
JoMA: Demystifying Multilayer Transformers via
JOint Dynamics of MLP and Attention

Abstract
We propose Joint MLP/Attention (JoMA) dynamics, a novel mathematical frame-1

work to understand the training procedure of multilayer Transformer architectures.2

This is achieved by integrating out the self-attention layer in Transformers, pro-3

ducing a modified dynamics of MLP layers only. JoMA removes unrealistic as-4

sumptions in previous analysis (e.g., lack of residual connection), and predicts5

that the attention first becomes sparse (to learn salient tokens), then dense (to6

learn less salient tokens) in the presence of nonlinear activations, while in the lin-7

ear case, it is consistent with existing works. We leverage JoMA to qualitatively8

explains how tokens are combined to form hierarchies in multilayer Transform-9

ers, when the input tokens are generated by a latent hierarchical generative model.10

Experiments on models trained from real-world dataset (Wikitext2/Wikitext103)11

and various pre-trained models (OPT, Pythia) verify our theoretical findings.12

1 Introduction13

Since its debut, Transformers (Vaswani et al., 2017) have been extensively used in many applications14

and demonstrates impressive performance (Dosovitskiy et al., 2020; OpenAI, 2023) compared to15

domain-specific models (e.g., CNN in computer vision, GNN in graph modeling, RNN/LSTM in16

language modeling, etc). In all these scenarios, the basic Transformer block, which consists of one17

self-attention plus two-layer nonlinear MLP, plays a critical role. A natural question is:18

How the basic Transformer block leads to effective learning?19

Due to the complexity and nonlinearity of Transformer architectures, it remains a highly nontrivial20

open problem to find a unified mathematical framework that characterizes the learning mechanism21

of multi-layer transformers. Existing works mostly focus on 1-layer Transformer (Li et al., 2023;22

Tarzanagh et al., 2023b) with fixed MLP (Tarzanagh et al., 2023a) layer, linear activation (Tian et al.,23

2023), and local gradient steps at initialization (Bietti et al., 2023; Oymak et al., 2023), etc.24

In this paper, we propose a novel joint dynamics of self-attention plus MLP, based on Joint25

MLP/Attention Integral (JoMA), a first integral that combines the lower layer of the MLP and self-26

attention layers. Leveraging this dynamics, we show the self-attention first becomes sparse as in the27

linear case (Tian et al., 2023), only attends to tokens that frequently co-occur with the query, and28

then becomes denser and gradually includes tokens with less frequent co-occurrence, in the case of29

nonlinear activation. This shows inductive bias in the Transformer training: first the model focuses30

on most salient features, then extends to less salient ones.31

We then perform a qualitative analysis of multi-layer Transformers with the joint dynamics. For this,32

we assume a hierarchical tree generative model for the input tokens. In this model, starting from the33

top-level latent binary variables, abbreviated as LVs, generates the latents LVs−1 in the lower layer,34

until reaching the token level (s = 0). With this model, we show that the tokens generated by the35

lowest latents LV1 co-occur a lot and thus can be picked up first by the attention dynamics. This leads36

to learning of such token combinations in MLP hidden nodes, which triggers self-attention grouping37

at s = 1, and so on. Our theoretical finding is consistent with both the pre-trained models such as38

OPT/Pythia and models trained from scratch using real-world dataset (Wikitext2 and Wikitext103).39

We show that JoMA overcomes several of the major limitations in a previous framework,40

Scan&Snap (Tian et al., 2023). It incorporates residual connections and MLP nonlinearity as a41

key ingredient, analyzes joint training of MLP and self-attention layer, and qualitatively explains42

dynamics of multilayer Transformers. For linear activation, JoMA concides with Scan&Snap, i.e.,43

the attention becomes sparse during training.44
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Figure 1: (a) Overview of JoMA framework. Using the invariant of training dynamics, the self-attention
layer and the lower layer of MLP can be merged together to yield a MLP layer with modified dynamics
(Theorem 1), which explains the behaviors of attention in linear and nonlinear (Sec. 4) MLP activation ϕ,
as well as hierarchical concept learning in multilayer cases (Sec. A). (b) Problem setting. JoMA supports dif-
ferent kind of attentions, including linear attention bl := xlzql, exp attention bl := xle

zql/A and softmax
bl := xle

zql/
∑

l xle
zql .

2 Problem Setting45

Let total vocabulary size be M , in which MC is the number of contextual tokens and MQ is the46

number of query tokens. Consider one layer in multilayer transformer (Fig. 1(b)):47

hk = ϕ(w⊤
k f), f = UCb+ uq, b = σ(zq) ◦ x/A (1)

Input/outputs. x = [xl] ∈ RMC is the input frequency vector for contextual token 1 ≤ l ≤ MC ,48

1 ≤ q ≤ MQ is the query token index, K is the number of nodes in the hidden MLP layer, whose49

outputs are hk. All the quantities above vary across different sample index i (i.e., xl = xl[i],50

q = q[i]). In addition, ϕ is the nonlinearity (e.g., ReLU).51

Model weights. zq = [zql] ∈ RMC is the (unnormalized) attention logits given query q, and52

wk ∈ Rd is the weights for the lower MLP layer. They will be analyzed in the paper.53

The Attention Mechanism. In this paper, we mainly study three kinds of attention:54

• Linear Attention (Von Oswald et al., 2022): σ(x) = x and A := 1;55

• Exp Attention: σ(x) = exp(x) and A := const;56

• Softmax Attention (Vaswani et al., 2017): σ(x) = exp(x) and A := 1⊤ (σ(zq) ◦ x).57

Here ◦ is the Hadamard (element-wise) product. b ∈ RMC are the attention scores for contextual58

tokens, given by a point-wise attention function σ. A is the normalization constant.59

Embedding vectors. ul is the embedding vector for token l. We assume that the embedding di-60

mension d is sufficiently large and thus u⊤
l ul′ = I(l = l′), i.e., {ul} are orthonormal bases. Let61

UC = [u1,u2, . . . ,uMC
] ∈ Rd×MC be the matrix that encodes all embedding vectors of contextual62

tokens. Then U⊤
C UC = I .63

Residual connections are introduced as an additional term uq in Eqn. 1, which captures the critical64

component in Transformer architecture. Note that we do not model value matrix WV since it can be65

merged into the embedding vectors (e.g., by u′
l =WV ul), whileWK andWQ are already implicitly66

modeled by the self-attention logits zql = u⊤
q W

⊤
QWKul.67

Gradient backpropagation in multilayers. In multilayer setting, the gradient gets backpropagated68

from top layer. Specifically, let ghk
[i] be the backpropagated gradient sent to node k at sample i.69

For 1-layer Transformer with softmax loss directly applied to the hidden nodes of MLP, we have70

ghk
[i] ∼ I(y0[i] = k), where y0[i] is the label to be predicted for sample i. For brevity, we often71

omit sample index i if there is no ambiguity.72

Assumption 1 (Stationary backpropagated gradient ghk
). Expectation terms involving ghk

(e.g.,73

E [ghk
x]) remains constant during training.74

Note that this is true for layer-wise training: optimizing the weights for the current Transformer75

layer, while fixing other layers. For joint training, this condition may hold approximately since the76

statistics of backpropagated gradient can be stationary over time during most of the training process.77

Under Assumption 1, Appendix E.1 gives an equivalent formulation using per-hidden node loss.78

Training Dynamics. Now let us consider the dynamics of wk and zm, if we train the model with79

inputs that always end up with query q[i] = m. and each batch consist of samples with query80
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Figure 2: Test of training dynamics with linear MLP activation (ϕ(x) = x) under softmax attention. Left
Two: The distribution of x smoothly transits over different class labels. Right Two: The distribution of x over
different classes are randomly generated. In both cases, the estimated ẑm(t) by the first integral (Theorem 1),
despite assumptions on b̄m, shows high correlation with the ground truth self-attention logits zm(t), while its
two components ẑm1(t) :=

