JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention

Abstract

We propose Joint MLP/Attention (JoMA) dynamics, a novel mathematical framework to understand the training procedure of multilayer Transformer architectures. This is achieved by integrating out the self-attention layer in Transformers, producing a modified dynamics of MLP layers only. JoMA removes unrealistic assumptions in previous analysis (e.g., lack of residual connection), and predicts that the attention first becomes sparse (to learn salient tokens), then dense (to learn less salient tokens) in the presence of nonlinear activations, while in the linear case, it is consistent with existing works. We leverage JoMA to qualitatively explains how tokens are combined to form hierarchies in multilayer Transformers, when the input tokens are generated by a latent hierarchical generative model. Experiments on models trained from real-world dataset (Wikitext2/Wikitext103) and various pre-trained models (OPT, Pythia) verify our theoretical findings.

1 Introduction

Since its debut, Transformers (Vaswani et al. 2017) have been extensively used in many applications and demonstrates impressive performance (Dosovitskiy et al., 2020, OpenAI, 2023) compared to domain-specific models (e.g., CNN in computer vision, GNN in graph modeling, RNN/LSTM in language modeling, etc). In all these scenarios, the basic Transformer block, which consists of one self-attention plus two-layer nonlinear MLP, plays a critical role. A natural question is:

How the basic Transformer block leads to effective learning?
Due to the complexity and nonlinearity of Transformer architectures, it remains a highly nontrivial open problem to find a unified mathematical framework that characterizes the learning mechanism of multi-layer transformers. Existing works mostly focus on 1-layer Transformer (Li et al., 2023, Tarzanagh et al. 2023b) with fixed MLP (Tarzanagh et al., 2023a) layer, linear activation (Tian et al., 2023), and local gradient steps at initialization (Bietti et al., 2023; Oymak et al., 2023), etc.

In this paper, we propose a novel joint dynamics of self-attention plus MLP, based on Joint MLP/Attention Integral (JoMA), a first integral that combines the lower layer of the MLP and selfattention layers. Leveraging this dynamics, we show the self-attention first becomes sparse as in the linear case (Tian et al. 2023), only attends to tokens that frequently co-occur with the query, and then becomes denser and gradually includes tokens with less frequent co-occurrence, in the case of nonlinear activation. This shows inductive bias in the Transformer training: first the model focuses on most salient features, then extends to less salient ones.
We then perform a qualitative analysis of multi-layer Transformers with the joint dynamics. For this, we assume a hierarchical tree generative model for the input tokens. In this model, starting from the top-level latent binary variables, abbreviated as LV_{s}, generates the latents LV_{s-1} in the lower layer, until reaching the token level $(s=0)$. With this model, we show that the tokens generated by the lowest latents LV_{1} co-occur a lot and thus can be picked up first by the attention dynamics. This leads to learning of such token combinations in MLP hidden nodes, which triggers self-attention grouping at $s=1$, and so on. Our theoretical finding is consistent with both the pre-trained models such as OPT/Pythia and models trained from scratch using real-world dataset (Wikitext2 and Wikitext103).

We show that JoMA overcomes several of the major limitations in a previous framework, Scan\&Snap (Tian et al., 2023). It incorporates residual connections and MLP nonlinearity as a key ingredient, analyzes joint training of MLP and self-attention layer, and qualitatively explains dynamics of multilayer Transformers. For linear activation, JoMA concides with Scan\&Snap, i.e., the attention becomes sparse during training.

Figure 1: (a) Overview of JoMA framework. Using the invariant of training dynamics, the self-attention layer and the lower layer of MLP can be merged together to yield a MLP layer with modified dynamics (Theorem 1), which explains the behaviors of attention in linear and nonlinear (Sec. 4] MLP activation ϕ, as well as hierarchical concept learning in multilayer cases (Sec.A). (b) Problem setting. JoMA supports different kind of attentions, including linear attention $b_{l}:=x_{l} z_{q l}$, exp attention $b_{l}:=x_{l} e^{z_{q l}} / A$ and softmax $b_{l}:=x_{l} e^{z_{q l}} / \sum_{l} x_{l} e^{z_{q l}}$.

2 Problem Setting

Let total vocabulary size be M, in which M_{C} is the number of contextual tokens and M_{Q} is the number of query tokens. Consider one layer in multilayer transformer (Fig. 1.b)):

$$
\begin{equation*}
h_{k}=\phi\left(\boldsymbol{w}_{k}^{\top} \boldsymbol{f}\right), \quad \boldsymbol{f}=U_{C} \boldsymbol{b}+\boldsymbol{u}_{q}, \quad \boldsymbol{b}=\sigma\left(\boldsymbol{z}_{q}\right) \circ \boldsymbol{x} / A \tag{1}
\end{equation*}
$$

Input/outputs. $\boldsymbol{x}=\left[x_{l}\right] \in \mathbb{R}^{M_{C}}$ is the input frequency vector for contextual token $1 \leq l \leq M_{C}$, $1 \leq q \leq M_{Q}$ is the query token index, K is the number of nodes in the hidden MLP layer, whose outputs are h_{k}. All the quantities above vary across different sample index i (i.e., $x_{l}=x_{l}[i]$, $q=q[i])$. In addition, ϕ is the nonlinearity (e.g., ReLU).
Model weights. $\boldsymbol{z}_{q}=\left[z_{q l}\right] \in \mathbb{R}^{M_{C}}$ is the (unnormalized) attention logits given query q, and $\boldsymbol{w}_{k} \in \mathbb{R}^{d}$ is the weights for the lower MLP layer. They will be analyzed in the paper.
The Attention Mechanism. In this paper, we mainly study three kinds of attention:

- Linear Attention (Von Oswald et al. 2022): $\sigma(x)=x$ and $A:=1$;
- Exp Attention: $\sigma(x)=\exp (x)$ and $A:=$ const;
- Softmax Attention (Vaswani et al. 2017): $\sigma(x)=\exp (x)$ and $A:=\mathbf{1}^{\top}\left(\sigma\left(\boldsymbol{z}_{q}\right) \circ \boldsymbol{x}\right)$.

Here \circ is the Hadamard (element-wise) product. $\boldsymbol{b} \in \mathbb{R}^{M_{C}}$ are the attention scores for contextual tokens, given by a point-wise attention function σ. A is the normalization constant.
Embedding vectors. \boldsymbol{u}_{l} is the embedding vector for token l. We assume that the embedding dimension d is sufficiently large and thus $\boldsymbol{u}_{l} \boldsymbol{u}_{l^{\prime}}=\mathbb{I}\left(l=l^{\prime}\right)$, i.e., $\left\{\boldsymbol{u}_{l}\right\}$ are orthonormal bases. Let $U_{C}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{M_{C}}\right] \in \mathbb{R}^{d \times M_{C}}$ be the matrix that encodes all embedding vectors of contextual tokens. Then $U_{C}^{\top} U_{C}=I$.
Residual connections are introduced as an additional term \boldsymbol{u}_{q} in Eqn. 1 . which captures the critical component in Transformer architecture. Note that we do not model value matrix W_{V} since it can be merged into the embedding vectors (e.g., by $\boldsymbol{u}_{l}^{\prime}=W_{V} \boldsymbol{u}_{l}$), while W_{K} and W_{Q} are already implicitly modeled by the self-attention logits $z_{q l}=\boldsymbol{u}_{q}^{\top} W_{Q}^{\top} W_{K} \boldsymbol{u}_{l}$.
Gradient backpropagation in multilayers. In multilayer setting, the gradient gets backpropagated from top layer. Specifically, let $g_{h_{k}}[i]$ be the backpropagated gradient sent to node k at sample i. For 1-layer Transformer with softmax loss directly applied to the hidden nodes of MLP, we have $g_{h_{k}}[i] \sim \mathbb{I}\left(y_{0}[i]=k\right)$, where $y_{0}[i]$ is the label to be predicted for sample i. For brevity, we often omit sample index i if there is no ambiguity.
Assumption 1 (Stationary backpropagated gradient $g_{h_{k}}$). Expectation terms involving $g_{h_{k}}$ (e.g., $\left.\mathbb{E}\left[g_{h_{k}} \boldsymbol{x}\right]\right)$ remains constant during training.

Note that this is true for layer-wise training: optimizing the weights for the current Transformer layer, while fixing other layers. For joint training, this condition may hold approximately since the statistics of backpropagated gradient can be stationary over time during most of the training process. Under Assumption 1, Appendix E. 1 gives an equivalent formulation using per-hidden node loss.
Training Dynamics. Now let us consider the dynamics of \boldsymbol{w}_{k} and \boldsymbol{z}_{m}, if we train the model with inputs that always end up with query $q[i]=m$. and each batch consist of samples with query

Figure 2: Test of training dynamics with linear MLP activation $(\phi(x)=x)$ under softmax attention. Left Two: The distribution of \boldsymbol{x} smoothly transits over different class labels. Right Two: The distribution of \boldsymbol{x} over different classes are randomly generated. In both cases, the estimated $\hat{\boldsymbol{z}}_{m}(t)$ by the first integral (Theorem 1 , despite assumptions on $\overline{\boldsymbol{b}}_{m}$, shows high correlation with the ground truth self-attention logits $\boldsymbol{z}_{m}(t)$, while its two components $\hat{\boldsymbol{z}}_{m 1}(t):=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)$ and $\hat{\boldsymbol{z}}_{m 2}(t):=-\frac{1}{2} \sum_{k}\left\|\boldsymbol{v}_{k}(t)\right\|_{2}^{2} \overline{\boldsymbol{b}}_{m}$ do not.

Figure 3: Growth of first few components in $\boldsymbol{v}_{0}(t)$ in linear MLP activation and softmax attention. After convergence, only some components of \boldsymbol{v}_{0} grows while the remaining components is saturated after initial growing, consistent with Theorem 2 even if it is derived from JoMA's approximation in Theorem 1 Each node k (and thus \boldsymbol{w}_{k}) receives back-propagated gradient from k-th class via cross-entropy loss.
$q[i]=m$. We define the conditional expectation $\mathbb{E}_{q=m}[\cdot]:=\mathbb{E}[\cdot \mid q=m]:$

$$
\begin{equation*}
\dot{\boldsymbol{w}}_{k}=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{f}\right], \quad \dot{\boldsymbol{z}}_{m}=\mathbb{E}_{q=m}\left[\left(\partial \boldsymbol{b} / \partial \boldsymbol{z}_{m}\right)^{\top} U_{C}^{\top} \boldsymbol{g}_{\boldsymbol{f}}\right] \tag{2}
\end{equation*}
$$

Here $h_{k}^{\prime}:=\phi^{\prime}\left(\boldsymbol{w}_{k}^{\top} \boldsymbol{f}\right)$ is the derivative of current activation and $\boldsymbol{g}_{\boldsymbol{f}}:=\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{w}_{k}$.

3 JoMA: Existence of JOint dynamics of Attention and MLP

While the learning dynamics of \boldsymbol{w}_{k} and \boldsymbol{z}_{m} can be complicated, surprisingly training dynamics suggests that the attention logits $\boldsymbol{z}_{m}(t)$ has a close-form relationship with respect to the MLP weights $\boldsymbol{w}_{k}(t)$, which lays the foundation of our JoMA framework:
Theorem 1 (Joma). Let $\boldsymbol{v}_{k}:=U_{C}^{\top} \boldsymbol{w}_{k}$, then the dynamics of Eqn. 2 satisfies the invariants. (1) For linear attention, $\boldsymbol{z}_{m}^{2}(t)=\sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$, (2) for exp attention, $\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$, (3) for softmax attention, if $\overline{\boldsymbol{b}}_{m}:=\mathbb{E}_{q=m}[\boldsymbol{b}]$ is a constant over time and $\mathbb{E}_{q=m}\left[\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{b} \boldsymbol{b}^{\top}\right]=$ $\overline{\boldsymbol{b}}_{m} \mathbb{E}_{q=m}\left[\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right]$, then the dynamics satisfies $\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)-\left\|\boldsymbol{v}_{k}(t)\right\|_{2}^{2} \overline{\boldsymbol{b}}_{m}+\boldsymbol{c}$. Under zero-initialization $\left(\boldsymbol{w}_{k}(0)=0, \boldsymbol{z}_{m}(0)=0\right)$, then the time-independent constant $\boldsymbol{c}=0$.

