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ABSTRACT

Robots often rely on a repertoire of previously-learned motion policies for per-
forming tasks of diverse complexities. When facing unseen task conditions or
when new task requirements arise, robots must adapt their motion policies accord-
ingly. In this context, policy optimization is the de facto paradigm to adapt robot
policies as a function of task-specific objectives. Most commonly-used motion
policies carry particular structures that are often overlooked in policy optimiza-
tion algorithms. We instead propose to leverage the structure of probabilistic poli-
cies by casting the policy optimization as an optimal transport problem. Specif-
ically, we focus on robot motion policies that build on Gaussian mixture models
(GMMs) and formulate the policy optimization as a Wassertein gradient flow over
the GMMs space. This naturally allows us to constrain the policy updates via
the L2-Wasserstein distance between GMMs to enhance the stability of the pol-
icy optimization process. Furthermore, we leverage the geometry of the Bures-
Wasserstein manifold to optimize the Gaussian distributions of the GMM policy
via Riemannian optimization. We evaluate our approach on common robotic set-
tings: Reaching motions, collision-avoidance behaviors and multi-goal tasks. Our
results show that our method outperforms common policy optimization baselines
in terms of task success rate and low-variance solutions.

1 INTRODUCTION

One of the main premises about autonomous robots is their ability to successfully perform a large
range of tasks in unstructured environments. This demands robots to adapt their task models accord-
ing to environment changes, and consequently to adjust their actions to successfully perform under
unseen conditions (Peters et al., 2016). In general, robotic tasks, e.g. picking or inserting an object,
are usually executed by composing previously-learned skills (Schaal et al., 2003), each represented
by a motion policy. Therefore, in order to successfully perform under new settings, the robot should
adapt its motion policies according to the new task requirements and conditions.

Research on methods for robot motion policy adaptation is vast (Kober et al., 2013; Chatzilygeroudis
et al., 2020), with approaches mainly building on black-box optimizers (Stulp & Sigaud, 2012),
end-to-end deep reinforcement learning (Ibarz et al., 2021), and policy search (Deisenroth et al.,
2013). Regardless of the optimization method, most approaches rely on policy structure-unaware
adaptation strategies. However, several motion policy models (e.g, dynamic movement primitives
(DMP)(Ijspeert et al., 2013), Gaussian mixture models (GMM) (Calinon et al., 2007), probabilistic
movement primitives (ProMPs) (Paraschos et al., 2018), and neural networks (Bahl et al., 2020),
among others), carry specific physical or probabilistic structures that should not be ignored. First,
these policy models are often learned from demonstrations in a starting learning phase (Schaal et al.,
2003), thus the policy structure already encapsulates relevant prior information about the skill. Sec-
ond, structure-unaware adaptation strategies optimize the policy parameters disregarding the special
characteristics of the policy model (e.g., a DMP represents a second-order dynamical system). In
this regard, we hypothesize that the policy structure may be leveraged to better control the adaptation
strategy via policy structure-aware gradients and trust regions.

Our main idea is to design a policy optimization strategy that explicitly builds on a particular policy
structure. Specifically, we focus on GMM policies, which have been widely used to learn motion
skills from human demonstrations (Calinon et al., 2007; Cederborg et al., 2010; Calinon, 2016;
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Figure 1: Illustration our policy structure-aware adaptation of GMM policies. Policy updates follow a Wasser-
stein gradient flow on the manifold of GMM policies GMMd.

Jaquier et al., 2019). GMMs provide a simple but expressive enough representation for learning a
large variety of robot skills: Stable dynamic motions (Khansari-Zadeh & Billard, 2011; Ravichandar
et al., 2017; Figueroa & Billard, 2018), collaborative behaviors Ewerton et al. (2015); Rozo et al.
(2016), and contact-rich manipulation Lin et al. (2012); Abu-Dakka et al. (2018), among others.
Often, skills learned from demonstrations need to be refined – due to imperfect data – or adapted to
comply with new task requirements. In this context, existing adaptation strategies for GMM policies
either build a kernel method on top of the original skill model Huang et al. (2019), or leverage
reinforcement learning (RL) to adapt the policy itself (Arenz et al., 2020; Nematollahi et al., 2022).
However, none of these techniques explicitly considered the structure of the GMM policy.

Unlike the aforementioned approaches, we propose a policy optimization technique that explicitly
considers the underlying GMM structure. To do so, we exploit optimal transport theory (Santambro-
gio, 2015; Peyré & Cuturi, 2019), which allows us to view the set of GMM policies as a particular
space of probability distributions GMMd. Specifically, we leverage the idea of Chen et al. (2019)
and Delon & Desolneux (2020) to view a GMM as a set of discrete measures (dirac masses) on
the space of Gaussian distributions G(Rd), which is endowed with a Wasserstein distance (see § 2).
This allows us to formulate the policy optimization as a Wasserstein gradient flow (WGF) over the
space of GMMs (as illustrated in Fig. 1 and explained in §3), where the policy updates are naturally
guaranteed to be GMMs. Moreover, we take advantage of the geometry of the Bures-Wasserstein
manifold to optimize the Gaussian distributions of a GMM policy via Riemannian optimization. We
evaluate our approach over a set of different GMM policies featuring common robot skills: Reach-
ing motions, collision-avoidance behaviors and multi-goal tasks (see § 4). Our results show that
our method outperforms common policy optimization baselines in terms of task success rate while
providing low-variance solutions.

Related Work: Richemond & Maginnis (2017) pioneered the idea of understanding policy op-
timization through the lens of optimal transport. They interpreted the policy iteration as gradient
flows by leveraging the implicit Euler scheme under a Wasserstein distance (see § 2), considering
only 1-step return settings. They observed that the resulting policy optimization resembles the gradi-
ent flow of the Fokker-Planck equation (JKO scheme) (Jordan et al., 1996). In a similar spirit, Zhang
et al. (2018) proposed to use WGFs to formulate policy optimization as a sequence of policy updates
traveling along a gradient flow on the space of probability distributions until convergence. To solve
the WGF problem, the authors proposed a particle-based algorithm to approximate continuous den-
sity functions and subsequently derived the gradients for particle updates based on the JKO scheme.
Although Zhang et al. (2018) considered general parametric policies, their method assumed a dis-
tribution over the policy parameters and did not consider a specific policy structure, which partially
motivated their particle-based approximation. Recently, Mokrov et al. (2021) tackled the compu-
tational burden of particle methods by leveraging input-convex neural networks to approximate the
WGFs computation. They reformulated the well-known JKO optimization Jordan et al. (1996) over
probability measures by an optimization over convex functions. Yet, this work remains a general
solution for WFG computation and it did not address its use for policy optimization problems.