1
2

∑
k v

2
k(t) and ẑm2(t) := − 1
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∑
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Figure 3: Growth of first few components in v0(t) in linear MLP activation and softmax attention. After
convergence, only some components of v0 grows while the remaining components is saturated after initial
growing, consistent with Theorem 2 even if it is derived from JoMA’s approximation in Theorem 1. Each node
k (and thus wk) receives back-propagated gradient from k-th class via cross-entropy loss.

q[i] = m. We define the conditional expectation Eq=m [·] := E [·|q = m]:81

ẇk = Eq=m [ghk
h′kf ] , żm = Eq=m

[
(∂b/∂zm)

⊤
U⊤
C gf

]
(2)

Here h′k := ϕ′(w⊤
k f) is the derivative of current activation and gf :=

∑
k ghk

h′kwk.82

3 JoMA: Existence of JOint dynamics of Attention and MLP83

While the learning dynamics of wk and zm can be complicated, surprisingly training dynamics84

suggests that the attention logits zm(t) has a close-form relationship with respect to the MLP weights85

wk(t), which lays the foundation of our JoMA framework:86

Theorem 1 (JoMA). Let vk := U⊤
Cwk, then the dynamics of Eqn. 2 satisfies the invariants. (1)87

For linear attention, z2
m(t) =

∑
k v

2
k(t) + c, (2) for exp attention, zm(t) = 1

2

∑
k v

2
k(t) + c, (3)88

for softmax attention, if b̄m := Eq=m [b] is a constant over time and Eq=m

[∑
k ghk

h′kbb
⊤] =89

b̄mEq=m [
∑

k ghk
h′kb], then the dynamics satisfies zm(t) = 1

2

∑
k v

2
k(t)−∥vk(t)∥22b̄m + c. Under90

zero-initialization (wk(0) = 0, zm(0) = 0), then the time-independent constant c = 0.91

Therefore, we don’t need to explicitly update self-attention, since it is already implicitly incorporated92

in the lower layer of MLP weight! For softmax attention, we verify that even with the assumption,93

the invariance proposed by Theorem 1 still predicts zm(t) fairly well.94

Linear activations: winner-take-all. Now we can solve the dynamics of wk(t) (Eqn. 2), by plug-95

ging in the close-form solution of self-attention. For simplicity, we consider exp attention with96

K = 1. Let ∆m := Eq=m [ghk
h′kx], then vk’s dynamics (written as v) is:97

v̇ = ∆m ◦ exp(zm) = ∆m ◦ exp(v2/2 + c) (3)

In the case of linear activations ϕ(x) = x, h′k ≡ 1. According to Assumption 1, ∆m does not98

depend on v and we arrive at the following theorem:99

Theorem 2 (Linear Dynamics with Self-attention). With linear MLP activation and zero initializa-100

tion, for exp attention any two tokens l ̸= l′ satisfy the following invariants:101

∆−1
lmerf (vl(t)/2) = ∆−1

l′merf(vl′(t)/2) (4)

where ∆lm = Eq=m [ghk
xl] and erf(x) = 2√

π

∫ x

0
e−t2dt is Gauss error function.102

Remarks. The dynamics suggests that the weights become one-hot over training. Specifically, let103

l∗ = argmaxl |∆lm|, then vl∗(t) → sign(∆l∗m)×∞ and other vl(t) converges to finite numbers,104

3



because of the constraint imposed by Eqn. 4 (see Fig. 3). For softmax attention, there is an addi-105

tional sample-dependent normalization constant A[i], if A[i] remains constant across samples and106

all elements of b̄m are the same, then Theorem 2 also applies.107

Beyond distinct/common tokens. ∆lm := El,q=m [ghk
]P(l|m) (see footnote1.) is a product of108

token discriminancy (i.e., El,q=m [ghk
] > 0 means token l positively correlated to backpropagated109

gradient ghk
, or label in the 1-layer case) and token frequency (i.e., P(l|m), how frequent l appears110

given m). This covers a broader spectrum of tokens than Tian et al. (2023), which only discusses111

distinct (i.e., when |∆lm| is large) and common tokens (i.e., when ∆lm is close to zero).112

4 Training Dynamics under Nonlinear Activations113

In nonlinear case, the dynamics turns out to be very different. In this case, ∆m is no longer a114

constant, but will change. As a result, the dynamics also changes substantially.115

Theorem 3 (Dynamics of lower MLP layer, nonlinear activation and uniform attention). If the116

activation function ϕ is homogeneous (i.e., ϕ(x) = ϕ′(x)x), and the input is sampled from a mixture117

of two isotropic distributions centered at x̄+ and x̄− = 0 where the radial density function has118

bounded derivative. Then the dynamics near to the critical point µ ̸= 0, names ∥v − µ∥ ≤ γ for119

some γ = γ(µ) ≪ 1, can be written as the following (where µ ∝ x̄+):120

v̇ = sgn(µ⊤x̄+){β1(µ) · I + β2(µ) · µµ⊤}(1 + λ(µ, γ)) · (µ− v) (5)

Here |λ(µ, γ)| ≪ 1 and β1(µ) > 0, β2(µ) are the constant functions of µ.121

To analyze the case when self-attention is also incorporated, we simply add back the self-attention122

term, thanks to the close-form simplification of JoMA. Note that we omit the µµ⊤ term, since it123

mainly added a constant shift to the dynamics towards the fixed direction µ. We also omit λ(µ, γ)124

for simplicity and treat β2(µ) to be zero, and again use exp attention as an example:125

v̇ = (µ− v) ◦ exp(v2/2) (6)

Note that the critical point v∗ = µ remains after adding self-attention; however, the convergence126

speed towards salient component of µ (i.e., component with large magnitude) is much faster than127

non-salient ones:128

Theorem 4 (Convergence speed of salient vs. non-salient components). Let δj(t) := 1− vj(t)/µj129

be the convergence metric for component j (δj(t) = 0 means that the component j converges). For130

the nonlinear dynamics with attention (Eqn. 6), if v(0) = 0 (zero-initialization), then131

ln 1/δj(t)

ln 1/δk(t)
=
eµ

2
j/2

eµ
2
k/2

(1 + Λ(t)) (7)

Here Λ(t) = λjk(t) · eµ2
k/2 ln−1(1/δk(t)) where |λjk(t)| ≤

√
2π + 2. So when δk(t) ≪132

exp[−(
√
2π + 2) exp(−µ2

k)], we have |Λ(t)| ≪ 1.133

Remarks. For linear attention, the ratio is different but the derivation is similar and simpler. Note134

that the convergence speed heavily depends on the magnitude of µj . If µj > µk, then δj(t) ≪ δk(t)135

and vj(t) converges much faster than vk(t). Therefore, the salient components get learned first, and136

the small component is learned later, due to the modulation of the extra term exp(v2) thanks to137

self-attention, as demonstrated in Fig. 4 in Appendix.138

A follow-up question arises: What is the intuition behind salient and non-salient components in µ?139

Note that µl is closely linked to the distribution of xl given the query q = m. In this case, similar to140

Theorem 2 (and Tian et al. (2023)), we again see that if a contextual token l co-occurs a lot with the141

query m, then µl becomes larger and the growth speed of vl towards µl is much faster.142

How self-attention learns hierarchical data distribution? One question remains. For 1-layer143

Transformer, the dynamics of Theorem 4 may only slow the training with no clear benefits. Then144

why it is needed? In Appendix A, we show that this behavior can be critical for multi-layer Trans-145

formers to train on a data distribution generated in a hierarchical manner.146

1Since xl[i] is the empirical frequency of token l in sample i, we have ∆lm = Eq=m [ghkxl] =∑
i ghk [i]P(l|q = m, i)P(i|q = m) =

∑
i ghk [i]P(i|q = m, l)P(l|q = m) = El,q=m [ghk ]P(l|m).
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Figure 4: Dynamics of nonlinear MLP with self-attention components included (Eqn. 6). Left: Train-
ing dynamics (color indicating training steps). The salient components (i.e., components with large mag-
nitude in µ) of v(t) are learned first, followed by non-salient ones. Right: Entropy of the attention (i.e.,
entropy(softmax(v2))) drops when salient components are learned first, and then rebounces when other com-
ponents catch up.

