImplementedError

def sample_noise (self , batch : torch .Tensor , repeated_theta : torch . Tensor ):
raise NotImplementedError

def compute_gap (self , pABar : float ):
raise NotImplementedError

class L2Certificate ( Certificate ):
def __init__ (self , batch_size : int , device : str = "cuda :0"):

self.m = Normal ( torch . zeros ( batch_size ).to( device ),
torch .ones( batch_size ).to( device ))

self. device = device
self.norm = "l2"

def compute_proxy_gap (self , logits : torch . Tensor ):
return self.m.icdf( logits [:, 0]. clamp_ (0.001 , 0.999) ) - \

self.m.icdf( logits [:, 1]. clamp_ (0.001 , 0.999) )

def sample_noise (self , batch : torch .Tensor , repeated_theta : torch . Tensor ):
return torch . randn_like (batch , device =self. device ) * repeated_theta

def compute_gap (self , pABar : float ):
return norm.ppf( pABar )

class L1Certificate ( Certificate ):
def __init__ (self , device ="cuda :0"):

self. device = device
self.norm = "l1"

def compute_proxy_gap (self , logits : torch . Tensor ):
return logits [:, 0] - logits [:, 1]

def sample_noise (self , batch : torch .Tensor , repeated_theta : torch . Tensor ):
return 2 * ( torch . rand_like (batch , device =self. device ) - 0.5) * repeated_theta

def compute_gap (self , pABar : float ):
return 2 * ( pABar - 0.5)

def ancer_optimization (
model : torch .nn.Module , batch : torch .Tensor ,
certificate : Certificate , learning_rate : float ,
isotropic_theta : torch .Tensor , iterations : int ,
samples : int , kappa : float , device : str = "cuda :0"):

""" Optimize batch using ANCER , assuming isotropic initialization point .

Args:
model : trained network
batch : inputs to certify around
certificate : instance of desired certification object
learning_rate : optimization learning rate for ANCER
isotropic_theta : initialization isotropic value per input in batch
iterations : number of iterations to run the optimization
samples : number of samples per input and iteration
kappa : relaxation hyperparameter

"""
batch_size = batch . shape [0]
img_size = np.prod( batch . shape [1:])

# define a variable , the optimizer , and the initial sigma values
theta = Variable ( isotropic_theta , requires_grad =True).to( device )
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optimizer = torch . optim .Adam ([ theta ], lr= learning_rate )
initial_theta = theta . detach (). clone ()

# reshape vectors to have ‘‘samples ‘‘ per input in batch
new_shape = [ batch_size * samples ]
new_shape . extend ( batch [0]. shape )
new_batch = batch . repeat ((1 , samples , 1, 1)).view( new_shape )

# solve iteratively by projected gradient ascend
for _ in range ( iterations ):

theta_repeated = theta . repeat (1, samples , 1, 1).view( new_shape )

# Reparameterization trick
noise = certificate . sample_noise (new_batch , theta_repeated )
out = model (

new_batch + noise
). reshape ( batch_size , samples , -1).mean(dim =1)

vals , _ = torch .topk(out , 2)
gap = certificate . compute_proxy_gap (vals)

prod = torch .prod(
( theta . reshape ( batch_size , -1)) **(1/ img_size ), dim =1)

proxy_radius = prod * gap

radius_maximizer = - (
proxy_radius .sum () +
kappa *
( torch .min( theta .view( batch_size , -1), dim =1). values *gap).sum ()

)
radius_maximizer . backward ()
optimizer .step ()

# project to the initial theta
with torch . no_grad ():

torch .max(theta , initial_theta , out= theta )

return theta

Listing 1: Python implementation of the AnCer optimization routine using PyTorch Paszke et al. (2019)

D Memory-based Certification for AnCer

To guarantee the soundness of the AnCer classifier, we use an adapted version of the data-dependent
memory-based solution presented in Alfarra et al. (2022). The modified algorithm involves a post-processing
certification step that obtains adjusted certification statistics based on the memory procedure from Alfarra
et al. (2022) (see the original paper for more details). We present an adapted version to AnCer of this
post-processing memory-based step in Algorithm 1.

