
Conformal Prediction under Lévy-Prokhorov
Distribution Shifts: Robustness to Local and

Global Perturbations

Liviu Aolaritei∗

UC Berkeley
Berkeley, CA

liviu.aolaritei@berkeley.edu

Julie Zhu∗

MIT
Cambridge, MA

qianyu_z@mit.edu

Oliver Wang∗

MIT
Cambridge, MA
olivrw@mit.edu

Michael I. Jordan
UC Berkeley
Berkeley, CA

jordan@cs.berkeley.edu

Youssef Marzouk
MIT

Cambridge, MA
ymarz@mit.edu

Abstract

Conformal prediction provides a powerful framework for constructing pre-
diction intervals with finite-sample guarantees, yet its robustness under
distribution shifts remains a significant challenge. This paper addresses
this limitation by modeling distribution shifts using Lévy-Prokhorov (LP)
ambiguity sets, which capture both local and global perturbations. We
provide a self-contained overview of LP ambiguity sets and their connections
to popular metrics such as Wasserstein and Total Variation. We show that
the link between conformal prediction and LP ambiguity sets is a natural
one: by propagating the LP ambiguity set through the scoring function,
we reduce complex high-dimensional distribution shifts to manageable one-
dimensional distribution shifts, enabling exact quantification of worst-case
quantiles and coverage. Building on this analysis, we construct robust
conformal prediction intervals that remain valid under distribution shifts,
explicitly linking LP parameters to interval width and confidence levels.
Experimental results on real-world datasets demonstrate the effectiveness of
the proposed approach.

1 Introduction

Conformal prediction has emerged as a versatile framework for constructing prediction
intervals with finite-sample coverage guarantees [32, 40, 2]. By leveraging the concept of
nonconformity, it provides valid confidence sets for predictions, regardless of the underlying
data distribution. This framework has gained significant traction in fields such as medicine
[29, 38], bioinformatics [14], finance [41], and autonomous systems [27, 28], where decision-
making under uncertainty is critical. However, the standard conformal prediction framework
relies on the assumption of exchangeability between training and test data [4]. When this
assumption is violated due to distribution shifts, the coverage guarantees of conformal
prediction may break down, limiting its applicability in real-world scenarios [37].
Distribution shifts—systematic changes between the training and test distributions—are
ubiquitous in practice. Examples include covariate shift in medical diagnostics, where
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the population characteristics evolve over time [36], or adversarial perturbations in image
classification, where small, targeted changes to inputs can drastically alter predictions [31].
Addressing such shifts is essential for ensuring the reliability of predictive models, particularly
in high-stakes applications.
Existing extensions of conformal prediction under distribution shifts impose restrictive
structural assumptions: they assume particular types of covariate or label shift [37, 34], purely
local ℓ2-bounded perturbations or purely global contamination [16, 11], shifts measured by a
prescribed f -divergence [9]. While effective in certain settings, these approaches can struggle
with more complex shifts that involve both local perturbations (e.g., small, pixel-level changes
in images) and global perturbations (e.g., population-wide shifts in feature distributions) [6].
To bridge this gap, we propose a novel framework based on Lévy–Prokhorov (LP) ambiguity
sets, a class of optimal transport-based discrepancy measures that simultaneously capture
local and global perturbations.
LP ambiguity sets offer a flexible and interpretable way to model distributional uncertainty.
Unlike f -divergences, which are limited to absolutely continuous shifts, LP metrics naturally
handle broader scenarios, including discrete and transport-based perturbations [7]. For
example, LP metrics can capture local shifts such as minor variations in image textures
or sensor readings, as well as global shifts like changes in population demographics. This
dual capability makes LP metrics particularly suited for robust prediction in dynamic and
heterogeneous environments.
In this paper, we leverage the LP ambiguity set to develop a distributionally robust extension
of conformal prediction. By propagating LP ambiguity sets through the scoring function, we
simplify high-dimensional shifts into one-dimensional shifts in the score space, enabling exact
quantification of worst-case quantiles and coverage. This approach leads to interpretable and
robust prediction intervals, with explicit control over how the local and global LP parameters
influence interval width and confidence levels.
Finally, we validate the proposed approach on three benchmark datasets: MNIST [25],
ImageNet [13], and iWildCam [6], the latter of which captures real-world distribution shifts,
demonstrating its empirical coverage guarantees and efficiency in terms of prediction set size.