Therefore, we don't need to explicitly update self-attention, since it is already implicitly incorporated in the lower layer of MLP weight! For softmax attention, we verify that even with the assumption, the invariance proposed by Theorem 1 still predicts $\boldsymbol{z}_{m}(t)$ fairly well.

Linear activations: winner-take-all. Now we can solve the dynamics of $\boldsymbol{w}_{k}(t)$ (Eqn. 2), by plugging in the close-form solution of self-attention. For simplicity, we consider exp attention with $K=1$. Let $\Delta_{m}:=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{x}\right]$, then \boldsymbol{v}_{k} 's dynamics (written as \boldsymbol{v}) is:

$$
\begin{equation*}
\dot{\boldsymbol{v}}=\Delta_{m} \circ \exp \left(\boldsymbol{z}_{m}\right)=\Delta_{m} \circ \exp \left(\boldsymbol{v}^{2} / 2+\boldsymbol{c}\right) \tag{3}
\end{equation*}
$$

In the case of linear activations $\phi(x)=x, h_{k}^{\prime} \equiv 1$. According to Assumption 1, Δ_{m} does not depend on \boldsymbol{v} and we arrive at the following theorem:
Theorem 2 (Linear Dynamics with Self-attention). With linear MLP activation and zero initialization, for exp attention any two tokens $l \neq l^{\prime}$ satisfy the following invariants:

$$
\begin{equation*}
\Delta_{l m}^{-1} \operatorname{erf}\left(v_{l}(t) / 2\right)=\Delta_{l^{\prime} m}^{-1} \operatorname{erf}\left(v_{l^{\prime}}(t) / 2\right) \tag{4}
\end{equation*}
$$

where $\Delta_{l m}=\mathbb{E}_{q=m}\left[g_{h_{k}} x_{l}\right]$ and $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$ is Gauss error function.
Remarks. The dynamics suggests that the weights become one-hot over training. Specifically, let $l^{*}=\arg \max _{l}\left|\Delta_{l m}\right|$, then $v_{l^{*}}(t) \rightarrow \operatorname{sign}\left(\Delta_{l^{*} m}\right) \times \infty$ and other $v_{l}(t)$ converges to finite numbers,
because of the constraint imposed by Eqn. 4 (see Fig. 3). For softmax attention, there is an additional sample-dependent normalization constant $A[i]$, if $A[i]$ remains constant across samples and all elements of $\overline{\boldsymbol{b}}_{m}$ are the same, then Theorem 2 also applies.

Beyond distinct/common tokens. $\Delta_{l m}:=\mathbb{E}_{l, q=m}\left[g_{h_{k}}\right] \mathbb{P}(l \mid m)$ (see footnot $\left.\oint^{1}\right]$) is a product of token discriminancy (i.e., $\mathbb{E}_{l, q=m}\left[g_{h_{k}}\right]>0$ means token l positively correlated to backpropagated gradient $g_{h_{k}}$, or label in the 1-layer case) and token frequency (i.e., $\mathbb{P}(l \mid m)$, how frequent l appears given m). This covers a broader spectrum of tokens than Tian et al. (2023), which only discusses distinct (i.e., when $\left|\Delta_{l m}\right|$ is large) and common tokens (i.e., when $\Delta_{l m}$ is close to zero).

4 Training Dynamics under Nonlinear Activations

In nonlinear case, the dynamics turns out to be very different. In this case, Δ_{m} is no longer a constant, but will change. As a result, the dynamics also changes substantially.
Theorem 3 (Dynamics of lower MLP layer, nonlinear activation and uniform attention). If the activation function ϕ is homogeneous (i.e., $\phi(x)=\phi^{\prime}(x) x$), and the input is sampled from a mixture of two isotropic distributions centered at $\overline{\boldsymbol{x}}_{+}$and $\overline{\boldsymbol{x}}_{-}=0$ where the radial density function has bounded derivative. Then the dynamics near to the critical point $\boldsymbol{\mu} \neq \mathbf{0}$, names $\|\boldsymbol{v}-\boldsymbol{\mu}\| \leq \gamma$ for some $\gamma=\gamma(\boldsymbol{\mu}) \ll 1$, can be written as the following (where $\boldsymbol{\mu} \propto \overline{\boldsymbol{x}}_{+}$):

$$
\begin{equation*}
\dot{\boldsymbol{v}}=\operatorname{sgn}\left(\boldsymbol{\mu}^{\top} \overline{\boldsymbol{x}}_{+}\right)\left\{\beta_{1}(\boldsymbol{\mu}) \cdot I+\beta_{2}(\boldsymbol{\mu}) \cdot \boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right\}(1+\lambda(\boldsymbol{\mu}, \gamma)) \cdot(\boldsymbol{\mu}-\boldsymbol{v}) \tag{5}
\end{equation*}
$$

Here $|\lambda(\boldsymbol{\mu}, \gamma)| \ll 1$ and $\beta_{1}(\boldsymbol{\mu})>0, \beta_{2}(\boldsymbol{\mu})$ are the constant functions of $\boldsymbol{\mu}$.
To analyze the case when self-attention is also incorporated, we simply add back the self-attention term, thanks to the close-form simplification of JoMA. Note that we omit the $\boldsymbol{\mu} \boldsymbol{\mu}^{\top}$ term, since it mainly added a constant shift to the dynamics towards the fixed direction $\boldsymbol{\mu}$. We also omit $\lambda(\boldsymbol{\mu}, \gamma)$ for simplicity and treat $\beta_{2}(\boldsymbol{\mu})$ to be zero, and again use exp attention as an example:

$$
\begin{equation*}
\dot{\boldsymbol{v}}=(\boldsymbol{\mu}-\boldsymbol{v}) \circ \exp \left(\boldsymbol{v}^{2} / 2\right) \tag{6}
\end{equation*}
$$

Note that the critical point $\boldsymbol{v}_{*}=\boldsymbol{\mu}$ remains after adding self-attention; however, the convergence speed towards salient component of $\boldsymbol{\mu}$ (i.e., component with large magnitude) is much faster than non-salient ones:

Theorem 4 (Convergence speed of salient vs. non-salient components). Let $\delta_{j}(t):=1-v_{j}(t) / \mu_{j}$ be the convergence metric for component $j\left(\delta_{j}(t)=0\right.$ means that the component j converges). For the nonlinear dynamics with attention (Eqn. 6), if $\boldsymbol{v}(0)=0$ (zero-initialization), then

$$
\begin{equation*}
\frac{\ln 1 / \delta_{j}(t)}{\ln 1 / \delta_{k}(t)}=\frac{e^{\mu_{j}^{2} / 2}}{e^{\mu_{k}^{2} / 2}}(1+\Lambda(t)) \tag{7}
\end{equation*}
$$

Here $\Lambda(t)=\lambda_{j k}(t) \cdot e^{\mu_{k}^{2} / 2} \ln ^{-1}\left(1 / \delta_{k}(t)\right)$ where $\left|\lambda_{j k}(t)\right| \leq \sqrt{2 \pi}+2$. So when $\delta_{k}(t) \ll$ $\exp \left[-(\sqrt{2 \pi}+2) \exp \left(-\mu_{k}^{2}\right)\right]$, we have $|\Lambda(t)| \ll 1$.

Remarks. For linear attention, the ratio is different but the derivation is similar and simpler. Note that the convergence speed heavily depends on the magnitude of μ_{j}. If $\mu_{j}>\mu_{k}$, then $\delta_{j}(t) \ll \delta_{k}(t)$ and $v_{j}(t)$ converges much faster than $v_{k}(t)$. Therefore, the salient components get learned first, and the small component is learned later, due to the modulation of the extra term $\exp \left(\boldsymbol{v}^{2}\right)$ thanks to self-attention, as demonstrated in Fig. 4 in Appendix.
A follow-up question arises: What is the intuition behind salient and non-salient components in μ ? Note that μ_{l} is closely linked to the distribution of x_{l} given the query $q=m$. In this case, similar to Theorem 2 (and Tian et al. (2023)), we again see that if a contextual token l co-occurs a lot with the query m, then μ_{l} becomes larger and the growth speed of v_{l} towards μ_{l} is much faster.

How self-attention learns hierarchical data distribution? One question remains. For 1-layer Transformer, the dynamics of Theorem 4 may only slow the training with no clear benefits. Then why it is needed? In Appendix A, we show that this behavior can be critical for multi-layer Transformers to train on a data distribution generated in a hierarchical manner.

[^0]
References

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In International Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a transformer: A memory viewpoint. arXiv preprint arXiv:2306.00802, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision transformers: Learning, generalization, and sample complexity. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/ forum?id=jClGv3Qjhb

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

OpenAI. Gpt-4 technical report, 2023.
Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role of attention in prompt-tuning. arXiv preprint arXiv:2306.03435, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as support vector machines. arXiv preprint arXiv:2308.16898, 2023a.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token selection in attention mechanism. CoRR, 2023b.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training dynamics and token composition in 1-layer transformer, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL https://arxiv. org/pdf/1706.03762.pdf.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. arXiv preprint arXiv:2212.07677, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Figure 4: Dynamics of nonlinear MLP with self-attention components included (Eqn. 6). Left: Training dynamics (color indicating training steps). The salient components (i.e., components with large magnitude in $\boldsymbol{\mu}$) of $\boldsymbol{v}(t)$ are learned first, followed by non-salient ones. Right: Entropy of the attention (i.e., entropy $\left(\operatorname{softmax}\left(\boldsymbol{v}^{2}\right)\right)$) drops when salient components are learned first, and then rebounces when other components catch up.

A How self-attention learns hierarchical data distribution?

Consider a simple generative hierarchical binary latent tree model (HBLT) (Tian et al., 2020) (Fig. 6(a)) in which we have latent (unobservable) binary variables y at layer s that generate latents at layer $s-1$, until the observable tokens are generated at the lowest level $(s=0)$. The topmost layer is the class label y_{0}, which can take D discrete values. In HBLT, the generation process of y_{β} at layer $s-1$ given y_{α} at layer s can be characterized by their conditional probability $\mathbb{P}\left[y_{\beta}=1 \mid y_{\alpha}=1\right]=\mathbb{P}\left[y_{\beta}=0 \mid y_{\alpha}=0\right]=\frac{1}{2}(1+\rho)$. The uncertainty hyperparameter $\rho \in[-1,1]$ determines how much the top level latents can determine the values of the low level ones. Please check Appendix for its formal definition.

With HBLT, we can compute the co-occurrence frequency of two tokens l and m, as a function of the depth of their common latent ancestor (CLA):

Theorem 5 (Token Co-occurrence in $\operatorname{HBLT}(\rho)$). If token l and m have common latent ancestor (CLA) of depth H (Fig. 5 (c)), then $\mathbb{P}\left[y_{l}=1 \mid y_{m}=1\right]=\frac{1}{2}\left(\frac{1+\rho^{2 H}-2 \rho^{L-1} \rho_{0}}{1-\rho^{L-1} \rho_{0}}\right)$, where L is the total depth of the hierarchy and $\rho_{0}:=\boldsymbol{p}_{\cdot \mid 0}^{\top} \boldsymbol{p}_{0}$, in which $\boldsymbol{p}_{0}=\left[\mathbb{P}\left[y_{0}=k\right]\right] \in \mathbb{R}^{D}$ and $\boldsymbol{p}_{\cdot \mid 0}:=\left[\mathbb{P}\left[y_{l}=\right.\right.$ $\left.\left.0 \mid y_{0}=k\right]\right] \in \mathbb{R}^{D}$, where $\left\{y_{l}\right\}$ are the immediate children of the root node y_{0}.

