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ABSTRACT

Pretraining models on diverse prior data and fine-tuning them on domain-specific
tasks is an efficient training paradigm to obtain promising performance on scenarios
with limited data or interaction. In the context of reinforcement learning (RL), such
a paradigm is named offline-to-online (O20) RL, where the pretrained agent needs
to revise and improve the offline pretrained policy based on its own experience
in the online environment. Although prior works in the literature have proven the
efficiency of fine-tuning the offline-pretrained agent without offline data, they often
require additional designs to overcome the unstable online fine-tuning induced by
the discrepancy between the offline and online data. Moreover, existing works
demonstrate that introducing offline data when training an online agent from
scratch is sample-efficient. Therefore, reusing the knowledge from the offline data
properly should be favorable to O20 RL. In this paper, we introduce Adaptive
Data Aligned Diffusion Sampling (AD2S), attempting to accelerate the 020
RL fine-tuning from a perspective of data generation. Our method comprises
three key components: distance-based experience alignment, curiosity-driven data
prioritization, and data regeneration with amplified guidance. AD2S is a plug-in
approach and can be combined with existing methods in the offline-to-online RL
setting. By implementing AD2S to off-the-shelf methods, Cal-QL, empirical results
indicate improvement in commonly studied datasets.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated exceptional performance across diverse decision-
making and reasoning tasks (DeepSeek-Al et al., 2025; |Wang et al.| 2018 |Zhao et al.| 2018 |[Ling
et al.| 2024; [Lai et al.| 2025} |Peng et al., 2020; [Liu et al., [2025a)). However, when implementing
the RL paradigm in real-world applications, practitioners often confront a critical challenge: the
prohibitive costs and safety risks associated with massive online interaction in safety-critical domains
such as autonomous driving or healthcare robotics. This fundamental constraint has catalyzed the
development of an efficient learning framework where agents are first pre-trained on comprehensive
historical datasets and then fine-tuned on targeted environments — an approach now formally named
as offline-to-online (O20) RL (Liu et al.| [2024; |Zhang et al.,|2024; Zhou et al., 2024).

Nevertheless, when deploying the offline pretrained agent to the online environment, two critical
challenges emerge, resulting in unstable online Q-learning: (1) Due to the penalization of out-of-
distribution (OOD) actions during offline training, the inherent pessimism of offline-pretrained Q
networks to OOD actions often leads to overly conservative policy updates; (2) The non-negligible
distributional discrepancy between the offline dataset and the online replay buffer induces catastrophic
forgetting and suboptimal convergence. Existing methods replay offline data and introduce specific
learning paradigms to address the significant distribution gaps between offline datasets and online
samples during offline-to-online fine-tuning. For example, they may consider aligning the policy
to be consistent with the behavior policies in both offline and online datasets (Nair et al.| [2020),
leveraging the capacity of the model ensemble to balance the agent performance and training stability
(Lee et al., |2021; Zhao et al., 2022)), introducing regularization on Q networks (Zhang et al.| 2024)),
constructing a unified learning paradigm for sequential modeling (Zheng et al.l 2022), or introducing
policy expansion (Zhang et al., 2023; Uchendu et al., 2023).
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Figure 1: Comparison of previous diffusion-based data generator in O20 RL (Lu et al.| 2023c; |[Liu
et al.,[2024) and AD2S. AD2S incorporates adaptive data reuse and diffusion-based regeneration,
pushing the data towards high-rewarding, under-explored regions for sample-efficient 020 RL.

Recent works have established that agent fine-tuning without offline data replay consistently outper-
forms the aforementioned fine-tuning methods (Zhou et al.l[2024; Liu et al.| 2024)). However, state-of-
the-art solutions typically demand computationally intensive operations, such as high-frequency Q-net
updates with model ensembles (Zhou et al.| [2024; Zhang et al., [2024)) or energy-guided diffusion
sampling (Liu et al.,[2024). In this paper, we attempt to reuse the key knowledge from offline data
and accelerate the online fine-tuning from a data generation perspective. Our key insight is, Can we
adaptively generate synthetic data that is beneficial to O20 RL fine-tuning?

To verify our insight and accelerate the online fine-tuning phase in O20 RL, we introduce Adaptive
Data Aligned Diffusion Sampling (AD2S or AD?S). Our approach comprises three key components:
distance-based experience alignment, curiosity-driven data prioritization, and data regeneration with
amplified guidance. Firstly, AD2S aligns offline data that is close to the online experiences, facilitating
stable Q-learning through effective dataset reuse. Secondly, AD2S incorporates a curiosity-driven
mechanism to assess buffer novelty, adaptively identifying high-novelty transitions (see Figure|I)).
Thirdly, AD2S utilizes partial noising on the pre-aligned data and conditions the diffusion model to
regenerate synthetic data with amplified guidance. These mechanisms enable AD2S to replay the
near on-policy, high-novelty experience from the seen data and ensure sufficient online exploration.

Overall, our key contributions are: (1) We introduce AD2S, a simple yet effective framework
incorporating a data alignment mechanism and a diffusion model to adaptively generate high-fidelity
training data. (2) AD2S replays historical samples based on advantage-weighted relative metrics and
regenerates the aligned data towards high-rewarding and under-explored regions for sample-efficient
online fine-tuning in O20 RL. (3) Through extensive experiments on popular O20 tasks, empirical
results demonstrate that AD2S achieves superior performance compared to previous SOTA methods
without any modifications to the backbone algorithms. (4) We assess the synthetic dataset generated
by AD2S with data quality metrics, proving its alignment with the objective of O20 RL. These
findings validate AD2S as an effective paradigm for accelerating online fine-tuning in O20 RL.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is formulated as a Markov decision process (MDP) described by the
tuple (S, A, T, R,~), consisting of state space S, action space A, transition function 7 : Sx A — S,
reward function S X A X § — R, and discount factor v € [0,1) (Sutton & Barto, [1998). At
each timestep t, the agent selects an action a; according to the policy 7 conditioned on the state
s¢. Consequently, the agent receives a reward r; for the action a; taken in the state s;, and the
environment transforms to the next state s;11 ~ 7 (:|s¢, a¢). The goal of RL is to learn a policy
7*, which maximizes expected discounted return, J(7) = E[Y,2,~'r:]. Generally, there are two
learning paradigms of RL: online RL, where the agent can learn from interacting with the environment;
and offline RL, where the agent can only learn from a fixed dataset D°% = {(s,a,r,s’)}, which has
been collected using an unknown behavior policy mg.