Algorithm 1: Memory-Based Certification
Input: input point xN+1, certified region RN+1, prediction CN+1, and memoryM
Result: Prediction for xN+1 and certified region at xN+1 that does not intersect with any certified

region inM.
for (xi, Ci,Ri) ∈M do

if CN+1 6= Ci then
if xN+1 ∈ Ri then

return Abstain, 0
else if MaxIntersect(RN+1,Ri) and Intersect(RN+1,Ri) then
R′N+1 = LargestOutSubset(Ri, RN+1);
RN+1 ← R′N+1;

end
add (xN+1, CN+1,RN+1) toM;
return CN+1, RN+1;

Note that the proposed certified region RN+1 emerges from our certification bounds presented in Sections 4.1
and 4.2. There are a few differences between our proposed Algorithm 1 with respect to the original variant
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presented in Alfarra et al. (2022). The first is that we remove the computation of the largest certifiable subset
of a certified region RN+1 when there exists an i such that xN+1 ∈ Ri with a different class prediction, i.e.
(LargestInSubset in Alfarra et al. (2022)) due to the complexity of the operation in the anisotropic case. As
an example, it is generally difficult to find the largest volume ellipsoid contained in another ellipsoid. Due to
this complexity, we choose to simply Abstain instead. Given the high dimensionality of the data, empirically,
we never found a certificate in this situation within our experiments. Further, to ease the computational
burden of the Intersect function, we introduce and instantiate the function MaxIntersect first which
checks whether the `p-ball over-approximation of the region RN+1 intersects with a `p over-approximation
of Ri. This follows since when the `p balls over-approximation to the anisotropic regions RN+1 and Ri do
not intersect, then RN+1 and Ri do not intersect either. Only in cases in which those over-approximation
regions intersect, we run the more expensive Intersect procedure. We present practical implementations
for MaxIntersect, Intersect and LargestOutSubset for the ellipsoids and generalized cross-polytopes
considered in this paper.

D.1 Implementing MaxIntersect(RA, RB) in the Ellipsoid and Generalized Cross-Polytope Cases

Given the two regions RA and RB, consider `p-ball approximations of those regions, RÃ = {x ∈ Rn :
‖x− a‖p ≤ ra} and RB̃ = {x ∈ Rn : ‖x− b‖p ≤ rb} such that RA ⊆ RÃ and RB ⊆ RB̃.
Lemma 1. If ‖a− b‖p > ra + rb, then RA ∩RB = ∅.

Proof. For the sake of contradiction, let ‖a−b‖p > ra+rb and x ∈ RÃ∩RB̃. Then, we have that ‖x−a‖ ≤ ra
and ‖x− b‖ ≤ rb. However:

ra + rb < ‖a− b‖p ≤ ‖x− a‖p + ‖x− b‖p ≤ ra + rb,

forming a contradiction. Thus, RÃ ∩ RB̃ = ∅, which in turn implies RA ∩ RB = ∅ since RA and RB are
subsets of RÃ and RB̃, respectively.

This forms a fast, maximum intersection check for ellipsoids, i.e. p = 2, and generalized cross-polytopes, i.e.
p = 1. The MaxIntersect function returns False if ‖a− b‖p > ra + rb, and True otherwise.

D.2 Implementing Intersect(RA, RB) in the Ellipsoid Case

The problem of efficiently checking if two ellipsoids intersect is not trivial. We rely on the work of Ros
et al. (2002); Gilitschenski & Hanebeck (2012) with missing proofs from Gilitschenski & Hanebeck (2012) for
completeness.
Lemma 2. Let RA = {x ∈ Rn : (x−a)>A(x−a) ≤ 1} and RB = {x ∈ Rn : (x−b)>B(x−b) ≤ 1} define two
ellipsoids centered at a and b, respectively. We have that R = {x : t(x−a)>A(x−a)+(1−t)(x−b)>B(x−b) ≤ 1}
for any t ∈ [0, 1] satisfies RA ∩RB ⊆ R ⊆ RA ∪RB.