Aside from optimal transport approaches, Arenz et al. (2020) proposed a trust-region variational
inference for GMMs to approximate multimodal distributions. Although not originally designed
for policy optimization, the authors elucidated a connection to learn GMMs of policy parameters
in black-box RL. However, their method cannot directly be applied to our GMM policy adapta-
tion setting, nor does it consider the GMM structure from an optimal transport perspective. Ne-
matollahi et al. (2022) proposed SAC-GMM, a hybrid model that employs the well-known SAC
algorithm (Haarnoja et al., 2018) to refine dynamic skills encoded by GMMs. The SAC policy
was designed to learn residuals on a single vectorized stack of GMM parameters, thus fully dis-
regarding the GMM structure and the geometric constraints of its parameters. Finally, two recent
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works share our idea of leveraging geometry in policy optimization: First, a Riemannian proximal
policy optimization for GMMs was proposed by Wang et al. (2020), where the geometry induced
by the GMM parameters was considered in the optimization via Riemannian gradients, similarly
to our method. The policy optimization was regularized by a Wasserstein distance to control the
exploration-exploitation trade-off. However, their method did not formulate the policy optimization
as an optimal transport problem, i.e. the policy updates do not follow a WGF, as in our approach, but
it employed instead a classical non-convex optimization. Second, Moskovitz et al. (2021) employed
the Wasserstein natural gradient to exploit the local geometry induced by the Wasserstein regular-
ization of behavioral policy optimization (Pacchiano et al., 2020). In contrast, our method exploits
the geometry induced by the structure of the space of GMM policies via the Bures-Wasserstein
manifold, which naturally guarantees that policy updates stay on GMMd.

2 BACKGROUND

2.1 WASSERSTEIN GRADIENT FLOWS

In Euclidean space a gradient flow is a smooth curve x : R → Rd that satisfies the partial differ-
ential equation (PDE) ẋ(t) = −∇L(x(t)) for a given loss function L : Rd → R and starting point
x0 at t = 0 (Santambrogio, 2015; 2017). A solution can be found straightforwardly by forward
discretization, leading to the well-known explicit Euler update scheme xτ

k+1 = xk − λ∇L(xτ
k),

where λ denotes the learning rate and xτ indicates a discretization of the curve x(t) with discretiza-
tion parameter τ . Alternatively, we can use a backward discretization, which leads to the following
implicit Euler scheme

xτ
k+1 = argmin

x

(∥x− xτ
k∥2

2τ
+ L(x)

)
. (1)

Eq. 1 is sometimes referred to as Minimizing Movement Scheme and can be used as an alternative
characterization of a gradient flow.

This characterization is particularly interesting when we need to extend the concept of gradient flows
to (non-Euclidean) general metric settings, since there is no notion of ∇L in these cases (Santam-
brogio, 2015; Ambrosio et al., 2005). Eq. 1 does not involve any gradients and can be expressed
using only metric quantities. In this work, we are particularly interested in gradient flows in the
L2-Wasserstein space, defined as the set of probability measures P(X) on a separable Banach space
X (Panaretos & Zemel, 2020) and endowed with the L2-Wasserstein distance W2 defined as

W2(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
X×X

∥x1 − x2∥2dγ(x1, x2)

) 1
2

, (2)

where µ, ν ∈ P(X) and γ ∈ P(X2) is defined to have the two marginals µ and ν.

A Generalized Minimizing Movement scheme characterizing gradient flows in the Wasserstein space
can be written in analogy to Eq. 1 as:

πτ
k+1 = argmin

π

(
W 2

2 (π, π
τ
k)

2τ
+ L(π)

)
, (3)

where L is a functional to be minimized on the Wasserstein space and πk ∈ P(X). In the following,
we will omit the superscript τ for notational convenience.

2.2 REINFORCEMENT LEARNING AS WASSERSTEIN GRADIENT FLOWS

Our view of the policy structure-aware optimization builds on the approach outlined by Richemond
& Maginnis (2017), which in turn is based on the JKO scheme of Jordan et al. (1996). They proposed
a formulation of 1-step RL problems in terms of Wasserstein gradient flows. In particular, they
studied the evolution of a policy π under the influence of a free energy functional J of the form:

J(π) = Kr(π) + βH(π) =

∫
A

dπ(a|s)r(s,a)− β

∫
A

dπ(a|s) log(π(a|s)), (4)
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where Kr(π) denotes the inner energy of the system, here determined by the reward r(s,a). More-
over, H(π) is the entropy of the policy π(a|s), with s and a denoting the state and action, re-
spectively. Thus Eq. 4 can be recognized as the usual objective in 1-step RL settings with entropy
regularization. It is well known that the evolution of probability densities under a free energy of this
form is properly described by a PDE known as the Fokker-Planck equation. Richemond & Maginnis
(2017) exploited the result of Jordan et al. (1996), which stated that this evolution can be interpreted
as the gradient flow of the functional J in Wasserstein space. This flow is characterized by the
following minimizing movement scheme

πk+1 = argmin
π

(
W 2

2 (π, πk)

2τ
− J(π)

)
, (5)

which naturally provides iterative updates for the policy π. While Richemond & Maginnis (2017)
considered a 1-step bandit setting, we extend this approach to full multi-step RL problems and learn
policies for long-horizon tasks.

2.3 THE L2-WASSERSTEIN DISTANCE BETWEEN GAUSSIAN MIXTURE MODELS (GMMS)

In this paper, we consider policies π(x) that build on a GMM structure, i.e., π(x) =∑N
i=1 ωiN (x;µi,Σi), where N denotes a multivariate Gaussian distribution with mean µi and

covariance matrix Σi, and ωi are the weights of the N individual Gaussian components, which are
subject to

∑
i ωi = 1. In the following, we will write µ̂, Σ̂ and ω̂ to denote the stacked means,

covariance matrices and weights of the N components. Therefore, we do not consider WGFs on
the full manifold of probability distributions (Wasserstein space) P(Rd) but rather focus on WGFs
evolving on the submanifold of GMMs, that is GMMd ⊂ P(Rd). Following Chen et al. (2019);
Delon & Desolneux (2020), we can approximately describe this submanifold as a discrete distribu-
tion over the space of Gaussian distributions equipped with the Wasserstein metric. This in turn can
be identified with the Bures-Wasserstein manifold which is the product manifold Rd × Sd

++, where
Sd
++ denotes the Riemannian manifold of d-dimensional symmetric positive definite matrices. The

corresponding approximated Wasserstein distance between two GMMs π1, π2 is given by

W 2
2

(
π1(x), π2(x)

)
= min

P∈U(ω1,ω2)

N∑
i,j

PijW
2
2

(
N1(x;µi,Σi),N2(x;µj ,Σj)

)
, (6)

where U(ω1, ω2) = {P ∈ RN×N
+ |P1N = ω1,P

T1N = ω2} with 1N denoting an N -dimensional
vector of ones. The Wasserstein distance between two Gaussian distributions in Eq. 6 can be com-
puted analytically as follows