1.1 Related Work

Under train-test distribution shifts that violate exchangeability, conformal prediction often
fails to maintain valid coverage guarantees [37]. Extensions to conformal prediction under
such shifts can be summarized into three main categories: sample reweighting, ambiguity
sets, and sequential learning.
Sample Reweighting. This approach assigns weights to calibration samples based on their
relevance to the test data. For instance, [37] proposed weighted conformal prediction for
covariate shift, where the marginal distribution PX changes while the conditional distribution
PY |X remains fixed. Likelihood ratios are used to adjust for compositional differences,
enabling valid predictions. Subsequent extensions address label shift [34], causal inference [26],
and survival analysis [8, 20]. However, these methods rely on the accurate estimation of
likelihood ratios, which may be challenging in practice. For spatial data, [30] proposed
weighting samples based on proximity to test points. Still within the covariate shift setting,
[35] and [46] leverage semiparametric theory to design more efficient conformal methods
with asymptotic conditional coverage, bypassing the need for explicit sample reweighting.
Compared to these approaches, our method handles distribution shifts in the joint distribution
P of (X, Y ), without requiring likelihood ratios, and remains effective under more complex
local and global perturbations.
Ambiguity Sets. Ambiguity sets provide a flexible framework for modeling uncertainty in the
data distribution. For instance, [9] used an f -divergence ambiguity set around the training
distribution to derive worst-case coverage guarantees and adjusted prediction sets. This
work is most closely related to ours, and while their analysis inspired our approach, we
rely on fundamentally different tools, particularly drawing on optimal transport techniques.
A key limitation of f -divergences is that they are restricted to distribution shifts that
are absolutely continuous with respect to the training distribution. Building on this line
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of work, [1] proposed a robust conformal inference framework that explicitly separates
covariate and conditional shifts: the former is handled via sample reweighting without
constraints, while the latter is modeled using an f -divergence ball. This decomposition
enables distinct handling of covariate and conditional shifts, improving efficiency compared
to worst-case joint modeling. A related approach is Wasserstein-Regularized Conformal
Prediction (WR-CP) [44], which heuristically minimizes an empirical upper bound on
the coverage gap under joint distribution shift by combining importance weighting with
Wasserstein distance regularization in score space. However, WR-CP requires kernel density
estimation and repeated Wasserstein computations during training, and does not offer
formal coverage guarantees under worst-case shifts. Differently, [16] proposed robust score
functions based on randomized smoothing [12, 24], which ensure valid predictions under
adversarial perturbations within ℓ2-norm balls. While adversarial methods tend to produce
overly conservative uncertainty sets, recent works [45, 17, 11] have refined prediction sets by
considering specific perturbation structures. Other extensions have incorporated poisoning
attacks and non-continuous data types such as graphs [49]. However, these methods often
assume very specific types of distribution shifts or require solving complex optimization
problems. In a related spirit, both [47] and [21] study worst-case coverage under unmeasured
confounding, modeled via the Γ-selection framework. While their focus is on causal inference
and the distributional shifts induced by hidden confounders, their robustness guarantees
parallel our LP-based approach in targeting worst-case coverage over a structured class of
perturbations. In contrast, our method employs a unified discrepancy measure that captures
both local and global perturbations, imposes no assumptions on the score distribution, and
provides a computationally efficient way to construct prediction sets.
Sequential Learning. While most methods assume i.i.d. or exchangeable training data, several
works have explored sequential conformal prediction. These methods include updating
nonconformity scores [42], leveraging correlation structures [10], reweighting samples [43, 4],
and monitoring rolling coverage [18, 19, 48, 5]. Although our method does not focus on
sequential settings, extending it to this context is a promising avenue for future research.

1.2 Mathematical Notation

We denote by P(Z) the space of Borel probability distributions on Z := X × Y ⊆ Rd × R.
Given P ∈ P(Z), we denote by Z ∼ P the fact that the random variable Z is distributed
according to P. Projection maps are denoted by π, and the indicator function of a set A is
denoted by 1{A}. We implicitly assume that all maps s : Z → R are Borel. We denote by
s#P the pushforward of P via the map s, defined as (s#P)(A) := P(s−1(A)), for all Borel sets
A ⊆ Z. Throughout the paper, ∥ · ∥ denotes an arbitrary norm on Z. Given P,Q ∈ P(Z),
the ∞-Wasserstein distance is defined as

W∞(P,Q) := inf
{

ε ≥ 0 : inf
γ∈Γ(P,Q)

∫
Z×Z

1{∥z1 − z2∥ > ε} dγ(z1, z2) ≤ 0
}

, (1)

where Γ(P,Q) is the set of all joint probability distributions over Z × Z, with marginals P
and Q, often called transportation plans or couplings [39]. Moreover, the Total Variation
(TV) distance is defined as

TV(P,Q) := inf
γ∈Γ(P,Q)

∫
Z×Z

1{∥z1 − z2∥ > 0}dγ(z1, z2). (2)

At first sight, definition (2) might seem different from the more classical definition TV(P,Q) =
sup{|P(A) − Q(A)| : A ⊆ Z is a Borel set}. We refer to [23, Proposition 2.24] for a proof of
their equivalence. Here, we prefer definition (2), as it demonstrates that the TV distance
is a special case of an optimal transport discrepancy, enabling us to leverage the extensive
literature on optimal transport [39]. Finally, we denote the α-quantile of a distribution P by

Quant(α;P) := inf{s ∈ R : P(S ≤ s) ≥ α}.

2 Lévy–Prokhorov Distribution Shifts

We model distribution shifts as an ambiguity set, i.e., a ball of probability distributions
Bε,ρ(P) := {Q ∈ P (Z) : LPε(P,Q) ≤ ρ} , (3)
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around the training distribution P, constructed using the Lévy-Prokhorov (LP) pseudo-metric

LPε(P,Q) := inf
γ∈Γ(P,Q)

∫
Z×Z

1{∥z1 − z2∥ > ε}dγ(z1, z2). (4)

Note that the LP pseudo-metric belongs to the general class of optimal transport discrepancies,
with the particular choice of transportation cost c(z1, z2) := 1{∥z1 − z2∥ > ε} [7]. In this
section, we provide a detailed exposition of the LP pseudo-metric and explore its expressivity
in modeling significant distribution shifts. The section culminates with Proposition 2.5,
where we study the propagation of Bε,ρ(P) thorough the scoring function s, showing that the
LP distribution shift can be directly considered in the one-dimensional nonconformity scores.
For more insights into the LP ambiguity set, we begin by presenting an alternative represen-
tation that decomposes it in terms of the ∞-Wasserstein distance and the TV distance.
Proposition 2.1 (Decomposition of the LP ambiguity set). The LP ambiguity set can be
equivalently rewritten as

Bε,ρ(P) =
⋃

P̃: W∞(P,̃P)≤ε

{
Q ∈ P (Z) : TV(P̃,Q) ≤ ρ

}
. (5)

All proofs of the paper are deferred to Appendix D. The decomposition in equation (5)
reveals that each distribution Q ∈ Bε,ρ(P) can be constructed through a two-step procedure.
First, the center distribution P undergoes a local perturbation, resulting in an intermediate
distribution P̃ that lies within a W∞ distance of at most ε from P. This implies that each
unit of mass in P can be arbitrarily relocated within a radius of ε in Z. Secondly, P̃ is
subjected to a global perturbation, producing the final distribution Q, which lies within a
TV distance of at most ρ from P̃. Specifically, this step entails displacing up to a fraction
ρ of P̃’s total mass to any location in the space Z. This decomposition in (5) immediately
implies that other well-known distribution shifts can be recovered as extreme cases of the
LP ambiguity set Bε,ρ(P).
Corollary 2.2 (Relationship to other metrics).