Offline-to-online (0O20) Reinforcement Learning. 020 RL bridges offline pretraining with online
fine-tuning, aiming to leverage historical data to train a near-optimal policy under limited online



Under review as a conference paper at ICLR 2026

interaction. The agent is first pretrained on a fixed dataset D°f = {(s, a,r, ')}, then explores in the
online environment to recover from suboptimal behaviors and refine its policy.

2.2 DIFFUSION MODELS

Score-based diffusion models. Diffusion models (Ho et al., [2020; Karras et al.,|2022)) are a class
of generative models inspired by non-equilibrium thermodynamics. Consider a data distribution
p(x) with standard deviation o 4ata, diffusion models gradually add i.i.d. Gaussian noise of standard
deviation o on the base distribution from time 0 to K and obtain noised distributions p(x; o). The
forward noising process is defined by a sequence of noised distributions following a fixed noise
schedule 0g = Opayx > 01 > --- > on = 0 so that at each noise level, x* ~ p(x*; ;). When
Omax > Odata, the final noised distribution p(xK ; Omax ) 18 essentially indistinguishable from random
noise. The diffusion model is trained to iteratively denoise samples from a Gaussian distribution and
ultimately recover the target distribution, which is formally named the reverse process. Karras et al.
(Karras et al.| [2022) consider this process as a probability-flow ODE and formulate as below:

dx = —(k)o(k)Vxlogp(x;o(k))dk, (1

where Vy log p(x; ok) denotes the score function, which points towards the data for a given noise
level, and the dot indicates a time derivative. The denoiser G (x¢; o) is trained on an L2 denoising
minimization objective:

L(Gy;0) = Exmpenn(0,020)|Go(x + € 0) — x||3, 2)

and the score can be calculated by Vy log p(x; o) = (Gg(x;0) — x)/o>. In this paper, we sample
data via solving Eq. [T| with the learned denoising network.

Conditional score-based diffusion model. For additional controllability, diffusion models naturally
enable conditioning on some signal y (Dhariwal & Nichol, |2021; [Ho & Salimans} 2022)). Classifier-
free guidance (CFG) (Ho & Salimans, [2022) is a common post-training technique that further
promotes sample fidelity to the condition y in exchange for more complete mode coverage. The
guidance distribution py is interpreted as Py (x|y) o po(x|y) - pe(y|x)". Subsequently, considering
the equivalence relationship between score matching and the denoising process Vx log po (x|y)
eg(x,y) with the implicit classifier pg(y|x) o pg(x|y)/pe(x), the CFG score g can be formed as:

Eo(x"y) = (n+1) - eo(x",y) —n- ep(x", @), 3)

where 7 is a hyparameter called the guidance scale. The training objective of the CFG is to
concurrently train the conditional and unconditional score functions as follows, where A is the
dropout rate of condition y:

‘c(e) = ]Ek,e,xOND,y,)\NBernoulli(A) [HE - EG(Xka (1 - )‘)y + )‘Q)HZ] . (4)

3 METHOD

In this section, we introduce Adaptive Data Alignment Diffusion Sampling (AD2S). At its core,
AD2S accelerates online fine-tuning in O20 RL through three key mechanisms: (1) distance-based
data alignment by reusing near on-policy data from the offline and online samples, (2) curiosity-driven
data prioritization from aligned data to enhance online exploration, and (3) amplified condition guided
diffusion synthesizer to push the data towards high-rewarding and under-explored regions. We first
provide motivation for the AD2S, and concretize how it can be instantiated. Next, we elaborate on
the data alignment and generation pipeline. Finally, we present the overall training procedure.

3.1 MOTIVATIONS

The deployment of the offline pretrained agent in online environments presents two fundamental
challenges that hinder effective policy improvement. Firstly, the significant distribution shift between
offline datasets and online collected samples induces an unstable Q-learning procedure, leading
to catastrophic forgetting of the pretrained Q-function. Moreover, almost all offline pretrained Q-
functions are overly pessimistic about OOD actions, as they attempt to penalize these actions during
offline training, which creates exploration barriers that prevent effective online fine-tuning.



Under review as a conference paper at ICLR 2026

Diffusion Model Training Synthetic Data Generation

— Distance
—
] — Curiosity
D —
gent Online Buffer Offline Buffer Reused Data Offline & Online Synthetic Data

{(s,a,7,5)™, y}

| Gg = (1+1) - Geond = 7 * Guncond

{(s,a,7,50%}

Diffusion Model Gg

{7,505y}

{(s,arsN°y}

Partial Noising
with Scale u

{(s,a,7m, 8K, y}

y=a-y

1 f
\—7/ Go(x*X,9) \ / Go(x*X,0) \
T 7

Noising k

Figure 2: Overall framework of the AD2S. The diffusion model Gy is trained on seen data D°f UD°®,
AD?2S conducts key improvements during data generation: (1) adaptively aligning seen data to near
on-policy, high-novelty data based on density ratio (DR) alignment and curiosity alignment, (2)
partial nosing on aligned data via diffusion forward process, and (3) leverage the diffusion model to
regenerate high-rewarding, under-explored synthetic data by amplified condition guidance.

To enable a stable online Q-function fine-tuning, we introduce a distance-based metric (i.e., density
ratio) to identify near on-policy samples from the offline data and online experience. The aligned
data helps the pretrained Q-function to mitigate the distribution discrepancy and avoid catastrophic
forgetting. As for the inherent pessimistic in Q-functions, we introduce a curiosity-driven mechanism
to prioritize and select high-novelty data from the distance-based aligned data as the reused data.
Reusing the high-novelty data enables the agent to enhance online exploration, thus accelerating the
online fine-tuning. Moreover, we introduce a diffusion-based generator to enrich the reused data.
Generating the reused data parametrically not only empowers the extrapolation of Q-functions but
also interpolates the data distribution to more impoverished, high-rewarding data regions.

Figure 2] gives a brief illustration of AD2S. We first train the conditional diffusion model on offline
and online collected samples. The condition ¥ is defined by an advantage-weighed curiosity function.
Then, we select the data for generation (named reused data) by leveraging a distance and curiosity
metric. We use the diffusion model to conditionally regenerate them on amplified condition signals.
This enables targeted density of the buffer distribution to high-rewarding, under-explored regions.