A How self-attention learns hierarchical data distribution?184

Consider a simple generative hierarchical binary latent tree model (HBLT) (Tian et al., 2020)185

(Fig. 6(a)) in which we have latent (unobservable) binary variables y at layer s that generate la-186

tents at layer s − 1, until the observable tokens are generated at the lowest level (s = 0). The187

topmost layer is the class label y0, which can take D discrete values. In HBLT, the generation pro-188

cess of yβ at layer s − 1 given yα at layer s can be characterized by their conditional probability189

P[yβ = 1|yα = 1] = P[yβ = 0|yα = 0] = 1
2 (1 + ρ). The uncertainty hyperparameter ρ ∈ [−1, 1]190

determines how much the top level latents can determine the values of the low level ones. Please191

check Appendix for its formal definition.192

With HBLT, we can compute the co-occurrence frequency of two tokens l and m, as a function of the193

depth of their common latent ancestor (CLA):194

Theorem 5 (Token Co-occurrence in HBLT(ρ)). If token l and m have common latent ancestor195

(CLA) of depth H (Fig. 5(c)), then P[yl = 1|ym = 1] = 1
2

(
1+ρ2H−2ρL−1ρ0

1−ρL−1ρ0

)
, where L is the total196

depth of the hierarchy and ρ0 := p⊤
·|0p0, in which p0 = [P[y0 = k]] ∈ RD and p·|0 := [P[yl =197

0|y0 = k]] ∈ RD, where {yl} are the immediate children of the root node y0.198

Remarks. If y0 takes multiple values (many classes) and each class only trigger one specific latent199

binary variables, then most of the top layer latents are very sparsely triggered and thus ρ0 is very200

close to 1. If ρ is also close to 1, then for deep hierarchy and shallow common ancestor, P[yl =201

1|ym = 1] → 1. To see this, assume ρ = ρ0 = 1− ϵ, then we have:202

P[yl = 1|ym = 1] =
1

2

[
1 + 1− 2Hϵ− 2(1− Lϵ)

1− (1− Lϵ)

]
+O(ϵ2) = 1− H

L
+O(ϵ2) (8)

This means that two tokens l and m co-occur a lot, if they have a shallow CLA (H small) that is203

close to both tokens. If their CLA is high in the hierarchy (e.g., l′ and m), then the token l′ and m204

have much weaker co-occurrence and P(l′|m) (and thus x′l and µl′ ) is small.205

With this generative model, we can analyze qualitatively the learning dynamics of JoMA: it focuses206

first on associating the tokens in the same lowest hierarchy as the query m (and hence co-occurs207

frequently with m), then gradually reaches out to other tokens l′ with less co-occurrence with m,208

if they have not been picked up by other tokens (Fig. 5(b)); if l′ co-occurs a lot with some other209

m′, then m-l and m′-l′ form their own lower hierarchy, respectively. This leads to learning of high-210

level features yβ and yβ′ , which has high correlation and will be associated. Therefore, the latent211

hierarchy is implicitly learned.212

B Experiments213

Dynamics of Attention Sparsity. Fig. 6 shows how attention sparsity changes over time when train-214

ing from scratch. We use 10−4 learning rate and test our hypothesis on Wikitext2/Wikitext103 (Mer-215

ity et al., 2016) (top/bottom row). Fig. 8 further shows that different learning rate leads to different216

attention sparsity patterns. With large learning rate, attention becomes extremely sparse as in (Tian217

et al., 2023). Interestingly, the attention patterns, which coincide with our theoretical analysis, yield218

the best validation score.219
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Figure 5: (a) Hierarchical binary tree generative models. Except for y0 that is the observable label of a
sequence and can take D discrete labels, all latent variables follow binomial distribution. A binary leaf variable
yl = 1 indicates that token l appears in the sequence. (b) Attention dynamics in multi-layer setting. There is
a strong co-occurrence between the query m and the token l, but a weak co-occurrence between m and l′. As
a result, m associates with l first, and eventually associates with l′, even if they co-occur weakly, according
to Eqn. 6. (c) If there exists an additional layer yβ and yβ′ in the latent hierarchy, the association m-l and
m′-l′ will be learned first due to their high co-occurrence. Once the lower hierarchy gets learned and some
hidden nodes in MLP represents yβ and yβ′ (see Sec. B for experimental validation), on the next level, yβ
and yβ′ shows strong co-occurrence and gets picked up by the self-attention mechanism to form even higher
level features. In contrast, the association of l′-m is much slower and does not affect latent hierarchy learning,
showing that self-attention mechanism is adaptive to the structure of data distribution.
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Figure 6: Dynamics of attention sparsity. In 1-layer setting, The curves bear strong resemblance to our
theoretical prediction (Fig. 4); in multi-layer settings, the attention entropy in top Transformer layers has a
similar shape, while the entropy in bottom layers are suppressed due to layer interactions (Sec. 4). Top row:
Wikitext2, Bottom row: Wikitext103.

We also tested our hypothesis in OPT (Zhang et al., 2022) (OPT-2.7B) and Pythia (Biderman et al.,220

2023) (Pythia-70M/1.4B/6.9B) pre-trained models, both of which has public intermediate check-221

points. While the attention patterns show less salient drop-and-bounce patterns, the dynamics of222

stable ranks of the MLP lower layer (projection into hidden neurons) show much salient such struc-223

tures for top layers, and dropping curves for bottom layers since they are suppressed by top-level224

learning (Sec. A). Note that stable ranks only depend on the model parameters and thus may be more225

reliable than attention sparsity.226

Validation of Alignment between latents and hidden nodes in MLP. Sec. A is based on an as-227

sumption that the hidden nodes in MLP layer will learn the latent variables. We verify this assump-228

tion in synthetic data sampled by HBLT, which generate latent variables in a top-down manner, until229

the final tokens are generated. The latent hierarchy has 2 hyperparameters: number of latents per230

layer (Ns) and number of children per latent (Nch). C is the number of classes. Adam optimizer is231

used with learning rate 10−5. Vocabulary size M = 100, sequence length T = 30 and embedding232

dimension d = 1024.233

We use 3-layer generative model as well as 3-layer Transformer models. We indeed perceive high234

correlations between the latents and the hidden neurons between corresponding layers. Note that235
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Figure 7: Dynamics of attention sparsity and stable rank in OPT-2.7B and Pythia-70M/1.4B/6.9B. Results are
evaluated on Wikitext103 (Merity et al., 2016).
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Figure 8: Effect of different learning rates on attention sparsity. Different learning rates lead to different
dynamics of attention sparsity, and the attention patterns consistent with our theoretical analysis (Fig. 4) give
the lowest validation losses.

latents are known during input generation procedure but are not known to the transformer being236

trained. We take the maximal activation of each neuron across the sequence length, and compute237

normalized correlation between maximal activation of each neuron and latents, after centeralizing238

across the sample dimension. Tbl. 1 shows that indeed in the learned models, for each latent, there239

exists at least one hidden node in MLP that has high normalized correlation with it, in particular240

in the lowest layer. When the generative models becomes more complicated (i.e., both Nch and Nl241

become larger), the correlation goes down a bit.242

C = 20, Nch = 2 C = 20, Nch = 3 C = 30, Nch = 2
(N0, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)

NCorr (s = 0) 0.99± 0.01 0.97± 0.02 1.00± 0.00 0.96± 0.02 0.99± 0.01 0.94± 0.04
NCorr (s = 1) 0.81± 0.05 0.80± 0.05 0.69± 0.05 0.68± 0.04 0.73± 0.08 0.74± 0.03

C = 30 Nch = 3 C = 50, Nch = 2 C = 50, Nch = 3
(N0, N1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)

NCorr (s = 0) 0.99± 0.01 0.95± 0.03 0.99± 0.01 0.95± 0.03 0.99± 0.01 0.95± 0.03
NCorr (s = 1) 0.72± 0.04 0.66± 0.02 0.58± 0.02 0.55± 0.01 0.64± 0.02 0.61± 0.04