(i) B0,ρ(P) recovers the TV ambiguity set {Q ∈ P (Z) : TV(P,Q) ≤ ρ}.

(ii) Bε,0(P) recovers the ∞-Wasserstein ambiguity set {Q ∈ P (Z) : W∞(P,Q) ≤ ρ}.

The decomposition in (5) can also be expressed in terms of random variables, which may
offer a clearer understanding of the LP distribution shifts. We state this in the following
proposition, which recovers [7, Theorem 2.1] using a different approach.
Proposition 2.3 (Local and Global Perturbation). Let Z1 ∼ P. Then Q ∈ Bε,ρ(P) if and
only if there exists a random variable Z2 ∼ Q of the form

Z2
d= (Z1 + N)1{B = 0} + C1{B = 1}, (6)

the random variables N, B, C are as follows: N represents the local perturbation, with
support {n ∈ Z : ∥n∥ ≤ ε}, B indicates whether the sample is globally perturbed or not,
with Prob(B = 1) ≤ ρ, and C represents the global perturbation, following an arbitrary
distribution on Z. In particular, Z1, N, B, and C can all be correlated.

Propositions 2.1 and 2.3 readily imply that the LP ambiguity set allows for distributions Q
which are significantly different from P, as the following remark explains.
Remark 2.4 (Absolute continuity). The decomposition in (5) implies that Bε,ρ(P) may
contain distributions that are not absolutely continuous with respect to P. This generality is
particularly valuable in settings where the test distribution assigns mass to regions unobserved
during training. Such shifts are excluded under f -divergence ambiguity sets [9] or models
that enforce bounded likelihood ratios between the test and training distributions [37].

So far, we considered the distribution shift modeled via an LP ambiguity set in the space
Z = X × Y. This is in line with supervised learning, where it is more natural to consider
distribution shifts in data-space X × Y, as opposed to a distribution shift in the score-space
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s(X , Y). Nonetheless, from a technical viewpoint, it is much easier to deal with an LP
ambiguity set in the one-dimensional scores, due to its immediate relationship with the
cumulative distribution functions and quantiles. The following proposition shows that the
result of the propagation of Bε,ρ(P) through s is again captured by an LP ambiguity set,
allowing us to effectively restrict the analysis to a distribution shift on the scores.
Proposition 2.5 (Propagation of the LP ambiguity set). Let the scoring function s : Z → R
be k-Lipschitz over Z, for some k ∈ R+. Then,

s#Bε,ρ(P) ⊆ Bkε,ρ(s#P). (7)

Proposition 2.5 requires s to be Lipschitz continuous over Z. This condition is trivially
satisfied if, for instance, s is continuous and Z is compact. In light of the inclusion (7), we
focus, for the remainder of the paper, on distribution shifts over the nonconformity scores.
These shifts are modeled via an LP ambiguity set Bε,ρ(P), where, for simplicity, we omit the
Lipschitz constant k from the notation and consider P to be directly the distribution of s(Z).
Note that, in this case, all distributions inside Bε,ρ(P) are supported on R.
Remark 2.6 (Lipschitzness of the score function). The Lipschitz assumption in Proposition 2.5
is not required for any other theoretical results in this paper. It merely illustrates how
data-space perturbations translate into score-space perturbations under a smooth scoring
function. All subsequent results, including our coverage guarantees under distribution shift,
are derived by modeling shift directly over the nonconformity scores. This modeling choice
aligns with standard practice in conformal prediction under distribution shift (e.g., [9]), and
enables our framework to accommodate arbitrarily complex, potentially non-Lipschitz score
functions such as deep neural networks.

3 Worst-Case Quantile and Coverage

In this section we introduce and analyze the two key quantities which allow us to construct
a robust prediction interval with the right coverage level for any test distribution in the LP
ambiguity set. The first quantity is the worst-case quantile, defined below.
Definition 3.1 (Worst-case quantile). For β ∈ [0, 1], the worst-case β-quantile in Bε,ρ(P) is
defined as

QuantWC
ε,ρ (β;P) := sup

Q∈Bε,ρ(P)
Quant(β;Q). (8)

Equation (8) defines the worst-case quantile through a distributionally robust optimization
problem, which quantifies the largest β-quantile for all the test distributions in Bε,ρ(P). In
other words, QuantWC

ε,ρ (β;P) represents the worst-case impact of the distribution shift on
the value of the β-quantile. This, in turn, affects the size of the confidence interval, as we
will show in Section 4. The second quantity is the worst-case coverage, defined next.
Definition 3.2 (Worst-case coverage). Let FQ : R → [0, 1] be the cumulative distribution
function of Q.or q ∈ R. Then, the worst-case coverage in Bε,ρ(P) at q is defined as

CovWC
ε,ρ (q;P) := inf

Q∈Bε,ρ(P)
FQ(q). (9)

Equation (3.2) defines the worst-case coverage as the lowest value among the cumulative
distribution functions in the LP ambiguity set evaluated at q ∈ R. For example, if q =
Quant(1 − α;P), CovWC

ε,ρ (q;P) represents the worst-case impact of the distribution shift on
the true confidence level when the confidence level for P is 1 − α. In the remainder of
this section, we will show that both QuantWC

ε,ρ (β;P) and CovWC
ε,ρ (q;P) can be quantified in

closed-form, as a function of the training distribution P and the two robustness parameters
ε, ρ. Before doing so, we note that a high value of ρ, i.e., the global perturbation parameter,
renders the worst-case quantile trivial. We show this in the following remark.
Remark 3.3 (Case ρ ≥ 1 − β). If ρ ≥ 1 − β, then QuantWC

ε,ρ (β;P) = Quant(1;P). Intuitively,
the LP ambiguity set Bε,ρ(P) allows to displace ρ mass from the distribution P and move
it arbitrarily in R. Since ρ ≥ 1 − β, this implies that we can construct a sequence of
distributions Qn ∈ Bε,ρ(P) for which Quant(β;Qn) → ∞. To see this, let P = U([0, 1]), and
let Qn := U([0, 1 − ρ]) + ρδn. Then, clearly LPε(P,Qn) = ρ, and Quant(β;Qn) ≥ n.
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Figure 1: (Left) Worst-case quantile; (Right) Worst-case coverage.