3.2 DISTANCE-BASED METRIC FOR DATA ALIGNMENT

Adaptively replaying near on-policy experience from offline data can stabilize the Q-learning and
significantly enhance sample efficiency in online learning (Liu et al., [2025b; Ball et al.| [2023)).
In O20 RL, we aim to dynamically balance the reuse of offline samples with online experience,
therefore mitigating distributional shift while enriching the online replay buffer and preserving policy
improvement potential. We use the advantage-weighted priority u to represent the distance between
online and offline samples,

u=u(s,a,r,s) =w(s,a,rs) exp(f-A(s, a)) 3)
where A(s,a) is the advantage term, which indicates the potential of the transition for policy

improvement, 5 > 0 represents a temperature value, and w(-) denotes the density ratio that measures
the relative distance of the transition which can be formulated as below,

w(s,a,r,s') = d"(s,a,r,)/d%(s,a,r, s") 6)
for a given transition (s, a,r, "), where d°”(-) denotes the transition distribution of online samples in
the online buffer D°" and the d° (-) represents the offline samples in the offline dataset D°t. This
distance metric provides an efficient way to identify near on-policy transitions from online and offline
samples. To estimate the proposed density ratio, we approximate w(-) by training a neural network
wy () and use the variational representation of f-divergences (Nguyen et al.l 2007). Consider P and
M as probability measures on a measurable space X, with P being absolutely continuous w.r.t M.
We define the function f(y) :=y log y +1 + log . Then we could define the Jensen-Shannon (JS)

divergence as D j5(P||M) = [, f x)/dM ( ))dM (x). Therefore, the density ratio 9. could
be formed by wy, (x) and be estlmated by maximizing the lower bound of D ;s (P| M),
Lor(Y) = Exnp [ (wy (3))] = Exnnr [ (f (wy (x)))] )
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where wy,(x) > 0 is represented by a neural network, f’ is the derivative of f and f* indicates the
convex conjugate of f. We sample from D" for x ~ P and from D°f for x ~ M.

The traditional way of advantage estimation A(s,a) is to train an advantage function A(s,a) =
Q(s,a) — V(s). However, the distribution discrepancy between online and offline samples leads to
inaccurate estimation during the early online fine-tuning phase (Zhang et al.|[2024} Zhou et al., 2024)).
To overcome this issue, we introduce the statistical-based relative advantage estimation, which can be
formulated as follows,

A(s7a) = (T(S,a) - Tmean)/rstd; (8)
where ryean and 74¢q are calculated from online and offline samples. The relative advantage estima-
tion provides a calibrated and stable advantage estimation, which proves particularly crucial during
the early stage of the online fine-tuning phase in O20 RL. In this way, by measuring u proposed in

Eqg. |5| with parametric density ratio w.;, we could construct aligned data Daligned for curiosity-driven
prioritization and diffusion-based regeneration.

3.3 CURIOSITY-DRIVEN DATA ALIGNMENT AND DIFFUSION-BASED DATA GENERATION

Implementing curiosity-driven data generation is an effective way to overcome the inherent pessimism
in offline-pretrained Q-functions by enhancing online exploration. In AD2S, we use a forward
dynamics model g as the curiosity estimator to construct the reused buffer D*® from aligned data
Daligned and a diffusion model to regenerate data towards high-rewarding, under-explored regions.
To train the forward dynamics model g4 (s, a), we use the data x sampled from offline and online

samples D° U D°" and minimize the transition error between the real and predicted next state,
e(s,a,s',r) = ||s' — §||* where 8 = g,(s,a). 9

We also integrate the relative advantage metric (Eq. [8) into the error measurement y(x) = exp([3 -
A(s,a)) - e(s,a,r,s") to prioritize high potential reward in under-explored regions. We utilize the
advantage-weighted metric to perform curiosity estimation for seen samples. Therefore, based on
the aforementioned estimations, our framework could adaptively identify near on-policy data with
high-novelty and construct the reused data D*®.

For the diffusion model training, we randomly sample data x from offline and online buffers
DO U D" and require the diffusion model Gy(x|y(x)) to approximate the conditional distri-
bution p(x|y(x)), where the condition signal is also defined by the advantage-weighted curiosity:
y(x) = exp(B - A(s,a)) - e(s, a,r, s'). Training on D = D U D°" enables Gy to learn the whole
conditioned distribution. Considering the equivalence relationship between score matching and the
denoising process described in Section The objective for updating parameter 6 with the dropout
rate A of condition y is below,

0" « argmin B ¢ xp A~Bernoulli(x) [lle — eo(x*(1 = Ny + A2)|I] - (10)

To push the aligned data D?!i&"°d towards high-rewarding, under-explored regions, we add partial
noise to these data and use the conditional diffusion model to regenerate them with amplified guidance
(Lee et al., [2024; Huang et al.| 2024b). Specifically, let x = x0 ~ D¢ denotes the original aligned
data, and k € [1, K] denotes the diffusion timestep. Our method first injects controlled noise into x°
through a truncated forward process x* % ~ N(x;x°, o(uu - K)21I), where the exploration parameter
w0 < p= % < 1) governs the noise intensity, trading off between preserving original transition
features (. — 0) and enabling novel sample generation (1 — 1). Crucially, we amplify the guidance
signal y of the state s during the reverse diffusion process by 4 = « - y where o > 1 to enhance the

novelty of the regenerated transitions. This denoising process in each step k is formally defined by,

G (X |y) = (n+1) - eo(XF,9) — - eo(x", @), (11)
where X is the regenerated samples guided by amplified guidance, 1) controls the scale of the guidance.
This generation mechanism promotes the synthetic data to retain fidelity to task-relevant patterns
while extrapolating toward under-explored, high-rewarding regions of the transition space.

3.4 FRAMEWORK SUMMARY

Finally, we provide a concrete overview of our framework in Algorithm[I]} After being pretrained on
the offline dataset D°f | the agent interacts with the environment, collecting a stream of real data and
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Algorithm 1 Overview of AD2S framework.