W 2
2

(
N1(x;µi,Σi),N2(x;µj ,Σj)

)
= ∥µi − µj∥2 + tr

[
Σi +Σj − 2

(
Σ

1/2
i ΣjΣ

1/2
i

)]
. (7)

2.4 LEARNING GMM POLICIES FROM DEMONSTRATIONS

A popular approach in RL – particularly in the robotics domain – to reduce the number of policy
rollouts in the environment is to warm-start the policy with a set of demonstrations provided by an
expert. In this work we choose to represent our policy via a GMM. We assume that demonstrations
are provided as a set of trajectories τ of state-action pairs τ = {(s0,a0), (s1,a1), . . . (sT ,aT )}.
To initialize our policy, we first use the Expectation-Maximization (EM) algorithm to fit a GMM,
in the joint state-action space, to the demonstrations. This results in a mixture distribution
π(s,a) =

∑N
i=1 ωiN

(
[sa]T;µi,Σi

)
from which a policy can be obtained by conditioning on the

state s, as follows

π(a|s) = π(s,a)∫
π(s,a)da

. (8)

In the context of GMMs, this is also known as Gaussian Mixture Regression (GMR) (Ghahramani
& Jordan, 1994). The resulting conditional distribution is another GMM on action space with state-
dependent parameters, given by

π(at|st) =
N∑
i=1

ωi(st)N (at;µ
a
i (st),Σ

a
i ). (9)

Details on computation of Eq. 9 from the original GMM are given in App. A.1.
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3 WASSERSTEIN GRADIENT FLOWS FOR GMM POLICY OPTIMIZATION

In this work, we focus on multi-step RL tasks for policy adaptation. We consider a finite-horizon
Markov Decision Process (MDP) with continuous state and action spaces S ∈ Rn and A ∈ Rm,
transition and reward functions p(st+1|st,at) and r(st,at), initial state distribution ρ(s0) and a
discount factor γ. Further, we assume to have an initial policy π(at|st), which is to be adapted by
optimizing some objective function Kr(π). As stated in § 1, this problem arises in robot learning
settings where a policy learned via imitation learning (e.g., LfD) needs to be adapted to new objec-
tives or unseen environmental conditions. To promote exploration and avoid premature convergence
to suboptimal policies, we leverage maximum entropy RL (Eysenbach & Levine, 2022) by adding
an entropy term H(π) to the objective. Thus, the overall objective has the form of a free energy
functional (resembling Eq. 4) and can be written as

J(π) = Kr(π) + βH(π), (10)

where β is a hyperparameter and Kr(π) corresponds to the usual cumulative return

Kr(π)=Eτ

[∑
t

r(st,at)

]
=

∫
Πtds0dstdatρ(s0)π(at|st)p(st+1|st,at)

∑
t

γtr(st,at). (11)

The evolution of the policy π(at|st) over the course of the optimization can be described as a flow
of a probability distribution in Wasserstein space. This formulation comes with three major benefits:
(i) We directly leverage the Wasserstein metric properties for describing the evolution of probability
distributions; (ii) We exploit the L2-Wasserstein distance to constrain the policy updates, which is
important to guarantee stability in policy optimization (Schulman et al., 2015; 2017; Otto et al.,
2021); (iii) By constraining to specific submanifolds of the Wasserstein space, in this case GMMs,
we can impose additional structural properties on the policy optimization.

Since our objective in Eq. 10 has the form of the free energy functional studied by Richemond &
Maginnis (2017); Jordan et al. (1996), we can leverage the iterative updates scheme of Eq. 5 to
formulate the evolution of our policy iteration under the flow generated by Eq. 10. As mentioned
previously, we focus on the special case of GMM policies and therefore restrict the Wasserstein
gradient flow to the submanifold of GMM distributions GMMd. We refer the interested reader to
App. A.3, where we provide the explicit form of J(π) of Eq. 10 for the GMM case.

3.1 POLICY OPTIMIZATION

To begin with, we leverage the approximation that describes the GMM submanifold as a discrete
distribution over the space of Gaussian distributions G(Rd), equipped with the Wasserstein met-
ric (Chen et al., 2019). Consequently, our policy optimization problem naturally splits into an op-
timization over the (N−1)-dimensional simplex and an optimization on the N -fold product of the
Bures-Wasserstein manifold (BWN ), i.e. the product manifold

(
Rd × Sd

++

)N
. The former corre-

sponds to the GMM weights while the latter applies to the set of Gaussian distributions parameters.
Note that the identification with the BWN manifold allows us to perform the optimization directly
on the parameter space. This comes with several benefits: (i) We can leverage the well-known
analytic solution of the Wasserstein distance between two Gaussian distributions in Eq. 6, greatly
reducing the computational complexity of the policy optimization. (ii) As Chen et al. (2019) show,
we can guarantee that the policy optimized via Eq. 6 remains a GMM. (iii) Unlike the full Wasser-
stein space1, the resulting product manifold is a true Riemannian manifold such that we can leverage
the machinery of Riemannian optimization. Importantly, working in the parameter space allows us
to apply an explicit Euler scheme instead of the implicit formulation of Eq. 3.

According to the above-mentioned split, we formulate the policy optimization as an EM-like two-
step procedure that alternates between the Gaussian parameters (i.e. means and covariance matrices)
and the GMM weights. To optimize the former, we propose to leverage the Riemannian structure
of the BW manifold to reformulate the updates as a forward discretization, similarly to Chen &
Li (2020). In other words, by embedding the Gaussian components of the GMM policy in a Rie-
mannian manifold, the Wasserstein gradient flow in the implicit form of Eq. 5 can be approximated

1Wasserstein space is not a true Riemannian manifold, but it can be equipped with a Riemannian structure
and formal calculus on this manifold (Otto, 2001), which has been made rigorous by (Ambrosio et al., 2005)
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by an explicit Euler update scheme according to the BW metric (further details are provided in
App. A.4). This allows us to leverage the expressions of the Riemannian gradient and exponential
map of the BW manifold (Malagò et al., 2018; Han et al., 2021). Thus, the optimization boils down
to Riemannian gradient descent where the gradient is defined w.r.t the Bures-Wasserstein metric. In
particular, we use the expression for Riemannian gradient, metric and exponential map used in (Han
et al., 2021). Formally, the resulting updates for the Gaussian parameters of the GMM follow the
Riemannian gradient descent scheme given by:

µ̂k+1 = Rµ̂k

(
λ · gradµ̂ J(πk)

)
, and Σ̂k+1 = RΣ̂k

(
λ · gradΣ̂ J(πk)

)
, (12)

where grad denotes the Riemannian gradient w.r.t. the Bures-Wasserstein metric, Rx : TxM → M
denotes the retraction operator, which maps a point on the tangent space TxM back to the manifold
M ≡ BW (Boumal, 2022). Moreover, λ is a learning rate and πk

def
= π(µ̂k, Σ̂k, ω̂k). The Euclidean

gradients of J(π) required for computing grad can be obtained using a likelihood ratio estimator
(a.k.a score function estimator or REINFORCE) (Williams, 2004) and are provided in App. A.3.