Remarks. If y_{0} takes multiple values (many classes) and each class only trigger one specific latent binary variables, then most of the top layer latents are very sparsely triggered and thus ρ_{0} is very close to 1 . If ρ is also close to 1 , then for deep hierarchy and shallow common ancestor, $\mathbb{P}\left[y_{l}=\right.$ $\left.1 \mid y_{m}=1\right] \rightarrow 1$. To see this, assume $\rho=\rho_{0}=1-\epsilon$, then we have:

$$
\begin{equation*}
\mathbb{P}\left[y_{l}=1 \mid y_{m}=1\right]=\frac{1}{2}\left[\frac{1+1-2 H \epsilon-2(1-L \epsilon)}{1-(1-L \epsilon)}\right]+O\left(\epsilon^{2}\right)=1-\frac{H}{L}+O\left(\epsilon^{2}\right) \tag{8}
\end{equation*}
$$

This means that two tokens l and m co-occur a lot, if they have a shallow CLA (H small) that is close to both tokens. If their CLA is high in the hierarchy (e.g., l^{\prime} and m), then the token l^{\prime} and m have much weaker co-occurrence and $\mathbb{P}\left(l^{\prime} \mid m\right)$ (and thus x_{l}^{\prime} and $\mu_{l^{\prime}}$) is small.

With this generative model, we can analyze qualitatively the learning dynamics of JoMA: it focuses first on associating the tokens in the same lowest hierarchy as the query m (and hence co-occurs frequently with m), then gradually reaches out to other tokens l^{\prime} with less co-occurrence with m, if they have not been picked up by other tokens (Fig. 5bb)); if l^{\prime} co-occurs a lot with some other m^{\prime}, then $m-l$ and $m^{\prime}-l^{\prime}$ form their own lower hierarchy, respectively. This leads to learning of highlevel features y_{β} and $y_{\beta^{\prime}}$, which has high correlation and will be associated. Therefore, the latent hierarchy is implicitly learned.

B Experiments

Dynamics of Attention Sparsity. Fig.6shows how attention sparsity changes over time when training from scratch. We use 10^{-4} learning rate and test our hypothesis on Wikitext2/Wikitext103 (Merity et al. 2016) (top/bottom row). Fig. 8 further shows that different learning rate leads to different attention sparsity patterns. With large learning rate, attention becomes extremely sparse as in (Tian et al., 2023). Interestingly, the attention patterns, which coincide with our theoretical analysis, yield the best validation score.

Figure 5: (a) Hierarchical binary tree generative models. Except for y_{0} that is the observable label of a sequence and can take D discrete labels, all latent variables follow binomial distribution. A binary leaf variable $y_{l}=1$ indicates that token l appears in the sequence. (b) Attention dynamics in multi-layer setting. There is a strong co-occurrence between the query m and the token l, but a weak co-occurrence between m and l^{\prime}. As a result, m associates with l first, and eventually associates with l^{\prime}, even if they co-occur weakly, according to Eqn. 6 (c) If there exists an additional layer y_{β} and $y_{\beta^{\prime}}$ in the latent hierarchy, the association $m-l$ and $m^{\prime}-l^{\prime}$ will be learned first due to their high co-occurrence. Once the lower hierarchy gets learned and some hidden nodes in MLP represents y_{β} and $y_{\beta^{\prime}}$ (see Sec. B for experimental validation), on the next level, y_{β} and $y_{\beta^{\prime}}$ shows strong co-occurrence and gets picked up by the self-attention mechanism to form even higher level features. In contrast, the association of $l^{\prime}-m$ is much slower and does not affect latent hierarchy learning, showing that self-attention mechanism is adaptive to the structure of data distribution.

Figure 6: Dynamics of attention sparsity. In 1-layer setting, The curves bear strong resemblance to our theoretical prediction (Fig. 4); in multi-layer settings, the attention entropy in top Transformer layers has a similar shape, while the entropy in bottom layers are suppressed due to layer interactions (Sec. 4). Top row: Wikitext2, Bottom row: Wikitext103.

We also tested our hypothesis in OPT (Zhang et al. 2022) (OPT-2.7B) and Pythia (Biderman et al. 2023) (Pythia-70M/1.4B/6.9B) pre-trained models, both of which has public intermediate checkpoints. While the attention patterns show less salient drop-and-bounce patterns, the dynamics of stable ranks of the MLP lower layer (projection into hidden neurons) show much salient such structures for top layers, and dropping curves for bottom layers since they are suppressed by top-level learning (Sec.A). Note that stable ranks only depend on the model parameters and thus may be more reliable than attention sparsity.
Validation of Alignment between latents and hidden nodes in MLP. Sec. A is based on an assumption that the hidden nodes in MLP layer will learn the latent variables. We verify this assumption in synthetic data sampled by HBLT, which generate latent variables in a top-down manner, until the final tokens are generated. The latent hierarchy has 2 hyperparameters: number of latents per layer $\left(N_{s}\right)$ and number of children per latent $\left(N_{\mathrm{ch}}\right)$. C is the number of classes. Adam optimizer is used with learning rate 10^{-5}. Vocabulary size $M=100$, sequence length $T=30$ and embedding dimension $d=1024$.

We use 3-layer generative model as well as 3-layer Transformer models. We indeed perceive high correlations between the latents and the hidden neurons between corresponding layers. Note that

Figure 7: Dynamics of attention sparsity and stable rank in OPT-2.7B and Pythia-70M/1.4B/6.9B. Results are evaluated on Wikitext103 (Merity et al. 2016.

Figure 8: Effect of different learning rates on attention sparsity. Different learning rates lead to different dynamics of attention sparsity, and the attention patterns consistent with our theoretical analysis (Fig. 4] give the lowest validation losses.
latents are known during input generation procedure but are not known to the transformer being trained. We take the maximal activation of each neuron across the sequence length, and compute normalized correlation between maximal activation of each neuron and latents, after centeralizing across the sample dimension. Tbl. 1 shows that indeed in the learned models, for each latent, there exists at least one hidden node in MLP that has high normalized correlation with it, in particular in the lowest layer. When the generative models becomes more complicated (i.e., both $N_{\text {ch }}$ and N_{l} become larger), the correlation goes down a bit.

	$C=20, N_{\text {ch }}=2$		$C=20, N_{\text {ch }}=3$		$C=30, N_{\text {ch }}=2$	
$\left(N_{0}, N_{1}\right)$	$(10,20)$	$(20,30)$	$(10,20)$	$(20,30)$	$(10,20)$	$(20,30)$
NCorr ($s=0$)	0.99 ± 0.01	0.97 ± 0.02	1.00 ± 0.00	0.96 ± 0.02	0.99 ± 0.01	0.94 ± 0.04
NCorr ($s=1$)	0.81 ± 0.05	0.80 ± 0.05	0.69 ± 0.05	0.68 ± 0.04	0.73 ± 0.08	0.74 ± 0.03
	$C=30 N_{\text {ch }}=3$		$C=50, N_{\text {ch }}=2$		$C=50, N_{\text {ch }}=3$	
(N_{0}, N_{1})	$(10,20)$	$(20,30)$	$(10,20)$	$(20,30)$	(10, 20)	$(20,30)$
NCorr ($s=0$)	0.99 ± 0.01	0.95 ± 0.03	0.99 ± 0.01	0.95 ± 0.03	0.99 ± 0.01	0.95 ± 0.03
NCorr ($s=1$)	0.72 ± 0.04	0.66 ± 0.02	0.58 ± 0.02	0.55 ± 0.01	0.64 ± 0.02	0.61 ± 0.04

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP of the same layer. All experiments are run with 5 random seeds.

C Discussion

Deal with almost orthogonal embeddings. In this paper, we focus on fixed orthonormal embeddings vectors. However, in real-world Transformer training, the assumption may not be valid, since often the embedding dimension d is smaller than the number of vocabulary M so the embedding vectors cannot be orthogonal to each other. In this setting, one reasonable assumption is that the embedding vectors are almost orthogonal. Thanks to Johnson-Lindenstrauss lemma, one interesting property of high-dimensional space is that for M embedding vectors to achieve almost orthogonality $\left|\boldsymbol{u}_{l}^{\top} \boldsymbol{u}_{l^{\prime}}\right| \leq \epsilon$, only $d \leq 8 \epsilon^{-2} \log M$ is needed. As a result, our JoMA framework (Theorem 11 will have additional ϵ-related terms and we leave the detailed analysis as one of our future work.
Training embedding vectors. Another factor that is not considered in JoMA is that the embedding vectors are also trained simultaneously. This could further boost the efficiency of Transformer architecture, since concepts with similar semantics will learn similar embeddings. This essentially reduces the vocabulary size at each layer for learning to be more effective, and leads to better generalization. For example, in each hidden layer $4 d$ hidden neurons are computed, which does not mean there are $4 d$ independent intermediate "tokens", because many of their embeddings are highly correlated.
Self-attention computed from embedding. JoMA arrives at the joint dynamics of MLP and attention by assuming that the pairwise attention score Z is an independent parameters optimized under SGD dynamics. In practice, $Z=U W_{Q} W_{K}^{\top} U^{\top}$ is also parameterized by the embedding matrix, which allow generalization to tokens with similar embeddings, and may accelerate the training dynamics of Z. We leave it in the future works.

D Conclusion

In this paper, we propose our JoMA framework that characterizes the joint training dynamics of nonlinear MLP and attention layer, by integrating out the self-attention logits. The resulting dynamics demonstrates the connection between nonlinear MLP lower layer weights (projection into hidden neurons) and self-attention, and shows that the attention first becomes sparse (or weights becomes low rank) and then becomes dense (or weights becomes high rank). Based on this finding, we further qualitatively propose a tentative learning mechanism of multilayer Transformer that reveals how self-attentions at different layers interact with each other to learn the latent feature hierarchy.

E Proofs

E. 1 Per-hidden loss formulation

Our Assumption 1 has an equivalent per-hidden node loss:

$$
\begin{equation*}
\max _{\left\{\boldsymbol{w}_{k}\right\},\left\{\boldsymbol{z}_{m}\right\}} \mathbb{E}_{\mathcal{D}}\left[\sum_{k} g_{h_{k}} h_{k}\right]:=\max _{\left\{\boldsymbol{w}_{k}\right\},\left\{\boldsymbol{z}_{m}\right\}} \mathbb{E}_{i \sim \mathcal{D}}\left[\sum_{k} g_{h_{k}}[i] h_{k}[i]\right] \tag{9}
\end{equation*}
$$

where $g_{h_{k}}[i]$ is the backpropagated gradient sent to node h_{k} at sample i.

E. 2 JoMA framework (Section 3)

Theorem 1 (JoMA). Let $\boldsymbol{v}_{k}:=U_{C}^{\top} \boldsymbol{w}_{k}$, then the dynamics of Eqn. 2 satisfies the invariants. (1) For linear attention, $\boldsymbol{z}_{m}^{2}(t)=\sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$, (2) for \exp attention, $\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$, (3) for softmax attention, if $\overline{\boldsymbol{b}}_{m}:=\mathbb{E}_{q=m}[\boldsymbol{b}]$ is a constant over time and $\mathbb{E}_{q=m}\left[\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{b} \boldsymbol{b}^{\top}\right]=$ $\overline{\boldsymbol{b}}_{m} \mathbb{E}_{q=m}\left[\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right]$, then the dynamics satisfies $\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)-\left\|\boldsymbol{v}_{k}(t)\right\|_{2}^{2} \overline{\boldsymbol{b}}_{m}+\boldsymbol{c}$. Under zero-initialization $\left(\boldsymbol{w}_{k}(0)=0, \boldsymbol{z}_{m}(0)=0\right)$, then the time-independent constant $\boldsymbol{c}=0$.

Proof. Let $L:=\partial \boldsymbol{b} / \partial \boldsymbol{z}_{m}$. Plugging the dynamics of \boldsymbol{w}_{k} into the dynamics of self-attention logits \boldsymbol{z}_{m}, we have:

$$
\begin{equation*}
\dot{\boldsymbol{z}}_{m}=\mathbb{E}_{q=m}\left[L^{\top} U_{C}^{\top} \sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{w}_{k}\right]=\sum_{k} \mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} L^{\top} \boldsymbol{v}_{k}\right] \tag{10}
\end{equation*}
$$

Before we start, we first define $\xi_{k}(t):=\int_{0}^{t} \mathbb{E}_{q=m}\left[g_{h_{k}}\left(t^{\prime}\right) h_{k}^{\prime}\left(t^{\prime}\right)\right] \mathrm{d} t^{\prime}$. Therefore, $\dot{\xi}_{k}=$ $\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime}\right]$. Intuitively, ξ_{k} is the bias of node k, regardless of whether there exists an actual bias parameter to optimize.

