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Abstract
High labeling cost for in-context learning (ICL)001
demonstrations motivates using large language002
models (LLMs) for synthesis to reduce over-003
head. However, existing synthesis methods004
are mainly task-specific or rely on pre-existing005
demonstrations. So this paper focuses on syn-006
thesizing demonstrations from scratch for arbi-007
trary tasks. A major challenge in synthesizing008
from scratch is ensuring consistency with the009
target task, as the lack of labeling guidance010
could lead to synthesis bias. We first propose011
a consistency metric called V -SCORE, which012
has higher performance and lower computa-013
tion cost compared with the metrics based on014
grams or embedding vectors. Furthermore, we015
introduce V -SYNTHESIS, which leverages V -016
SCORE for proportional sampling to ensure017
both high consistency and diversity of syn-018
thesized demonstrations. Experimental results019
demonstrate that V -SYNTHESIS yields an av-020
erage performance improvement of 2.0% com-021
pared to existing synthesis methods confirming022
the effectiveness of V -SYNTHESIS1.023

1 Introduction024

In-context learning (ICL) is an effective approach025

to enhancing the performance of large language026

models (LLMs) (Brown et al., 2020; Dong et al.,027

2024). By providing task-relevant demonstrations028

within the input, ICL guides the reasoning pro-029

cess for the given user question, thereby improv-030

ing the performance. However, the reliance on031

human-labeled demonstrations limits the applica-032

bility of ICL under the data-insufficient scenario.033

To address this limitation, many works propose syn-034

thesizing demonstrations for the target task (Long035

et al., 2024). Some works design the synthesis pro-036

cedure for the given tasks (He et al., 2024; Chang037

and Fosler-Lussier, 2023). Other works enrich ex-038

isting demonstrations based on labeled data (Wang039

et al., 2024, 2025a; Su et al., 2024).040

1Our code and data will be released upon acceptance.

Synthesize
Target Task Definition
As a mathematical expert, synthesize a math 
problem about “Number Theory”.

Synthesized Demonstration A
Question: How many ways can you choose 5 …
Answer: Sure! This is a combination problem, …

Synthesized Demonstration B
Question: How many two-digit numbers satisfy …
Answer: Employ the congruence modulo …

Consistency Score
ScoreA:  0.22

ScoreB:  0.86

Inference
Question
List all prime numbers that are less than 15 and 
greater than 6.

Answer: 7, 11, 13Answer: 7, 9, 11, 13

Figure 1: The previous work (left) compared with our
method (right). The previous work directly uses the
synthesized demonstrations inconsistency with the tar-
get task, leading to the incorrect answer. Our method
calculates the consistency score of synthesized demon-
strations, filtering the results of low scores to ensure
high consistency, leading to the correct answer.

However, the above works depend on the exist- 041

ing labeled data or can only be applied to specific 042

tasks, limiting their application. While how to syn- 043

thesize demonstrations from scratch for arbitrary 044

tasks is still under discovery. Although some stud- 045

ies propose to synthesize demonstrations directly 046

based on the task definition, such methods have 047

only been evaluated on relatively simple tasks (e.g., 048

coin flip, causal judgement) (Chen et al., 2023a). 049

For more complex tasks, the lack of guidance with 050

demonstrations could lead to the generation irrel- 051

evant to the target task, which negatively impact 052

the performance of ICL (Liu et al., 2022; Dong 053

et al., 2024), as shown in Figure 1. Therefore, en- 054

hancing the consistency between the synthesized 055

demonstrations and the target task is one of the 056
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key to improving the quality of synthesized demon-057