Following Remark 3.3, we restrict our attention to the case ρ < 1 − β in the quantity
QuantWC

ε,ρ (β;P). We are now prepared to present the first result of this section.
Proposition 3.4 (Worst-case quantile in the LP ambiguity set). The following holds

QuantWC
ε,ρ (β;P) = Quant(β + ρ;P) + ε. (10)

In words, the worst-case quantile in the LP ambiguity set Bε,ρ(P) corresponds to a quantile
of P that is shifted by the local parameter ε and adjusted by the global parameter ρ. We
will now present the second result of this section.
Proposition 3.5 (Worst-case coverage in the LP ambiguity set). The following holds

CovWC
ε,ρ (q;P) = FP(q − ε) − ρ. (11)

The worst-case coverage in the LP ambiguity set Bε,ρ(P) corresponds to the coverage of P
shifted by the local parameter ε and adjusted by the global parameter ρ. The proofs of
Propositions 3.4 and 3.5 are constructive, in the sense that we propose two sequences of
distributions which attain, in the limit, the two quantities QuantWC

ε,ρ (β;P) and CovWC
ε,ρ (q;P),

respectively. The intuition for both constructions stems from Proposition 2.1, which allows
us to construct every distribution in Bε,ρ(P) using a two-step procedure that decouples the
local and global perturbations. This intuition is illustrated in Figure 1.

4 Distributionally Robust Conformal Prediction

In this section, we demonstrate how the worst-case quantile and coverage introduced earlier
enable the construction of a confidence interval and its worst-case coverage for all distributions
in the LP ambiguity set. We start by defining the prediction set

C1−α
ε,ρ (x;P) :=

{
y ∈ Y : s(x, y) ≤ QuantWC

ε,ρ (1 − α;P)
}

, (12)

where, as noted in Proposition 3.4, QuantWC
ε,ρ (1 − α;P) = Quant(1 − α + ρ;P) + ε. Observe

that Cε,ρ(x;P) depends on the training distribution P, which is unknown. Instead, we
assume access to n exchangeable data points {s(Xi, Yi)}n

i=1 ∼ P. Based on this, we define
the empirical distribution P̂n := 1

n

∑n
i=1 δs(Xi,Yi), and consider the empirical confidence set

C1−α
ε,ρ (x; P̂n). We now state the main result of this paper.

Theorem 4.1 (Conformal Prediction under LP distribution shifts). Let s(Xn+1, Yn+1) ∼
Ptest be independent of {s(Xi, Yi)}n

i=1 ∼ P. Moreover, let LPε(P,Ptest) ≤ ρ. Then,

Prob
{

Yn+1 ∈ C1−α
ε,ρ

(
Xn+1; P̂n

)}
≥ ⌈n(1 − α + ρ)⌉

n + 1 − ρ. (13)

A few remarks are in order. First, the local parameter ε affects only the size of the confidence
interval, but not its coverage guarantee. This is expected, given the construction of the two
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Figure 2: Score distribution shift. Plots for MNIST and ImageNet under (p = 0.05, u =
1.0) perturbation. The score distribution obtained from the unperturbed data (red), and
from the perturbed data (blue) are plotted in log scale.

sequences of distributions that achieve the worst-case quantile and coverage in Propositions 3.4
and 3.5, respectively (also illustrated in Figure 1). In contrast, the global shift parameter ρ
influences both the coverage and the size of the prediction set: it shifts the quantile level
from 1 − α to 1 − α + ρ, and appears subtractively in the coverage bound. This change
in quantile level often has a more pronounced effect on the size of the prediction set than
the additive ε term, particularly when the score distribution is light-tailed. Meanwhile, the
reduction in coverage due to ρ decreases with the calibration size n, and becomes negligible
in the large-sample regime, scaling as O(1/n). Finally, as expected, the distribution shift
reduces the coverage below the desired 1 − α level. The following corollary provides an
adjusted coverage for the worst-case quantile, ensuring a 1 − α confidence level in (13).
Corollary 4.2 (1 − α coverage). Let β = α + (α − ρ − 2)/n. Under the same conditions as
in Theorem 4.1, we have

Prob
{

Yn+1 ∈ C1−β
ε,ρ

(
Xn+1; P̂n

)}
≥ 1 − α. (14)

Recall from Corollary 2.2 that the LP pseudo-metric recovers the TV and ∞-Wasserstein
distances if ε = 0 and ρ = 0, respectively. As a consequence, the guarantee in Corollary 4.2
can be immediately specialized to these additional types of distribution shifts.

5 Experiments

We conduct experiments on three classification problems: MNIST [25], ImageNet [13],
and iWildCam [6]. We also compare our algorithm against five other methods: standard
split conformal prediction (SC), χ2-divergence robust conformal prediction [9], conformal
prediction under covariate shift (Weight) [37], randomly smoothed conformal prediction
(RSCP) [16], and fine-grained conformal prediction (FG-CP) [1]. Each method defines its
own prediction set; for our method, this is the robust set C1−β

ε,ρ (x; P̂n) from Corollary 4.2.
While additional methods exist in the literature, they typically constitute minor variations
or special cases of the five representative baselines we benchmark against.
We evaluate methods in terms of validity and efficiency. Validity is computed as the average
empirical coverage across M independent calibration-test splits 1

M

∑M

j=1[ 1
K

∑K

i=1 1{y
(j)
i ∈

C(x(j)
i ; P̂(j)

n )}], where P̂(j)
n denotes the empirical distribution of the j-th calibration set, and

{(x(j)
i , y

(j)
i )}K

i=1 denotes the corresponding test set. Efficiency is evaluated as the average
prediction set size across the same M splits and K test samples. For all experiments,
we set the miscoverage level to α = 0.1 and use the negative log-likelihood (NLL) score,
s(x, y) = − log p(y | x), as the nonconformity measure. For ImageNet, we use a pre-trained
ResNet-152 model; for MNIST, we train a small ResNet architecture from scratch; and for
iWildCam, we adopt the pre-trained ResNet-50 model provided by [6].
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Figure 3: MNIST and ImageNet. Coverage (validity) and size (efficiency). In the coverage
plots, the long dashed line indicates the target 1 − α level. Scattered points show empirical
coverage and prediction set size for each calibration–test split, while short horizontal lines
denote averages across M = 30 splits. The proposed methods are highlighted in bold/red.