Proof. By considering the convex combination of the left-hand side of the inequalities defining the regions
RA and RB, it becomes obvious that x ∈ RA ∩RB =⇒ x ∈ R, concluding the left side of the property. As
for the right side, it suffices to show that if x /∈ RA and x ∈ R then x ∈ RB and, similarly, that if x /∈ RB
and x ∈ R then x ∈ RA. We show the first case since the second follows by symmetry. Without loss of
generality, we assume that a = b = 0n. Now, let x be such that x>Ax > 1 and tx>Ax+ (1− t)x>Bx ≤ 1
since x /∈ RA and x ∈ R. Then, since x ∈ R, we have that (1− t)x>Bx ≤ 1− tx>Ax ≤ 1 since x>Ax > 1
which implies that x ∈ RB.

Note that the previous result holds without loss of generality when for the radius 1 as the radius can be
absorbed in A and B. As the following Lemma was shown by Gilitschenski & Hanebeck (2012) without
proof, we complement it below for completeness.
Lemma 3. The set R is equivalent to the following ellipsoid R = {x : (x−m)>Et(x−m) ≤ K(t)} where
Et = tA + (1− t)B, m = E−1

t (tAa+ (1− t)Bb), and K(t) = 1− ta>Aa− (1− t)b>Bb+m>Etm.
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Proof.

t(x− a)>A(x− a) + (1− t)(x− b)>B(x− b) ≤ 1
⇔x> (tA + (1− t)B)︸ ︷︷ ︸

Et

x− 2x> (tAa+ (1− t)Bb)︸ ︷︷ ︸
Etm

≤ 1− ta>Aa− (1− t)b>Bb

⇔(x−m)>Et(x−m) ≤ 1− ta>Aa− (1− t)b>Bb+m>Etm

The last equality follows by adding and subtracting m>Etm and concluding the proof.

Proposition 8. The set of points satisfying R for t ∈ (0, 1) is either an empty set, a single point, or the
ellipsoid R.

Proof. We first observe that since A and B are positive definite, then Et is positive definite. Then observe
that for a choice of t ∈ (0, 1) such that K(t) < 0, the set R is an empty set, and since R ⊇ RA ∩RB, the two
sets do not intersect. If K(t) = 0, then the only point satisfying R is the center at m. Following a similar
argument, then the two ellipsoids intersect at a point. At last for a choice of t such that K(t) > 0, then R
defines an ellipsoid.

As per Theorem 8, it suffices to find some t ∈ [0, 1] under which K(t) < 0 to guarantee that the ellipsoids do
not intersect. To that end, we solve the following convex optimization problem: t∗ = argmint∈[0,1]K(t) and
check the condition if K(t∗) < 0. Moreover, as shown by Ros et al. (2002); Gilitschenski & Hanebeck (2012)
K(t) is convex in the domain t ∈ (0, 1). With several algebraic manipulations, one can show that K(t) has
the following equivalent forms:

K(t) = 1− ta>Aa− (1− t)b>Bb+m>Etm

K(t) = 1− t(1− t)(b− a)>BE−1
t A(b− a)

K(t) = 1− (b− a)>
(

1
1− tB

−1 + 1
t
A−1

)−1
(b− a)

Observe that for ANCER, we have that both A and B to be diagonals with diagonal elements {Aii}ni=1 and
{Bii}ni=1, respectively, resulting in the following simple form for K(t):

K(t) = 1−
n∑
i=1

(bi − ai)2 t(1− t)AiiBii

tAii + (1− t)Bii
.

The Intersect function in the ellipsoid case returns False if there exists a t ∈ (0, 1) such that K(t) < 0, i.e.
ellipsoids do not intersect, and True otherwise.