Notice that $U_{C}^{\top} \boldsymbol{f}=\boldsymbol{b}+U_{C}^{\top} \boldsymbol{u}_{q}$, with orthonormal condition between contextual and query tokens: $U_{C}^{\top} \boldsymbol{u}_{m}=0$, and thus $U_{C}^{\top} \boldsymbol{f}=\boldsymbol{b}$, which leads to

$$
\begin{equation*}
\dot{\boldsymbol{v}}_{k}=U_{C}^{\top} \dot{\boldsymbol{w}}_{k}=U_{C}^{\top} \mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{f}\right]=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right] \tag{11}
\end{equation*}
$$

Unnormalized attention $\left(A:=\right.$ const). In this case, we have $\boldsymbol{b}=\sigma\left(\boldsymbol{z}_{m}\right) \circ \boldsymbol{x} / A$ and $L=$ $\operatorname{diag}\left(\sigma^{\prime}\left(\boldsymbol{z}_{m}\right) \circ \boldsymbol{x}\right) / A=\operatorname{diag}\left(\frac{\sigma^{\prime}\left(\boldsymbol{z}_{m}\right)}{\sigma\left(\boldsymbol{z}_{m}\right)}\right) \operatorname{diag}(\boldsymbol{b})$ and thus

$$
\begin{align*}
\dot{\boldsymbol{z}}_{m} & =\sum_{k} \mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} L^{\top} \boldsymbol{v}_{k}\right]=\operatorname{diag}\left(\frac{\sigma^{\prime}\left(\boldsymbol{z}_{m}\right)}{\sigma\left(\boldsymbol{z}_{m}\right)}\right) \sum_{k} \mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right] \circ \boldsymbol{v}_{k} \tag{12}\\
& =\operatorname{diag}\left(\frac{\sigma^{\prime}\left(\boldsymbol{z}_{m}\right)}{\sigma\left(\boldsymbol{z}_{m}\right)}\right) \sum_{k} \dot{\boldsymbol{v}}_{k} \circ \boldsymbol{v}_{k} \tag{13}
\end{align*}
$$

which leads to

$$
\begin{equation*}
\operatorname{diag}\left(\frac{\sigma\left(\boldsymbol{z}_{m}\right)}{\sigma^{\prime}\left(\boldsymbol{z}_{m}\right)}\right) \dot{\boldsymbol{z}}_{m}=\sum_{k} \dot{\boldsymbol{v}}_{k} \circ \boldsymbol{v}_{k} \tag{14}
\end{equation*}
$$

Therefore, for linear attention, $\sigma\left(\boldsymbol{z}_{m}\right) / \sigma^{\prime}\left(\boldsymbol{z}_{m}\right)=\boldsymbol{z}_{m}$, by integrating both sides, we have $\boldsymbol{z}_{m}^{2}(t)=$ $\sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$. For \exp attention, $\sigma\left(\boldsymbol{z}_{m}\right) / \sigma^{\prime}\left(\boldsymbol{z}_{m}\right)=1$, then by integrating both sides, we have $\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t)+\boldsymbol{c}$.

Softmax attention. In this case, we have $L=\operatorname{diag}(\boldsymbol{b})-\boldsymbol{b} \boldsymbol{b}^{\top}$. Therefore,

$$
\begin{equation*}
\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \operatorname{diag}(\boldsymbol{b})\right] U_{C}^{\top} \boldsymbol{w}_{k}=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right] \circ \boldsymbol{v}_{k}=\dot{\boldsymbol{v}}_{k} \circ \boldsymbol{v}_{k} \tag{15}
\end{equation*}
$$

where \circ is the Hadamard (element-wise) product. Now Therefore, we have:

$$
\begin{equation*}
\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}^{\top}\right] U_{C}^{\top} \boldsymbol{w}_{k}=\dot{\boldsymbol{v}}_{k}^{\top} \boldsymbol{v}_{k} \tag{16}
\end{equation*}
$$

Given the assumption that \boldsymbol{b} is uncorrelated with $\sum_{k} g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}$ (e.g., due to top-down gradient information), and let $\overline{\boldsymbol{b}}_{m}=\mathbb{E}_{q=m}[\boldsymbol{b}]$, we have:

$$
\begin{equation*}
\dot{\boldsymbol{z}}_{m}=\sum_{k} \dot{\boldsymbol{v}}_{k} \circ \boldsymbol{v}_{k}-\overline{\boldsymbol{b}}_{m} \dot{\boldsymbol{v}}_{k}^{\top} \boldsymbol{v}_{k} \tag{17}
\end{equation*}
$$

If we further assume that $\overline{\boldsymbol{b}}_{m}$ is constant over time, then we can integrate both side to get a close-form solution between $\boldsymbol{z}_{m}(t)$ and $\left\{\boldsymbol{v}_{k}(t)\right\}$:

$$
\begin{equation*}
\boldsymbol{z}_{m}(t)=\frac{1}{2} \sum_{k}\left(\boldsymbol{v}_{k}^{2}-\left\|\boldsymbol{v}_{k}\right\|_{2}^{2} \overline{\boldsymbol{b}}_{m}\right)+\boldsymbol{c} \tag{18}
\end{equation*}
$$

Theorem 2 (Linear Dynamics with Self-attention). With linear MLP activation and zero initialization, for exp attention any two tokens $l \neq l^{\prime}$ satisfy the following invariants:

$$
\begin{equation*}
\Delta_{l m}^{-1} \operatorname{erf}\left(v_{l}(t) / 2\right)=\Delta_{l^{\prime} m}^{-1} \operatorname{erf}\left(v_{l^{\prime}}(t) / 2\right) \tag{4}
\end{equation*}
$$

where $\Delta_{l m}=\mathbb{E}_{q=m}\left[g_{h_{k}} x_{l}\right]$ and $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$ is Gauss error function.
Proof. Due to the assumption, we have:

$$
\begin{equation*}
\dot{v}_{l}=\mathbb{E}_{q=m}\left[g_{h_{k}} x_{l}\right] \exp \left(z_{m l}\right) / A=\Delta_{l m} \exp \left(z_{m l}\right) / A \tag{19}
\end{equation*}
$$

where $\Delta_{l m}:=\mathbb{E}_{q=m}\left[g_{h_{k}} x_{l}\right]$. If $x_{l}[i]=\mathbb{P}(l \mid m, y[i])$, then $\Delta_{l m}=\mathbb{E}_{l, q=m}\left[g_{h_{k}}\right] \mathbb{P}(l \mid m)$. Note that for linear model, $\Delta_{l m}$ is a constant over time.

Plugging in the close-form solution for exp attention, the dynamics becomes

$$
\begin{equation*}
\dot{v}_{l}=\Delta_{l m} \exp \left(v_{l}^{2} / 2+c_{l}\right) / A \tag{20}
\end{equation*}
$$

Assuming $c_{l}=0$, then for any two tokens $l \neq l^{\prime}$, we get

$$
\begin{equation*}
\frac{\dot{v}_{l}}{\dot{v}_{l^{\prime}}}=\frac{\Delta_{l m} \exp \left(z_{m l}\right)}{\Delta_{l^{\prime} m} \exp \left(z_{m l^{\prime}}\right)}=\frac{\Delta_{l m} \exp \left(v_{l}^{2} / 2\right)}{\Delta_{l^{\prime} m} \exp \left(v_{l^{\prime}}^{2} / 2\right)} \tag{21}
\end{equation*}
$$

which can be integrated using $\operatorname{erf}(\cdot)$ function (i.e., Gaussian $\operatorname{CRF}: \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$):

$$
\begin{equation*}
\frac{\operatorname{erf}\left(v_{l}(t) / 2\right)}{\Delta_{l m}}=\frac{\operatorname{erf}\left(v_{l^{\prime}}(t) / 2\right)}{\Delta_{l^{\prime} m}}+c_{l l^{\prime}} \tag{22}
\end{equation*}
$$

if $\boldsymbol{v}(0)=0$, then $c_{l l^{\prime}}=0$.

E. 3 Dynamics of Nonlinear activations (Sec. (4)

E.3.1 Without self-attention (or equivalently, with uniform attention)

Lemma 1 (Expectation of Hyperplane function under Isotropic distribution). For any isotropic distribution $p(\boldsymbol{x}-\overline{\boldsymbol{x}})$ with mean $\overline{\boldsymbol{x}}$ in a subspace spanned by orthonormal bases R, if $\boldsymbol{v} \neq \mathbf{0}$, we have:

$$
\begin{equation*}
\mathbb{E}_{p}\left[\boldsymbol{x} \psi\left(\boldsymbol{v}^{\top} \boldsymbol{x}+\xi\right)\right]=\frac{\theta_{1}\left(r_{\boldsymbol{v}}\right)}{\|\boldsymbol{v}\|_{2}} \overline{\boldsymbol{x}}+\frac{\theta_{2}\left(r_{\boldsymbol{v}}\right)}{\|\boldsymbol{v}\|_{2}^{3}} R R^{\top} \boldsymbol{v}, \quad \mathbb{E}_{p}\left[\psi\left(\boldsymbol{v}^{\top} \boldsymbol{x}+\xi\right)\right]=\frac{\theta_{1}\left(r_{\boldsymbol{v}}\right)}{\|\boldsymbol{v}\|_{2}} \tag{23}
\end{equation*}
$$

where $r_{\boldsymbol{v}}:=\boldsymbol{v}^{\top} \overline{\boldsymbol{x}}+\xi$ is the (signed) distance between the distribution mean $\overline{\boldsymbol{x}}$ and the affine hyperplane $(\boldsymbol{v}, \xi) . \theta_{1}(r)$ and $\theta_{2}(r)$ only depends on ψ and the underlying distribution but not \boldsymbol{v}. Additionally, if $\psi(r)$ is monotonously increasing with $\psi(-\infty)=0, \psi(+\infty)=1$, then so does $\theta_{1}(r)$ and $\theta_{2}(r)>0$.

Proof. Note that \boldsymbol{x}^{\prime} is isotropic in span (R) and thus $p\left(\boldsymbol{x}^{\prime}\right)$ just depends on $\left\|\boldsymbol{x}^{\prime}\right\|$, we let $p_{0}: \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}satisfies $p_{0}\left(\left\|\boldsymbol{x}^{\prime}\right\|\right)=p\left(\boldsymbol{x}^{\prime}\right)$. Our goal is to calculate

$$
\begin{align*}
\mathbb{E}_{p}\left[\boldsymbol{x} \psi\left(\boldsymbol{w}^{\top} \boldsymbol{x}+\xi\right)\right] & =\int_{\operatorname{span}(R)} \boldsymbol{x} \psi\left(\boldsymbol{w}^{\top} \boldsymbol{x}+\xi\right) p(\boldsymbol{x}-\boldsymbol{\mu}) \mathrm{d} \boldsymbol{x} \tag{24}\\
& =\int_{\operatorname{span}(R)}\left(\boldsymbol{x}^{\prime}+\boldsymbol{\mu}\right) \psi\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime} \tag{25}
\end{align*}
$$

where $\boldsymbol{x}^{\prime}:=\boldsymbol{x}-\boldsymbol{\mu}$ is isotropic. Since $R R^{\top} \boldsymbol{w}$ is the projection of \boldsymbol{w} onto space span (R), we denote $\boldsymbol{v}:=R R^{\top} \boldsymbol{w}$ and $y^{\prime}:=\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}=\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}$ since \boldsymbol{x}^{\prime} lies in span (R). Then let S be any hyper-plane through \boldsymbol{v}, which divide span (R) into two symmetric part V_{+}and V_{-}(Boundary is zero measurement set and can be ignored), we have,

$$
\begin{align*}
P_{1} & :=\int_{\operatorname{span}(R)} \boldsymbol{x}^{\prime} \psi\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime} \tag{26}\\
& =\left(\int_{V_{+}}+\int_{V_{-}}\right) \boldsymbol{x}^{\prime} \psi\left(\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime} \tag{27}\\
& =2 \times \int_{V_{+}} \frac{\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}}{\|\boldsymbol{v}\|} \cdot \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|} \cdot \psi\left(\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime} \tag{28}\\
& =\left\{\int_{\operatorname{span}(R)} y^{\prime} \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime}\right\} \cdot \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|^{2}} \tag{29}
\end{align*}
$$