strations. Furthermore, prior work has shown that058

the demonstration diversity also significantly im-059

pacts ICL performance (Levy et al., 2023; Wang060

et al., 2024). Therefore, in this paper, we primarily061

discuss how to synthesize demonstrations from062

scratch with high consistency and diversity.063

In this paper, we mainly discuss how to enhance064

the consistency betweem synthesized demonstra-065

tions and the target task. Existing metrics based on066

grams (Broder et al., 1997) or embeedings (Singhal067

and Google, 2001) suffer from suboptimal perfor-068

mance and computational inefficiency due to their069

reliance on external models, leading to additional070

calculation and the embedding space gap (Biś et al.,071

2021). Therefore, we first propose a novel con-072

sistency metric called V -SCORE, which measures073

how much information in demonstrations is learned074

from the given task definition. Since V -SCORE can075

be calculated using the synthesis model, it alle-076

viates additional calculation and embedding gap,077

having better performance and efficiency. Then, we078

propose V -SYNTHESIS, which synthesizes demon-079

strations iteratively based on V -SCORE. During the080

synthesis of each iteration, we sample demonstra-081

tions proportionally to their V -SCORE, ensuring082

consistency while promoting diversity.083

To validate the effectiveness of V -SYNTHESIS,084

we conduct experiments on four mainstream085

datasets covering different tasks and domains.086

Our experimental results demonstrate that V -087

SYNTHESIS yields an 2.0% performance gain over088

previous methods and a 3.4% average gain using089

alternative consistency metrics, proving the effec-090

tiveness of V -SCORE and V -SYNTHESIS. Addi-091

tionally, analysis using demonstrations with dif-092

ferent consistency and diversity shows that V -093

SYNTHESIS successfully synthesizes demonstra-094

tions with high consistency and diversity.095

Our contributions are as follows:096

1. We propose V -SYNTHESIS, which can better097

reflect the consistency between the synthesized098

demonstration and the target task with lower099

computation cost compared to existing metrics.100

2. Based on the metric V -SCORE, we introduce V -101

SYNTHESIS, which is a consistency-weighted102

sampling method that ensures consistency while103

enhancing the diversity of demonstrations.104

3. On four mainstream datasets, V -SYNTHESIS105

achieves an average improvement of 2.0% com-106

pared to previous synthesis methods, demon-107

strating the effectiveness of V -SCORE.108

2 Related Works 109

Demonstration Synthesis Considering that pre- 110

vious ICL works rely on human-labeled demon- 111

strations (Dong et al., 2024), which limits the ap- 112

plication of ICL in low-resource scenarios, many 113

researchers propose using LLMs to synthesize 114

demonstrations (Long et al., 2024). These ap- 115

proaches can generally be divided into two cate- 116

gories: demonstrations synthesis based on existing 117

labeled data and synthesis for specific tasks. Meth- 118

ods based on existing labeled data mainly focus on 119

enhancing the quality of the demonstrations, such 120

as increasing the diversity of demonstrations (Su 121

et al., 2024) or modifying existing demonstrations 122

based on user questions (He et al., 2024; Sarukkai 123

et al., 2025). Task-specific synthesis designs the 124

demonstration synthesis according to the character- 125

istics of the task, such as executing the synthesized 126

SQL for the text-to-SQL task (Chang and Fosler- 127

Lussier, 2023; Wang et al., 2024) or transferring 128

the existing demonstrations from similar tasks for 129

the target task (Wang et al., 2025a). 130

However, current demonstration synthesis meth- 131

ods are primarily based on existing demonstrations 132

or are task-specific, lacking methods for synthesiz- 133

ing demonstrations from scratch for arbitrary tasks. 134

Although preliminary research exists, it mainly fo- 135

cuses on simple tasks (Chen et al., 2023a). For 136

more complex tasks, due to the lack of guidance of 137

demonstrations, models could misunderstand the 138

task definition, leading to synthesized demonstra- 139

tions not consistent with the target task (Dong et al., 140

2024). Therefore, in this paper, we discuss how 141

to enhance the consistency between synthesized 142

demonstrations and the target task to improve the 143

performance of ICL. 144

Consistency Measurement The consistency 145

metric is used to measure the degree of consis- 146

tency between two texts, which is widely applied 147

in tasks such as retrieval (Zhu et al., 2024; Shri- 148

vastava and Li, 2014) and deduplication. Early 149

research primarily focused on gram-based methods 150

to measure consistency, including algorithms like 151

n-gram (Broder et al., 1997) and BM25 (Robertson 152

and Zaragoza, 2009; Li et al., 2023). To address the 153

limitation of gram-based approaches in capturing 154

deep semantic information, many methods have 155

been proposed that encode texts into semantic vec- 156

tors, using the similarity between these vectors as 157

a consistency metric (Singhal and Google, 2001; 158

Mikolov et al., 2013; Yang et al., 2023; Luo et al., 159
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2023). More recently, with the advent of power-160

ful LLMs, there has been significant research into161

how LLMs can be directly utilized to assess the162

consistency between given texts (Wan et al., 2025).163

However, the aforementioned metrics are hard164

to apply directly to the task of assessing the consis-165

tency between the synthesized demonstrations and166

the task definition. Gram-based methods exhibit167

poor performance, methods based on embedding168

vectors suffer from the gap between embedding169

models and reasoning models, and LLM-based170

methods incur high computational costs. Therefore,171

in this paper, we propose a novel consistency met-172

ric based on V-entropy (Ethayarajh et al., 2022) for173

evaluating the consistency between the synthesized174

demonstrations and the task definition with low175

computational overhead and high performance.176

3 Methodology177

In this section, we discuss how to synthesize178

demonstrations with high consistent and diversity179

from scratch. We first introduce the consistency180

metric V -SCORE based on the V-entropy. Based181

on V -SCORE, we propose V -SYNTHESIS, which182

synthesizes demonstrations with high diversity and183

consistency through multiple iterations.184

3.1 Consistency Metric with V-Entropy185

As the discussion in §2, current consistency met-186

rics are limited by the problems of the embedding187

space gap and the low efficiency. To solve this188

problem for the demonstration synthesis, we pro-189

pose to measure consistency based on V-entropy190

(HV ) (Ethayarajh et al., 2022). Specifically, let191

X,Y denote random variables with sample spaces192

X ,Y respectively. Let ∅ denote a null input with-193

out information about Y . Given predictive family194

V ⊆ Ω = {f : X ∪ ∅ → P (Y)}, the definition of195

the V entropy is:196

HV(Y |X) = inf
f∈V

E[− log f [X](Y )] (1)197

Intuitively, Equation 1 represents how much infor-198

mation Y can obtain from X when using the opti-199

mal predictor f . Let T denote the random variable200

on the sample space T , representing the target task.201

We use the measure IV(T → (X,Y )) to indicate202

the consistency between the given demonstration203

and the target task:204

IV(T → (X,Y )) = HV((X,Y )|T )
−HV((X,Y )|∅)