D.3 Implementing Intersect(RA, RB) in the Generalized Cross-Polytope Case

Let RA and RB be two generalized cross-polytopes RA = {x ∈ Rn : ‖A(x − a)‖1 ≤ 1} and RB = {x ∈
Rn : ‖B(x− b)‖1 ≤ 1}, where A and B are positive definite diagonal matrices with elements {Aii}ni=1 and
{Bii}ni=1, respectively. We are interested in deciding whether RA and RB intersect. However, given the
conservative context in which Intersect is used in Algorithm 1, we only need to make sure that the function
only returns False if it is guaranteed that RA ∩RB = ∅.

As such, we are able to simplify the complex problem of generalized cross-polytope intersection to the much
simpler one of ellipsoid over-approximation intersection. We do this by considering the over-approximation,
i.e. superset, ellipsoids RÃ = {x ∈ Rn : ‖A(x − a)‖2 ≤ 1} and RB̃ = {x ∈ Rn : ‖B(x − b)‖2 ≤ 1}, and
perform the ellipsoid intersection check presented in Appendix D.2. If RÃ ∩ RB̃ = ∅, then this implies
that RA ∩ RB = ∅ and we can safely return False. Otherwise, we conservatively assume the generalized
cross-polytopes intersect, and return True, triggering the reduction procedure detailed in Appendix D.5.
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D.4 Implementing LargestOutSubset(RA, RB) in the Ellipsoid Case

Given two ellipsoids RA = {x ∈ Rn : (x− a)>A(x− a) ≤ 1} and RB = {x ∈ Rn : (x− b)>B(x− b) ≤ 1} that
do intersect where A and B are positive definite diagonal matrices, the task is to find the largest possible
ellipsoid RB̃ centered at b such that RB̃ ⊆ RB where RA ∩RB̃ = ∅.

Finding a maximum ellipsoid that satisfies those conditions is not trivial, so instead we consider a maximum
enclosing `2-ball of RB, RB̃ = {x ∈ Rn : ‖x− b‖2 ≤ r}, that does not intersect RA. To obtain this ball, we
project the center of RB, b, to the ellipsoid RA. Particularly, we formulate the problem as the projection of
a vector y = b− a onto an ellipsoid with the same shape as RA centered at 0n. This is equivalent to solving
the following optimization problem for a symmetric positive definite matrix A:

min
x

1
2 ‖x− y‖

2
2 s.t. x>Ax ≤ 1.

Note that the objective function is convex, and the constraint forms a convex set. Forming the Lagrangian to
this problem, we obtain:

L(x, λ) = 1
2 ‖x− y‖

2
2 + λ

(
x>Ax− 1

)
,

where λ > 0. Therefore, the global optimal solution must satisfy the KKT conditions below:

∂L
∂x

= 0→ x∗ = (2λA + I)−1
y,

∂L
∂λ

= 0→ y> (2λA + I)−>A (2λA + I)−1
y − 1︸ ︷︷ ︸

f(λ)

= 0.

Thus, to project the vector y on our region the ellipsoid characterized by A, one needs to solve the scalar
optimization f(λ) = 0 then substitute back in the formula of x∗. Further, given A = diag(A11, . . . ,Ann), we
can simplify the problem to:

f(λ) =
n∑
i=1

y2
iAii

(1 + 2λAii)2 − 1 = 0.

Once x∗ is obtained, we can define the maximum radius of the `2-ball centered at b that does not intersect
RA as:

r∗ = ‖(x∗ + a)− b‖2 − ε,

for an arbitrarily small ε. Finally, we obtain RB̃ as the maximum ball contained within RB that has a radius
smaller than r∗, that is:

RB̃ = {x ∈ Rn : ‖x− b‖2 ≤ min{r∗,min
i

Bii}}.

Note that while choosing the radius of RB̃ to be r∗ guarantees that RB̃ ∩RA = ∅, this does not guarantee
that RB̃ ⊆ RB. To guarantee both properties, we take the minimum of both r∗ and mini Bii. This approach
finds the solution to the projection of the point to the ellipsoid {x ∈ Rn : x>Ax ≤ 1}; it does not work for
the case in which b ∈ RA, since the problem would be trivially solved by setting x∗ = y. Thus, our classifier
must abstain in that situation.