Eqn. 28 holds since for every $\boldsymbol{x}^{\prime} \in V_{+}$, we can always find unique $\boldsymbol{x}^{\prime \prime} \in V_{-}$defined as

$$
\begin{equation*}
\boldsymbol{x}^{\prime \prime}=-\left(\boldsymbol{x}^{\prime}-\frac{\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}\right)+\frac{\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}=\frac{2 y^{\prime}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}-\boldsymbol{x}^{\prime} \tag{30}
\end{equation*}
$$

where $\boldsymbol{x}^{\prime \prime}$ and \boldsymbol{x}^{\prime} satisfy $\left\|\boldsymbol{x}^{\prime \prime}\right\|=\left\|\boldsymbol{x}^{\prime}\right\|, \boldsymbol{v}^{\top} \boldsymbol{x}^{\prime \prime}=\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}$, and have equal reverse component $\pm\left(\boldsymbol{x}^{\prime}-\right.$ $\frac{\boldsymbol{v}^{\top} \boldsymbol{x}^{\prime}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}$) perpendicular to \boldsymbol{v}. Thus for the \boldsymbol{x}^{\prime} in Eqn. 27 . only the component parallel to \boldsymbol{v} remains. Furthermore, let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}, \boldsymbol{v} /\|\boldsymbol{v}\|\right\}$ to be an orthonormal bases of $\operatorname{span}(R)$ and denote $x_{i}^{\prime}:=$ $\boldsymbol{u}_{i}^{\top} \boldsymbol{x}^{\prime}, \forall i \in[n-1]$, then we have

$$
\begin{align*}
P_{1} & =\left\{\int_{y^{\prime}} y^{\prime} \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) \mathrm{d}\left(\frac{y^{\prime}}{\|\boldsymbol{v}\|}\right)\left[\int_{x_{1}^{\prime}} \ldots \int_{x_{n-1}^{\prime}} p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} x_{1}^{\prime} \ldots \mathrm{d} x_{n-1}^{\prime}\right]\right\} \cdot \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|^{2}} \tag{31}\\
& =:\left\{\int_{-\infty}^{+\infty} y^{\prime} \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) p_{n}\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right\} \cdot \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|^{3}} \tag{32}
\end{align*}
$$

Here $p_{n}\left(y^{\prime}\right)$ is the probability density function of y^{\prime} obtained from \boldsymbol{x}^{\prime}. For the trivial case where $n=1$, clearly $p_{n}\left(y^{\prime}\right)=p_{0}\left(\left|y^{\prime}\right|\right)=p\left(y^{\prime}\right)$. If $n \geq 2$, it can be further calculated as:

$$
\begin{align*}
p_{n}\left(y^{\prime}\right) & =\int_{x_{1}^{\prime}} \cdots \int_{x_{n-1}^{\prime}} p_{0}\left(\sqrt{\left(x_{1}^{\prime}\right)^{2}+\ldots+\left(x_{n-1}^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}\right) \cdot \mathrm{d} x_{1}^{\prime} \ldots \mathrm{d} x_{n-1}^{\prime} \tag{33}\\
& =\int_{0}^{+\infty} p_{0}\left(\sqrt{y^{\prime 2}+l^{2}}\right) \cdot S_{n-1}(l) \mathrm{d} l \tag{34}\\
& =\frac{(n-1) \pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} \int_{0}^{+\infty} p_{0}\left(\sqrt{y^{\prime 2}+l^{2}}\right) \cdot l^{n-2} \mathrm{~d} l \tag{35}\\
& = \begin{cases}\frac{2^{n / 2} \pi^{n / 2-1}}{(n-3)!!} \int_{0}^{+\infty} p_{0}\left(\sqrt{y^{\prime 2}+l^{2}}\right) \cdot l^{n-2} \mathrm{~d} l, & n \text { is even } \\
\frac{2 \pi^{(n-1) / 2}}{\left(\frac{n-3}{2}\right)!} \int_{0}^{+\infty} p_{0}\left(\sqrt{y^{\prime 2}+l^{2}}\right) \cdot l^{n-2} \mathrm{~d} l, & n \text { is odd }\end{cases} \tag{36}
\end{align*}
$$

where $S_{n}(R)=\frac{n \pi^{n / 2}}{\Gamma(n / 2+1)} R^{n-1}$ represents the surface area of an n-dimensional hyper-sphere of radius l. Γ denotes the gamma function and we use the property that $\Gamma(n+1)=n!$ and $\Gamma\left(n+\frac{1}{2}\right)=$ $(2 n-1)!!\sqrt{\pi} 2^{-n}$ for any $n \in \mathbb{N}^{+}$.
Similarly, for another term we have

$$
\begin{align*}
P_{2} & =\int_{\operatorname{span}(R)} \boldsymbol{\mu} \cdot \psi\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime}+r_{\boldsymbol{w}}\right) p\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime} \tag{37}\\
& =\left\{\int_{-\infty}^{+\infty} \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) p_{n}\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right\} \cdot \frac{\boldsymbol{\mu}}{\|\boldsymbol{v}\|} \tag{38}
\end{align*}
$$

Finally, let

$$
\begin{align*}
\theta_{1}\left(r_{\boldsymbol{w}}\right) & :=\int_{-\infty}^{+\infty} \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) p_{n}\left(y^{\prime}\right) \mathrm{d} y^{\prime} \tag{40}\\
\theta_{2}\left(r_{\boldsymbol{w}}\right) & :=\int_{-\infty}^{+\infty} y^{\prime} \cdot \psi\left(y^{\prime}+r_{\boldsymbol{w}}\right) p_{n}\left(y^{\prime}\right) \mathrm{d} y^{\prime} \tag{41}
\end{align*}
$$

Then we arrive at the conclusion.
Lemma 2 (Dynamics of nonlinear activation with uniform attention). If \boldsymbol{x} is sampled from a mixture of C isotropic distributions centered at $\left[\overline{\boldsymbol{x}}_{1}, \ldots, \overline{\boldsymbol{x}}_{C}\right]$, and gradient $g_{h_{k}}$ are constant within each mixture, then:

$$
\begin{align*}
\dot{\boldsymbol{v}} & =\Delta_{m}=\frac{1}{\|\boldsymbol{v}\|_{2}} \sum_{j} a_{j} \theta_{1}\left(r_{j}\right) \overline{\boldsymbol{x}}_{j}+\frac{1}{\|\boldsymbol{v}\|_{2}^{3}} \sum_{j} a_{j} \theta_{2}\left(r_{j}\right) \boldsymbol{v} \tag{42}\\
\dot{\xi} & :=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime}\right]=\frac{1}{\|\boldsymbol{v}\|_{2}} \sum_{j} a_{j} \theta_{1}\left(r_{j}\right) \tag{43}
\end{align*}
$$

here $a_{j}:=\mathbb{E}_{q=m, c=j}\left[g_{h_{k}}\right] \mathbb{P}[c=j], r_{j}:=\boldsymbol{v}^{\top} \overline{\boldsymbol{x}}_{j}+\xi$ is the distance to $\overline{\boldsymbol{x}}_{j}$ and the bias term $\xi(t):=\int_{0}^{t} \mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime}\right] \mathrm{d} t . \theta_{1}$ and θ_{2} only depends on data distribution and nonlinearity.

Proof. Since backpropagated gradient $g_{h_{k}}$ is constant within each of its mixed components, we have:

$$
\begin{align*}
\Delta_{m} & :=\mathbb{E}_{q=m}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right]=\sum_{j} \mathbb{E}_{q=m, c=j}\left[g_{h_{k}} h_{k}^{\prime} \boldsymbol{b}\right] \mathbb{P}[c=j] \tag{44}\\
& =\sum_{j} \mathbb{E}_{q=m, c=j}\left[g_{h_{k}}\right] \mathbb{P}[c=j] \mathbb{E}_{q=m, c=j}\left[h_{k}^{\prime} \boldsymbol{b}\right] \tag{45}\\
& =\sum_{j} a_{j} \mathbb{E}_{\boldsymbol{x} \sim p\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)}\left[\boldsymbol{b} \phi^{\prime}\left(\boldsymbol{w}^{\top} \boldsymbol{f}\right)\right] \tag{46}
\end{align*}
$$

Let $\psi=\phi^{\prime}$. Note that $\boldsymbol{w}^{\top} \boldsymbol{f}=\boldsymbol{w}^{\top}\left(U_{c} \boldsymbol{b}+\boldsymbol{u}_{q}\right)=\boldsymbol{v}^{\top} \boldsymbol{b}+\xi$ and with uniform attention $\boldsymbol{b}=\boldsymbol{x}$, we have:

$$
\begin{equation*}
\Delta_{m}=\sum_{j} a_{j} \mathbb{E}_{\boldsymbol{x} \sim p\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)}\left[\boldsymbol{x} \psi\left(\boldsymbol{v}^{\top} \boldsymbol{x}+\xi\right)\right] \tag{47}
\end{equation*}
$$

Using Lemma 1 leads to the conclusion.

Remarks. Note that if ϕ is linear, then $\psi \equiv 1, \theta_{1} \equiv 1$ and $\theta_{2} \equiv 0$. In this case, θ_{1} is a constant, which marks a key difference between linear and nonlinear dynamics.
Lemma 3 (Property of θ_{1}, θ_{2} with homogeneous activation). If $\phi(x)=x \phi^{\prime}(x)$ is a homogeneous activation function and $\psi=\phi^{\prime}$, then we have:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\theta_{2}(r)+r \theta_{1}(r)\right)=\theta_{1}(r) \tag{48}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\theta_{2}(r)=F(r)-r \theta_{1}(r)=\theta_{2}(0)-r \theta_{1}(r)+\int_{0}^{r} \theta_{1}\left(r^{\prime}\right) \mathrm{d} r^{\prime} \tag{49}
\end{equation*}
$$

where $F(r):=\theta_{2}(0)+\int_{0}^{r} \theta_{1}\left(r^{\prime}\right) \mathrm{d} r^{\prime}$ is a monotonous increasing function with $F(+\infty)=+\infty$. Furthermore, if $\lim _{r \rightarrow-\infty} r \theta_{1}(r)=0$, then $F(-\infty)=0$ and thus $F(r) \geq 0$.

Proof. Simply verify Eqn. 48 is true.
Overall the dynamics can be quite complicated. We consider a special $C=2$ case with one positive (a_{+}, r_{+}and $\overline{\boldsymbol{x}}_{+}$) and one negative (a_{-}, r_{-}and $\overline{\boldsymbol{x}}_{-}$) distribution.
Lemma 4 (Existence of critical point of dynamics with ReLU activation). For any homogeneous activation $\phi(x)=x \phi^{\prime}(x)$, any stationary point of Eqn. 42 must satisfy $\sum_{j} a_{j} F\left(r_{j}\right)=0$, where $F(r):=\theta_{2}(0)+\int_{0}^{r} \theta_{1}\left(r^{\prime}\right) \mathrm{d} r^{\prime}$ is a monotonous increasing function.