(2)205

We call Equation 2 as V -SCORE, which measures 206

the information gain learned by the model in com- 207

parison to the case where no task definition is pro- 208

vided. In practical computation, since we adapt 209

inference using ICL without fine-tuning, we con- 210

sider Ω as the same LLM using different demonstra- 211

tions, thereby calculating Equation 2 by selecting 212

the demonstrations synthesized that are most sim- 213

ilar to (X,Y ). Intuitively, using the synthesized 214

demonstrations most similar to (X,Y ) can be seen 215

to filter demonstrations similar to already synthe- 216

sized ones, ensuring consistency while maintaining 217

diversity in the synthesized results. 218

Compared to the consistency metrics discussed 219

in §2, the advantages of V -SCORE are as follows: 220

(i) It can directly utilize the model of the synthe- 221

sis for computation, avoiding the errors caused by 222

the gap of the embedding spaces using additional 223

embedding models. (ii) It allows for direct compu- 224

tation using the probability likelihood calculated 225

during the synthesis without additional models, re- 226

ducing the additional computational overhead. 227

3.2 V -SYNTHESIS 228

In this section, we introduce V -SYNTHESIS, which 229

synthesizes demonstrations based on Equation 2, 230

ensuring high consistency and diversity of the syn- 231

thesized results. The overview of V -SYNTHESIS 232

is shown in Figure 2. V -SYNTHESIS synthesizes 233

demonstrations through multiple iterations. In the 234

first iteration, demonstrations can be synthesized 235

from scratch or labeled by humans. In each sub- 236

sequent iteration, the synthesis results from the 237

previous iteration are used as input to guide the 238

synthesis as the discussion in §3.1. 239

Each iteration of V -SYNTHESIS consists of two 240

steps: Synthesize and Sample. The Synthesize step 241

synthesizes demonstrations based on the provided 242

demonstrations and the target task definition. In the 243

Sample step, demonstrations are sampled from the 244

synthesized results using Equation 2 to ensure that 245

the sampled demonstrations have high consistency 246

and diversity. The prompt used in our method is 247

provided in Appendix A. 248

3.2.1 Synthesize 249

We use LLMs to synthesize demonstrations for a 250

given target task. The input consists of a task defi- 251

nition and demonstrations labeled or synthesized 252

from the previous iterations, and the output is a set 253

of synthesized demonstrations. To enhance diver- 254

sity, we sample multiple synthetic demonstrations 255
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Synthesize
Instruction:
```md
You are a math expert, generate the answer of …
```
Based on the above task definition, synthsize the 
question and the corresponding answer.

Question:
Find the sum of all 
multiples of 3 or 5 
below 1000.
Answer:
To find the sum …

Question:
Given 10 balls, 
how many ways 
can pick 5 balls?
Answer:
The way of pick …

⋯

Sample
Top 10%

10% ~ 20%

90% ~ 100%

⋯

Figure 2: The overview of V -SYNTHESIS, which consists of two steps: (i) Synthesize: synthesize the demonstrations
with the given task definition and the demonstrations of the previous iterations; (ii) Sample: sample the synthesized
demonstrations proportionally based on V -SCORE, where the green squares denote the sampled demonstrations.