1: Require: synthetic ratio p, density-based alignment ratio ppr, curiosity-driven alignment ratio pcuri,
conditional guidance scale 7, amplified scale «, offline pretrained agent 7

2: Initialize wy, G, offline buffer D% online buffer D7, dynamics model g4

3: while in online training phase do

4:  Collect transitions (s, a, r, ') with 7 in the environment and add to D°"

5:  Update wy and gy using D°" via Eqs. []]and[9]

6:  if steps meets Gy update frequency then

7: Update G using samples from D°" U D°% via Eq. E]

8: Construct aligned buffer D" by calculating u and y using wy, g¢, PDR, and Pcuri

9: Conditionally generate synthetic data by G with data from D" and amplified condition using Eq.
10: Construct synthetic buffer D" using data generated by Gg
11:  Train 7 on samples from D" U D*" mixed with ratio p

12: end while

constructing the online replay buffer D°". We also update the parametric density ratio network w,
and forward dynamics model ¢ using samples from D°f and D", via the loss function given by Eqs.
and @ The conditional diffusion model Gy is trained on the mixed dataset D°" U D°% using Eq.
For the data generation, we first build the D8"¢d by selecting data from offline and online data
with the highest metric for u(s, a, 7, s’) based on ratio ppg, then we construct D*® by measuring the
highest curiosity y(x) on Daligned and select data with ratio pcy.;. Then we utilize the conditional
diffusion model to generate under-explored, high-rewarding synthetic data D*¥" using Eq. [[T| with
data from D*® and amplified condition g. The D" is ultimately used for online fine-tuning.

4 EXPERIMENTS

In this section, we conduct extensive experiments across commonly studied benchmarks to answer
the following questions: (1) How much performance gain does AD2S exhibit across various tasks?
(2) What are the underlying mechanisms by which AD2S brings about performance gains? (3) Does
AD2S synthesize high-fidelity data?

4.1 EXPERIMENTAL SETUP

Datasets and environments. We evaluate the performance of AD2S on three commonly studied
benchmarks from the canonical D4RL dataset (Fu et al.,[2020), such as MuJoCo Locomotion and
Maze2D. These benchmarks help us to validate AD2S under different scenarios. In all tasks, we
allow 200K environment interactions for online fine-tuning, which facilitates direct comparison to
existing methods (Liu et al., 2024)).

Baselines. We compare AD2S with existing augmentation methods based on diffusion models: (1)
SynthER.|Lu et al.|(2023c)) unconditionally generates synthetic data based on the diffusion model,
which can be deployed on both offline and online stages. Here, we directly implement SynthER
during the fine-tuning stage for online data generation. (2) EDIS. Liu et al.|(2024)) leverages an
energy model to capture the distribution of online data, regarding it as the classifier-guidance of the
diffusion model to generate near on-policy data. (3) PGR. Wang et al.| (2024) considers multiple
relevance functions to prioritize the online data, and utilizes the diffusion model to interpolate the
replay distribution to more impoverished data regions.

For all D4RL benchmarks, we implement AD2S and baselines on top of base algorithms Cal-QL
(Nakamoto et al.,|2023), a state-of-the-art O20 method that effectively calibrates over-conservatism
of CQL (Kumar et al.,[2020). All methods are pretrained on the offline dataset and fine-tuned on the
online environment for 0.2M steps. Implementation details are referred to Appendix [A]

4.2 MAIN RESULTS

Our results in Table[T] show that AD2S outperforms existing diffusion-based data synthesizers in
various tasks, especially for policies trained on low-quality datasets. Compared to SynthER and PGR,
AD?2S achieves significant improvement on MuJoCo random datasets, indicating that our proposed
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Table 1: Normalized average scores on O20 RL tasks over five random seeds. Here we report the
best results for SynthER, PGR and AD2S, and use the results from Liu et al.|(2024) for Cal-QL and
EDIS. We highlight the best scores in bold, and underline the AD2S’s score close to the best score.

Dataset Cal-QL SynthER PGR EDIS AD2S (Ours)
hopper-random-v2 17.6£ 3.1 33.1£ 1.7 51.9437.7  98.14£12.3 110.7+ 4.3
hopper-medium-replay-v2 102.24+ 4.6 108.8+= 1.5 102.1+ 1.8 1099+ 0.8 108.9+ 2.2
hopper-medium-v2 97.6+ 14 1068+ 1.4 108.1+ 3.0 105.0+ 4.1 109.0+ 3.8
hopper-medium-expert-v2 1079+ 9.6 111.6+ 0.6 111.84 1.0 109.7+ 1.4 1121+ 14
halfcheetah-random-v2 748+ 3.2  60.1+ 8.0 79.0+ 6.8 863+ 1.8 90.1+ 4.5
halfcheetah-medium-replay-v2  76.6+ 1.2 7934+ 2.0  83.1+ 2.1 86.7t 14 92.3+ 1.9
halfcheetah-medium-v2 723+ 2.1 882+ 1.8 845+ 09 839+ 1.0 90.8+ 4.7
halfcheetah-medium-expert-v2 ~ 91.0+ 0.6  86.6£ 42 983+ 1.3  98.6+ 0.5 939+ 1.5
walker2d-random-v2 15.1£ 3.5 4274297  66.0£169  61.6£12.6 99.3+11.6
walker2d-medium-replay-v2 873+ 85 109.7£ 3.7 118.6+ 1.1 1129+ 64  121.0+ 7.6
walker2d-medium-v2 842+ 0.3 1084+ 23 1148+ 3.0 103.5+ 1.8 1194+ 1.2
walker2d-medium-expert-v2 111.1+£ 0.6 112.6+ 1.2 1222+ 82 1185+ 4.0 129.1+ 4.6
locomotion total 937.7 1047.8 1140.6 1174.7 1276.6

maze2d-umaze-v1 514177 1713+ 5.2 157.5£ 8.1 1629+ 4.7 169.6+ 4.8
maze2d-medium-v1 254+ 2.2 185.1+ 55 179.3£155 1864+ 5.0 188.6+ 6.5
maze2d-large-v1 39+ 7.0 211.1£14.0 163.5+£19.8 209.3£30.5 228.2+15.3
maze2d total 80.6 567.5 500.3 558.6 586.4

Table 2: D4RL normalized scores over five random seeds on 3 tasks, with the highest scores
highlighted in bold. We conduct experiments on MuJoCo locomotion tasks with low data quality to
investigate the effectiveness of different components in AD2S.