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP of the same
layer. All experiments are run with 5 random seeds.
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C Discussion243

Deal with almost orthogonal embeddings. In this paper, we focus on fixed orthonormal embed-244

dings vectors. However, in real-world Transformer training, the assumption may not be valid, since245

often the embedding dimension d is smaller than the number of vocabulary M so the embedding246

vectors cannot be orthogonal to each other. In this setting, one reasonable assumption is that the em-247

bedding vectors are almost orthogonal. Thanks to Johnson–Lindenstrauss lemma, one interesting248

property of high-dimensional space is that forM embedding vectors to achieve almost orthogonality249

|u⊤
l ul′ | ≤ ϵ, only d ≤ 8ϵ−2 logM is needed. As a result, our JoMA framework (Theorem 1) will250

have additional ϵ-related terms and we leave the detailed analysis as one of our future work.251

Training embedding vectors. Another factor that is not considered in JoMA is that the embedding252

vectors are also trained simultaneously. This could further boost the efficiency of Transformer ar-253

chitecture, since concepts with similar semantics will learn similar embeddings. This essentially254

reduces the vocabulary size at each layer for learning to be more effective, and leads to better gen-255

eralization. For example, in each hidden layer 4d hidden neurons are computed, which does not256

mean there are 4d independent intermediate “tokens”, because many of their embeddings are highly257

correlated.258

Self-attention computed from embedding. JoMA arrives at the joint dynamics of MLP and atten-259

tion by assuming that the pairwise attention score Z is an independent parameters optimized under260

SGD dynamics. In practice, Z = UWQW
⊤
KU

⊤ is also parameterized by the embedding matrix,261

which allow generalization to tokens with similar embeddings, and may accelerate the training dy-262

namics of Z. We leave it in the future works.263

D Conclusion264

In this paper, we propose our JoMA framework that characterizes the joint training dynamics of non-265

linear MLP and attention layer, by integrating out the self-attention logits. The resulting dynamics266

demonstrates the connection between nonlinear MLP lower layer weights (projection into hidden267

neurons) and self-attention, and shows that the attention first becomes sparse (or weights becomes268

low rank) and then becomes dense (or weights becomes high rank). Based on this finding, we fur-269

ther qualitatively propose a tentative learning mechanism of multilayer Transformer that reveals how270

self-attentions at different layers interact with each other to learn the latent feature hierarchy.271

E Proofs272

E.1 Per-hidden loss formulation273

Our Assumption 1 has an equivalent per-hidden node loss:274

max
{wk},{zm}

ED

[∑
k

ghk
hk

]
:= max

{wk},{zm}
Ei∼D

[∑
k

ghk
[i]hk[i]

]
(9)

where ghk
[i] is the backpropagated gradient sent to node hk at sample i.275

E.2 JoMA framework (Section 3)276

Theorem 1 (JoMA). Let vk := U⊤
Cwk, then the dynamics of Eqn. 2 satisfies the invariants. (1)277

For linear attention, z2
m(t) =

∑
k v

2
k(t) + c, (2) for exp attention, zm(t) = 1

2

∑
k v

2
k(t) + c, (3)278

for softmax attention, if b̄m := Eq=m [b] is a constant over time and Eq=m

[∑
k ghk

h′kbb
⊤] =279

b̄mEq=m [
∑

k ghk
h′kb], then the dynamics satisfies zm(t) = 1

2

∑
k v

2
k(t)−∥vk(t)∥22b̄m + c. Under280

zero-initialization (wk(0) = 0, zm(0) = 0), then the time-independent constant c = 0.281

Proof. Let L := ∂b/∂zm. Plugging the dynamics of wk into the dynamics of self-attention logits282

zm, we have:283

żm = Eq=m

[
L⊤U⊤

C

∑
k

ghk
h′kwk

]
=
∑
k

Eq=m

[
ghk

h′kL
⊤vk

]
(10)

Before we start, we first define ξk(t) :=
∫ t

0
Eq=m [ghk

(t′)h′k(t
′)] dt′. Therefore, ξ̇k =284

Eq=m [ghk
h′k]. Intuitively, ξk is the bias of node k, regardless of whether there exists an actual285

bias parameter to optimize.286
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Notice that U⊤
C f = b + U⊤

C uq , with orthonormal condition between contextual and query tokens:287

U⊤
C um = 0, and thus U⊤

C f = b, which leads to288

v̇k = U⊤
C ẇk = U⊤

C Eq=m [ghk
h′kf ] = Eq=m [ghk

h′kb] (11)

Unnormalized attention (A := const). In this case, we have b = σ(zm) ◦ x/A and L =289

diag(σ′(zm) ◦ x)/A = diag
(

σ′(zm)
σ(zm)

)
diag(b) and thus290

żm =
∑
k

Eq=m

[
ghk

h′kL
⊤vk

]
= diag

(
σ′(zm)

σ(zm)

)∑
k

Eq=m [ghk
h′kb] ◦ vk (12)

= diag

(
σ′(zm)

σ(zm)

)∑
k

v̇k ◦ vk (13)

which leads to291

diag

(
σ(zm)

σ′(zm)

)
żm =

∑
k

v̇k ◦ vk (14)

Therefore, for linear attention, σ(zm)/σ′(zm) = zm, by integrating both sides, we have z2
m(t) =292 ∑

k v
2
k(t) + c. For exp attention, σ(zm)/σ′(zm) = 1, then by integrating both sides, we have293

zm(t) = 1
2

∑
k v

2
k(t) + c.294

Softmax attention. In this case, we have L = diag(b)− bb⊤. Therefore,295

Eq=m [ghk
h′kdiag(b)]U

⊤
Cwk = Eq=m [ghk

h′kb] ◦ vk = v̇k ◦ vk (15)
where ◦ is the Hadamard (element-wise) product. Now Therefore, we have:296

Eq=m

[
ghk

h′kb
⊤]U⊤

Cwk = v̇⊤
k vk (16)

Given the assumption that b is uncorrelated with
∑

k ghk
h′kb (e.g., due to top-down gradient infor-297

mation), and let b̄m = Eq=m [b], we have:298

żm =
∑
k

v̇k ◦ vk − b̄mv̇⊤
k vk (17)

If we further assume that b̄m is constant over time, then we can integrate both side to get a close-form299

solution between zm(t) and {vk(t)}:300

zm(t) =
1

2

∑
k

(
v2
k − ∥vk∥22b̄m

)
+ c (18)

301

Theorem 2 (Linear Dynamics with Self-attention). With linear MLP activation and zero initializa-302

tion, for exp attention any two tokens l ̸= l′ satisfy the following invariants:303

∆−1
lmerf (vl(t)/2) = ∆−1

l′merf(vl′(t)/2) (4)

where ∆lm = Eq=m [ghk
xl] and erf(x) = 2√

π

∫ x

0
e−t2dt is Gauss error function.304

Proof. Due to the assumption, we have:305

v̇l = Eq=m [ghk
xl] exp(zml)/A = ∆lm exp(zml)/A (19)

where ∆lm := Eq=m [ghk
xl]. If xl[i] = P(l|m, y[i]), then ∆lm = El,q=m [ghk

]P(l|m). Note that306

for linear model, ∆lm is a constant over time.307

Plugging in the close-form solution for exp attention, the dynamics becomes308

v̇l = ∆lm exp(v2l /2 + cl)/A (20)
Assuming cl = 0, then for any two tokens l ̸= l′, we get309

v̇l
v̇l′

=
∆lm exp(zml)

∆l′m exp(zml′)
=

∆lm exp(v2l /2)

∆l′m exp(v2l′/2)
(21)

which can be integrated using erf(·) function (i.e., Gaussian CRF: erf(x) = 2√
π

∫ x

0
e−t2dt):310

erf (vl(t)/2)

∆lm
=

erf(vl′(t)/2)

∆l′m
+ cll′ (22)

if v(0) = 0, then cll′ = 0.311
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E.3 Dynamics of Nonlinear activations (Sec. 4)312