for the same input. Additionally, following He et al.256

(2024), if the task specifies different question types,257

we generate demonstrations separately for each258

type. For instance, if a mathmetical task includes259

question types algebra and geometry, we generate260

algebraic and geometric questions separately.261

To ensure the accuracy of the synthesized demon-262

strations, we ask the model to reason through the263

questions in the synthesized demonstrations and264

check whether the reasoned answers match the gen-265

erated answers. Given that some questions could266

not be answered correctly on the first attempt, we267

sample multiple times for each question and con-268

sider the synthesized demonstration correct as long269

as the model answers correctly at least once. Only270

those synthesized demonstrations whose answers271

match the questions are retained, ensuring the qual-272

ity of the synthesized results.273

3.2.2 Sample274

Following the generation of synthetic results, we275

perform sampling to ensure consistency with the276

target task. We first compute the consistency score277

for each generated demonstration using Equation 2.278

The likelihood p(X|Y ) obtained from the model279

serves as f [X](Y ) within IV . Consistent with the280

discussion in Section §3.1, for each demonstration281

synthesized in the current iteration, we select the282

most similar existing demonstrations for inference.283

The LLM with selected demonstrations acts as f284

that makes Equation 2 reach its infimum.285

Upon obtaining the consistency score for each286

demonstration, we sample demonstrations pro-287

portionally to their V -SCORE to ensure diversity.288

Specifically, we first rank the demonstrations based289

on their V -SCORE and then divide them into deciles290

(10% intervals, which we call the sample ratio). For291

the top 10%, we sample 100% of them; for the next292

10%, we randomly sample 90%; this pattern con- 293

tinues, with the last 10% being randomly sampled 294

at a rate of only 10%. We do not directly sample 295

the highest-scoring results because demonstrations 296

with high scores tend to exhibit similarity, leading 297

to reduced diversity, which is further discussed in 298

§4.4. By employing proportional sampling, we aim 299

to ensure consistency while simultaneously enhanc- 300

ing diversity, thereby improving the performance 301

of ICL. It can be considered that as the sample 302

ratio increases, the diversity of the sampled demon- 303

strations gradually increases, while the consistency 304

gradually decreases. We discuss in detail the im- 305

pact of different sample ratios on performance in 306

§4.4 and Appendix C, while also elaborate on why 307

the high consistency of synthetic data harms the 308

diversity in Appendix D. 309

3.2.3 Efficiency of V -SYNTHESIS 310

Although V -SYNTHESIS synthesizes demonstra- 311

tions relying on multi-iteration, the synthesis pro- 312

cess is performed offline. During inference, users 313

can directly utilize the synthesized results without 314

additional computation, ensuring efficiency in prac- 315

tical applications. Besides, even with limited com- 316

putational resources during synthesis, as demon- 317

strated in §4.5, V -SYNTHESIS yields significant 318

performance improvements with a small amount of 319

synthesized demonstrations, proving its effective- 320

ness in low-resource scenarios. 321

4 Experiment 322

4.1 Experiment Setting 323

Dataset We adapt experiments on four main- 324

stream datasets: MATH (Hendrycks et al., 2021), 325

MetaTool (Huang et al., 2024), FinQA (Chen et al., 326

2021b), and MedQA (Jin et al., 2021), covering 327
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Model Method MATH MetaTool FinQA MedQA
L

la
m

a3
.1

-8
b w/o. Human 46.8 51.8 48.1 56.9

+ Self-ICL 48.3 51.9 49.3 62.1
+ V -SYNTHESIS 50.8 60.3 53.9 65.8

w. Human 49.0 57.2 50.7 64.3
+ Self-ICL 48.2 58.1 51.3 64.7
+ V -SYNTHESIS 51.2 60.7 54.6 67.2

L
la

m
a3

.1
-7

0b w/o. Human 63.6 59.1 58.3 77.5
+ Self-ICL 64.0 59.3 58.6 79.2
+ V -SYNTHESIS 66.0 62.2 59.0 81.0

w. Human 62.8 58.3 63.6 82.5
+ Self-ICL 63.0 60.3 64.3 84.8
+ V -SYNTHESIS 63.2 61.1 65.2 85.2

Table 1: The performance of V -SYNTHESIS compared
with Self-ICL (Chen et al., 2023a). w/o. Human de-
notes synthesis from scratch and w. Human denotes
synthesis based on the training set of each dataset. The
best performance under each setting is marked in bold.

diverse tasks and domains. Detailed descriptions328

of these four datasets are provided in Appendix B.329

Across all datasets, we employ Exact Match (EM)330

for evaluation and adapt the experiments on the test331

sets. The results on MATH and MetaTool allow332

us to observe the performance of V -SYNTHESIS333

on different tasks. The experiment results on334

FinQA and MedQA show the performance of V -335

SYNTHESIS in different domains.336

Model We conduct experiments on Llama3.1-337

8b and Llama3.1-70b (Grattafiori et al., 2024).338

Llama3.1 is one of the leading open-source mod-339

els currently, demonstrating excellent performance340

across multiple mainstream tasks. By comparing341

performance across different scales, we can evalu-342

ate the effectiveness of V -SYNTHESIS on models343

with varying capabilities.344

Implementation Detail For the demonstration345

synthesis, following prior work (Wang et al., 2024),346

we employ a 2-shot setting and utilize BM25 to347

select similar demonstrations. We set the sampling348

number to 8, the temperature to 0.9, and top_p349

to 0.9. The synthesis scale under each setting is350

present in Appendix B. We present the task defini-351

tion we used of each dataset in Appendix B. During352

inference evaluation, we adopt a 3-shot setting and353

use BM25 to select demonstrations similar to the354

user question following Wang et al. (2024). The355

inference prompt we use is identical to that in Chen356

et al. (2023b); Grattafiori et al. (2024).357

4.2 Main Experiment358

The main experimental results are shown in Table 1.359

It can be observed that V -SYNTHESIS achieves360

2.0% performance improvment on average com-361

pared with other baselines under different settings, 362

demonstrating its effectiveness. To further verify 363

the effectiveness of V -SYNTHESIS, we experiment 364

with synthetic data as training data in Appendix E. 365

Besides, from Table 1 we can also find that: 366

Scale Our method consistently yields perfor- 367

mance improvements across models of varying 368

scales, demonstrating its effectiveness regardless 369

of model capacity. Notably, the performance gains 370

achieved by V -SYNTHESIS are more pronounced 371

on smaller-scale models compared to their larger 372

counterparts. This discrepancy arises because 373

smaller models possess a limited ability to tackle 374

complex tasks and thus rely more heavily on the 375

guidance provided by demonstrations during the 376

inference process. Conversely, larger-scale mod- 377

els already exhibit strong inherent reasoning capa- 378

bilities, diminishing their dependence on explicit 379

demonstration guidance. 380

Label V -SYNTHESIS consistently delivers per- 381

formance gains in both synthesis from scratch and 382

synthesis with labeling settings, demonstrating its 383

effectiveness. Furthermore, it can be observed that 384

the performance improvement achieved through V - 385

SYNTHESIS is less substantial when starting with 386

labeled demonstrations compared to synthesis from 387

scratch. This is because manually labeled demon- 388

strations are inherently of higher quality and can al- 389

ready effectively guide ICL, thus rendering the im- 390

pact of synthesized demonstrations relatively less 391

significant. Conversely, for synthesis from scratch, 392

the initial absence of demonstrations guidance for 393

ICL leads to a more pronounced performance en- 394

hancement through our method. 395

Dataset Our method brings performance gains 396

across datasets spanning diverse tasks and do- 397

mains, demonstrating its generalizability. Further- 398

more, the performance improvement achieved by 399

V -SYNTHESIS is more pronounced on the tool-use 400

task (MetaTool) compared to mathematical reason- 401

ing tasks (MATH, FinQA). This is because tool use 402

is less frequent and relies more heavily on demon- 403

stration guidance than the math task. Additionally, 404

V -SYNTHESIS yields significant improvements on 405

domain-specific datasets (FinQA, MedQA), sug- 406

gesting that the synthesized demonstrations also 407

encapsulate domain knowledge, effectively guid- 408

ing domain-related reasoning. 409
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Method MATH MetaTool FinQA MedQA