Dataset w/o DA w/o PN w/o CG AD2S (Ours)
hopper-random-v2 20.7+ 8.0  27.6+ 63 105.1£11.9 110.7+ 4.3

halfcheetah-random-v2 50.0+ 4.5 60.3+24.7 86.4+ 1.4 90.1+ 4.5
walker2d-random-v2 20.6+ 3.5 68.5+10.6 56.6+31.4 99.3+11.6

framework can reduce the impact of low-quality offline datasets on the diffusion-based synthesizer.
Meanwhile, our method demonstrates that enriching the high-curiosity data from advantage-weighted
near on-policy samples is more sample-efficient than only generating high-curiosity data. Moreover,
AD2S obtains further improvement compared to EDIS, indicating the effectiveness of pushing the
synthetic data to high-rewarding novel regions. More empirical results are referred to Appendix

4.3 ABLATION STUDIES

To verify the effectiveness of each component in AD2S, we conduct ablation studies on walker2d-
random-v2, hopper-random-v2, and halfcheetah-random-v2 datasets with the following variants
of AD2S: (1) without data alignment (w/o DA), (2) without partial noising (w/o PN) (3) without
condition guidance (w/o CG). We report the results in Table 2 and below are key findings: (i) Data
alignment can lead the synthesizer to generate near on-policy data, further improving the performance.
(i1) When considering amplified condition guidance, partial noising constrains the distance between
the synthetic and ground-truth samples, thus acquiring a more sample-efficient online fine-tuning.
(iii) Unconditional diffusion sampling encounters performance degradation on low-quality data,
demonstrating the effectiveness of our proposed conditional diffusion sampling. More ablation
studies are referred to Appendix [C|

4.4 SYNTHETIC DATA ANALYSIS

To provide an intuition into the efficacy of our proposed method, we follow previous works (Lu
et al.}2022;2023c]), using the ground-truth simulator to measure the dynamics distance (i.e., MSE
error) between AD2S or EDIS (Liu et al.,[2024) with the real next state to verify the transition-level
curiosity and validity of the synthetic samples. We also measure the curiosity from the perspective of
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Figure 3: We plot the L2 distance and the dynamic distance under AD2S or EDIS from the online
collected data. Compared to EDIS, which is energy model guided diffusion sampling, AD2S can

adaptively generate higher novelty data than the existing SOTA method.
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Figure 4: We visualize the transitions of AD2S and EDIS data by t-SNE (a). We also plot the
Oracle rewards for them (b). The results demonstrate that AD2S not only generates data with higher
curiosity but also pushes the synthetic data towards higher-rewarding regions.

a distance metric by calculating the L2 distance between the synthetic data and the mean of the real
datasets. The results are presented in Figure[3] Compared to EDIS, AD2S generates data with a larger
L2 distance. Moreover, data generated by AD2S has a larger dynamic distance, which encourages
the agent to explore the online environment and refines the knowledge learned from synthetic data
(Wang et al.| 2024), thus speeding up the fine-tuning process.

To further verify the fidelity of the synthetic samples, we visualize the synthetic data distribution
between AD2S and EDIS using t-SNE (van der Maaten & Hinton| [2008) on walker2d-medium and
hopper-medium tasks in Figure 4 We also plot the Oracle rewards defined by the simulator. The
results demonstrate that AD2S not only generates data with higher curiosity but also pushes the
synthetic data towards higher-rewarding regions.

4.5 ONE-STEP ADVANTAGE ANALYSIS

The traditional advantage A(s,a) = Q(s,a) — V(s) estimates the additional return from taking
action a in state s. In contrast, Eq. [§|evaluates transitions relative to the entire buffer, identifying those
most critical transitions for training. To validate its efficacy, we approximate the advantage in AD2S
using the Q net from the agent itself: A(s,a) = Q(s,a) — E[Q(s,a)], where a denotes sampled
random actions. Results on the Walker2d environment (Table 3) demonstrate its effectiveness. We
regard that the neural-network-based advantage estimation may introduce instability during early-
stage fine-tuning, necessitating additional regularization for Q models, which can lead to training
difficulties and increased computational requirements.

5 RELATED WORK

5.1 OFFLINE-TO-ONLINE RL

Offline-to-online RL methods are developed to bridge the high asymptotic performance in online RL
and the low exploration cost in offline RL. The learning process focuses on leveraging the offline
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Table 3: D4RL normalized scores over five seeds on the Walker2d task with 4 data qualities. We
conduct experiments to validate the efficacy of our short-term advantage proposed in Eq. [8]

Method random medium medium-replay medium-expert

AD2S 99.3+11.6 1194+ 1.2 121.0+ 7.6 129.1+ 4.6
AD2S (variant) 12.6+ 59 851+ 1.8 112.5+ 7.1 110.0+ 1.4

dataset to pre-train an agent to run online RL as sample-efficiently as possible (Lee et al.l 2021}
Nair et al., |2020; |L1u et al., 2025b; Ball et al., [2023}; [Tarasov et al., 2023a)). The commonly studied
paradigms utilize offline pretraining followed by a particularly designed fine-tuning phase, such as
policy expansion (Zhang et al.,[2023;Uchendu et al.,2023)), value function calibration (Nakamoto
et al.,2023)), Q-ensemble techniques (Lee et al.,[2021;|Wang et al.,2023a)), regularization (Zhang et al.,
2024), and constraint methods (Nair et al., 2020; Kostrikov et al}2022; [Li et al., [2023). Although
retaining offline data during fine-tuning can tackle the over-conservatism of the agent (Fujimoto
et al., 2019; Fujimoto & Gu, [2021; Kumar et al.,|2020) and prevent catastrophic forgetting, recent
works show that fine-tuning the pretrained agent without offline data achieves a better asymptotic
performance. Zhou et al.|(2024) proposes a simple but effective way to revise the Q function during
fine-tuning. [Liu et al.|(2024])) leverages the capacity of the energy model, guiding the diffusion model
to generate near on-policy data for sample-efficient fine-tuning. In this paper, we take the advantages
of both sides, integrating a weighted density ratio mechanism to select near on-policy data from
historical data and leveraging the conditional diffusion model to generate high-fidelity data.