Proof. We rewrite the dynamics equations for the nonlinear activation without attention case:

$$
\begin{equation*}
\dot{\boldsymbol{v}}=\frac{1}{\|\boldsymbol{v}\|_{2}} \sum_{j} a_{j} \theta_{1}\left(r_{j}\right) \overline{\boldsymbol{x}}_{j}+\frac{1}{\|\boldsymbol{v}\|_{2}^{3}} \sum_{j} a_{j} \theta_{2}\left(r_{j}\right) \boldsymbol{v}, \quad \dot{\xi}=\frac{1}{\|\boldsymbol{v}\|_{2}} \sum_{j} a_{j} \theta_{1}\left(r_{j}\right) \tag{50}
\end{equation*}
$$

Notice that $\overline{\boldsymbol{x}}_{j}^{\top} \boldsymbol{v}=r_{j}-\xi$, this gives that:

$$
\begin{align*}
\|\boldsymbol{v}\|_{2} \boldsymbol{v}^{\top} \dot{\boldsymbol{v}} & =\sum_{j} a_{j} \theta_{1}\left(r_{j}\right)\left(r_{j}-\xi\right)+\sum_{j} a_{j} \theta_{2}\left(r_{j}\right) \tag{51}\\
& =\sum_{j} a_{j}\left(r_{j} \theta_{1}\left(r_{j}\right)+\theta_{2}\left(r_{j}\right)\right)-\xi \sum_{j} a_{j} \theta_{1}\left(r_{j}\right) \tag{52}\\
& =\sum_{j} a_{j} F\left(r_{j}\right)-\|\boldsymbol{v}\|_{2} \xi \dot{\xi} \tag{53}
\end{align*}
$$

in which the last equality is because the dynamics of ξ, and due to Lemma 3 Now we leverage the condition of stationary points $(\dot{\boldsymbol{v}}=0$ and $\dot{\xi}=0$), we arrive at the necessary conditions at the stationary points:

$$
\begin{equation*}
\sum_{j} a_{j} F\left(r_{j}\right)=0 \tag{54}
\end{equation*}
$$

Note that in general, the scalar condition above is only necessary but not sufficient. Eqn. 50 has $M_{c}+1$ equations but we only have two scalar equations (Eqn. 50 and $\|\boldsymbol{v}\|_{2} \dot{\xi}=\sum_{j} a_{j} \theta_{1}\left(r_{j}\right)=$ 0). However, we can get a better characterization of the stationary points if there are only two components a_{+}and a_{-}:

A special case: one positive and one negative samples In this case, we have (here $r_{+}:=\boldsymbol{v}^{\top} \overline{\boldsymbol{x}}_{+}+\xi$ and $\left.r_{-}:=\boldsymbol{v}^{\top} \overline{\boldsymbol{x}}_{-}+\xi\right)$:

$$
\begin{equation*}
a_{+} F\left(r_{+}\right)-a_{-} F\left(r_{-}\right)=0 \tag{55}
\end{equation*}
$$

Figure 9: The plot of function $G(y)$.

So the sufficient and necessary condition for (\boldsymbol{v}, ξ) to be the critical point is that

$$
\begin{equation*}
\frac{F\left(r_{+}\right)}{F\left(r_{-}\right)}=\frac{\theta_{1}\left(r_{+}\right)}{\theta_{1}\left(r_{-}\right)}=\frac{a_{-}}{a_{+}} \tag{56}
\end{equation*}
$$

Without loss of generality, we consider the case where ϕ is ReLU and $\psi(r)=\mathbf{I}[r>0]$. Note that θ_{1} is a monotonously increasing function, we have $\theta_{1}^{-1}:(0,1) \rightarrow \mathbb{R}$ such that $\theta_{1}^{-1}\left(\theta_{1}(r)\right)=r$ for any $r \in \mathbb{R}$. And we denote $G:(0,1) \rightarrow \mathbb{R}$ which satisfies:

$$
\begin{equation*}
G(y)=F\left(\theta_{1}^{-1}(y)\right) \tag{57}
\end{equation*}
$$

and $y_{+}:=\theta_{1}^{-1}\left(r_{+}\right), y_{-}:=\theta_{1}^{-1}\left(r_{-}\right)$. Then if we can find some line $l_{k}: y=k x$ for some $k \in \mathbb{R}$ such that l_{k} has at least two points of intersection $\left(y_{i}, k y_{i}\right), i=1,2$ with curve G and $a_{-} / a_{+}=y_{1} / y_{2}$ or $a_{-} / a_{+}=y_{2} / y_{1}$, then we can always find some \boldsymbol{v} and ξ such that Eqn. 56 holds. On the other hand, it's easy to find that (Fig. 9):

$$
\begin{aligned}
\left.\frac{\mathrm{d} G(y)}{\mathrm{d} y}\right|_{y=\theta_{1}(x)} & =\frac{\theta_{1}(x)}{p_{n}(x)}>0 \\
\lim _{y \rightarrow 1} G(y) & =\lim _{r \rightarrow+\infty} F(r)=+\infty \\
\lim _{y \rightarrow 0} G(y) & =\lim _{r \rightarrow-\infty} F(r)=\lim _{r \rightarrow-\infty} r \theta_{1}(r)
\end{aligned}
$$

Note that since $G\left(y_{+}\right) / G\left(y_{-}\right)=y_{+} / y_{-}$, we have $G\left(y_{+}\right) / y_{+}=G\left(y_{-}\right) / y_{-}$and thus $\left(y_{+}, G\left(y_{+}\right)\right)$ and $\left(y_{-}, G\left(y_{-}\right)\right)$are lying at the same straight line.
For finding the sufficient condition, we focus on the range $x \geq 0$ and $\theta_{1}(x) \geq \frac{1}{2}$. Then in order that line $l_{k}: y=k x$ for some $k \in \mathbb{R}$ has at least two points of intersection with curve G, we just need to let

$$
\begin{equation*}
\frac{G\left(\tilde{\theta}_{1}(0)\right)}{\tilde{\theta}_{1}(0)} \geq\left.\frac{\mathrm{d} G(y)}{\mathrm{d} y}\right|_{y=\tilde{\theta}_{1}(0)} \Longleftrightarrow \tilde{\theta}_{2}(0) \cdot p_{n}(0)=p_{n}(0) \int_{0}^{+\infty} y^{\prime} p_{n}\left(y^{\prime}\right) \mathrm{d} y^{\prime} \geq \frac{1}{4} \tag{58}
\end{equation*}
$$

For convenience, let $S_{l_{k}}:=\{(x, y) \mid y=k x\}$ and $S_{G}:=\{(x, y) \mid y=G(x)\}$ to be the image of the needed functions. Denote $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}: \pi_{1}((x, y))=x$ for any $x, y \in \mathbb{R}, \pi_{1}(S)=\left\{\pi_{1}(s) \mid \forall s \in\right.$ $S\}$. Therefore, if Eqn. 58 holds, then the following set \mathcal{S} will not be empty.

$$
\begin{equation*}
\mathcal{S}:=\bigcup_{k \in \mathbb{R}}\left\{\left.\frac{x_{2}}{x_{1}} \right\rvert\, \forall x_{1} \neq x_{2} \in \pi_{1}\left(S_{l_{k}} \cap S_{G}\right)\right\} \tag{59}
\end{equation*}
$$

And Eqn. 42 has critical points if $a_{+} / a_{-} \in \mathcal{S}$. And it's easy to find that $\forall s \in \mathcal{S}, s \in\left(\frac{1}{2}, 1\right) \cup(1,2)$. Similar results also hold for other homogeneous activations.

Pythia-160M	
A	Every morning, as the city slowly awakens with the distant hum of traffic and the chirping of sparrows, John takes a moment to savor the peaceful ambiance before he walks his dog, Max, around the block, greeting familiar faces and enjoying the fresh air.
B	In the realm of physics, when water is subjected to a temperature of $100^{\circ} \mathrm{C}$ at one atmosphere of pressure, it undergoes a phase transition from liquid to gas, producing steam that has long been harnessed for various technological and culinary applications.
A	The Sahara Desert, stretching across North Africa, is the third largest desert in the world and is renowned for its vast sand dunes and scorching temperatures. Despite its harsh conditions, it's home to various unique species that have adapted to its extreme environment.
B	Novels, beyond their entertainment value, serve as mirrors to society, often reflecting cultural, social, and political nuances of their time. Authors like George Orwell and Jane Austen used their works to critique and provide insights into the world they lived in.
	Pythia-70M
A	Cats are known for their independent nature. Many people appreciate them for their low-maintenance lifestyle, often content with just a comfortable spot to nap and an occasional playtime.
B	Rainforests are vital for the Earth's ecosystem. They provide a habitat for countless species, many of which are not found anywhere else. Additionally, they play a crucial role in regulating global climate and producing oxygen.
A	The Eiffel Tower, an iconic landmark in Paris, was originally constructed as a temporary exhibit for the 1889 World's Fair. Over the years, it has become a symbol of the city's romance and architectural prowess, attracting millions of tourists annually.
B	The human digestive system is a complex network of organs working together to break down food into essential nutrients. Beginning with the mouth and ending at the small intestine, each part plays a crucial role in ensuring our bodies receive the energy and vitamins needed for daily function.

Figure 10: Examples of pattern superposition: the same neuron in MLP hidden layers can be activated by multiple irrelevant combinations of tokens (A and B in each group, e.g., the same neuron activated by both "Every morning" and "In the realm of physics"), in Pythia-70M and Pythia-160M models. Bold tokens are what the query token attends to.

Proof. For any $x>0$, we have

$$
\begin{align*}
\phi^{\prime}(x+) & =\lim _{\delta x \rightarrow 0+} \frac{\phi(x+\delta x)-\phi(x)}{\delta x} \tag{62}\\
& =\lim _{\delta x \rightarrow 0+} \frac{\phi^{\prime}(x+\delta x)-\phi^{\prime}(x)}{\delta x} \cdot x+\lim _{\delta x \rightarrow 0} \phi^{\prime}(x+\delta x) \tag{63}\\
& =x \cdot \lim _{\delta x \rightarrow 0+} \frac{\phi^{\prime}(x+\delta x)-\phi^{\prime}(x)}{\delta x}+\phi^{\prime}(x+) \tag{64}
\end{align*}
$$

So for any $x>0, \phi^{\prime}(x)$ must be constant, and similar results hold for $x<0$. Then by direct calculation, we can get the results.

Theorem 3 (Dynamics of lower MLP layer, nonlinear activation and uniform attention). If the activation function ϕ is homogeneous (i.e., $\left.\phi(x)=\phi^{\prime}(x) x\right)$, and the input is sampled from a mixture of two isotropic distributions centered at $\overline{\boldsymbol{x}}_{+}$and $\overline{\boldsymbol{x}}_{-}=0$ where the radial density function has bounded derivative. Then the dynamics near to the critical point $\boldsymbol{\mu} \neq \mathbf{0}$, names $\|\boldsymbol{v}-\boldsymbol{\mu}\| \leq \gamma$ for some $\gamma=\gamma(\boldsymbol{\mu}) \ll 1$, can be written as the following (where $\boldsymbol{\mu} \propto \overline{\boldsymbol{x}}_{+}$):

$$
\begin{equation*}
\dot{\boldsymbol{v}}=\operatorname{sgn}\left(\boldsymbol{\mu}^{\top} \overline{\boldsymbol{x}}_{+}\right)\left\{\beta_{1}(\boldsymbol{\mu}) \cdot I+\beta_{2}(\boldsymbol{\mu}) \cdot \boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right\}(1+\lambda(\boldsymbol{\mu}, \gamma)) \cdot(\boldsymbol{\mu}-\boldsymbol{v}) \tag{5}
\end{equation*}
$$

Here $|\lambda(\boldsymbol{\mu}, \gamma)| \ll 1$ and $\beta_{1}(\boldsymbol{\mu})>0, \beta_{2}(\boldsymbol{\mu})$ are the constant functions of $\boldsymbol{\mu}$.