V -SYNTHESIS 50.8 60.3 53.9 65.8
- Iteration 47.9(−2.9) 55.5(−4.8) 51.4(−2.5) 63.5(−2.3)

- Sampling 49.8(−1.0) 59.0(−1.3) 50.5(−3.4) 64.2(−1.6)

- Diversity 49.8(−1.0) 58.7(−1.6) 49.4(−4.5) 64.6(−1.2)

Table 2: The ablation study of V -SYNTHESIS on
Llama3.1-8b with synthesis from scratch. (i) Iteration:
Using only the synthesis results from the first iteration.
(ii) Sampling: Utilizing the complete set of synthesis
results without sampling. (iii) Diversity: Sampling the
top 50% of results based on V -SCORE directly.

4.3 Ablation Study410

To validate the impact of different components in411

V -SYNTHESIS on effectiveness, we conduct ab-412

lation experiments. The results are shown in Ta-413

ble 2, from which it can be observed that ablating414

each component leads to a performance decrease,415

demonstrating the effectiveness of each part of our416

method. Furthermore, from the table, we can also417

observe that: (i) The ablation of the iteration (-418

Iteration) has the most significant impact on perfor-419

mance since a smaller number of iterations results420

in a higher proportion of task-inconsistent demon-421

strations and poorer diversity in the synthesis, thus422

failing to effectively guide ICL. (ii) Compared to423

not performing sampling (- Sampling), directly us-424

ing the top 50% of data based on V -SCORE (- Di-425

versity) result in a more severe performance degra-426

dation in most settings, which indicates that for427

synthesized demonstrations, data with high consis-428

tency scores tends to have higher similarity, leading429

to a weaker effect on ICL.430

4.4 Effect of Consistency and Diveristy431

As discussed in §3.2.2, when synthesizing demon-432

strations, excessive consistency leads to poor diver-433

sity, while excessive diversity also results in poor434

consistency. Therefore, in this section, we discuss435

the impact of consistency and diversity on the qual-436

ity of synthesized demonstrations, as well as their437

corresponding effects on the performance of ICL.438

Does V -SCORE Outperform Other Consistency439

Metrics? To validate the effectiveness of V -440

SCORE compared to other consistency metrics, we441

compare the performance of samlping using dif-442

ferent metrics and provide the computational com-443

plexity of the additional computational resources444

required to calculate each metric. The experimen-445

tal results are shown in Table 3, from which we446

can observe that: (i) Compared to other metrics,447

Metric EM Time Complexity

NGram 47.2 O(NL)
Embedding 47.4 O(NMe(L))
LLM-as-Judge 47.1 O(NMl(L))
V -SCORE 50.8 O(NMl(L))

Table 3: The performance and time complexity of
V -SYNTHESIS with different consistency metrics on
MATH using Llama3.1-8b. N represents the data scale,
L denotes the average output length, and Me and Ml

represent the time required for encoding a string of
length L using the embedding model and LLM, respec-
tively. The best performance is marked in bold.
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Figure 3: The performance and diversity under different
V -SYNTHESIS on MATH using Llama3.1-8b without
human labeling. We randomly sample 20 groups from
MATH demonstrations, with each group containing 100
demonstrations. X-axis denotes the average V -SCORE
on the test data. We employ the metric DM (Wang et al.,
2024) to measure the demonstration diversity.

V -SCORE achieves better performance, demonstrat- 448

ing that our metric can better reflect the consistency 449

between the demonstrations and the task, thereby 450

ensuring that the sampling results can better guide 451

the solution of the task. (ii) While the computa- 452

tional complexity of V -SCORE is higher than that 453

of methods like NGram and Embedding, consid- 454

ering that the demonstration synthesis is offline, 455

the inference-time overhead of different metric re- 456

mains the same, demonstrating the effectiveness of 457

our method. 458

Can V -SYNTHESIS Reflect the Demonstration 459

Consistency to the Task? To validate the effec- 460

tiveness of V -SCORE in reflecting the demonstra- 461

tion consistency, and to demonstrate the high simi- 462

larity among model-synthesized high-consistency 463

data discussed in §3.2.2, we conduct statistical ex- 464

periments. We randomly sample 20 groups from 465

MATH demonstrations, with each group containing 466
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Figure 4: The performance of V -SYNTHESIS on MATH
with Llama3.1-8b under different sample ratios. For
example, if the sample ratio is 5, we cut and sample the
data at the rate of 5% during the proportional sample,
as the discussion in §3.2.2. ◦ denotes the performance
of our main experiments.