Concerning the GMM weights, we first reparameterize them as ωj =
exp ηj∑N

k=1 exp ηk
and optimize

w.r.t. the new parameters ηj , j = 1...N , which unlike ω̂ are unconstrained. For this optimization
we employ the implicit Euler scheme:

η̂k+1 = argmin
η̂

(
W 2

2 (πk+1(η̂), πk)

2τ
− J(πk+1(η̂))

)
, (13)

where πk+1(η̂)
def
= π(µ̂k+1, Σ̂k+1, η̂). We minimize Eq. 13 by gradient descent w.r.t. η as follows:

η̂k+1 = η̂k − λ∇η̂

(
W 2

2 (πk+1(η), πk)

τ
− J(πk+1(η̂))

)
. (14)

The gradient of J(π) can be obtained analytically using a likelihood ratio estimator. For the Wasser-
stein term, we first compute the gradient w.r.t. the weights via the Sinkhorn algorithm (Cuturi &
Doucet, 2014), from which the gradient w.r.t η can be then obtained via the chain rule. Note that
we have to rely on the Sinkhorn algorithm here since there is no analytic solution available for the
Wasserstein distance between discrete distributions, unlike the above case of the Gaussian compo-
nents. Consequently, we cannot compute the corresponding gradients.

3.2 IMPLEMENTATION PIPELINE

To carry out the policy optimization, we proceed as in the usual on-policy RL scheme: We first roll
out the current policy to collect samples of state-action-reward tuples. Then, we use the collected
interaction trajectories to compute a sample-based estimate of the functional Kr(π) and its gradi-
ents w.r.t the policy parameters, as explained in § 3.1. An optimization step consists of alternating
between optimizing the Gaussian parameters using 12, and updating the weights via 14. For the
optimization of the Gaussian parameters we leverage Pymanopt (Townsend et al., 2016) for Rie-
mannian optimization. We extended this library by implementing the Bures-Wasserstein manifold
based on the expressions provided by Han et al. (2021) (see App. A.2 for details). Furthermore,
we added a custom line-search routine that accounts for a constraint on the Wasserstein distance
between the old and the optimized GMM, as to our knowledge such a search method does not exist
in out-of-the-box optimizers. The details of this custom line-search can be found in Algorithm 2 in
App. A.5. Regarding the optimization of the GMM weights, we use POT (Flamary et al., 2021),
a Python library for optimal transport, from which we obtain the quantities required for computing
the gradients of the Wasserstein distance w.r.t. the weights in Eq. 14.

The full policy optimization finishes if either the objective stops improving or the Wasserstein dis-
tance between the old and optimized GMMs exceeds a predefined threshold, which is chosen exper-
imentally. Afterwards, fresh rollouts are performed with the updated policy and the aforementioned
two-step procedure starts over. This optimization loop is repeated until a task-dependent success
criterion has been fulfilled. We summarize the proposed optimization in Algorithm 1.

4 EXPERIMENTS

We tested our approach in three different robotic settings: a reaching skill, a collision-free trajectory
tracking, and a multiple-goal task. All the tasks are represented in a 2D operational space. The robot
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Algorithm 1 GMM Policy Optimization via Wasserstein Gradient Flows
Input: initial policy π(a|s)

1: while not goal reached do
2: Rollout policy π(a|s) in the environment for M episodes to collect interaction trajectories

τ = {(s0,a0, r0), (s1,a1, r1), . . . , (sT ,aT , rT )}Mm=1
3: repeat
4: Update Gaussian components parameters µ̂, Σ̂ using Riemannian optimization (12), where

λls is determined via line-search (see §3.2).
5: until convergence
6: repeat
7: Update GMM weights ω̂ via gradient descent on the free energy objective 10, using 14
8: until converged
9: end while

motion policies were initially learned from human demonstrations collected on a simple Python
graphical interface. We assumed we were given M demonstrations, each of which contained Tm data
points for a dataset of N =

∑
m Tm total observations τ = {(st,at)}Nt=1. The state s and action a

correspond to the robot end-effector position x ∈ R2 and velocity ẋ ∈ R2. The GMM models were
trained via classical Expectation-Maximization. The policy rollout consists of sampling a velocity
action at ∼ π(at|st) using Eq. 9, and subsequently commanding the robot via a Cartesian velocity
controller at a frequency of 100Hz. For all the experiments, we used the Robotics Toolbox for
Python (Corke & Haviland, 2021) to simulate the robotic environments.

To show the importance of accounting for the policy structure in RL settings, we compared our
method against two structure-unaware baselines: PPO (Schulman et al., 2017) and SAC-GMM (Ne-
matollahi et al., 2022). As PPO was not originally designed to directly optimize the parameters of
a previously-learned GMM policy, we designed the policy actions to represent (usually small) cor-
rections to the GMM parameters, i.e. a = [∆ω ∆µ̂ ∆vec(Σ̂)], following the same methodology
as SAC-GMM (Nematollahi et al., 2022). The PPO and SAC implementations correspond to the
code provided by Stable-Baselines3 (Raffin et al., 2021), whose policies are parametrized by MLP
networks. During policy optimization, we sample an action from the MLP policy that is then used to
update the GMM parameters by adding the computed corrections to the current parameters. Later,
we proceed as described earlier, namely, the updated GMM is used to compute the velocity action
via Eq. 9. For comparison purposes, we report statistical results for the three considered settings
over 5 runs for the task success rate and solution variance. We tuned the baselines separately for
each task using Optuna (Akiba et al., 2019). In addition, to assess the importance of our Riemannian
formulation, we performed an ablation where we used the implicit scheme based on Euclidean gradi-
ent descent instead of the explicit optimization on the Bures-Wasserstein manifold (see App. A.6.2).
Last but not least, we tested our approach on a 3D version of the collision-free task performed by a
7-DoF Franka Emika Panda robot in a virtual environment as reported in App. A.6.3.