D.5 Implementing LargestOutSubset(RA, RB) in the Generalized Cross-Polytope Case

Let RA and RB be two generalized cross-polytopes RA = {x ∈ Rn : ‖A(x − a)‖1 ≤ 1} and RB = {x ∈
Rn : ‖B(x− b)‖1 ≤ 1}, where A and B are positive definite diagonal matrices with elements {Aii}ni=1 and
{Bii}ni=1, respectively. The task is to find the largest possible generalized cross-polytope RB̃ centered at b
such that RB̃ ⊆ RB where RA ∩RB̃ = ∅.

As with the ellipsoid case, solving this problem for a generalized cross-polytope is not trivial, so instead we
consider a maximum enclosing cross-polytope (i.e., `1-ball) of RB̃ = {x ∈ Rn : ‖x− b‖1 ≤ r} that does not
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intersect RA and is a subset of RB. To obtain this `1-ball, we project the center of RB, b, to the generalized
cross-polytope RA in a similar fashion to the ellipsoid case in Appendix D.4. We formulate the problem as
the projection of the vector y = b− a to the 0n centered generalized cross-polytope {x ∈ Rn : ‖Ax‖1 ≤ 1}.
Lemma 4. Consider the hyperplane H = {x ∈ Rn : w>x− k = 0} and a point y ∈ Rn. The `2 projection of
y on the hyperplane is the point x∗ = y − (w>y−k)w/‖w‖2

2.

Proof. We define the projection problem in a similar fashion to the ellipsoid case:

min
x

1
2 ‖x− y‖

2
2 s.t. w>x− k = 0,

and obtain the Lagrangian as L(x, λ) = 1
2 ‖x− y‖

2
2 + λ(w>x − k), from where we get (using the KKT

conditions): x∗ = y − λ∗w and λ∗ = w>y−k/‖w‖2
2; thus obtaining: x∗ = y − (w>y−k)w

‖w‖2
2

.

While this formulation does not yield the closest point from a hyperplane when measured with the `1 norm,
the fact that ‖x− x∗‖1 ≥ ‖x− x∗‖2 implies the certification set obtained in the `1 norm via this method is
a subset of the `2-ball of the minimum projection point. Crucially, this `2 projection has the advantage of
having a closed-form solution, while an `1 one would require solving the problem using an iterative linear
programming solver. As such, for the sake of computational complexity, we decided to use this projection,
despite the sub-optimality of the result from the `1 perspective. Empirically, we have found this does not
affect our results.

Since the set of vertices of the generalized cross-polytope {x ∈ Rn : ‖Ax‖1 ≤ 1} is given by {ei/Aii,−ei/Aii}ni=1,
and considering the distance between the projections and the original y, the hyperplane that minimizes it is
defined by the set of vertices {sign(yi)ei/Aii}ni=1. By writing it as a system of n equations, we obtain the
hyperplane defined by w = [−sign(y1)A11, ...,−sign(yn)Ann] and k = 1. Finally, after computing x∗ as per
Lemma 4, we can define the maximum radius of the `1-ball centered at b that does not intersect RA as:

r∗ = ‖(x∗ + a)− b‖1 − ε,

for an arbitrarily small ε. Finally, and similar to the ellipsoids case, we obtain RB̃ as the maximum generalized
cross-polytope contained within RB that has a radius smaller than r∗, that is:

RB̃ = {x ∈ Rn : ‖x− b‖1 ≤ min{r∗,min
i

Bii}}

Similar to before, to guarantee that the `1 ball RB̃ is still a subset to RB, we take the minimum between r∗
and mini Bii to be the radius of RB̃. As with the ellipsoid case, this approach does not work for the case
in which b ∈ RA, since the assumption of the closest plane to y would not hold. Thus, our classifier must
abstain in that situation.