100 demonstrations. The experimental results are467

shown in the figure, from which we observe: (i) the468

performance improvement brought by V -SCORE469

exhibits an inverted U-shaped trend since when470

consistency is low, the demonstrations struggle to471

effectively guide ICL due to the low relevance to472

the target task. Conversely, when consistency is473

high, the high similarity among synthesized data474

leads to poor diversity. (ii) The diversity results475

support the above observation, showing a gradual476

decrease in diversity as the consistency increases,477

indicating high similarity among the demonstra-478

tions synthesized with high consistency.479

How to Balance the Diversity and the Consis-480

tency? To further observe the impact of demon-481

stration consistency and diversity on ICL perfor-482

mance, we adjust the sampling ratio in §3.2.2 to483

evaluate their effects. Specifically, when the sam-484

ple ratio is 1%, demonstrations are filtered directly485

based on the consistency score, reflecting the high-486

est consistency. Conversely, when the sample ratio487

is 100%, all synthesized demonstrations used for488

inference, reflecting the highest diversity. There-489

fore, it can be considered that as the sample ratio490

increases, consistency gradually decreases while491

diversity gradually increases, which is further dis-492

cussed in Appendix C.493

The experimental results are shown in the fig-494

ure, from which we can observe: (i) With 10%495

as a dividing point, the model performance shows496

a trend of increasing first and then decreasing as497
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Figure 5: The performance of MATH using Llama3.1-
8b with different iteration numbers with labeling and
from scratch. 0 on the X-axis represents the zero-shot
result. ◦ denotes the iteration of the main experiment.

the sample ratio increases, indicating that both low 498

consistency and low diversity lead to poor ICL per- 499

formance. (ii) Compared to reducing consistency 500

(increasing sample ratio), reducing diversity has a 501

greater impact on performance (decreasing sample 502

ratio), with a more significant downward trend in 503

performance, suggesting that diversity affects ICL 504

performance more significantly than consistency. 505

4.5 Effect of Different Factors 506

How Does the Iteration Number Affect the Per- 507

formance? To evaluate the effectiveness of V - 508

SYNTHESIS under varying computational resource 509

constraints, we assess the impact of different num- 510

bers of synthesis iterations on performance. The ex- 511

perimental results are illustrated in Figure 5, from 512

which we can observe the following: (i) When 513

the number of iterations is relatively small (< 4), 514

the performance of our method consistently in- 515

creases with more iterations, which is attributed 516

to the model synthesizing a more diverse set of 517

task-relevant demonstrations. (ii) However, once 518

the number of iterations reaches a certain threshold 519

(≥ 4), the model performance begins to fluctuate, 520

suggesting that continuously increasing the num- 521

ber of iterations does not guarantee sustained per- 522

formance enhancement since the number of task- 523

consistent demonstrations the model can synthe- 524

size is finite. (iii) Notably, even with a minimal 525

number of iterations (= 1), the performance of V - 526

SYNTHESIS surpasses that of the baseline without 527

any synthesized demonstrations, demonstrating the 528

effectiveness under low computational resource. 529
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Figure 6: The performance of MATH using Llama3.1-
8b with different synthesis scales with labeling and from
scratch. 0 on the X-axis represents the zero-shot result.
◦ denotes the synthesis scale of the main experiment.

How Does the Synthesis Scale Affect the Per-530

formance? To evaluate the effectiveness of531

V -SYNTHESIS under varying computational re-532

sources, we analyze its performance across differ-533

ent synthesis scales. The experimental results are534

illustrated in Figure 6. From the figure, we can ob-535

serve the following: (i) When the synthesis scale is536

relatively small, the performance significantly im-537

proves as the synthesis scale increases, demonstrat-538

ing the effectiveness of our method in synthesizing539

demonstrations. Particularly, even with a limited540

synthesis scale, V -SYNTHESIS yields substantial541

performance gains, proving its efficacy under low542

computational resource constraints. (ii) As the syn-543

thesis scale continues to expand, the performance544

improvement brought by V -SYNTHESIS gradually545

plateaus. This suggests that continually increasing546

the synthesis scale does not lead to sustained perfor-547

mance enhancement, indicating that the diversity548

of demonstrations relevant to the target task that549

the model can synthesize is finite.550

How Does the Initial Labeling Scale Affect the551

Performance? To evaluate the effectiveness of552

V -SYNTHESIS under varying labeling resources,553

we experiment with different scales of labeled data,554

which is randomly sampled. The results, as shown555

in Figure 7, indicate that: (i) With smaller labeling556

scales, performance gradually improves as the scale557

of labeled data increases, demonstrating the com-558

plementary information between human-labeled559

and synthetic data. (ii) As the labeling scale grows560

larger, performance starts to fluctuate, suggesting561
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Figure 7: The performance of MATH using Llama3.1-
8b with different initial labeling scales. 0 on the X-
axis represents the result of zero-shot. ◦ denotes the
synthesis scale of the main experiment.