4.1 TASKS DESCRIPTION

Reaching Task: This experiment consists of: (1) learning an initial GMM policy such that the
robot end-effector reaches a target by following an L-shape trajectory from its initial position, and
(2) adapting the GMM policy to reach a new target located midway and above the previously-
learned L-shape trajectories. The initial policy, shown in Fig. 2-left and Fig. 12a, was learned from
12 demonstrations and encoded by a 7-component GMM. To adapt the policy, we defined a dense
reward as a function of the position error between the robot end-effector and the new target. We
also added a sparse penalty term that punishes rollouts leading to significantly divergent trajectories.
Convergence is achieved when a minimum average position error w.r.t the target – computed over
an episode – is reached.
Collision-avoidance Task: This task consists of: (1) learning an initial GMM policy of a linear
reaching motion, and (2) adapting the GMM policy to reach a new horizontally-translated target
while avoiding to collide with two spherical obstacles located midway between the initial robot po-
sition and the new target. The initial GMM policy was learned from 10 human demonstrations and
represented by a 3-component GMM, as shown in Fig. 2-middle and Fig. 12b. For policy optimiza-
tion, we defined a sparse reward as a function of the position error between the robot end-effector
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Figure 2: The three tested robotic settings: a reaching skill (left), a collision-free trajectory tracking (middle),
and a multiple-goal task (right). The robot color goes from light gray to black to show the evolution of the
task reproduction. Green Gaussian components ( ) depict the initial GMM policy, projected on the 2D
Cartesian position space. The end-effector trajectory resulting from the initial GMM policy is shown in dark
blue lines ( ). Red circles ( ) in the collision-avoidance task represent the obstacles (middle). The different
targets of the multiple-goal task (right) are depicted as red stars.

position and the target at the end of the rollout. We also included two sparse penalty terms: the first
one punishes rollouts leading to collisions with the obstacles, for which the rollout is stopped; the
second term penalizes rollouts with significantly divergent trajectories. Convergence is determined
by a minimum average position error w.r.t the target computed over an episode.
Multiple-goal Task: This setting involves: (1) learning an initial GMM policy where the robot
end-effector reaches two different targets (i.e., task goals) starting from the same initial position,
and (2) adapting the initial policy to reach a new target located close to one of the previous task
goals. The intended adapted behavior should make the robot go through the most relevant GMM
components according to the new target location. The initial GMM policy was learned from 12
demonstrations and encoded by a 6-component GMM, as shown in Fig. 2-right and Fig. 12c. To
optimize the initial GMM policy, we specified a sparse reward based on the position error between
the robot end-effector position and the chosen target at the end of the rollout. Similar to the previous
experiments, we added a sparse penalty term to penalize rollouts generating significantly divergent
trajectories. Again, the policy optimization converges when the average position error w.r.t the
chosen target reaches a minimum threshold.

4.2 RESULTS ANALYSIS

The reaching task tested our method’s ability to adapt a previously-learned reaching skill to a new
goal, located at (6.0,−6.5) (cf. Fig. 12a-left). Achieving this required to adapt the Gaussian pa-
rameters of mainly the last four GMM components, while the other ones remained unchanged. We
compared all methods in terms of the success rate over environment steps, where the success rate is
defined as the percentage of rollouts that reach the new goal. Figure 3-left shows that our method
achieved a success rate of 1 after approximately 70000 environment interactions. Despite PPO was
also able to complete the task reliably, it required many more environment steps (cf. Fig. 5-left). In
sharp contrast, SAC did not reach any improvement. These observations underline the importance
of some kind of trust region or constraint on the policy updates, which allowed both our method
and PPO to reach good success rates. Furthermore, this experiment showed that our method is
much more sample-efficient in adapting the GMM parameters, which we attribute to the fact that
our method explicitly takes the GMM structure into account in the formulation of the optimization.

In the collision-avoidance task, we tested whether our method was able to adapt a trajectory track-
ing skill in order to avoid collisions with newly added obstacles. These were placed in such a way
that the robot was forced to move its end-effector through a narrow path between the obstacles (cf.
Fig. 2-middle). While the reaching task could be adapted by mainly varying the means of the GMM
components, this task also demands to adapt the covariance of the second GMM component. Fig-
ure 3-middle shows that our method solved this task reliably after comparatively few environment
interactions. Although PPO also achieved a success rate of 1, it took 6 times more environment steps
than our method. SAC only reached an average success rate of 0.8, however with high variance (cf.
Fig. 5-middle). These results again show the importance of the constraints on the policy updates.
The huge discrepancy in the required environment steps between our method and PPO further em-
phasizes the importance of taking the GMM structure into account in the policy optimization.
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Figure 3: Success rate of our method (WGF) and the baselines on the reaching (left), the collision-avoidance
(middle) and the multiple-goal tasks (right). The shaded area depicts the standard deviation over 5 runs.
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Figure 4: Variance of the success rate over the 5 runs for our method (WGF) and the two baselines on the
reaching task (left), the collision avoidance task (middle) and the multiple-goal task (right). The violine plots
are overlaid with box plots, quartile lines and a swarm plot, where dots indicate the success rates of individual
runs. The plots show the variance at the following time steps from left to right: 80000, 90000, 95000.

While the previous two tasks were accomplished by adapting mostly the Gaussian parameters of
the GMM, the multiple-goal task requires to adapt the GMM weights. The initial skill comprised
reaching motions to two different goals and an execution of this skill results in reaching one of them,
depending on the sampling noise (cf. Fig. 12c). The easiest way to adapt the policy to reach only
one of the two goals is to reduce the GMM weights of the components belonging to the undesired
motion and correspondingly increase the weights of the other components. As shown in Fig. 3-
right, our method again quickly achieved a success rate of 1. PPO required substantially many more
environment steps, while SAC was not able to solve the task.

In Fig. 4 we report the success rate variance over 5 runs at a fixed time step, which corresponded to
the step at which the first method achieved a success rate of 1, thus prioritizing sample efficiency.
The plots show that our method exhibits a very low solution variance. Both baselines varied largely,
except for the reaching task, where all SAC runs collapse to a success rate of 0. These results show
that our method, despite showing large variance at the start, was able to quickly reduce the variance
and converge reliably to a good success rate. We also provide similar plots of solution variance in
Fig. 6, where we report the results for each method using its own convergence time step.

5 CONCLUSIONS AND FUTURE WORK

We presented a novel method for GMM policy optimization, which leverages optimal transport the-
ory to formulate the policy optimization as a Wasserstein gradient flow on the manifold of GMMs.
Our formulation explicitly accounts for the GMM structure in the optimization and furthermore en-
ables us to naturally constrain the policy updates by the L2-Wasserstein distance between GMMs to
enhance the stability of the policy optimization process. Moreover, the embedding of the Gaussian
components of the GMM policy in the Bures-Wassertein manifold greatly reduced the computational
cost of the policy optimization. Experiments on three robotic tasks provided strong evidence of the
importance of our policy-structure aware optimization against approaches that disregard the GMM
structure. A possible limitation of our method is that each optimization loop involves running the
Sinkhorn algorithm, which is computationally expensive. This might be improved by employing re-
cent advances on initializing the Sinkhorn algorithm (Thornton & Cuturi, 2022). Also, we observed
an intricate interplay between the optimization of the GMM weights and the Gaussian parameters,
which sometimes resulted in one update hampering the other. In future work we plan to address
the latter problem by using separate adaptive learning rates for weights and Gaussian parameters.
Another possibility would entail to reformulate the approach as a fully dynamical, particle-based op-
timization on the Bures-Wasserstein manifold, where both the locations and weights of the particles
are updated using Wasserstein Fisher-Rao gradient flows Chizat et al. (2015); Chizat (2019); Liero
et al. (2018). Finally it would be interesting to combine our method with an actor-critic formulation
and to replace the multi-step cumulative reward by a trained Q-function.
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las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
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Wolfram Burgard. Robot skill adaptation via soft actor-critic Gaussian mixture models. In
International Conference on Robotics and Automation (ICRA), pp. 8651–8657, 2022. URL
https://doi.org/10.1109/ICRA46639.2022.9811770.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Dif-
ferentiable trust region layers for deep reinforcement learning. In International Conference on
Learning Representations (ICLR), 2021. URL https://openreview.net/forum?id=
qYZD-AO1Vn.