5.2 DIFFUSION MODELS AS DATA GENERATOR IN RL

Diffusion models have demonstrated outstanding capabilities in modeling complex distributions (Ho
et al.} 2020; Saharia et al., [2022; Nichol et al.| 2022} [Nichol & Dhariwall, 2021} |Song et al.,[2023]).
Recent works have employed diffusion models in offline RL for action execution, with extensions to
multi-task settings and the alignment of human preferences (Janner et al.| [2022; |Ajay et al., 2023}
Ren et al.| 2024} [Wang et al.,2023b; [Lu et al.,[2023a}; [He et al.,[2023bj Jain & Ravanbakhsh| [2024;
Mao et al., [2024; He et al., |2023a; |[Dong et al.| [2024). Besides that, another idea is to utilize the
capabilities to generate synthetic data in both offline and online RL (Lu et al.||2023c} [Lee et al.| [2024;
Li et al., 2024} [Jackson et al.| 2024} [Liu et al., 2024). GTA (Lee et al.,[2024) and TD (Huang et al.,
2024a) introduce partial noising on some trajectories, treating the diffusion model as an optimizer
to generate high-fidelity trajectories. Moreover, previous works also leverage the capabilities for
trajectory stitching (Ghugare et al., 2024), generating the trajectories that do not exist in the dataset
(L1 et al.} [2024; 'Yang & Wang, 2025; [Yuan et al., [2025). Recently, several concurrent works have
investigated the potential of learning a world model by diffusion sampling. PolyGRAD (Rigter et al.
2024)) and PGD (Jackson et al., [2024) introduce the diffusion model to model the transition function,
and embed the policy for classifier-guided trajectory generation. In contrast, DWM (Ding et al.| [2024)
offers long-horizon predictions in a single forward pass, effectively reducing the compounding error
and eliminating the need for recursive queries. In this paper, we follow the generation strategy in (Lu
et al.,[2023c} |L1iu et al.| 2024; Wang et al., [2024} |Lee et al., 2024), focus on adaptively synthesizing
data for efficient offline-to-online RL fine-tuning.

6 CONCLUSION

In this paper, we propose AD2S, a diffusion-based data synthesizer for offline-to-online RL fine-
tuning. With the data alignment and amplified guidance, AD2S can reuse high-novelty near on-policy
data and enrich the data in high-rewarding regions. As a versatile solution, AD2S seamlessly inte-
grates with prevalent offline-to-online frameworks, with no algorithmic modification. Our extensive
experiments on commonly studied benchmarks exhibit considerable performance improvements
compared to other diffusion-based data synthesizers. We show that AD2S successfully generates
high-quality data from ground-truth datasets, leading to a sample-efficient online fine-tuning.
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source code has been submitted in the supplementary material to facilitate replication and verification.
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A IMPLEMENTATION DETAILS

A.1 TASK DESCRIPTION

MuJoCo LocoMotion. MuJoCo locomotion encompasses several standard locomotion tasks com-
monly utilized in RL research, such as Hopper, Halfcheetah, and Walker2d. In each task, the RL
agent controls a robot to achieve forward movement. D4RL (Fu et al.,[2020) benchmark provides four
qualities of datasets for each task: random-v2, medium-v2, medium-replay-v2, medium-expert-v2.

Maze2D The Maze2D domain is a navigation task requiring a 2D agent to reach a fixed goal
location. The tasks are designed to provide a simple test of the ability of offline RL algorithms to
stitch together previously collected subtrajectories to find the shortest path to the evaluation goal. The
variations of this environment can be initialized with different maze configurations and increasing
levels of complexity Three maze layouts are provided: umaze, medium, and large. The task in the
environment is for a 2-DoF ball that is force-actuated in the cartesian directions x and y, to reach a
target goal in a closed maze.

AntMaze Navigation. Our tests on AntMaze navigation benchmark consist of 4 datasets, namely
umaze-diverse-v2, medium-play-v2, medium-diverse-v2, and large-play-v2 from D4RL (Fu et al.|
2020). The objective is for an ant to learn how to walk and navigate from the starting point to the
destination in a maze environment, with only sparse rewards provided. This task poses a challenge
for online RL algorithms to explore high-quality data effectively without access to offline datasets or
additional domain knowledge.

Adroit Manipulation. Our empirical evaluation on Adroit manipulation contains 2 domains: pen,
door. The RL agent is required to solve dexterous manipulation tasks, including rotating a pen in
specific directions, opening a door, and moving a ball, respectively. The offline datasets are clone-v1
datasets in D4RL |Fu et al.| (2020) benchmark, which only contain a few successful non-Markovian
human demonstrations. Therefore, it is pretty difficult for most offline RL approaches to acquire
reasonable pre-training performances.

A.2 IMPLEMENTATIONS AND HYPERPARAMETERS IN AD2S

Our Cal-QL implementation is based on previous work (Liu et al.} 2024} Tarasov et al., [2023b), and
primarily followed their recommended RL algorithm settings. The code can be found at https://
github.com/tinkoff-ai/CORL and https://github.com/liuxhym/EDIS, which
are released under an Apache license. The hyperparameters used in our AD2S’s other module
are detailed in the Table ] Our method only introduces two MLP models on top of the diffusion
model with corresponding sampling ratio to calculate condition, and we keep the same parameters
across different tasks in each domain (e,g, Walker2d, Hopper, Halfcheetah in locomotion domain).
On the contrary, EDIS has to train three independent energy models and tune three grad scales for
each task. We believe that our method does not require an obvious computational budget and is easy
to find the optimal sampling ratio in different tasks.

For all diffusion-based baselines, we use a 6-layer residual MLP as the denoising network. The
residual denoising MLP not only provides high-fidelity data generation, but also enables a friendly
computational cost in the online fine-tuning stage compared to other popular denoising networks such
as U-net (Lee et al.,[2024)) or transformer (He et al., 2023a)). During online fine-tuning, the diffusion
synthesizer is retrained on offline and online samples for every 10, 000 environment steps. We also
use 5, 000 steps at the start of online fine-tuning to warm up the online replay buffer in AD2S and
PGR. For the diffusion sampling process, we follow previous works (Lu et al., 2023c;Wang et al.,
2024; Liu et al.| [2024)), using the stochastic SDE sampler of Karras et al. (Karras et al.,[2022) with
the same hyperparameter used in EDIS (Liu et al., 2024).