5.1 Data-Space Distribution Shift: MNIST and ImageNet

Following the split conformal procedure, we partition the hold-out validation set into a
calibration set of n = 1000 samples and a test set of K = 5000 samples drawn uniformly from
the remaining data. We simulate local perturbations by adding i.i.d. noise from U([−u, u])
to every channel of each test image. Global perturbations are introduced by randomly
corrupting a fraction p of test labels, replacing each with a neighboring class label. This
setup captures realistic scenarios in which test-time inputs are noisy and some labels may
be incorrect due to annotation errors [15, 49]. Figure 2 illustrates the resulting shift in the
score distribution under the perturbation setting (p = 0.05, u = 1.0).
Calibration NLL scores are computed on unperturbed calibration data points to determine
empirical quantiles. Constructing prediction sets is then straightforward for standard
conformal prediction. For the robust algorithms, our method naturally accounts for both
global and local perturbations through the parameters ρ and ε, respectively. Following
Proposition 2.5, we set ρ = p to reflect the global label corruption level. While the same
proposition suggests setting ε = ku, where k is the Lipschitz constant of the score function,
estimating k from data often leads to overly conservative values, as a global Lipschitz constant
may not reflect the local behavior of the score function where the data are concentrated.
In practice, we find that a fixed value k = 2 suffices to ensure valid coverage across the
full range of data-space shifts u; we refer to this method as LPε. In parallel, we evaluate
a data-driven variant, called LPest

ε , which estimates both ε and ρ directly from samples
using the algorithm described in Appendix B. This version achieves similar robustness while
adapting more flexibly to the underlying shift. For the χ2, FG-CP, RSCP, and Weight
conformal prediction methods, we follow the original experimental setups described in their
respective references; implementation details are provided in Appendix C.
Figure 3 reports the empirical coverage and prediction set size (averaged over 30 calibra-
tion–test splits) for the seven methods under three levels of noise corruption: (p, u) ∈
{(0.01, 0.25), (0.025, 0.5), (0.05, 1.0)}. As expected, standard conformal prediction (SC) fails
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Figure 4: iWildCam. Coverage (left) and prediction set size (right) across (ε, ρ) values.
The white dashed line marks the set of (ε, ρ) pairs achieving exactly 90% empirical coverage,
and the smallest prediction set along this frontier is shown with a black circle. White circles
correspond to points estimated by the algorithm in Appendix B, and the best-performing
pair among them (yielding the smallest prediction set) is marked by a black diamond.

to maintain coverage as the corruption level increases. In contrast, both variants of our
method—LPε and LPest

ε —consistently maintain valid coverage across all settings. They
also achieve comparable prediction set sizes, demonstrating the effectiveness of data-driven
parameter estimation. Among the remaining baselines, only RSCP maintains valid coverage
under all shift levels, but it does so at the cost of extremely large prediction sets, particularly
for ImageNet. The other three baselines, i.e., χ2, FG-CP, and Weight, exhibit coverage
degradation as the shift intensity increases. This is expected: these methods assume absolute
continuity between the training and test distributions, a condition violated in our experi-
mental setup (see Figure 2). In particular, when test-time perturbations cause the support
of the test distribution to lie partially outside that of the training distribution, methods
relying on importance weighting or f -divergence balls struggle to provide valid guarantees.
In contrast, our LP-based approach requires no absolute continuity and remains robust to
both global label corruption and local input noise.
This numerical illustration also highlights an important modeling point. The LP-based
approach is specifically designed to capture local and global perturbations of the data
distribution, as introduced in this experiment. It provides a principled framework for
handling such shifts, complete with closed-form expressions for both the worst-case quantile
and coverage. As a result, the strong empirical performance observed here is not coincidental:
our method is theoretically tailored to this class of distribution shifts, and no other method
can offer stronger worst-case guarantees within the same ambiguity set.

5.2 Real-world Distribution Shift: iWildCam

We now evaluate our algorithm’s ability to handle real-world distribution shifts using the
iWildCam dataset [6], a multi-class classification task characterized by naturally occurring
train-test discrepancies. These arise from changes in camera trap placement and timing,
which induce variability in illumination, color, viewpoint, background, vegetation, and species
frequency. As described in [22], the dataset includes a training set, an out-of-distribution
test set, and an in-distribution validation/test set consisting of images captured from the
same camera locations as the training data but on different dates. We use the in-distribution
test set for calibration and the out-of-distribution test set for evaluation.
Figure 5.2 illustrates how coverage and prediction set size vary over a grid of (ε, ρ) values
in the LP ambiguity set. The left panel shows that all pairs lying to the right of the black
dotted contour (the 90% coverage curve) yield valid coverage under the real distribution
shift. This demonstrates that LP ambiguity sets capture the relevant perturbations affecting
iWildCam, without assuming prior knowledge of the shift type or structure. The right panel
shows the corresponding prediction set sizes. Notably, moving further right from the 90%
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contour leads to increasingly conservative sets. White circles in both panels denote (ε, ρ)
pairs estimated by the data-driven procedure described in Appendix B. The best among
these—marked with a black diamond—achieves nearly identical coverage and prediction set
size as the optimal point found by an exhaustive grid search (marked by a black circle). This
proximity confirms that the proposed estimation algorithm reliably recovers high-quality
ambiguity set parameters with limited test data.
Taken together, these results support two key takeaways: (1) LP ambiguity sets flexibly
model real distribution shifts, delivering valid coverage across a broad region of the parameter
space, and (2) the estimated (ε, ρ) pair performs comparably to the best grid-tuned pair,
both in coverage and efficiency.
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A Preliminaries in Conformal Prediction