E.3.1 Without self-attention (or equivalently, with uniform attention)313

Lemma 1 (Expectation of Hyperplane function under Isotropic distribution). For any isotropic dis-314

tribution p(x − x̄) with mean x̄ in a subspace spanned by orthonormal bases R, if v ̸= 0, we315

have:316

Ep

[
xψ(v⊤x+ ξ)

]
=
θ1(rv)

∥v∥2
x̄+

θ2(rv)

∥v∥32
RR⊤v, Ep

[
ψ(v⊤x+ ξ)

]
=
θ1(rv)

∥v∥2
(23)

where rv := v⊤x̄ + ξ is the (signed) distance between the distribution mean x̄ and the affine317

hyperplane (v, ξ). θ1(r) and θ2(r) only depends on ψ and the underlying distribution but not v.318

Additionally, if ψ(r) is monotonously increasing with ψ(−∞) = 0, ψ(+∞) = 1, then so does θ1(r)319

and θ2(r) > 0.320

Proof. Note that x′ is isotropic in span(R) and thus p(x′) just depends on ∥x′∥, we let p0 : R+ →321

R+ satisfies p0(∥x′∥) = p(x′). Our goal is to calculate322

Ep

[
xψ(w⊤x+ ξ)

]
=

∫
span(R)

xψ(w⊤x+ ξ)p(x− µ)dx (24)

=

∫
span(R)

(x′ + µ)ψ(w⊤x′ + rw)p(x′)dx′ (25)

where x′ := x−µ is isotropic. Since RR⊤w is the projection of w onto space span(R), we denote323

v := RR⊤w and y′ := w⊤x′ = v⊤x′ since x′ lies in span(R). Then let S be any hyper-plane324

through v, which divide span(R) into two symmetric part V+ and V−(Boundary is zero measurement325

set and can be ignored), we have,326

P1 :=

∫
span(R)

x′ψ(w⊤x′ + rw)p(x′)dx′ (26)

= (

∫
V+

+

∫
V−

)x′ψ(v⊤x′ + rw)p(x′)dx′ (27)

= 2×
∫
V+

v⊤x′

∥v∥
· v

∥v∥
· ψ(v⊤x′ + rw)p(x′)dx′ (28)

= {
∫

span(R)

y′ψ(y′ + rw)p(x′)dx′} · v

∥v∥2
(29)

Eqn. 28 holds since for every x′ ∈ V+, we can always find unique x′′ ∈ V− defined as327

x′′ = −(x′ − v⊤x′

∥v∥2
v) +

v⊤x′

∥v∥2
v =

2y′

∥v∥2
v − x′ (30)

where x′′ and x′ satisfy ∥x′′∥ = ∥x′∥, v⊤x′′ = v⊤x′, and have equal reverse component ±(x′ −328

v⊤x′

∥v∥2 v) perpendicular to v. Thus for the x′ in Eqn. 27, only the component parallel to v remains.329

Furthermore, let {u1, . . . ,un−1,v/∥v∥} to be an orthonormal bases of span(R) and denote x′i :=330

u⊤
i x

′,∀i ∈ [n− 1], then we have331

P1 = {
∫
y′
y′ψ(y′ + rw)d(

y′

∥v∥
)[

∫
x′
1

· · ·
∫
x′
n−1

p(x′)dx′1 . . . dx
′
n−1]} ·

v

∥v∥2
(31)

=: {
∫ +∞

−∞
y′ψ(y′ + rw)pn(y

′)dy′} · v

∥v∥3
(32)
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Here pn(y′) is the probability density function of y′ obtained from x′. For the trivial case where332

n = 1, clearly pn(y′) = p0(|y′|) = p(y′). If n ≥ 2, it can be further calculated as:333

pn(y
′) =

∫
x′
1

· · ·
∫
x′
n−1

p0(
√
(x′1)

2 + . . .+ (x′n−1)
2 + (y′)2) · dx′1 . . . dx′n−1 (33)

=

∫ +∞

0

p0(
√
y′2 + l2) · Sn−1(l)dl (34)

=
(n− 1)π(n−1)/2

Γ(n+1
2 )

∫ +∞

0

p0(
√
y′2 + l2) · ln−2dl (35)

=


2n/2πn/2−1

(n− 3)!!

∫ +∞

0

p0(
√
y′2 + l2) · ln−2dl, n is even

2π(n−1)/2

(n−3
2 )!

∫ +∞

0

p0(
√
y′2 + l2) · ln−2dl, n is odd

(36)

where Sn(R) = nπn/2

Γ(n/2+1)R
n−1 represents the surface area of an n-dimensional hyper-sphere of334

radius l. Γ denotes the gamma function and we use the property that Γ(n+1) = n! and Γ(n+ 1
2 ) =335

(2n− 1)!!
√
π2−n for any n ∈ N+.336

Similarly, for another term we have337

P2 =

∫
span(R)

µ · ψ(w⊤x′ + rw)p(x′)dx′ (37)

= {
∫ +∞

−∞
ψ(y′ + rw)pn(y

′)dy′} · µ

∥v∥
(38)

(39)

Finally, let338

θ1(rw) :=

∫ +∞

−∞
ψ(y′ + rw)pn(y

′)dy′ (40)

θ2(rw) :=

∫ +∞

−∞
y′ · ψ(y′ + rw)pn(y

′)dy′ (41)

Then we arrive at the conclusion.339

Lemma 2 (Dynamics of nonlinear activation with uniform attention). If x is sampled from a mixture340

of C isotropic distributions centered at [x̄1, . . . , x̄C ], and gradient ghk
are constant within each341

mixture, then:342

v̇ = ∆m =
1

∥v∥2

∑
j

ajθ1(rj)x̄j +
1

∥v∥32

∑
j

ajθ2(rj)v (42)

ξ̇ := Eq=m [ghk
h′k] =

1

∥v∥2

∑
j

ajθ1(rj) (43)

here aj := Eq=m,c=j [ghk
]P[c = j], rj := v⊤x̄j + ξ is the distance to x̄j and the bias term343

ξ(t) :=
∫ t

0
Eq=m [ghk

h′k] dt. θ1 and θ2 only depends on data distribution and nonlinearity.344

Proof. Since backpropagated gradient ghk
is constant within each of its mixed components, we345

have:346

∆m := Eq=m [ghk
h′kb] =

∑
j

Eq=m,c=j [ghk
h′kb]P[c = j] (44)

=
∑
j

Eq=m,c=j [ghk
]P[c = j]Eq=m,c=j [h

′
kb] (45)

=
∑
j

ajEx∼p(x−xj)

[
bϕ′(w⊤f)

]
(46)
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Let ψ = ϕ′. Note that w⊤f = w⊤(Ucb + uq) = v⊤b + ξ and with uniform attention b = x, we347

have:348

∆m =
∑
j

ajEx∼p(x−xj)

[
xψ(v⊤x+ ξ)

]
(47)

Using Lemma 1 leads to the conclusion.349

Remarks. Note that if ϕ is linear, then ψ ≡ 1, θ1 ≡ 1 and θ2 ≡ 0. In this case, θ1 is a constant,350

which marks a key difference between linear and nonlinear dynamics.351

Lemma 3 (Property of θ1, θ2 with homogeneous activation). If ϕ(x) = xϕ′(x) is a homogeneous352

activation function and ψ = ϕ′, then we have:353

d

dr
(θ2(r) + rθ1(r)) = θ1(r) (48)

and thus354

θ2(r) = F (r)− rθ1(r) = θ2(0)− rθ1(r) +

∫ r

0

θ1(r
′)dr′ (49)

where F (r) := θ2(0) +
∫ r

0
θ1(r

′)dr′ is a monotonous increasing function with F (+∞) = +∞.355

Furthermore, if limr→−∞ rθ1(r) = 0, then F (−∞) = 0 and thus F (r) ≥ 0.356

Proof. Simply verify Eqn. 48 is true.357

Overall the dynamics can be quite complicated. We consider a special C = 2 case with one positive358