E Experimental Setup

The experiments reported in the paper used the CIFAR-10 Krizhevsky (2009)3 and ImageNet Deng et al.
(2009)4 datasets, and trained ResNet18, WideResNet40 and ResNet50 networks He et al. (2016). Experiments
used the typical data split for these datasets found in the PyTorch implementation Paszke et al. (2019). The
procedures to obtain the baseline networks used in the experiments are detailed in Appendix E.1 and E.2 for
ellipsoids and generalized cross-polytopes, respectively. Source code to reproduce the AnCer optimization
and certification results of this paper is available as supplementary material.

Isotropic DD Optimization. We used the available code of Alfarra et al. (2022)5 to obtain the isotropic
data dependent smoothing parameters. To train our models from scratch, we used an adapted version of the
code provided in the same repository.

3Available here (url), under an MIT license.
4Available here (url), terms of access detailed in the Download page.
5Data Dependent Randomized Smoothing source code available here
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Certification. Following Cohen et al. (2019); Salman et al. (2019a); Zhai et al. (2019); Yang et al. (2020);
Alfarra et al. (2022), all results were certified with N0 = 100 Monte Carlo samples for selection and
N = 100, 000 estimation samples, with failure a probability of α = 0.001.

E.1 Ellipsoid certification baseline networks

In terms of ellipsoid certification, the baselines we considered were Cohen Cohen et al. (2019)6,
SmoothAdv Salman et al. (2019a)7 and MACER Zhai et al. (2019)8.

In the CIFAR-10 experiments, we used a ResNet18 architecture, instead of the ResNet110 used in Cohen
et al. (2019); Salman et al. (2019a); Zhai et al. (2019) due to constraints at the level of computation power.
As such, we had to train each of the networks from scratch following the procedures available in the source
code of each of the baselines. We did so under our own framework, and the training scripts are available in
the supplementary material. For the ImageNet experiments we used the ResNet50 networks provided by each
of the baselines in their respective open source repositories.

We trained the ResNet18 networks for 120 epochs, with a batch size of 256 and stochastic gradient descent
with a learning rate of 10−2, and momentum of 0.9.

E.2 Generalized Cross-Polytope certification baseline networks

For the certification of generalized cross-polytopes we considered RS4A Yang et al. (2020)9. As described in
RS4A Yang et al. (2020), we take λ = σ/

√
3 and report results as a function of σ for ease of comparison.

As with the baseline, we ran experiments on CIFAR-10 on a WideResNet40 architecture, and Ima-
geNet on a ResNet50 Yang et al. (2020). However, due to limited computational power, we were
not able to run experiments on the wide range of distributional parameters the original work consid-
ers, i.e. σ = {0.15, 0.25, 0.5, 0.75, 1.0, 1.125, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5} on CIFAR-10 and
σ = {0.25, 0.5, 0.75, 1.0, 1.125, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5} on ImageNet. Instead, and matching
the requirements from the ellipsoid section, we choose a subset of σ = {0.25, 0.5, 1.0} and performed our
analysis at that level.

While the trained models are available in the source code of RS4A, we ran into several issues when we
attempted to use them, the most problematic of which being the fact that the clean accuracy of such models
was very low in both the WideResNet40 and ResNet50 ones. To avoid these issues we trained the models
from scratch, but using the stability training loss as presented in the source code of RS4A. All of these
models achieved clean accuracy of over 70%.

Following the procedures described in the original work, we trained the WideResNet40 models with the
stability loss used in Yang et al. (2020) for 120 epochs, with a batch size of 128 and stochastic gradient
descent with a learning rate of 10−2, and momentum of 0.9, along with a step learning rate scheduler with a
γ of 0.1. For the ResNet50 networks on ImageNet, we trained them from scratch with stability loss for 90
epochs with a learning rate of 0.1 that drops by a factor of 0.1 after each 30 epochs and a batch size of 256.

F Superset argument

The results we present in Section 7 support the argument that AnCer achieves, in general, a certificate that
is a superset of the Fixed σ and Isotropic DD ones. To confirm this at an individual test set sample level, we
compare the `2, `1, `Σ2 and `Λ1 certification results across the different methods, and obtain the percentage of
the test set in which AnCer performs at least as well as all other methods in each certificates of the samples.
Results of this analysis are presented in Tables 4 and 5.