In what follows, we provide a brief introduction to split conformal prediction. Consider
a predictive model f : X → Y and a calibration dataset D = {(Xi, Yi)}n

i=1 ⊆ X × Y,
where the points in D, along with any test sample (Xn+1, Yn+1) ∈ X × Y, are assumed to
be exchangeable and distributed according to P. Without additional assumptions on the
predictive model or the data-generating process, conformal prediction constructs a prediction
set C1−α(Xn+1) that satisfies the finite-sample coverage guarantee:

Prob
{

Yn+1 ∈ C1−α(Xn+1)
}

≥ 1 − α, (15)

where the probability is taken over both the calibration dataset D and the test point
(Xn+1, Yn+1).
To achieve this, conformal prediction relies on a scoring function s : X × Y → R, which
quantifies the nonconformity of a label y ∈ Y for a given input x ∈ X . The predictive
model f is typically used to define the scoring function s, where f(x) represents the model’s
prediction. In regression, f(x) might return a point estimate of y, with s(x, y) defined as
the absolute error |f(x) − y|. In classification, f(x) might output class probabilities, and
s(x, y) could be the negative log-probability of the true label y. For each calibration point
(Xi, Yi) ∈ D, the nonconformity score s(Xi, Yi) is computed. The scores are then used to
estimate the empirical (1 − α)-quantile, with a finite-sample correction:

q̂α := Quant
(

⌈(1 − α)(n + 1)⌉
n

; s#P̂n

)
,

where s#P̂n is the empirical distribution of the calibration scores {s(Xi, Yi)}n
i=1. Finally, the

prediction set for a new label Yn+1 is defined as

C1−α(Xn+1) = {y ∈ Y : s(Xn+1, y) ≤ q̂α} .

By construction, the prediction set C1−α(Xn+1) satisfies the coverage guarantee in (15),
provided the data is exchangeable. With the conformal prediction framework in place, we now
shift our focus to the challenge of distribution shifts. Specifically, we consider scenarios where
the test data (Xn+1, Yn+1) is drawn from a distribution that differs from the distribution
P, with this shift captured by the Lévy–Prokhorov ambiguity set around P. Such shifts
introduce additional complexities in ensuring the robustness of the prediction intervals.

B Estimation of the LP ambiguity set parameters ε and ρ

While our theoretical results apply to any pair (ε, ρ) defining an LP ambiguity set, selecting
these parameters in practice is critical to balancing robustness and informativeness. This
is particularly important when only a limited number of calibration and test samples are
available. To address this, we propose a systematic estimation procedure for (ε, ρ) based
on empirical data. The key idea is to identify the pair that yields the tightest worst-case
conformal prediction set while preserving the desired coverage under distribution shift.
The procedure works as follows. Given two independent batches of calibration scores from
the training distribution P and a batch of test scores from the shifted distribution Q, we
evaluate a grid of candidate ε values. For each candidate εi, we estimate the corresponding
ρi by computing the LP distance between one batch of calibration scores and the test scores
using one-dimensional optimal transport with cost function 1{|x − y| ≥ εi}. This transport
problem can be efficiently solved either via the Sinkhorn algorithm or using the standard
linear programming formulation, both of which are efficient in one dimension due to the
sorted structure of empirical distributions [33]. The resulting pair (εi, ρi) defines a valid
ambiguity set, and we compute its associated worst-case quantile using the second calibration
batch. Specifically, we apply Corollary 4.2, setting βi = α + (α − ρi − 2)/n, so that the
prediction set C1−βi

εi,ρi
enjoys a worst-case coverage guarantee of at least 1 − α. We then select

the pair that yields the smallest such quantile. To preserve statistical validity, the calibration
scores used to estimate (ε, ρ) must be disjoint from those used to compute the conformal
quantile. This ensures that the ambiguity set is selected independently of the scores used for
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Algorithm 1 Estimation of ε and ρ

Input: Independent empirical calibration score distributions P̂(1)
n , P̂(2)

n and empirical test
score distribution Q̂m; a grid of {εi}k

i=1 values, with k ∈ N; and target coverage 1 − α.
Output: Pair (εi, ρi) yielding the tightest prediction set with valid coverage.
1: for i = 1, . . . , k do
2: Compute one-dimensional LP distance ρi between P̂(1)

n and Q̂m

3: Set βi := α + (α − ρi − 2)/n
4: Compute worst-case quantile:
5: qi := QuantWC

εi,ρi

(
1 − βi; P̂(2)

n

)
= Quant

(
1 − βi + ρi; P̂(2)

n

)
+ εi

6: end for
7: return (εi, ρi) with minimal qi ▷ Smaller qi leads to smaller robust prediction sets

Figure 5: ImageNet (ε, ρ) estimation. Each point in the 20-point grid corresponds to a
candidate (ε, ρ) pair, where ε ∈ (0.5, 1.5) and ρ is estimated using one-dimensional optimal
transport between the empirical calibration and test score distributions, each constructed
from 1000 samples. The color scale represents the empirical worst-case quantile associated
with each pair, computed on a held-out calibration batch. The optimal (ε, ρ) pair, yielding
the smallest quantile, is highlighted in red, with the corresponding empirical coverage and
prediction set size annotated. The true corruption parameters (p, u) used to generate the
test distribution are also indicated for reference.