Felix Otto. The geometry of dissipative evolution equations:: The porus medium equation. Com-
munications in Partial Differential Equations, 26(1-2):101–174, 2001. URL https://doi.
org/10.1081/PDE-100002243.

Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Krzysztof Choromanski, Anna Choroman-
ska, and Michael Jordan. Learning to score behaviors for guided policy optimization. In In-
ternational Conference on Machine Learning (ICML), pp. 7445–7454, 2020. URL https:
//proceedings.mlr.press/v119/pacchiano20a.html.

Victor M. Panaretos and Yoav Zemel. The Wasserstein Space, pp. 37–57. Springer International
Publishing, 2020. URL https://doi.org/10.1007/978-3-030-38438-8_2.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Using probabilistic
movement primitives in robotics. Autonomous Robots, 42:529–551, 2018. URL https://
doi.org/10.1007/s10514-017-9648-7.

Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell, and Stefan Schaal.
Robot Learning, pp. 357–398. Springer International Publishing, 2016. ISBN 978-3-319-32552-
1. URL https://doi.org/10.1007/978-3-319-32552-1_15.
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A APPENDIX

A.1 DETAILS ON GAUSSIAN MIXTURE REGRESSION (GMR)

In GMR we start from a GMM in state-action space π(s,a) =
∑N

i=1 ωiN
(
[sa]T;µi,Σi

)
from

which a policy, i.e. a probability distribution on the action space, can be obtained by conditioning
on the state, as follows

π(a|s) = π(s,a)∫
π(s,a)da

. (15)

The resulting conditional distribution is another GMM on the action sapce, with state dependent
parameters, given by:

π(at|st) =
N∑
i=1

ωi(st)N (at;µ
a
i (st),Σ

a
i ), with (16)

µa
i (st) = µa

i +Σas
i (Σs

i )
−1 (st − µs

i ) , (17)

Σa
i = Σa

i −Σas
i (Σs

i )
−1Σsa

i , (18)

ωi(st) =
ωiN (st;µ

s
i ,Σ

s
i )∑n

k ωkN (st;µs
k,Σ

s
k)

. (19)

Note that we have split the GMM parameters µi and Σi into their state and action components
according to

µi =

(
µs

i
µa

i

)
, Σi =

(
Σs

i Σsa
i

Σas
i Σa

i

)
. (20)

A.2 RIEMANNIAN GRADIENTS AND RETRACTIONS

For completeness we give here the explicit expressions of the Riemannian gradients and the retrac-
tions used in § 3.1. As the mean vectors are assumed to lie in the Euclidean space, their Riemannian
gradients actually coincide with the Euclidean gradients and no retraction is required, so Eq. 12
reduces to the well-known Euclidean gradient descent

µ̂k+1 = µ̂k +∇µ̂J(πk), (21)

where ∇µ̂ denotes the Euclidean gradient w.r.t. µ̂. For the covariance matrices we use the gradient
and retraction w.r.t. the Bures-Wasserstein manifold, taken from (Malagò et al., 2018; Han et al.,
2021). The gradient is given by

gradΣ̂ J(πk) = 4{∇Σ̂J(πk)Σ̂}S , (22)

where again ∇Σ̂ denotes the Euclidean gradient w.r.t. Σ̂ and {X}S =
(X+XT)

2 . Furthermore, the
retraction is given by

RΣk

(
X̂
)
= Σ̂k + X̂ + LX̂

[
Σ̂k

]
X̂LX̂

[
Σ̂k

]
, (23)

where LX̂

[
Σ̂k

]
is the Lyapunov operator, defined as the solution to the matrix linear system

LX̂

[
Σ̂k

]
X̂ + X̂LX̂

[
Σ̂k

]
= Σ̂k.

A.3 EXPRESSIONS OF THE FREE FUNCTIONAL J(π) AND ITS EUCLIDEAN GRADIENTS

For completeness sake, we provide here the explicit expression of the Euclidean gradients for the
objective J(π) w.r.t. the parameters of the GMM, which are used in the construction of the Rie-
mannian gradients. Using the policy gradient theorem, we obtain the gradient of Eq. 11 w.r.t to a
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parameter ξ as follows

∇ξJ(π) = ∇ξ

∫
Πtds0dstdatρ(s0)π(at|st)p(st+1|st,at)

∑
t′>t

γtr(st′ ,at′), (24)

= Eτ

[∑
t

∇ξ log(π(at|st))
∑
t′>t

r(st,at)

]
,

= Eτ

[∑
t

∇ξ log

(
π(st,at)∫
datπ(st,at)

)∑
t′>t

r(st,at)

]
,

=
∑
t

Eτ

[(∇ξπ(st,at)

π(st,at)
−
∫
dat∇ξπ(st,at)∫
datπ(st,at)

)∑
t′>t

r(st,at)

]
.

In this work, we focus on GMM policies, for which the objective J(π) takes the form:

J(π) =

∫
Πtds0dstdatρ(s0)

n∑
i=1

ωi(st)N (at;µi(st),Σi(st))p(st+1|st, at)
∑
t

γtr(st,at)

+ β

∫
dat

n∑
i=1

ωi(st)N (at;µi(st),Σi(st))p(st+1|st,at)

log

(
n∑

i=1

ωi(st)N (at;µi(st),Σi(st))p(st+1|st,at)

)
. (25)

By inserting Eq. 25 into Eq. 24 we obtain for the individual parameters of the GMM

∇µlJ(π) = Eτ

[∑
t

(
ωlN (st,at;µl,Σl)Σ

−1
l ((st,at)− µl)∑

j ωjN (st,at;µj ,Σj)
(26)

−ωl

∫
daN (st,at;µl,Σl)Σ

−1
l ((st,at)− µl)∑

j ωj

∫
daN (st,at;µj ,Σj)

)∑
t′>t

r(st,at)

]
,

= Eτ

[∑
t

(
ωlN (st,at;µl,Σl)Σ

−1
l ((st,at)− µl)∑

j ωjN (st,at;µj ,Σj)
(27)

−δs
ωlN (st;µl,sΣl,ss)Σ

−1
l,ss (st − µl,s)∑

j ωjN (st;µj,s,Σj,ss)

)∑
t′>t

r(st,at)

]
,

= Eτ

[∑
t

(
ζl,st,at

Σ−1
l ((st,at)− µl)− δsζl,st

Σ−1
l,ss (st − µl,s)

)∑
t′>t

r(st,at)

]
.