Computation Resources We train AD2S integrated with the base algorithm on an NVIDIA
GeForce RTX 3090 GPU and a 32-core CPU.
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Table 4: Hyperparameters of AD2S for offline-to-online RL.

Hyperparameter Setting
Network Type (Denoising) Residual MLP
Denoising Network Depth 6 layers
Denoising Steps 128 steps
Denoising Network Learning Rate 3x 1074
Denoising Network Hidden Dimension 1024 units
Denoising Network Batch Size 256
Denoising Network Activation Function ReLU
Denoising Network Optimizer Adam
CFG Scale 2.0
Condition Dropout Rate 0.25

Learning Rate Schedule (Denoising Network)
Training Epochs (Denoising Network)
Training Interval Environment Step (Denoising Network)

Cosine Annealing
50, 000 epochs
Every 10, 000 steps

Replay Buffer Warm Up Step 5,000 steps
Density Ratio Network w,;, Hidden Dimension 256 units
Density Ratio Network w,;, Activation Function ReLLU
Dynamics Prediction Network g4 Hidden Dimension 256 units
Dynamics Prediction Network g4 Activation Function Swish

wy, & g Learning Rate 3x 1074
w,, & g Optimizer Adam
Amplified Ratio v 1.2

Partial Noising Scale p
Density-based Prioritized Sampling Ratio ppr
Curiosity-based Prioritized Sample Ratio pcouyri

Advantage Weight for Density Ratio Spgr
Advantage Weight for Curiosity SBeuri

0.5 in Locomotoin & AntMaze
0.8 in Maze2D

0.5 in Locomotoin & AntMaze
0.8 in Maze2D

0.5 in Locomotoin & AntMaze
0.8 in Maze2D

10

10

B ADDITIONAL EXPERIMENTS

B.1 RESULTS ON OTHER ENVIRONMENTS

To evaluate AD2S in sparse-reward and complex environments, we conduct experiments on the
AntMaze navigation and Adroit manipulation benchmarks. Empirical results (Table[5) demonstrate
that AD2S consistently outperforms baseline methods in settings with sparse rewards and complex
action spaces. However, we observe that all methods exhibit unstable online fine-tuning, which we
attribute to the inherent challenges of the AntMaze and Adroit benchmarks.

B.2 VERSATILITY OF AD2S

To show the versatility of AD2S, we integrate our method with IQL (Kostrikov et al., [2022) and
WSRL (Zhou et al.| 2024). Experimental results on the Walker2d environment (Table@ demonstrate
consistent performance improvements. These results validate AD2S’s ability to enhance O20 RL
across different baseline methods.
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Table 5: D4RL normalized scores over five seeds on the antmaze and adroit tasks with the highest
scores highlighted in bold. We also underline the AD2S’s score when it is close to the best score in
each task. We conduct experiments to demonstrate the performance of AD2S on sparse rewards and
complex environments.

Dataset Cal-QL EDIS AD2S

antmaze-umaze-diverse-v2 9344+ 4.6 959+ 2.8 96.8+ 3.0
antmaze-medium-play-v2 86.8+ 1.6 939+ 2.7 9444 5.2
antmaze-medium-diverse-v2 81.44+ 3.9 89.3+ 4.8 85.04+10.0
antmaze-large-play-v2 425+ 52  66.1+ 82  72.5+11.8
antmaze-large-diverse-v2 423+ 2.2 57.1£ 2.8  64.0+114
door-clone-vl1 -0.3£ 0.1 55.8425.7 78.0+t17.6
pen-clone-v1 10.7410.2 81.74+14.9 939+ 8.2

Table 6: D4RL normalized scores over five seeds on the walker2d task with 4 data qualities. We
conduct experiments to show the versatility of AD2S by combining it with other backbone algorithms.

Dataset \ IQL IQL + AD2S \ WSRL WSRL + AD2S
walker2d-random-v2 6.5+ 0.7 12.1+ 4.1 65.41+18.2 82.84+19.8
walker2d-medium-v2 83.6+ 2.0 98.2+ 2.6 | 1143+ 45 112.3+ 8.7

walekr2d-medium-replay-v2 | 83.6+ 2.1 93.6+ 4.7 86.4+12.5 96.2+10.2
walker2d-medium-expert-v2 | 1089+ 2.9 118.6+ 1.3 | 118.8£ 2.5 121.5+ 1.6

Table 7: D4RL normalized scores over five seeds on the walker2d task with 4 data qualities. Here,
we investigate the sensitivity of the distance alignment ratio ppg in AD2S.

Dataset ppr = 0.1 ppr =03 ppr =05 ppr=0.7
walker2d-random-v2 36.8+£26.9 91.8+ 2.5 99.3+11.6 62.4+23.6
walker2d-medium-v2 86.1+ 1.9 118.6+ 2.8 1194+ 1.2 117.5+ 1.7

walekr2d-medium-replay-v2  120.3+ 34 121.3+ 3.7 121.0£ 7.6 119.2+ 6.7
walker2d-medium-expert-v2  110.7+ 1.4 123.6+ 1.7 129.1+ 4.6 119.8+ 3.0

C ADDITIONAL ABLATION STUDY

C.1 SENSITIVITY ANALYSIS.

Distance-based alignment ratio. We conduct experiments on the Walker2d task with 4 dataset
qualities to perform a sensitivity analysis on ppgr in AD2S. We choose ppr from [0.1,0.3,0.5,0.7]
and the results are presented in Table[/] As demonstrated in our results, simple grid search on ppg is
sufficient for tuning AD2S. The constrained alignment ratio narrows the range of reusable data (e.g.,
ppr = 1), thereby compromising the diversity of the synthesized distribution.

Curiosity prioritization ratio. We also investigate the choice of pcy,; for walker2d task with 4 data
qualities in Table 8|and choose 4 levels pcyy; from [0.1,0.3, 0.5, 0.7]. The results demonstrate that
the proposed AD2S does not require heavy hyperparameter tuning, and performs well reproducibility.