calibration, avoiding overfitting and maintaining the coverage guarantee. We present this
procedure in Algorithm 1.
Empirical results on ImageNet and MNIST validate the effectiveness of this approach.
Figures 5 and 6 display the estimated (ε, ρ) values over a 20-point grid, visualizing the
resulting worst-case quantiles through color shading. The selected pair (highlighted in red)
yields the smallest worst-case quantile and corresponds to the tightest robust prediction set.
Across both datasets, we observe that the data-driven procedure reliably identifies ambiguity
set parameters that balance coverage and informativeness, leading to prediction sets that
respect the desired 1 − α coverage level.
Remark B.1 (Sensitivity to ε and ρ). It is natural to ask how sensitive the method is to
misspecification of the shift parameters (ε, ρ). While both influence the prediction set, their
effects are asymmetric. The parameter ε appears additively in the worst-case quantile and
controls the width of the prediction set without affecting coverage. In contrast, ρ shifts
the quantile level and also appears subtractively in the coverage bound from Theorem 4.1.
As a result, even small underestimations of ρ can significantly impact coverage, whereas
modest underestimations of ε tend to reduce the prediction set size only slightly. In both
Figures 5 and 6, we observe a trade-off: smaller ε values are typically associated with larger ρ
estimates, and vice versa. Selecting the pair that minimizes the worst-case quantile provides
a principled way to balance robustness and efficiency without being overly conservative.
Remark B.2 (Use of test samples for shift estimation). The estimation procedure outlined in
this section requires access to test samples in order to estimate the distribution shift. While
this may initially seem restrictive, we emphasize that only a relatively small number of test
samples is needed to ensure stable estimates of (ε, ρ) in practice. In our experiments, as few
as 500–1000 calibration and test scores are sufficient to obtain consistent estimates across
multiple runs. Nonetheless, one might ask: if test samples are available, why not apply
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Figure 6: MNIST (ε, ρ) estimation. Each point in the 20-point grid corresponds to a
candidate (ε, ρ) pair, where ε ∈ (0.1, 1.5) and ρ is estimated using one-dimensional optimal
transport between the empirical calibration and test score distributions, each constructed
from 1000 samples. The color scale represents the empirical worst-case quantile associated
with each pair, computed on a held-out calibration batch. The optimal (ε, ρ) pair, yielding
the smallest quantile, is highlighted in red, with the corresponding empirical coverage and
prediction set size annotated. The true corruption parameters (p, u) used to generate the
test distribution are also indicated for reference.

conformal prediction directly to them instead of using a distributionally robust approach?
In many applications, this is indeed preferable, as standard conformal methods yield valid
coverage guarantees under the exchangeability assumption. The purpose of this section,
however, is not to recommend distributionally robust conformal prediction over standard
conformal prediction in the presence of test data. Rather, it is to demonstrate LP-based
ambiguity sets as a principled model for capturing both local and global distribution shifts.
Estimating these parameters from data allows us to instantiate the LP ambiguity set in
a concrete, data-driven way. Nonetheless, we acknowledge as a limitation of our current
approach that it requires access to test samples for estimating the shift. Developing estimators
that rely solely on calibration data—such as the variability-based method proposed by [9]—is
an important direction for future work.

C Experimental Setup

All experiments were conducted on a single Nvidia A100 GPU with 40GB of RAM. We
strictly follow the official GitHub implementations provided by the authors of the referenced
methods, except for weighted conformal prediction [37], for which we implemented a neural
network–compatible version based strictly on the algorithm described in [37].
For a given level α and n calibration data points, the prediction sets for each algorithm are
constructed from the following quantiles:

1. Standard Conformal Prediction:

Quant
(

⌈(n + 1)(1 − α)⌉/n; P̂n

)
2. Our method—LP Robust Conformal Prediction (following Corollary 4.2):

Quant
(

1 − β + ρ; P̂n

)
+ ε, β = α + (α − ρ − 2)/n

3. χ2 Robust Conformal Prediction [9]:

Quant
(

g−1
f,ρ(1 − αn); P̂n

)
, αn = gf,ρ

(
(1 + 1/n) g−1

f,ρ(1 − α)
)

,

where ρ is the radius of the ambiguity set, f(x) = (x − 1)2, and gf,ρ and g−1
f,ρ are

defined as:

gf,ρ(β) := inf
{

z ∈ [0, 1] : βf

(
z

β

)
+ (1 − β)f

(
1 − z

1 − β

)
≤ ρ

}
, β ∈ [0, 1],

g−1
f,ρ(τ) = sup {β ∈ [0, 1] : gf,ρ(β) ≤ τ} , τ ∈ [0, 1].

The radius ρ is estimated using the slab estimation procedure described in [9].
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4. Conformal Prediction under Covariate Shift [37]:

Quant
(

1 − α; P̂ω
n+1

)
, P̂ω

n+1 :=
n∑

i=1
pω

i (x)δs(Xi,Yi) + pω
n+1(x)δ∞

where the weights are defined by

pω
i (x) = ω(Xi)∑n

j=1 ω(Xj) + ω(x) , i = 1, . . . , n, pω
n+1(x) = ω(x)∑n

j=1 ω(Xj) + ω(x) .

Here, ω(X) = dPtest(X)/dPcalib(X) denotes the density ratio between the test and
calibration distributions, estimated via a separately trained classifier.

5. Randomly Smoothed Conformal Prediction [16]:

Quant
(

(1 − α)(2 + n)/(1 + n); P̃n

)
+ δ/σ, P̃n := 1

n

n∑
i=1

δs̃(Xi,Yi).

Here, s̃ denotes the smoothed nonconformity score based on an existing score function
s [16], under which adversarial noise with ∥ϵ∥2 ≤ δ is propagated with distortion
bounded by δ/σ.

6. Fine-grained Conformal Prediction [1]:

Quant
(

g−1
f,ρ(1 − α), P̂ω

n+1

)
where g−1

f,ρ and P̂ω
n+1 are defined above. For the f -divergence method, we estimate

the robustness parameter ρ using the slab estimation procedure described in [9].