(a+, r+ and x̄+) and one negative (a−, r− and x̄−) distribution.359

Lemma 4 (Existence of critical point of dynamics with ReLU activation). For any homogeneous360

activation ϕ(x) = xϕ′(x), any stationary point of Eqn. 42 must satisfy
∑

j ajF (rj) = 0, where361

F (r) := θ2(0) +
∫ r

0
θ1(r

′)dr′ is a monotonous increasing function.362

Proof. We rewrite the dynamics equations for the nonlinear activation without attention case:363

v̇ =
1

∥v∥2

∑
j

ajθ1(rj)x̄j +
1

∥v∥32

∑
j

ajθ2(rj)v, ξ̇ =
1

∥v∥2

∑
j

ajθ1(rj) (50)

Notice that x̄⊤
j v = rj − ξ, this gives that:364

∥v∥2v⊤v̇ =
∑
j

ajθ1(rj)(rj − ξ) +
∑
j

ajθ2(rj) (51)

=
∑
j

aj(rjθ1(rj) + θ2(rj))− ξ
∑
j

ajθ1(rj) (52)

=
∑
j

ajF (rj)− ∥v∥2ξξ̇ (53)

in which the last equality is because the dynamics of ξ, and due to Lemma 3. Now we leverage365

the condition of stationary points (v̇ = 0 and ξ̇ = 0), we arrive at the necessary conditions at the366

stationary points:367 ∑
j

ajF (rj) = 0 (54)

Note that in general, the scalar condition above is only necessary but not sufficient. Eqn. 50 has368

Mc + 1 equations but we only have two scalar equations (Eqn. 50 and ∥v∥2ξ̇ =
∑

j ajθ1(rj) =369

0). However, we can get a better characterization of the stationary points if there are only two370

components a+ and a−:371

A special case: one positive and one negative samples In this case, we have (here r+ := v⊤x̄++ξ372

and r− := v⊤x̄− + ξ):373

a+F (r+)− a−F (r−) = 0 (55)
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Figure 9: The plot of function G(y).

So the sufficient and necessary condition for (v, ξ) to be the critical point is that374

F (r+)

F (r−)
=
θ1(r+)

θ1(r−)
=
a−
a+

(56)

Without loss of generality, we consider the case where ϕ is ReLU and ψ(r) = I[r > 0]. Note that375

θ1 is a monotonously increasing function, we have θ−1
1 : (0, 1) → R such that θ−1

1 (θ1(r)) = r for376

any r ∈ R. And we denote G : (0, 1) → R which satisfies:377

G(y) = F (θ−1
1 (y)) (57)

and y+ := θ−1
1 (r+), y− := θ−1

1 (r−). Then if we can find some line lk : y = kx for some378

k ∈ R such that lk has at least two points of intersection (yi, kyi), i = 1, 2 with curve G and379

a−/a+ = y1/y2 or a−/a+ = y2/y1, then we can always find some v and ξ such that Eqn. 56 holds.380

On the other hand, it’s easy to find that (Fig. 9):381

dG(y)

dy
|y=θ1(x)

=
θ1(x)

pn(x)
> 0

lim
y→1

G(y) = lim
r→+∞

F (r) = +∞

lim
y→0

G(y) = lim
r→−∞

F (r) = lim
r→−∞

rθ1(r)

Note that since G(y+)/G(y−) = y+/y−, we have G(y+)/y+ = G(y−)/y− and thus (y+, G(y+))382

and (y−, G(y−)) are lying at the same straight line.383

For finding the sufficient condition, we focus on the range x ≥ 0 and θ1(x) ≥ 1
2 . Then in order that384

line lk : y = kx for some k ∈ R has at least two points of intersection with curve G, we just need to385

let386

G(θ̃1(0))

θ̃1(0)
≥ dG(y)

dy
|y=θ̃1(0)

⇐⇒ θ̃2(0) · pn(0) = pn(0)

∫ +∞

0

y′pn(y
′)dy′ ≥ 1

4
(58)

For convenience, let Slk := {(x, y)|y = kx} and SG := {(x, y)|y = G(x)} to be the image of the387

needed functions. Denote π1 : R2 → R : π1((x, y)) = x for any x, y ∈ R, π1(S) = {π1(s)|∀s ∈388

S}. Therefore, if Eqn. 58 holds, then the following set S will not be empty.389

S :=
⋃
k∈R

{x2
x1

| ∀x1 ̸= x2 ∈ π1(Slk ∩ SG)} (59)

And Eqn. 42 has critical points if a+/a− ∈ S. And it’s easy to find that ∀s ∈ S, s ∈ ( 12 , 1)∪ (1, 2).390

Similar results also hold for other homogeneous activations.391

392
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Every morning, as the city slowly awakens with the distant hum of traffic and the chirping of sparrows, John takes a moment to savor the peaceful ambiance before he walks
his dog, Max, around the block, greeting familiar faces and enjoying the fresh air.

In the realm of physics, when water is subjected to a temperature of 100°C at one atmosphere of pressure, it undergoes a phase transition from liquid to gas, producing steam
that has long been harnessed for various technological and culinary applications.

The Sahara Desert, stretching across North Africa, is the third largest desert in the world and is renowned for its vast sand dunes and scorching temperatures. Despite its harsh
conditions, it\'s home to various unique species that have adapted to its extreme environment.

Novels, beyond their entertainment value, serve as mirrors to society, often reflecting cultural, social, and political nuances of their time. Authors like George Orwell and Jane
Austen used their works to critique and provide insights into the world they lived in.

Cats are known for their independent nature. Many people appreciate them for their low-maintenance lifestyle, often content with just a comfortable spot to nap and an
occasional playtime.

Rainforests are vital for the Earth's ecosystem. They provide a habitat for countless species, many of which are not found anywhere else. Additionally, they play a crucial
role in regulating global climate and producing oxygen.

The Eiffel Tower, an iconic landmark in Paris, was originally constructed as a temporary exhibit for the 1889 World's Fair. Over the years, it has become a symbol of the
city's romance and architectural prowess, attracting millions of tourists annually.

The human digestive system is a complex network of organs working together to break down food into essential nutrients. Beginning with the mouth and ending at the small
intestine, each part plays a crucial role in ensuring our bodies receive the energy and vitamins needed for daily function.

A

B

A

B

A

B

A

B

Pythia-70M

Pythia-160M

Figure 10: Examples of pattern superposition: the same neuron in MLP hidden layers can be activated by
multiple irrelevant combinations of tokens (A and B in each group, e.g., the same neuron activated by both
“Every morning” and “In the realm of physics”), in Pythia-70M and Pythia-160M models. Bold tokens are
what the query token attends to.

E.4 Several remarks393

It is often the case that y− < 1/2 and y+ > 1/2, since G(y) when y > 1/2 is convex and there will394

be at most two intersection between a convex function and a straight line. This means that r∗+ > 0395

and r∗− = ξ∗ < 0.396

The intuition behind ξ: Note that while node k in MLP layer does not have an explicit bias term,397

our analysis above demonstrates that there exists an “implicit bias” term ξk(t) embedded in the398

weight vector wk:399

w(t) = w(0) + UC [v(t)− v(0)] + umξ(t) (60)

This bias term allows encoding of the query embedding um into the weight, and the negative bias400

ξ∗ < 0 ensures that given the query q = m, there needs to be a positive inner product between v∗401

(i.e., the “pattern template”) and the input contextual tokens, in order to activate the node k.402

Pattern superposition. Note that due to such mechanism, one single weight w may contain multiple403

query vectors (e.g., um1 and um2 ) and their associated pattern templates (e.g., vm1 and vm2 ), as404

long as they are orthogonal to each other. Specifically, if w = vm1
−ξm1

um1
+vm2

−ξm2
um2

, then405

it can match both pattern 1 and pattern 2. We called this “pattern superposition”, as demonstrated in406

Fig. 10.407

Lemma 5. If ϕ(x) is homogeneous, i.e., ϕ(x) = ϕ′(x)x, then there exist constant c−, c+ ∈ R408

depend on ϕ such that ϕ(x) = c−1[x < 0] + c+1[x > 0], and thus409

dθ1
dr

= (c− + c+)pn(r),
dθ2
dr

= −(c− + c+)r · pn(r) (61)