Here δs ∈ {0, 1} indicates which terms the gradient acts on. In this case, the gradient act on the
state components and it is absent for the action dimensions.

∇Σl
J(π) = Eτ

∑
t

−1

2

ωlN (st,at;µl,Σl)Σ
−1
l

(
1− ((st,at)− µl) ((st,at)− µl)

T
Σ−1

l

)
∑

j ωjN (st,at;µj ,Σj)

(28)

+
1

2

ωl

∫
daN (st,at;µl,Σl)Σ

−1
l

(
1− ((st,at)− µl) ((st,at)− µl)

T
Σ−1

l

)
∑

j ωj

∫
daN (st,at;µj ,Σj)

∑
t′>t

r(st,at)

 ,

= Eτ

[∑
t

(
−ζl,st,at

2
Σ−1

l

(
1− ((st,at)− µl) ((st,at)− µl)

T
Σ−1

l

)
+δs

ζl,st

2
Σ−1

l,s

(
1− (st − µl,s) (st − µl,s)

T
Σ−1

l,s

))∑
t′>t

r(st,at)

]
.
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∇ωlJ(π) = Eτ

[∑
t

(
N (st,at;µl,Σl)∑

j ωjN (st,at;µj ,Σj)
−

∫
daN (st,at;µl,Σl)∑

j ωj

∫
daN (st,at;µj ,Σj)

)∑
t′>t

r(st,at)

]
(29)

= Eτ

[∑
t

(ζl,st,at
− ζl,st

)

ωl

∑
t′>t

r(st,at)

]
. (30)

Note that we introduced the responsibilities ζl,st,at and ζl,st , which are defined as follows

ζl,st,at
=

ωlN (st,at;µl,Σl)∑
j ωjN (st,at;µj ,Σj)

, and (31)

ζl,st
=

ωl

∫
daN (st,at;µl,Σl)∑

j ωj

∫
daN (st,at;µj ,Σj)

=
ωlN (st;µl,s,Σl,ss)∑
j ωjN (st;µj,s,Σj,ss)

. (32)

A.4 RELATION BETWEEN FORWARD AND BACKWARD DISCRETIZATION IN THE
BURES-WASSERSTEIN METRIC

In this section we outline the relation between the implicit and explicit optimization schema w.r.t.
the Bures-Wasserstein metric, which is leveraged to formulate our policy optimization in § 3. We
closely follow Chen & Li (2020). For the sake of simplicity, we group the Gaussian parameters µ
and Σ into a single parameter vector θ. Furthermore, we restrict our explanation to a single Gaussian
component, which is possible without loosing generality, as each of the N components live in its
own manifold Rd×Sd

++. The Riemannian gradient w.r.t the Gaussian parameters θ, gradθ J(π(θ)),
satisfies by definition

gθ(gradθ J(π(θ), ξ) = ∇θJ(π(θ)) · ξ, (33)

where ∇θ denotes the Euclidean gradient, ξ is an arbitrary vector on the tangent space TθM, and
gθ is the Riemannian metric tensor, defining the inner product on TθM. The Riemannian metric gθ
can be written as

gθ(ζ, ξ) = ζTGW (θ)ξ, (34)

with two arbitrary tangent vectors ζ, ξ, and GW (θ) being a positive definite matrix. Moreover, note
that the Wasserstein distance W 2

2

(
N (θ),N (θ + ∆θ)

)
, where ∆θ denotes a small perturbation in

the Gaussian parameters θ, can be expressed as

W 2
2

(
N (θ),N (θ +∆θ)

)
=

1

2

(
∆θT

)
GW (θ)

(
∆θ
)
+O

(
(∆θ)2

)
, (35)

for ∆θ → 0. Similarly, we can approximate the objective evaluated at J(θ + ∆θ) via the Taylor
theorem as

J(θ +∆θ) = J(θ) +∇θJ(θ) ·∆θ +O((∆θ)2). (36)

With this, we can approximate

θk+1 = argmin
θ

(
W 2

2 (π(θ), π(θk))

2τ
− J(π(θ))

)
, (37)

≈ argmin
θ

(
(θ − θk)

TGW (θ − θk)

2τ
−∇θJ(θ) · (θ − θk)

)
, (38)

from which we obtain the update equation for θ as follows

θk+1 = θk + τGW (θk)
−1∇θJ(π(θ)). (39)

Note that Eq. 39 in turn corresponds to an approximation of the exact Riemannian gradient descent

θk+1 = Rθk
(λ · gradθ J(π(θk))) . (40)
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This approximation can be obtained by considering a first-order approximation of the geodesic on
the BW manifold. As the exponential map (a.k.a. the retraction) is defined via the geodesic, the
retraction operator in Eq. 40 turns into a simple addition operation under a first-order approximation,
leading to Eq. 39. Notice that such approximation does not guarantee that the updated parameters θ
stay on the manifold, except for the cases in which θ ∈ Rd. In our case, we leverage the retraction
and Riemannian gradients of (Malagò et al., 2018; Han et al., 2021), which allow us to apply the
exact Riemannian gradient descent of 40. This avoids to rely on first-order approximations and in
turn we can guarantee that the updates of the Gaussian distribution parameters always lie on on the
product manifold

(
Rd × Sd

++

)N
.

A.5 ADDITIONAL DETAILS ON THE IMPLEMENTATION

We extended the Pymanopt (Townsend et al., 2016) by adding a custom line-search routine that
accounts for a constraint on the Wasserstein distance between the old and the optimized GMMs.
The details of this line-search can be found in Algorithm 2.

Algorithm 2 Constrained line-search. The constraint function c(x0.·) is arbitrary in general. We
use the L2-Wasserstein distance between two points on the manifold of GMMs as constraint.

Input: point x0 on the manifold, descent direction d, initial step size λ0, decrement α, con-
straint c(x0, ·), maximum allowed value for constraint cmax, minimum step size λmin
Output: step size s, updated point on manifold x

1: x = x0 + λ0 · d
λ = λ0

2: while c(x0,x) > cmax and λ > λmin do
3: decrease step size: λ = α · λ

update point on manifold: x = x0 + λ · d
4: end while
5: if λ < λmin then
6: return λ0, x0

7: else
8: return λ, x
9: end if

A.6 ADDITIONAL DETAILS ON EXPERIMENTS

A.6.1 ADDITIONAL RESULTS

Fig. 5 shows the convergence curves for the two baselines as in Fig. 3 of the main paper, however,
we extended the horizontal axis up to the maximum number of environment steps used for training.