that the diversity of human-labeled data is also 562

limited, and continuously increasing the labeling 563

scale cannot consistently enhance model perfor- 564

mance. (iii) Even with a small labeling scale, V - 565

SYNTHESIS still brings significant performance im- 566

provement, proving the effectiveness of our method 567

in the labeling-insufficient scenarios. 568

5 Conclusion 569

The existing demonstration synthesis works mainly 570

focus on specific tasks, or is synthesized based on 571

existing demonstrations. Therefore, in this paper, 572

we discuss how to synthesize highly consistent and 573

diverse demonstrations from scratch for arbitrary 574

task. We first propose V -SCORE, a metric for mea- 575

suring the consistency between demonstrations and 576

the target task, which shows better performance 577

and lower computational cost compared to previ- 578

ous metrics based on grams or embedding vectors. 579

Based on V -SCORE, we propose V -SYNTHESIS, 580

which samples synthesized results proportionally 581

according to their consistency scores to ensure 582

both high diversity and high consistency of the 583

synthesized demonstrations. We experiment with 584

V -SYNTHESIS on four mainstream datasets, where 585

V -SYNTHESIS achieves a 2.0% performance im- 586

provement compared to previous demonstration 587

synthesis methods and an average of 3.4% perfor- 588

mance improvement compared to other consistency 589

metrics, demonstrating its effectiveness. Further- 590

more, additional analysis experiments show that 591

V -SYNTHESIS effectively balances the consistency 592

and diversity of synthesized demonstrations, thus 593

effectively guiding ICL performance. 594
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Limitations595

(i) The number of experimental datasets and mod-596

els is limited, where future work will include more597

datasets and models to further validate the effective-598

ness of V -SYNTHESIS. (ii) There is a lack of mech-599

anistic analysis regarding the balance between the600

consistency and diversity of the synthesized demon-601

strations, where future work will involve further602

analyzing and explaining why the consistency and603

diversity of synthesized demonstrations cannot be604

simultaneously improved.605

Ethics Statement606

All datasets and models used in this paper are pub-607

licly available, and our usage follows their licenses608

and terms.609
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Prompt of Synthesis

```md
{task_definition}
```
Given Question: {question}

Based on the above task definition and the given ques-
tion, synthesize a question and the corresponding an-
swer that is similar to the given question of the task.

Table 4: The prompt of the demonstration synthesis.

A Prompt of V -SYNTHESIS1013

In this section, we present the prompt of V -1014

SYNTHESIS, as shown in Table 4. The inference1015

prompts we used are some with the previous works1016

(Grattafiori et al., 2024; Chen et al., 2023b; Jin1017

et al., 2021).1018

B Datasets1019

In this section, we introduce the experimental1020

datasets we used in detail. The task definitions1021

used by V -SYNTHESIS are shown in Table 5. The1022

synthesis scale of each dataset is shown in Table 6.1023

MATH MATH is a dataset for evaluating math-1024

ematical problem-solving capabilities of machine1025

learning models. It comprises challenging mathe-1026

matics problems sourced from high school compe-1027

titions, covering topics such as algebra, geometry,1028

number theory, calculus, and probability. A key1029

feature of the MATH dataset is the inclusion of de-1030

tailed, step-by-step solutions for each problem, fa-1031

cilitating the training of models to generate deriva-1032

tions and explanations, not just final answers. This1033

dataset serves as a rigorous testbed for assessing1034

and advancing the reasoning abilities of advanced1035

AI systems in the domain of mathematics.1036

MetaTool MetaTool is designed to evaluate the1037

capabilities of Large Language Models (LLMs) in1038

understanding and selecting appropriate tools. It1039

comprises diverse user queries that trigger LLMs to1040

use tools in both single-tool and multi-tool scenar-1041

ios. These queries are generated through various1042

methods to ensure diversity, aimming to assess tool1043

usage awareness and the proficiency in tool selec-1044

tion across different contexts, including scenarios1045

with similar tool choices, specific situational needs,1046

potential tool reliability issues, and the necessity1047

for multiple tools. This dataset facilitates a system-1048

atic evaluation of LLMs as intelligent agents.1049

FinQA FinQA is a large-scale question answer- 1050

ing dataset designed for numerical reasoning over 1051

financial reports. It comprises approximately 8,000 1052

expert-annotated question-answer pairs grounded 1053

in 2,800 financial documents, which include both 1054

textual and tabular data. A key feature is the pro- 1055

vision of gold reasoning programs, offering step- 1056

by-step operations required to derive the answers. 1057

This dataset specifically targets the challenges of 1058

complex numerical understanding and multi-step 1059

reasoning inherent in the financial domain, aim- 1060

ing to drive research beyond general-purpose QA 1061

systems towards more domain-specific analytical 1062

capabilities. 1063

MedQA The MedQA dataset is a prominent 1064

benchmark in the field of medical question answer- 1065

ing, designed to evaluate the ability of models to 1066

comprehend and answer medical questions. It is 1067

constructed from professional medical licensing 1068

examinations in the United States, mainland China, 1069

and Taiwan, providing a diverse and challenging set 1070

of multiple-choice questions. The dataset encom- 1071

passes English, Simplified Chinese, and Traditional 1072

Chinese, with a total of over 60,000 questions 1073

across these languages. MedQA is widely used 1074

for training and evaluating natural language pro- 1075

cessing models, particularly large language models, 1076

on their medical knowledge and reasoning capabil- 1077

ities. 1078

C The Effect of Sample Ratio 1079

In this section, we analyze the effect of the sample 1080

ratio on diversity and consistency. Assume the 1081

scale of the synthetic example set to be sampled is 1082

M , and the sample ratio is r ∈ (0, 1). The scale of 1083

the sampled example set is then: 1084

1/r∑
i=1

M × (1− (i− 1)× r)

= M × (1/r − r ×
1/r∑
i=1

(i− 1))

= M × (1/r − (
1

2
+

1

2r
))

= M × (
1

2r
− 1

2
)

(3) 1085

It can be observed that increasing the sample ratio 1086

samples more demonstrations, thereby increasing 1087

demonstration diversity. Conversely, as the sample 1088

ratio decreases, sampling tends to retain demon- 1089
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Dataset Task Definition

MATH Suppose you are a **mathematical** expert, based on the above task definition, generate
mathematical problems and the corresponding solution.