Proof. For any x > 0, we have410

ϕ′(x+) = lim
δx→0+

ϕ(x+ δx)− ϕ(x)

δx
(62)

= lim
δx→0+

ϕ′(x+ δx)− ϕ′(x)

δx
· x+ lim

δx→0
ϕ′(x+ δx) (63)

= x · lim
δx→0+

ϕ′(x+ δx)− ϕ′(x)

δx
+ ϕ′(x+) (64)

(65)

So for any x > 0, ϕ′(x) must be constant, and similar results hold for x < 0. Then by direct411

calculation, we can get the results.412
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Theorem 3 (Dynamics of lower MLP layer, nonlinear activation and uniform attention). If the413

activation function ϕ is homogeneous (i.e., ϕ(x) = ϕ′(x)x), and the input is sampled from a mixture414

of two isotropic distributions centered at x̄+ and x̄− = 0 where the radial density function has415

bounded derivative. Then the dynamics near to the critical point µ ̸= 0, names ∥v − µ∥ ≤ γ for416

some γ = γ(µ) ≪ 1, can be written as the following (where µ ∝ x̄+):417

v̇ = sgn(µ⊤x̄+){β1(µ) · I + β2(µ) · µµ⊤}(1 + λ(µ, γ)) · (µ− v) (5)

Here |λ(µ, γ)| ≪ 1 and β1(µ) > 0, β2(µ) are the constant functions of µ.418

Proof. Assume that (µ, ξ∗) is the critical point of the non-linear dynamics equations Eq. 50. Note419

that if we fix ξ = ξ∗, then v̇ is the function of v. For convenience, let fi(v) to be the i-th element420

of v̇(v). Then using v̇(µ) = 0, we get the following equation from the Taylor expansion of fi:421

fi(v) = fi(v)− fi(µ) = ▽▽▽vfi(µ)
⊤(v − µ) +

1

2
(v − µ)⊤Hi(v

′)(v − µ) (66)

Here v′ ∈ Rdim(v) lie in the space Lµ,v := {u|u = tµ + (1 − t)v, t ∈ [0, 1]}. And Hi is the422

Hessian matrix of fi, i.e., Hijk = ∂2fi
∂vj∂vk

. Note that r+ = vT x̄+ + ξ, from direct calculation, we423

have424

∂

∂vj

[
θ1(r+)

∥v∥p

]
=

1

∥v∥p+2

[
dθ1
dr

∣∣∣∣
r+

× (x̄+)j∥v∥2 − p · vj · θ1(r+)

]
(67)

∂

∂vj
[

v

∥v∥p
] =

1

∥v∥p+2

[
∥v∥2ej − p · vj · v

]
(68)

∂

∂vj

[
θ2(r+)

∥v∥p
v

]
=

1

∥v∥p+2
{[ dθ2

dr

∣∣∣∣
r+

(x̄+)j∥v∥2 − p · vjθ2(r+)]]v + θ2(r+)∥v∥2ej} (69)

∂v̇

∂vj
=

∂

∂vj

{
1

∥v∥
a+θ1(r+)x̄+ +

1

∥v∥3
[a+θ2(r+)− a−θ2(ξ

∗)]v

}
(70)

Combining Lemma 5 and the fact that the radial density distribution has a bounded derivative, we425

know θ′i(r+), θ
′′
i (r+), i = 1, 2 are bounded. Then from Eqn. 67, 68, 69, 70, we know ▽▽▽vfi(µ) is426

bounded. And it’s similar to prove that for any given v′ ∈ Lµ,v and any i, all the elements of Hi,j,k427

are bounded by some constant H̄i(µ, ∥v − µ∥) and H̄ = maxi H̄i. And thus we can find some428

γ = γ(µ) ≪ 1 such that once ∥v − µ∥ ≤ γ, we have429

(▽▽▽vfi(µ))j ≫
H̄(µ, γ)

2
(v − µ)T1, ∀j (71)

And thus the conclusion holds. For the concrete form of C(µ), using Eqn. 67, 68, 69, 70 and the430

fact that v̇(µ) = 0, µ = sµ · ∥µ∥ · x̄+

∥x̄+∥ where sµ = sgn(µ⊤x̄+) depends on µ, we can obtain431

C(µ) = β1(µ) · I + β2(µ) · µµ⊤ (72)

where432

β1(µ) = sµ · a+∥x̄+∥
∥µ∥2

· θ1(r∗+) > 0 (73)

β2(µ) = sµ · a+∥x̄+∥
∥µ∥4

·

(
ξ∗

dθ1
dr

∣∣∣∣
r∗+

− 2θ1(r
∗
+)

)
(74)

So the necessary condition forC(µ) to be a positive-definite matrix is that sµ = sgn(µ⊤x) > 0.433

E.4.1 With self-attention434

Lemma 6. Let g(y) := 1−e−y2

y . Then maxy≥0 g(y) ≤ 1√
2

.435
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Proof. Any of its stationary point y∗ must satisfies g′y(y∗) = 0, which gives:436

e−y2
∗ =

1

2y2∗ + 1
(75)

Therefore, at any stationary points, we have:437

g(y∗) =
2y∗

2y2∗ + 1
=

2

2y∗ + y−1
∗

≤ 1√
2

(76)

since g(0) = g(+∞) = 0, the conclusion follows.438

Lemma 7 (Bound of Gaussian integral). Let G(y) := e−y2/2
∫ y

0
ex

2/2dx, then 0 ≤ G(y) ≤ 1 for439

y ≥ 0.440

Proof. G(y) ≥ 0 is obvious. Note that441

G(y) := e−y2/2

∫ y

0

ex
2/2dx ≤ e−y2/2

∫ y

0

exy/2dx =
2

y

(
1− e−y2/2

)
=

√
2g(y/

√
2)

Applying Lemma 6 gives the conclusion.442

Theorem 4 (Convergence speed of salient vs. non-salient components). Let δj(t) := 1− vj(t)/µj443

be the convergence metric for component j (δj(t) = 0 means that the component j converges). For444

the nonlinear dynamics with attention (Eqn. 6), if v(0) = 0 (zero-initialization), then445

ln 1/δj(t)

ln 1/δk(t)
=
eµ

2
j/2

eµ
2
k/2

(1 + Λ(t)) (7)

Here Λ(t) = λjk(t) · eµ2
k/2 ln−1(1/δk(t)) where |λjk(t)| ≤

√
2π + 2. So when δk(t) ≪446

exp[−(
√
2π + 2) exp(−µ2

k)], we have |Λ(t)| ≪ 1.447

Proof. We first consider when µ > 0. We can write down the dynamics in a component wise448

manner:449

v̇j
v̇k

=
(µj − vj)e

v2
j/2

(µk − vk)ev
2
k/2

(77)

which gives the following separable form:450

v̇je
−v2

j/2

µj − vj
=
v̇ke

−v2
k/2

µk − vk
(78)

Let451

F (r, µ) :=

∫ rµ

0

e−v2/2

µ− v
dv =

∫ r

0

e−µ2x2/2

1− x
dx (x = v/µ) (79)

Then the dynamics must satisfy the following equation at time t:452

F (rj(t), µj) = F (rk(t), µk) (80)

where rj(t) := vj(t)/µj ≤ 1. This equation implicitly gives the relationship between rj(t) and453

rk(t) (and thus δj(t) and δk(t)). Now the question is how to bound F (r, µ), which does not have454

close-form solutions.455

Note that we have:456

∂F

∂µ
= −µ

∫ r

0

x2e−µ2x2/2

1− x
dx (81)

= µ

∫ r

0

1− x2

1− x
e−µ2x2/2dx− µ

∫ r

0

e−µ2x2/2

1− x
dx (82)

= µ

∫ r

0

(1 + x)e−µ2x2/2dx− µF (r, µ) (83)

=

√
π

2
erf

(
rµ√
2

)
+

1

µ
(1− e−r2µ2/2)− µF (r, µ) (84)
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Let ζ(r, µ) :=
√
π/2erf(rµ/