Proof. Assume that $\left(\boldsymbol{\mu}, \xi^{*}\right)$ is the critical point of the non-linear dynamics equations Eq. 50 . Note that if we fix $\xi=\xi^{*}$, then $\dot{\boldsymbol{v}}$ is the function of \boldsymbol{v}. For convenience, let $f_{i}(\boldsymbol{v})$ to be the i-th element of $\dot{\boldsymbol{v}}(\boldsymbol{v})$. Then using $\dot{\boldsymbol{v}}(\boldsymbol{\mu})=\mathbf{0}$, we get the following equation from the Taylor expansion of f_{i} :

$$
\begin{equation*}
f_{i}(\boldsymbol{v})=f_{i}(\boldsymbol{v})-f_{i}(\boldsymbol{\mu})=\nabla_{\boldsymbol{v}} f_{i}(\boldsymbol{\mu})^{\top}(\boldsymbol{v}-\boldsymbol{\mu})+\frac{1}{2}(\boldsymbol{v}-\boldsymbol{\mu})^{\top} \boldsymbol{H}_{i}\left(\boldsymbol{v}^{\prime}\right)(\boldsymbol{v}-\boldsymbol{\mu}) \tag{66}
\end{equation*}
$$

Here $\boldsymbol{v}^{\prime} \in \mathbb{R}^{\operatorname{dim}(\boldsymbol{v})}$ lie in the space $L_{\boldsymbol{\mu}, \boldsymbol{v}}:=\{\boldsymbol{u} \mid \boldsymbol{u}=t \boldsymbol{\mu}+(1-t) \boldsymbol{v}, t \in[0,1]\}$. And \boldsymbol{H}_{i} is the Hessian matrix of f_{i}, i.e., $\boldsymbol{H}_{i j k}=\frac{\partial^{2} f_{i}}{\partial v_{j} \partial v_{k}}$. Note that $r_{+}=\boldsymbol{v}^{T} \overline{\boldsymbol{x}}_{+}+\xi$, from direct calculation, we have

$$
\begin{align*}
\frac{\partial}{\partial v_{j}}\left[\frac{\theta_{1}\left(r_{+}\right)}{\|\boldsymbol{v}\|^{p}}\right] & =\frac{1}{\|\boldsymbol{v}\|^{p+2}}\left[\left.\frac{\mathrm{~d} \theta_{1}}{\mathrm{~d} r}\right|_{r_{+}} \times\left(\bar{x}_{+}\right)_{j}\|\boldsymbol{v}\|^{2}-p \cdot v_{j} \cdot \theta_{1}\left(r_{+}\right)\right] \tag{67}\\
\frac{\partial}{\partial v_{j}}\left[\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|^{p}}\right] & =\frac{1}{\|\boldsymbol{v}\|^{p+2}}\left[\|\boldsymbol{v}\|^{2} \boldsymbol{e}_{j}-p \cdot v_{j} \cdot \boldsymbol{v}\right] \tag{68}\\
\frac{\partial}{\partial v_{j}}\left[\frac{\theta_{2}\left(r_{+}\right)}{\|\boldsymbol{v}\|^{p}} \boldsymbol{v}\right] & \left.=\frac{1}{\|\boldsymbol{v}\|^{p+2}}\left\{\left[\left.\frac{\mathrm{~d} \theta_{2}}{\mathrm{~d} r}\right|_{r_{+}}\left(\bar{x}_{+}\right)_{j}\|\boldsymbol{v}\|^{2}-p \cdot v_{j} \theta_{2}\left(r_{+}\right)\right]\right] \boldsymbol{v}+\theta_{2}\left(r_{+}\right)\|\boldsymbol{v}\|^{2} \boldsymbol{e}_{j}\right\} \tag{69}\\
\frac{\partial \dot{\boldsymbol{v}}}{\partial v_{j}} & =\frac{\partial}{\partial v_{j}}\left\{\frac{1}{\|\boldsymbol{v}\|} a_{+} \theta_{1}\left(r_{+}\right) \overline{\boldsymbol{x}}_{+}+\frac{1}{\|\boldsymbol{v}\|^{3}}\left[a_{+} \theta_{2}\left(r_{+}\right)-a_{-} \theta_{2}\left(\xi^{*}\right)\right] \boldsymbol{v}\right\} \tag{70}
\end{align*}
$$

Combining Lemma 5 and the fact that the radial density distribution has a bounded derivative, we know $\theta_{i}^{\prime}\left(r_{+}\right), \theta_{i}^{\prime \prime}\left(r_{+}\right), i=1,2$ are bounded. Then from Eqn. 67, 68, 69, 70, we know $\nabla_{\boldsymbol{v}} f_{i}(\boldsymbol{\mu})$ is bounded. And it's similar to prove that for any given $\boldsymbol{v}^{\prime} \in L_{\boldsymbol{\mu}, \boldsymbol{v}}$ and any i, all the elements of $\boldsymbol{H}_{i, j, k}$ are bounded by some constant $\bar{H}_{i}(\boldsymbol{\mu},\|\boldsymbol{v}-\boldsymbol{\mu}\|)$ and $\bar{H}=\max _{i} \bar{H}_{i}$. And thus we can find some $\gamma=\gamma(\boldsymbol{\mu}) \ll 1$ such that once $\|\boldsymbol{v}-\boldsymbol{\mu}\| \leq \gamma$, we have

$$
\begin{equation*}
\left(\nabla_{\boldsymbol{v}} f_{i}(\boldsymbol{\mu})\right)_{j} \gg \frac{\bar{H}(\boldsymbol{\mu}, \gamma)}{2}(\boldsymbol{v}-\boldsymbol{\mu})^{T} \mathbf{1}, \quad \forall j \tag{71}
\end{equation*}
$$

And thus the conclusion holds. For the concrete form of $C(\boldsymbol{\mu})$, using Eqn. 67, 68, 69, 70 and the fact that $\dot{\boldsymbol{v}}(\boldsymbol{\mu})=\mathbf{0}, \boldsymbol{\mu}=s_{\boldsymbol{\mu}} \cdot\|\boldsymbol{\mu}\| \cdot \frac{\overline{\boldsymbol{x}}_{+}}{\left\|\overline{\boldsymbol{x}}_{+}\right\|}$where $s_{\boldsymbol{\mu}}=\operatorname{sgn}\left(\boldsymbol{\mu}^{\top} \overline{\boldsymbol{x}}_{+}\right)$depends on $\boldsymbol{\mu}$, we can obtain

$$
\begin{equation*}
C(\boldsymbol{\mu})=\beta_{1}(\boldsymbol{\mu}) \cdot I+\beta_{2}(\boldsymbol{\mu}) \cdot \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \tag{72}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta_{1}(\boldsymbol{\mu})=s_{\boldsymbol{\mu}} \cdot \frac{a_{+}\left\|\overline{\boldsymbol{x}}_{+}\right\|}{\|\boldsymbol{\mu}\|^{2}} \cdot \theta_{1}\left(r_{+}^{*}\right)>0 \tag{73}\\
& \beta_{2}(\boldsymbol{\mu})=s_{\boldsymbol{\mu}} \cdot \frac{a_{+}\left\|\overline{\boldsymbol{x}}_{+}\right\|}{\|\boldsymbol{\mu}\|^{4}} \cdot\left(\left.\xi^{*} \frac{\mathrm{~d} \theta_{1}}{\mathrm{~d} r}\right|_{r_{+}^{*}}-2 \theta_{1}\left(r_{+}^{*}\right)\right) \tag{74}
\end{align*}
$$

So the necessary condition for $C(\boldsymbol{\mu})$ to be a positive-definite matrix is that $s_{\boldsymbol{\mu}}=\operatorname{sgn}\left(\boldsymbol{\mu}^{\top} \boldsymbol{x}\right)>0$.

E.4.1 With self-attention

Lemma 6. Let $g(y):=\frac{1-e^{-y^{2}}}{y}$. Then $\max _{y \geq 0} g(y) \leq \frac{1}{\sqrt{2}}$.

Proof. Any of its stationary point y_{*} must satisfies $g_{y}^{\prime}\left(y_{*}\right)=0$, which gives:

$$
\begin{equation*}
e^{-y_{*}^{2}}=\frac{1}{2 y_{*}^{2}+1} \tag{75}
\end{equation*}
$$

Therefore, at any stationary points, we have:

$$
\begin{equation*}
g\left(y_{*}\right)=\frac{2 y_{*}}{2 y_{*}^{2}+1}=\frac{2}{2 y_{*}+y_{*}^{-1}} \leq \frac{1}{\sqrt{2}} \tag{76}
\end{equation*}
$$

since $g(0)=g(+\infty)=0$, the conclusion follows.
Lemma 7 (Bound of Gaussian integral). Let $G(y):=e^{-y^{2} / 2} \int_{0}^{y} e^{x^{2} / 2} \mathrm{~d} x$, then $0 \leq G(y) \leq 1$ for $y \geq 0$.

Proof. $G(y) \geq 0$ is obvious. Note that

$$
G(y):=e^{-y^{2} / 2} \int_{0}^{y} e^{x^{2} / 2} \mathrm{~d} x \leq e^{-y^{2} / 2} \int_{0}^{y} e^{x y / 2} \mathrm{~d} x=\frac{2}{y}\left(1-e^{-y^{2} / 2}\right)=\sqrt{2} g(y / \sqrt{2})
$$

Applying Lemma6gives the conclusion.
Theorem 4 (Convergence speed of salient vs. non-salient components). Let $\delta_{j}(t):=1-v_{j}(t) / \mu_{j}$ be the convergence metric for component $j\left(\delta_{j}(t)=0\right.$ means that the component j converges). For the nonlinear dynamics with attention (Eqn. 6), if $\boldsymbol{v}(0)=0$ (zero-initialization), then

$$
\begin{equation*}
\frac{\ln 1 / \delta_{j}(t)}{\ln 1 / \delta_{k}(t)}=\frac{e^{\mu_{j}^{2} / 2}}{e^{\mu_{k}^{2} / 2}}(1+\Lambda(t)) \tag{7}
\end{equation*}
$$

Here $\Lambda(t)=\lambda_{j k}(t) \cdot e^{\mu_{k}^{2} / 2} \ln ^{-1}\left(1 / \delta_{k}(t)\right)$ where $\left|\lambda_{j k}(t)\right| \leq \sqrt{2 \pi}+2$. So when $\delta_{k}(t) \ll$ $\exp \left[-(\sqrt{2 \pi}+2) \exp \left(-\mu_{k}^{2}\right)\right]$, we have $|\Lambda(t)| \ll 1$.

Proof. We first consider when $\boldsymbol{\mu}>0$. We can write down the dynamics in a component wise manner:

$$
\begin{equation*}
\frac{\dot{v}_{j}}{\dot{v}_{k}}=\frac{\left(\mu_{j}-v_{j}\right) e^{v_{j}^{2} / 2}}{\left(\mu_{k}-v_{k}\right) e^{v_{k}^{2} / 2}} \tag{77}
\end{equation*}
$$

which gives the following separable form:

$$
\begin{equation*}
\frac{\dot{v}_{j} e^{-v_{j}^{2} / 2}}{\mu_{j}-v_{j}}=\frac{\dot{v}_{k} e^{-v_{k}^{2} / 2}}{\mu_{k}-v_{k}} \tag{78}
\end{equation*}
$$

Let

$$
\begin{equation*}
F(r, \mu):=\int_{0}^{r \mu} \frac{e^{-v^{2} / 2}}{\mu-v} \mathrm{~d} v=\int_{0}^{r} \frac{e^{-\mu^{2} x^{2} / 2}}{1-x} \mathrm{~d} x \quad(x=v / \mu) \tag{79}
\end{equation*}
$$

Then the dynamics must satisfy the following equation at time t :

$$
\begin{equation*}
F\left(r_{j}(t), \mu_{j}\right)=F\left(r_{k}(t), \mu_{k}\right) \tag{80}
\end{equation*}
$$

where $r_{j}(t):=v_{j}(t) / \mu_{j} \leq 1$. This equation implicitly gives the relationship between $r_{j}(t)$ and $r_{k}(t)$ (and thus $\delta_{j}(t)$ and $\delta_{k}(t)$). Now the question is how to bound $F(r, \mu)$, which does not have close-form solutions.