MetaTool Suppose you are a **tool using** data annotator, based on the above task definition,
generate the user question and the corresponding tool to be used. Select a tool to be used
from the following list: TOOL_LIST

FinQA Suppose you are a **financial** data annotator, based on the above task definition and the
given table and paragraphs, you should generate **calculation** question about the table
and paragraphs, and then generate the solution of the question.

MedQA Suppose you are a **medical** expert, based on the above task definition, you should first
generate a medical question under the patient’s medical scenario and five options marked
from A to E, and then generate the solution of the question.

Table 5: The hand-written task definition of the experimental datasets we used. TOOL_LIST of MetaTool is the list
of all possible tools can be used, which is discussed in Huang et al. (2024).

Dataset w/o. Human w. Human
8b 70b 8b 70b

MATH 2300 1899 2021 1736
MetaTool 1789 2675 1850 4443
FinQA 1629 4806 1558 3233
MedQA 200 242 432 504

Table 6: The synthesis scale on each dataset and model
with and without labeling.

strations with higher consistency scores, leading to1090

increased demonstration consistency.1091

D Relationship between Consistency and1092

Diversity of Synthesized Data1093

In the section, we discuss the relationship of the1094

consistency and the diversity of the synthesized1095

data. Consistency (how faithfully a new demon-1096

stration preserves the meaning or class of the1097

source) keeps the model on-track, while diver-1098

sity (how different the demonstration is in words,1099

grammar, or topic) helps the model generalise.1100

Large empirical surveys show that whenever re-1101

searchers tighten the similarity threshold used to1102

filter synthetic demonstrations, vocabulary richness1103

and structural variety drop in lock-step, a symptom1104

sometimes called mode collapse (Havrilla et al.,1105

2024; Chen et al., 2021a).1106

Concrete experiments make the trade-off visi-1107

ble. In Quality-Controlled Paraphrase Genera-1108

tion, forcing high semantic overlap lowers Distinct-1109

n diversity scores (Bandel et al., 2022). Vector-1110

Quantised Prompt Learning repeats the pattern1111

with a small code-book of rewrite styles (Luo et al.,1112

2024). At a larger scale, Chen et al. compute1113

a cluster-based metric across millions of model-1114

written instructions and find that aggressive label-1115

correctness filtering removes rare topical clusters 1116

(Chen et al., 2024). Raising the guidance scale (a 1117

knob that enforces quality) in a diffusion language 1118

model similarly cuts diversity (Buzzard, 2025), and 1119

reinforcement learning from human feedback im- 1120

proves average preference scores but compresses 1121

syntactic variety (Kirk et al., 2024). Even classic 1122

back-translation for low-resource machine trans- 1123

lation shows richer phrasing only when round-trip 1124

similarity checks are relaxed (Burchell et al., 2022). 1125

Because pushing consistency too far can hurt 1126

robustness, recent work searches for Pareto com- 1127

promises. One practical recipe is to sample with a 1128

higher temperature (which flattens the probabil- 1129

ity distribution) or a larger top-p cutoff (keeping 1130

the most probable tokens whose cumulative prob- 1131

ability is p), then discard only the worst semantic 1132

outliers. DoAug follows this two-stage idea and 1133

reports double-digit accuracy gains while keeping 1134

labels intact (Wang et al., 2025b). At the same time, 1135

ethicists warn that headline diversity numbers can 1136

mask repeated cultural biases, a problem dubbed 1137

“diversity-washing” (Whitney and Norman, 2024). 1138

In practice, mixing real and synthetic samples, 1139

monitoring simple statistics such as type–token 1140

ratio, and occasionally inspecting the data by hand 1141

remain the safest way to balance the two goals. 1142

E Performance of V -SYNTHESIS using 1143

SFT 1144

To further assess the efficacy of the demonstrations 1145

synthesized by V -SYNTHESIS, we perform Super- 1146

vised Fine-Tuning (SFT) (Zhang et al., 2024) utiliz- 1147

ing the synthesized demonstrations as training data. 1148

Table 7 presents the experimental results, which 1149

show that the data synthesized by V -SYNTHESIS 1150
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Method Data MATH MetaTool FinQA MedQA

ICL w/o. Human 46.8 51.8 48.1 56.9
+ V -SYNTHESIS 50.8 60.3 53.9 65.8

SFT w/o. Human 46.8 51.8 48.1 56.9
+ V -SYNTHESIS 51.6 62.1 55.0 69.2

ICL w. Human 49.0 57.2 50.7 64.3
+ V -SYNTHESIS 51.2 60.7 54.6 67.2

SFT w. Human 49.0 57.2 50.7 64.3
+ V -SYNTHESIS 53.0 63.3 56.7 68.0

Table 7: The performance using ICL and SFT with the data synthesized by V -SYNTHESIS on Llama3.1-8b. We
adapt SFT using LLaMA-Factory (Zheng et al., 2024).

yields performance improvement across all exper-1151

imental settings. This confirms the effectiveness1152

of our approach even with SFT, thus validating the1153

quality of our synthesized data.1154
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