√
2) + 1

µ (1 − e−r2µ2/2), applying Lemma 6, we have 0 ≤ ζ(r, µ) ≤457 √
π/2 +

√
2r/

√
2 ≤

√
π/2 + 1 is uniformly bounded (note that r ≤ 1). Intergrating both side and458

we have:459

∂

∂µ

(
eµ

2/2F (r, µ)
)

= ζ(r, µ)eµ
2/2 (85)

F (r, µ) = e−µ2/2F (r, 0) + e−µ2/2

∫ µ

0

ζ(r, x)ex
2/2dx (86)

Note that F (r, 0) = ln 1
1−r has close-form solution. Using mean-value theorem, we have:460

F (r, µ) = e−µ2/2 ln
1

1− r
+ ζ(r, µ̄)e−µ2/2

∫ µ

0

ex
2/2dx (87)

Applying Lemma 7, we have the following bound for F (r, µ):461

0 ≤ F (r, µ)− e−µ2/2 ln
1

1− r
≤
√
π/2 + 1 (88)

When r is close to 1 (near convergence), the term e−µ2

ln 1
1−r (with fixed µ) is huge compared to462

the constant
√
π/2 + 1 ≈ 2.2533 and thus F (r, µ) → e−µ2

ln 1
1−r . To be more concrete, note that463

δ(t) = 1−v(t)/µ = 1− r(t), we let ρ(δ(t), µ) = F (1− δ(t), µ)− e−µ2

ln( 1
δ(t) ) ∈ (0,

√
π/2+1).464

Then using Eqn. 80 and |λjk(t)| := |ρ(δj(t), µj) − ρ(δk(t), µk)| ≤
√
2π + 2, we arrive at the465

conclusion.466

E.5 Hierarchical Representation (Section A)467

We formally introduce the definition of HBLT here. Let yα be a binary variable at layer s (upper468

layer and yβ be a binary variable at layer s− 1 (lower layer). We use a 2x2 matrix Pβ|α to represent469

their conditional probability:470

Pβ|α := [P[yβ |yα]] =
[

P[yβ = 0|yα = 0] P[yβ = 0|yα = 1]
P[yβ = 1|yα = 0] P[yβ = 1|yα = 1]

]
(89)

Definition 1. Define 2× 2 matrix M(ρ) := 1
2

[
1 + ρ 1− ρ
1− ρ 1 + ρ

]
and 2-dimensional vector p(ρ) =471

1
2 [1 + ρ, 1− ρ]⊤ for ρ ∈ [−1, 1].472

Lemma 8 (Property of M(ρ)). M(ρ) has the following properties:473

• M(ρ) is a symmetric matrix.474

• M(ρ)12 = 12.475

• M(ρ1)M(ρ2) = M(ρ1ρ2). So matrix multiplication in {M(ρ)}ρ∈[−1,1] is communicative476

and isomorphic to scalar multiplication.477

• M(ρ1)p(ρ2) = p(ρ1ρ2).478

Proof. The first two are trivial properties. For the third one, notice that M(ρ) = 1
2 (11

T + ρee⊤),479

in which e := [1,−1]⊤. Therefore, e⊤e = 2 and 1⊤e = 0 and thus:480

M(ρ1)M(ρ2) =
1

4
(11T + ρ1ee

⊤)(11T + ρ2ee
⊤) =

1

2
(11⊤ + ρ1ρ2ee

⊤) =M(ρ1ρ2) (90)

For the last one, note that p(ρ) = 1
2 (1+ ρe) and the conclusion follows.481

Definition 2 (Definition of HBLT). In HBLT(ρ), Pβ|α = M(ρβ|α), where ρβ|α ∈ [−1, 1] is the482

uncertainty parameter. In particular, if ρβ|α = ρ, then we just write the entire HBLT model as483

HBLT(ρ).484
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Lemma 9. For latent yα and its descendent yγ , we have:485

Pγ|α = Pγ|β1
Pβ1|β2

. . . Pβk|α =M
(
ργ|α

)
(91)

where ργ|α := ργ|β1
ρβ1|β2

. . . ρβk|α and α ≻ β1 ≻ β2 ≻ . . . ≻ βk ≻ γ is the descendent chain486

from yα to yγ .487

Proof. Due to the tree structure of HBLT, we have:488

P[yγ |yα] =
∑

yβ1
,yβ2

,...,yβk

P[yγ |yβ1 ]P[yβ1 |yβ2 ] . . .P[yβk
|yα] (92)

which is precisely how the entries of Pγ|β1
Pβ1|β2

. . . Pβk|α get computed. By leveraging the prop-489

erty of M(ρ), we arrive at the conclusion.490

Theorem 5 (Token Co-occurrence in HBLT(ρ)). If token l and m have common latent ancestor491

(CLA) of depth H (Fig. 5(c)), then P[yl = 1|ym = 1] = 1
2

(
1+ρ2H−2ρL−1ρ0

1−ρL−1ρ0

)
, where L is the total492

depth of the hierarchy and ρ0 := p⊤
·|0p0, in which p0 = [P[y0 = k]] ∈ RD and p·|0 := [P[yl =493

0|y0 = k]] ∈ RD, where {yl} are the immediate children of the root node y0.494

Proof. Let the common latent ancestor (CLA) of yβ1
and yβ2

be yc, then we have:495

P[yβ1
, yβ2

] =
∑
yc

P[yβ1
|yc]P[yβ2

|yc]P[yc] (93)

Let Pβ1β2 = [P[yβ1 , yβ2 ]], then we have:496

Pβ1β2 =M(ρβ1|c)D(c)M⊤(ρβ2|c) (94)

where D(c) := diag(P[yc]) = 1
2

[
1 + ρc 0

0 1− ρc

]
is a diagonal matrix, and ρc := 2P[yc =497

0]− 1. Note that498

1⊤D(c)1 = e⊤D(c)e = 1, 1⊤D(c)e = e⊤D(c)1 = ρc (95)

And M(ρ) = 1
2 (11

T + ρee⊤), therefore we have:499

Pβ1β2
= M(ρβ1|c)D(c)M⊤(ρβ2|c) (96)

=
1

4
(11T + ρβ1|cee

⊤)D(c)(11T + ρβ2|cee
⊤) (97)

=
1

4

(
11T + ρβ1|cρβ2|cee

⊤ + ρβ1|cρce1
⊤ + ρβ2|cρc1e

⊤) (98)

Now we compute ρc. Note that500

P[yc] =
∑
y0

P[yc|y0]P[y0] (99)

Let pc := [P[yc]] be a 2-dimensional vector. Then we have pc = Pyc|y0
p0 = p(ρc|0ρ0), where p0501

is the probability distribution of class label y0, which can be categorical of size C:502

pc = Pyc|y0
p0 =

∑
y1

Pyc|y1
Py1|y0

p0 (100)

= M(ρc|1)
1

2

[
1 + p1|0 1 + p2|0 . . . 1 + pC|0
1− p1|0 1− p2|0 . . . 1− pC|0

]
p0 (101)

= M(ρc|1)
1

2

[
1 + p⊤

·|0p0

1− p⊤
·|0p0

]
(102)

= M(ρc|1p
⊤
·|0p0) (103)

in which y1 is the last binary variable right below the root node class label y0.503
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Therefore, ρc = ρc|1ρ0, where ρ0 := p⊤
·|0p0 is the uncertainty parameter of the root node y0.504

If all ρβ|α = ρ for immediate parent yα and child yβ , yβ1
is for token l and yβ2

is for token m, then505

ρβ1|c = ρβ2|c = ρH , and ρc|1 = ρL−1−H and thus we have:506

P[yl = 1|ym = 1] =
P[yl = 1, ym = 1]

P[ym = 1]
=

1

2

(
1 + ρ2H − 2ρHρc

1− ρHρc

)
(104)

=
1

2

(
1 + ρ2H − 2ρL−1ρ0

1− ρL−1ρ0

)
(105)

and the conclusion follows.507
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