Note that we have:

$$
\begin{align*}
\frac{\partial F}{\partial \mu} & =-\mu \int_{0}^{r} \frac{x^{2} e^{-\mu^{2} x^{2} / 2}}{1-x} \mathrm{~d} x \tag{81}\\
& =\mu \int_{0}^{r} \frac{1-x^{2}}{1-x} e^{-\mu^{2} x^{2} / 2} \mathrm{~d} x-\mu \int_{0}^{r} \frac{e^{-\mu^{2} x^{2} / 2}}{1-x} \mathrm{~d} x \tag{82}\\
& =\mu \int_{0}^{r}(1+x) e^{-\mu^{2} x^{2} / 2} \mathrm{~d} x-\mu F(r, \mu) \tag{83}\\
& =\sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\frac{r \mu}{\sqrt{2}}\right)+\frac{1}{\mu}\left(1-e^{-r^{2} \mu^{2} / 2}\right)-\mu F(r, \mu) \tag{84}
\end{align*}
$$

Let $\zeta(r, \mu):=\sqrt{\pi / 2} \operatorname{erf}(r \mu / \sqrt{2})+\frac{1}{\mu}\left(1-e^{-r^{2} \mu^{2} / 2}\right)$, applying Lemma 6 , we have $0 \leq \zeta(r, \mu) \leq$ $\sqrt{\pi / 2}+\sqrt{2} r / \sqrt{2} \leq \sqrt{\pi / 2}+1$ is uniformly bounded (note that $r \leq 1$). Intergrating both side and we have:

$$
\begin{align*}
\frac{\partial}{\partial \mu}\left(e^{\mu^{2} / 2} F(r, \mu)\right) & =\zeta(r, \mu) e^{\mu^{2} / 2} \tag{85}\\
F(r, \mu) & =e^{-\mu^{2} / 2} F(r, 0)+e^{-\mu^{2} / 2} \int_{0}^{\mu} \zeta(r, x) e^{x^{2} / 2} \mathrm{~d} x \tag{86}
\end{align*}
$$

Note that $F(r, 0)=\ln \frac{1}{1-r}$ has close-form solution. Using mean-value theorem, we have:

$$
\begin{equation*}
F(r, \mu)=e^{-\mu^{2} / 2} \ln \frac{1}{1-r}+\zeta(r, \bar{\mu}) e^{-\mu^{2} / 2} \int_{0}^{\mu} e^{x^{2} / 2} \mathrm{~d} x \tag{87}
\end{equation*}
$$

Applying Lemma 7, we have the following bound for $F(r, \mu)$:

$$
\begin{equation*}
0 \leq F(r, \mu)-e^{-\mu^{2} / 2} \ln \frac{1}{1-r} \leq \sqrt{\pi / 2}+1 \tag{88}
\end{equation*}
$$

When r is close to 1 (near convergence), the term $e^{-\mu^{2}} \ln \frac{1}{1-r}$ (with fixed μ) is huge compared to the constant $\sqrt{\pi / 2}+1 \approx 2.2533$ and thus $F(r, \mu) \rightarrow e^{-\mu^{2}} \ln \frac{1}{1-r}$. To be more concrete, note that $\delta(t)=1-v(t) / \mu=1-r(t)$, we let $\rho(\delta(t), \mu)=F(1-\delta(t), \mu)-e^{-\mu^{2}} \ln \left(\frac{1}{\delta(t)}\right) \in(0, \sqrt{\pi / 2}+1)$. Then using Eqn. 80 and $\left|\lambda_{j k}(t)\right|:=\left|\rho\left(\delta_{j}(t), \mu_{j}\right)-\rho\left(\delta_{k}(t), \mu_{k}\right)\right| \leq \sqrt{2 \pi}+2$, we arrive at the conclusion.

E. 5 Hierarchical Representation (Section A)

We formally introduce the definition of HBLT here. Let y_{α} be a binary variable at layer s (upper layer and y_{β} be a binary variable at layer $s-1$ (lower layer). We use a 2×2 matrix $P_{\beta \mid \alpha}$ to represent their conditional probability:

$$
P_{\beta \mid \alpha}:=\left[\mathbb{P}\left[y_{\beta} \mid y_{\alpha}\right]\right]=\left[\begin{array}{ll}
\mathbb{P}\left[y_{\beta}=0 \mid y_{\alpha}=0\right] & \mathbb{P}\left[y_{\beta}=0 \mid y_{\alpha}=1\right] \tag{89}\\
\mathbb{P}\left[y_{\beta}=1 \mid y_{\alpha}=0\right] & \mathbb{P}\left[y_{\beta}=1 \mid y_{\alpha}=1\right]
\end{array}\right]
$$

Definition 1. Define 2×2 matrix $M(\rho):=\frac{1}{2}\left[\begin{array}{ll}1+\rho & 1-\rho \\ 1-\rho & 1+\rho\end{array}\right]$ and 2 -dimensional vector $\boldsymbol{p}(\rho)=$ $\frac{1}{2}[1+\rho, 1-\rho]^{\top}$ for $\rho \in[-1,1]$.
Lemma 8 (Property of $M(\rho)$). $M(\rho)$ has the following properties:

- $M(\rho)$ is a symmetric matrix.
- $M(\rho) \mathbf{1}_{2}=\mathbf{1}_{2}$.
- $M\left(\rho_{1}\right) M\left(\rho_{2}\right)=M\left(\rho_{1} \rho_{2}\right)$. So matrix multiplication in $\{M(\rho)\}_{\rho \in[-1,1]}$ is communicative and isomorphic to scalar multiplication.
- $M\left(\rho_{1}\right) \boldsymbol{p}\left(\rho_{2}\right)=\boldsymbol{p}\left(\rho_{1} \rho_{2}\right)$.

Proof. The first two are trivial properties. For the third one, notice that $M(\rho)=\frac{1}{2}\left(\mathbf{1 1}^{T}+\rho \boldsymbol{e l}^{\top}\right)$, in which $\boldsymbol{e}:=[1,-1]^{\top}$. Therefore, $\boldsymbol{e}^{\top} \boldsymbol{e}=2$ and $\mathbf{1}^{\top} \boldsymbol{e}=0$ and thus:

$$
\begin{equation*}
M\left(\rho_{1}\right) M\left(\rho_{2}\right)=\frac{1}{4}\left(\mathbf{1 1}^{T}+\rho_{1} \boldsymbol{e} \boldsymbol{e}^{\top}\right)\left(\mathbf{1 1}^{T}+\rho_{2} \boldsymbol{e} \boldsymbol{e}^{\top}\right)=\frac{1}{2}\left(\mathbf{1 1}{ }^{\top}+\rho_{1} \rho_{2} \boldsymbol{e} \boldsymbol{e}^{\top}\right)=M\left(\rho_{1} \rho_{2}\right) \tag{90}
\end{equation*}
$$

For the last one, note that $\boldsymbol{p}(\rho)=\frac{1}{2}(\mathbf{1}+\rho \boldsymbol{e})$ and the conclusion follows.
Definition 2 (Definition of HBLT). In $\operatorname{HBLT}(\rho), P_{\beta \mid \alpha}=M\left(\rho_{\beta \mid \alpha}\right)$, where $\rho_{\beta \mid \alpha} \in[-1,1]$ is the uncertainty parameter. In particular, if $\rho_{\beta \mid \alpha}=\rho$, then we just write the entire HBLT model as $\operatorname{HBLT}(\rho)$.

Lemma 9. For latent y_{α} and its descendent y_{γ}, we have:

$$
\begin{equation*}
P_{\gamma \mid \alpha}=P_{\gamma \mid \beta_{1}} P_{\beta_{1} \mid \beta_{2}} \ldots P_{\beta_{k} \mid \alpha}=M\left(\rho_{\gamma \mid \alpha}\right) \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{1}^{\top} D(c) \mathbf{1}=\boldsymbol{e}^{\top} D(c) \boldsymbol{e}=1, \quad \mathbf{1}^{\top} D(c) \boldsymbol{e}=\boldsymbol{e}^{\top} D(c) \mathbf{1}=\rho_{c} \tag{95}
\end{equation*}
$$

And $M(\rho)=\frac{1}{2}\left(\mathbf{1 1}^{T}+\rho \boldsymbol{e} \boldsymbol{e}^{\top}\right)$, therefore we have:

$$
\begin{align*}
P_{\beta_{1} \beta_{2}} & =M\left(\rho_{\beta_{1} \mid c}\right) D(c) M^{\top}\left(\rho_{\beta_{2} \mid c}\right) \tag{96}\\
& =\frac{1}{4}\left(\mathbf{1 1}^{T}+\rho_{\beta_{1} \mid c} \boldsymbol{e} \boldsymbol{e}^{\top}\right) D(c)\left(\mathbf{1 1}^{T}+\rho_{\beta_{2} \mid c} \boldsymbol{e} \boldsymbol{e}^{\top}\right) \tag{97}\\
& =\frac{1}{4}\left(\mathbf{1 1}^{T}+\rho_{\beta_{1} \mid c} \rho_{\beta_{2} \mid c} \boldsymbol{e} \boldsymbol{e}^{\top}+\rho_{\beta_{1} \mid c} \rho_{c} \boldsymbol{e} \mathbf{1}^{\top}+\rho_{\beta_{2} \mid c} \rho_{c} \mathbf{1} \boldsymbol{e}^{\top}\right) \tag{98}
\end{align*}
$$

Now we compute ρ_{c}. Note that

$$
\begin{equation*}
\mathbb{P}\left[y_{c}\right]=\sum_{y_{0}} \mathbb{P}\left[y_{c} \mid y_{0}\right] \mathbb{P}\left[y_{0}\right] \tag{99}
\end{equation*}
$$

Let $\boldsymbol{p}_{c}:=\left[\mathbb{P}\left[y_{c}\right]\right]$ be a 2-dimensional vector. Then we have $\boldsymbol{p}_{c}=P_{y_{c} \mid y_{0}} \boldsymbol{p}_{0}=\boldsymbol{p}\left(\rho_{c \mid 0} \rho_{0}\right)$, where \boldsymbol{p}_{0} is the probability distribution of class label y_{0}, which can be categorical of size C :

$$
\begin{align*}
\boldsymbol{p}_{c} & =P_{y_{c} \mid y_{0}} \boldsymbol{p}_{0}=\sum_{y_{1}} P_{y_{c} \mid y_{1}} P_{y_{1} \mid y_{0}} \boldsymbol{p}_{0} \tag{100}\\
& =M\left(\rho_{c \mid 1}\right) \frac{1}{2}\left[\begin{array}{llll}
1+p_{1 \mid 0} & 1+p_{2 \mid 0} & \ldots & 1+p_{C \mid 0} \\
1-p_{1 \mid 0} & 1-p_{2 \mid 0} & \ldots & 1-p_{C \mid 0}
\end{array}\right] \boldsymbol{p}_{0} \tag{101}\\
& =M\left(\rho_{c \mid 1}\right) \frac{1}{2}\left[\begin{array}{c}
1+\boldsymbol{p}_{\cdot \mid 0}^{\top} \boldsymbol{p}_{0} \\
1-\boldsymbol{p}_{\cdot \mid 0}^{\top} \boldsymbol{p}_{0}
\end{array}\right] \tag{102}\\
& =M\left(\rho_{c \mid 1} \boldsymbol{p}_{\cdot \mid 0}^{\top} \boldsymbol{p}_{0}\right) \tag{103}
\end{align*}
$$

in which y_{1} is the last binary variable right below the root node class label y_{0}.

504 Therefore, $\rho_{c}=\rho_{c \mid 1} \rho_{0}$, where $\rho_{0}:=\boldsymbol{p}_{\cdot \mid 0}^{\top} \boldsymbol{p}_{0}$ is the uncertainty parameter of the root node y_{0}.
505 If all $\rho_{\beta \mid \alpha}=\rho$ for immediate parent y_{α} and child $y_{\beta}, y_{\beta_{1}}$ is for token l and $y_{\beta_{2}}$ is for token m, then
$506 \rho_{\beta_{1} \mid c}=\rho_{\beta_{2} \mid c}=\rho^{H}$, and $\rho_{c \mid 1}=\rho^{L-1-H}$ and thus we have:

$$
\begin{align*}
\mathbb{P}\left[y_{l}=1 \mid y_{m}=1\right] & =\frac{\mathbb{P}\left[y_{l}=1, y_{m}=1\right]}{\mathbb{P}\left[y_{m}=1\right]}=\frac{1}{2}\left(\frac{1+\rho^{2 H}-2 \rho^{H} \rho_{c}}{1-\rho^{H} \rho_{c}}\right) \tag{104}\\
& =\frac{1}{2}\left(\frac{1+\rho^{2 H}-2 \rho^{L-1} \rho_{0}}{1-\rho^{L-1} \rho_{0}}\right) \tag{105}
\end{align*}
$$

507 and the conclusion follows.

[^0]: ${ }^{1}$ Since $x_{l}[i]$ is the empirical frequency of token l in sample i, we have $\Delta_{l m}=\mathbb{E}_{q=m}\left[g_{h_{k}} x_{l}\right]=$ $\sum_{i} g_{h_{k}}[i] \mathbb{P}(l \mid q=m, i) \mathbb{P}(i \mid q=m)=\sum_{i} g_{h_{k}}[i] \mathbb{P}(i \mid q=m, l) \mathbb{P}(l \mid q=m)=\mathbb{E}_{l, q=m}\left[g_{h_{k}}\right] \mathbb{P}(l \mid m)$.