6Cohen source code available here.
7SmoothAdv source code available here.
8MACER source code available here.
9RS4A source code available here.
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For most networks and datasets, we observe that AnCer achieves a larger `p certificate than the baselines in
a significant portion of the dataset, showcasing the fact that it obtains a superset of the isotropic region per
sample. This is further confirmed by the comparison with the anisotropic certificates, in which, for all trained
networks except MACER in CIFAR-10, AnCer’s certificate is superior in over 90% of the test set samples.

Table 4: Superset in top-1 `2 and `Σ2 (rounded to nearest percent)

% AnCer `2 is the best % AnCer `Σ2 is the best

CIFAR-10: Cohen 83 93
CIFAR-10: SmoothAdv 73 90
CIFAR-10: MACER 50 69

ImageNet: Cohen 94 96
ImageNet: SmoothAdv 90 93

Table 5: Superset in top-1 `1 and `Λ1 (rounded to nearest percent)

% AnCer `1 is the best % AnCer `Λ1 is the best

CIFAR-10: RS4A 100 100
ImageNet: RS4A 97 99

G Experimental Results per σ

G.1 Certifying Ellipsoids - `2 and `Σ2 certification results per σ

In this section we report certified accuracy at various `2 radii and `Σ2 proxy radii, following the metrics
defined in Section 7, for each training method (Cohen Cohen et al. (2019), SmoothAdv Salman et al.
(2019a) and MACER Zhai et al. (2019)), dataset (CIFAR-10 and ImageNet) and σ (σ ∈ {0.12, 0.25, 0.5, 1.0}).
Figures 7 and 8 shows certified accuracy at different `2 radii for CIFAR-10 and ImageNet, respectively,
whereas Figures 9 and 10 plot certified accuracy and different `Σ2 proxy radii for CIFAR-10 and ImageNet,
respectively.

G.2 Certifying Ellipsoids - `1 and `Λ1 certification results per σ

In this section we report certified accuracy at various `1 radii and `Λ1 proxy radii, following the metrics defined
in Section 7, for RS4a, dataset (CIFAR-10 and ImageNet) and σ (σ ∈ {0.25, 0.5, 1.0}). Figures 11 and 12
shows certified accuracy at different `1 radii for CIFAR-10 and ImageNet, respectively, whereas Figures 13
and 14 plot certified accuracy and different `Λ1 proxy radii for CIFAR-10 and ImageNet, respectively.

H Visual Comparison of Parameters in Ellipsoid Certificates

Anisotropic certification allows for a better characterization of the decision boundaries of the base classifier f .
For example, the directions aligned with the major axes of the ellipsoids ‖δ‖Σ,2 = r, i.e. locations where Σ is
large, are, by definition, expected to be less sensitive to perturbations compared to the minor axes directions.
To visualize this concept, Figure 15 shows CIFAR-10 images along with their corresponding optimized `2
isotropic parameters obtained by Isotropic DD, and `Σ2 anisotropic parameters obtained by AnCer. First, we
note the richness of information provided by the anisotropic parameters when compared to the `2 worst-case,
isotropic one. Interestingly, pixel locations where the intensity of Σ is large (higher intensity in Figure 15) are
generally the ones corresponding least with the underlying true class and overlapping more with background
pixels.

A particular insight one can get from AnCer certification is that the decision boundaries are not distributed
isotropically around each input. To quantify this in higher dimensions, we plot in Figure 16 a histogram
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Figure 7: CIFAR-10 certified accuracy as a function of `2 radius, per model and σ (used as initialization in
the isotropic data-dependent case and AnCer).
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Figure 8: ImageNet certified accuracy as a function of `2 radius, per model and σ (used as initialization in
the isotropic data-dependent case and AnCer).

of the ratio between the maximum and minimum elements of our optimized smoothing parameters for the
experiments on SmoothAdv (with an initial σ = 1.0) on CIFAR-10. We note that this ratio can be as high as
5 for some of the input points, meaning the decision boundaries in that case could be 5 times closer to a
given input for some directions than others.
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Figure 9: CIFAR-10 certified accuracy as a function of `Σ2 proxy radius, per model and σ (used as initialization
in the isotropic data-dependent case and AnCer).
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Figure 10: ImageNet certified accuracy as a function of `Σ2 proxy radius, per model and σ (used as initialization
in the isotropic data-dependent case and AnCer).