Figure 5: The success rate of the two baselines on the reaching task (left), the collision-avoidance task (middle)
and the multiple-goal task (right). The shaded area indicates the standard deviation over 5 runs.

Fig. 6 shows the variance of the success rate for the three methods at their time step of convergence
for all three robotic tasks. Concerning SAC, which did not converge after the maximum number of
environment steps used for training, we chose the last time step. Specifically, we chose the following
time steps for PPO, SAC and WGF, respectively: reaching task (280000, 400000, 80000), collision
avoidance task (275000, 300000, 90000), multiple goal task (130000, 200000, 95000). These plots
show that PPO may also reach low-variance success rate over the five runs at the time step of conver-
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gence, at the cost of a prohibitively large number of steps. SAC showed huge variance in all tasks,
apart from the reaching task, where all runs collapsed to a success rate of 0.
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Figure 6: Variance of the success rate over the 5 runs for our method (WGF) and the two baselines on the
reaching task (left), the collision avoidance task (middle) and the multiple-goal task (right). The violine plots
are overlaid with box plots, quartile lines and a swarm plot, where dots indicate the success rates of individual
runs. The time steps at which we determined the variance are for PPO, SAC and WGF for the three tasks from
left to right: (280000, 400000, 80000), (275000, 300000, 90000), (130000, 200000, 95000).

A.6.2 ADDITIONAL ABLATIONS

In order to assess the influence of leveraging a Riemannian optimization approach on the Bures-
Wasserstein manifold, we conducted an ablation of our method by eliminating the Riemannian for-
mulation. Instead of the explicit Euler scheme update in Eq. 12, which corresponds to Riemannian
gradient descent w.r.t. the Bures-Wasserstein metric, we use the implicit Euler scheme

µ̂k+1 = argmin
µ̂

(
W 2

2 (πk(µ̂), πk)

2τ
− J(πk(µ̂))

)
, (41)

Σ̂k+1 = argmin
Σ̂

(
W 2

2 (πk(Σ̂), πk)

2τ
− J(πk(Σ̂))

)
. (42)

To guarantee that the updated covariance matrices do not leave the manifold of symmetric positive
definite matrices, we parameterize them in terms of Cholesky factors. The results obtained with this
non-Riemannian version of our method are shown in Fig. 7 in direct comparison to our method and
Fig. 8 for an extended range.

Figure 7: The success rate of our method and an ablated version, not using the Bures-Wasserstein formulation
for the reaching task (left), the collision-avoidance task (middle) and the multiple-goal task (right). The shaded
area indicates the standard deviation over 5 runs.

The results clearly show that the non-Riemannian method struggles to reach a success rate of 1
for the reaching task and the collision-avoidance task. Furthermore, we observe a high variance
over different runs in the same settings (see Fig. 9 and Fig. 10). We attribute this to the fact that
the our method takes exact gradient steps in the direction of steepest descent w.r.t. the underlying
BW metric, whereas the implicit scheme only approximates this direction. For this reason the non-
Riemannian method is much more noisy, which in turn leads to the aforementioned high variance.
Nevertheless, the multiple-goal task constitutes an exception. Here we observed a similar perfor-
mance for our approach and the ablated method. The reason for this is that the optimization of this
task is mainly dominated by the weight updates, which are identical for both methods. This result is
therefore expected and confirms that correctness of our ablation strategy.

A.6.3 ADDITIONAL EXPERIMENT WITH 7-DOF ROBOTIC MANIPULATOR

We carried out an additional experiment to show that our method can be employed on tasks per-
formed by off-the-shelf robotic manipulators (e.g. a 7-DoF Franka Emika Panda robot). Specifi-
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Figure 8: Extended plot of the success rate of and ablated version of our method, not using the Bures-
Wasserstein-based formulation for the reaching task (left), the collision-avoidance task (middle) and the
multiple-goal task (right). The shaded area indicates the standard deviation over 5 runs.
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Figure 9: Variance of the success rate over 5 runs for our method (WGF) and the ablated method (non-BW)
on the reaching task (left), the collision avoidance task (middle) and the multiple-goal task (right). The violine
plots are overlaid with box plots, quartile lines and a swarm plot, where dots indicate the success rates of
individual runs. The time steps at which we determined the variance are 80000, 90000, 85000.

cally, we extended the collision-avoidance task described in § 4 to a 3D environment (i.e. the state
s = x ∈ R3 and the action a = ẋ ∈ R3). The initial 3-components GMM policy was trained
using 10 human demonstrations featuring linear reaching 3D trajectories. For policy optimization,
we used a sparse reward defined as a function of the position error between the robot end-effector
position and the target at the end of the rollout. Moreover, two sparse penalty terms were added to
punish collision with obstacles and divergent trajectories.

Similarly to the planar task reported in the main paper, we tested whether our method was able to
adapt a trajectory tracking skill in order to avoid collisions with newly added obstacles. This means
that the robot end-effector needed to pass through a narrow path between two spherical obstacles.
The robot end-effector pose was controlled using a full-pose Cartesian velocity controller at a fre-
quency of 100Hz, where the end-effector orientation was kept constant. Figure 11 shows that our
method reached a success rate of 1.0 very quickly, taking approximately 20000 environment steps.
Moreover, the solution variance of our method was also very low, which is consistent with our ob-
servations concerning the performance of our policy optimization on the three planar tasks analyzed
in the main paper.

A.6.4 INITIAL GMM POLICIES

For the sake of completeness, Fig. 12 provides 2D projections of the initial GMM policies learned
from demonstrations for the three robotic settings considered in the main paper: the reaching mo-
tion skill, the collision-free trajectory tracking, and the multiple-goal task. Figure 12 also provides
the demonstration data used to train the initial policies. Note that these models are then adapted
according to the policy optimization approach introduced in § 3.2.
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Figure 10: Variance of the success rate over 5 runs for our method (WGF) and the ablated method
(non-BW) on the reaching task (left), the collision avoidance task (middle) and the multiple-goal task
(right). The violine plots are overlaid with box plots, quartile lines and a swarm plot, where dots in-
dicate the success rates of individual runs. The time steps at which we determined the variance are
(80000, 400000), (90000, 200000), (85000, 90000).
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Figure 11: The success rate of our method applied
to the 3D narrow-path task performed by the 7-DoF
Panda robotic manipulator. The shaded area indi-
cates the standard deviation over 5 runs.
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(a) Reaching motion skill
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(b) Collision-free trajectory tracking
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(c) Multiple-goal task

Figure 12: Green Gaussian components ( ) represent the initial GMM policy learned from demonstrations,
projected on the Cartesian position (left) and velocity (left) spaces. The recorded position and velocity data are
depicted as black dots ( ).
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