Amplified scale. We provide the sensitivity analysis of o in AD2S on walker2d task with 4
dataset qualities and 5 levels « from [0.8, 1.0, 1.2, 1.5, 2.0]. Table@]reveals that AD2S struggles to
synthesize samples whose advantage-weighted data distributions are distant from the ground-truth
data, especially on a low-quality dataset. Furthermore, our analysis demonstrates that while moderate
conditioning amplification improves performance on medium- and high-quality datasets, a more
conservative conditional guidance yields better results for low-quality datasets.
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Table 8: D4RL normalized scores over five seeds on the walker2d task with 4 data qualities. Here,
we investigate the sensitivity of the curiosity alignment ratio pcyyi in AD2S.

Dataset pouwi = 0.1 powi = 0.3 powi =0.5  pcuwi = 0.7
walker2d-random-v2 789+ 7.6 774+ 1.6  993£11.6 81.6+ 9.8
walker2d-medium-v2 117.74 49 1194+ 3.0 1194+ 1.2 1178+ 49

walekr2d-medium-replay-v2  119.7£ 2.5 1192+ 54 121.0+ 7.6 114.8+ 2.5
walker2d-medium-expert-v2 1242+ 1.2 124.7+ 4.1 129.1+ 4.6 1234+ 1.8

Table 9: D4RL normalized scores over five seeds on the walker2d task with 4 data qualities. We
conduct experiments to investigate the sensitivity of amplified scale o in AD2S.

Dataset a=1.0 a=1.2 a=1.5 a=2.0
walker2d-random-v2 89.1+15.6 99.3+11.6 90.8+ 5.2 74.4+ 2.5
walker2d-medium-v2 1108+ 1.2 11944+ 1.2 108.54+ 52 104.9+ 3.7

walekr2d-medium-replay-v2 117.5+ 5.7 121.0£ 7.6 11944+ 4.6 117.1£ 6.1
walker2d-medium-expert-v2  120.84+ 2.5 129.1+ 4.6 120.5+ 3.6 120.6+ 4.0

Table 10: D4RL normalized scores over five seeds on the walker2d task with 4 data qualities. We
conduct experiments to investigate the sensitivity of the advantage temperature 3 in AD2S.

Dataset s=1 B8 =10 B =100
walker2d-random-v2 85.0+11.7 99.3+11.6 16.4+ 49
walker2d-medium-v2 119.24+ 5.8 119.4+ 1.2 85.1+ 1.8

walekr2d-medium-replay-v2 119.7+ 8.8 121.0+ 7.6  72.5+19.8
walker2d-medium-expert-v2  127.9+ 1.9 129.1+ 4.6 113.5+ 69

Table 11: D4RL normalized scores over five seeds on the walker2d-medium task. We conduct
experiments to validate the efficacy of our proposed advantage-weighted alignment.

Dataset AD2S DR w/o Adv.  Curiosity w/o Adv.
walker2d-medium-v2 1194+ 1.2 103.1+ 8.5 106.7£ 2.3

Advantage temperature. For the advantage temperature /3, we conduct an ablation study across
values on the Walker2d task and present the results in Table In AD2S, the role of A(,-) is to find
out transitions in the aligned data that possess high policy improvement potential. Empirical findings
indicate § = 10 delivers optimal performance, and there is little difference between § = 1 and
B = 10 on medium, medium-expert, and medium-replay, while 5 = 100 causes obvious performance
degradation. Therefore, our method only needs to ensure that the scaled advantage does not dominate
either the density ratio or the curiosity metric. In our experimental settings, we maintain a consistent
temperature for all tasks within the same benchmark domain (i.e., the locomotion tasks: Walker2d,
Hopper, and HalfCheetah).

C.2 ADVANTAGE-WEIGHTED ALIGNMENT

To illustrate the reason for using the relative advantage metric in both steps, we conduct experiments
on the walker2d-medium task with two variants of AD2S: density ratio without advantage (DR
w/o Adv.) and curiosity without advantage (Curiosity w/o Adv.). Results in Table |1 1| validate the
effectiveness of our method. Both the density ratio and the curiosity measurement lack regard for the
value of a sample held in the RL environment, and the advantage estimation reflects the potential
improvement that the current sample can bring to the policy. Thus, we incorporated the advantage
metric in both steps to improve online fine-tuning efficiency.
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Table 12: Results on v-d4rl (Lu et al.,[2023b) over five seeds on the Walker Walk task with 3 data
qualities. We highlight the highest scores in bold.

Dataset DrQ-BC SynthER PGR AD2S
random 459.7+£29.0 484.2+52.6 470.8£47.0 510.1+28.5
medium 490.6+18.5 494.1£50.9 530.9+£23.1 527.0+38.7

medium-replay  488.7£32.7 490.2£56.7 503.0£5.3 508.7+14.1

C.3 EXPERIMENTS ON VISUAL ENVIRONMENT

We conduct experiments on pixel-based environments using the v-d4rl benchmark (Lu et al.| | 2023b),
following the data generation paradigm proposed by [Lu et al.| (2023c). Firstly, we pretrain the DrQ-BC
for 1M steps on the offline dataset. Then we freeze the image encoder, generate latent observations
using diffusion models, and fine-tune the policy and Q-network in the online environment for 200k
steps. We use the same architecture and hyperparameters as used in the D4RL locomotion benchmark,
other than changing the partial noising scale p to 0.1, amplified ratio « to 2.0, and CFG scale to 1.0.
Table|12|shows the results on the Walker Walker task with 3 datasets. In future work, we will explore
even more complex environments to refine our method and validate its generalization.

C.4 SYNTHETIC DATA ANALYSIS

To verify the validity of the synthetic samples generated by AD2S, we use the ground-truth simulator
to measure the dynamics distance (i.e., MSE error) between AD2S or other diffusion-based baselines
with the real next state. Empirical results are presented in Figures[5] These measurements provide
insight into the efficacy of our proposed method.

While AD2S incurs a higher dynamic distance due to its curiosity-driven data prioritization, it
synthesizes data further than all baseline methods in the distance metric. This capability helps
mitigate the inherent pessimism in offline-pretrained Q-functions and improves online exploration.
This demonstrates that AD2S is better at pushing synthetic data towards regions with higher novelty.
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Figure 5: We plot L2 distance from online collected data, and dynamic distance under AD2S or
diffusion-based baselines. Top: EDIS, Middle: PGR, and Bottom: SynthER. AD2S can adaptively
generate higher novelty data than the existing SOTA method This indicates that our method can
adaptively generate higher novelty data than the existing SOTA method.
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