I Non data-dependent Anisotropic Certification

As mentioned briefly in Section 6, it is our intuition that anisotropic certification requires a data-dependent
approach, as different points will have fairly different decision boundaries and the certified regions will extend
in different directions (as exemplified in Figure 1).

To validate this claim, we perform certification of SmoothAdv Salman et al. (2019a) with an initial σ = 1 on
CIFAR-10 using a Σ which is the average of all the optimized Σx. The results of the certified accuracy, ACR
and ACR̃ are presented in Table 6, along with the same results for the methods reported in the main paper.
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Figure 11: CIFAR-10 certified accuracy as a function of `1 radius per σ (used as initialization in the isotropic
data-dependent case and AnCer).
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Figure 12: ImageNet certified accuracy as a function of `1 radius per σ (used as initialization in the isotropic
data-dependent case and AnCer).

As can be observed, moving away from the data-dependent certification in the anisotropic scenario leads to a
significant performance drop in terms of robustness.

J Theoretical and Empirical Comparison with Mohapatra et al. (2020)

In regards to the theoretical results, unfortunately the certified regions of Mohapatra et al. (2020) do not
exhibit a closed form solution similarly to ours. Thus, a direct theoretical volume bound comparison is not
possible.

As for the empirical comparison, AnCer’s performance on both `2 and `1 certificates far out-does that of
Mohapatra et al. (2020). For example, with `2 certificates at a radius of 0.5, Cohen certified with AnCer
achieves 77% certified accuracy (see Table 1) while Mohapatra et al. (2020) achieves under 60% certified
accuracy. Note that Mohapatra et al. (2020) has only a marginal improvement over Cohen et al. As for
the `1 certificates, Mohapatra et al. (2020) uses the Gaussian distribution of Cohen et al, resulting in worse
performance than existing state-of-art in `1 Yang et al. (2020) that uses a uniform distribution. Our approach
improves further upon the performance of Yang et al. (2020). For example, as per Table 2, RS4A with
ANCER certification achieves 84% certified accuracy at an `1 radius of 0.5, Yang et al. (2020) achieves
75% certified accuracy while Mohapatra et al. (2020) achieves below 60%. However, we believe that the
combination of both approaches, ANCER and Mohapatra et al. (2020) can further boost the performance as
also hinted on in the abstract of Mohapatra et al. (2020) on the use of data-dependent smoothing.
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Figure 13: CIFAR-10 certified accuracy as a function of `Λ1 proxy radius per σ (used as initialization in the
isotropic data-dependent case and AnCer).
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Figure 14: ImageNet certified accuracy as a function of `Λ1 proxy radius per σ (used as initialization in the
isotropic data-dependent case and AnCer).

Figure 15: Visualization of an input CIFAR-10 image x (top), and the optimized parameters σ (middle)
and Σ (bottom) – higher intensity corresponds to higher σi in that pixel and channel – of the smoothing
distributions in the isotropic and anisotropic case, respectively.
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Figure 16: Distribution of the maximum over the minimum AnCer σx at each dataset point for
SmoothAdv Salman et al. (2019a) on CIFAR-10 (for initial σ = 1.0)
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Table 6: Comparison of different certification methods on SmoothAdv with an initial σ = 1.0 on CIFAR-10.

CIFAR-10 SmoothAdv Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.25 0.5 1.0 1.5 2.0 2.5

σ = 1.0

Fixed σ 45 40 35 25 16 9 5 0.565 0.565
Isotropic DD 41 39 36 29 21 14 7 0.694 0.694
AnCer 44 43 41 35 26 15 8 0.871 0.992

Average Σ 29 25 21 14 9 5 2 0.329 0.379
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