D Proofs

D.1 Proofs of Section 2

D.1.1 Proof of Proposition 2.1

Proof. We start by proving the “⊇” direction. Let Q belong to the right-hand side in (5),
and we want to prove that Q ∈ Bε,ρ(P). From the right-hand side in (5), we know that
there exists P̃ such that W∞(P, P̃) ≤ ε and TV(P̃,Q) ≤ ρ. Using the definition of the W∞
distance in (1), we note that W∞(P, P̃) ≤ ε is equivalent to

inf
γ∈Γ(P,̃P)

∫
Z×Z

1{∥z1 − z2∥ > ε}dγ(z1, z2) ≤ 0. (16)

Now, since 1{∥z1 −z2∥ > ε} is a lower semicontinuous function, by [39][Theorem 4.1] we know
that there exists a coupling γ⋆

12 ∈ Γ(P, P̃) which attains the infimum in (16). Analogously,
since 1{∥z1 − z2∥ > 0} is lower semicontinuous, the same result ensures that there exists a
coupling γ⋆

23 ∈ Γ(P̃,Q) which attains the infimum in TV(P̃,Q) ≤ ρ. Since

(π2)#γ⋆
12 = (π1)#γ⋆

23 = P̃,

where π1 : Z1 × Z2 → Z1 and π2 : Z1 × Z2 → Z2 are the canonical projections, the Gluing
lemma [39][pp. 11–12] guarantees that there exists a distribution γ123 ∈ P(Z × Z × Z) such
that (π12)#γ123 = γ⋆

12 and (π23)#γ123 = γ⋆
23. We now construct γ13 := (π13)#γ123, which
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can be easily shown to be a coupling of P and Q. Then, we have that∫
Z×Z

1{∥z1 − z3∥ > ε}dγ13(z1, z3) =
∫

Z×Z×Z
1{∥z1 − z3∥ > ε}dγ123(z1, z2, z3)

=
∫

Z×Z×Z
1{∥z1 − z2 + z2 − z3∥ > ε}dγ123(z1, z2, z3)

≤
∫

Z×Z×Z
1{∥z1 − z2∥ + ∥z2 − z3∥ > ε}dγ123(z1, z2, z3)

≤
∫

Z×Z×Z
(1{∥z1 − z2∥ > ε} + 1{∥z2 − z3∥ > 0}) dγ123(z1, z2, z3)

=
∫

Z×Z
1{∥z1 − z2∥ > ε}dγ⋆

12(z1, z2) +
∫

Z×Z
1{∥z2 − z3∥ > 0}dγ⋆

23(z2, z3)

≤ 0 + ρ = ρ,

where the first inequality is a consequence of the triangle inequality, and the second inequality
follows by noticing that the event {∥z1 − z2∥ + ∥z2 − z3∥ > ε} is contained in {∥z1 − z2∥ >
ε} ∪ {∥z2 − z3∥ > 0}. Therefore,

inf
γ∈Γ(P,Q)

∫
Z×Z

1{∥z1 − z3∥ > ε}dγ(z1, z3) ≤ ρ,

showing that LPε(P,Q) ≤ ρ, and therefore Q ∈ Bε,ρ(P).
We now prove the “⊆” direction. Let Q ∈ Bε,ρ(P). In what follows, we will construct a
distribution P̃ such that W∞(P, P̃) ≤ ε and TV(P̃,Q) ≤ ρ, showing that Q belongs to the
right-hand side in (5). Since 1{∥z1 −z2∥ > ε} is lower semicontinuous, again by [39][Theorem
4.1], we know that there exists a coupling γ⋆ ∈ Γ(P,Q) which attains the infimum in
LPε(P,Q) ≤ ρ. Therefore, γ⋆(∥z1 − z2∥ > ε) = ρ̄ and γ⋆(∥z1 − z2∥ ≤ ε) = 1 − ρ̄, for some
ρ̄ ≤ ρ. We define the event A := {∥z1 − z2∥ ≤ ε}, and its complement Ac = {∥z1 − z2∥ > ε},
and denote by γ⋆|A and γ⋆|Ac the restrictions of the distribution γ⋆ to A and Ac, respectively.
We now construct the distribution P̃ as follows

P̃ := (π1)#γ⋆|Ac + (π2)#γ⋆|A.

note that γ̃ = γ∗|A + (Id × Id)# ((π1)#γ⋆|Ac) is a coupling between P and P̃. Then, we
immediately have that

inf
γ∈Γ(P,̃P)

∫
Z⊗2

1{∥z1 − z2∥ > ε}dγ(z1, z2) ≤
∫

Z×Z
1{∥z1 − z2∥ > ε}dγ̃(z1, z2)

=
∫

Z×Z
1{∥z1 − z2∥ > ε}dγ∗|A(z1, z2)

+
∫

Z×Z
1{∥z1 − z2∥ > ε}d(Id × Id)# ((π1)#γ⋆|Ac) (z1, z2)

which is clearly equal to zero, showing that W∞(P, P̃) ≤ ε. Moreover,

TV(P̃,Q) = TV
(

(π1)#γ⋆|Ac + (π2)#γ⋆|A, (π2)#γ⋆|Ac + (π2)#γ⋆|A
)

= inf
γ∈Γ
(

(π1)#γ⋆|Ac +(π2)#γ⋆|A, (π2)#γ⋆|A+(π2)#γ⋆|Ac

) ∫
Z×Z

1{∥z1 − z2∥ > 0}dγ(z1, z2)

≤ inf
γ̂∈Γ
(

1
ρ̄ (π1)#γ⋆|Ac , 1

ρ̄ (π2)#γ⋆|Ac

) ∫
Z×Z

1{∥z1 − z2∥ > 0}d
(
ρ̄ γ̂ + (Id × Id)# ((π2)#γ⋆|A)

)
(z1, z2)

= inf
γ̂∈Γ
(

1
ρ̄ (π1)#γ⋆|Ac , 1

ρ̄ (π2)#γ⋆|Ac

) ∫
Z×Z

1{∥z1 − z2∥ > 0}d(ρ̄ γ̂)(z1, z2)

= ρ̄

(
inf

γ̂∈Γ
(

1
ρ̄ (π1)#γ⋆|Ac , 1

ρ̄ (π2)#γ⋆|Ac

) ∫
Z×Z

1{∥z1 − z2∥ > 0}dγ̂(z1, z2)
)

= ρ̄.
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Here, the first inequality holds since ρ̄ γ̂ + (Id × Id)# ((π2)#γ⋆|A), with γ̂ ∈
Γ
( 1

ρ̄ (π1)#γ⋆|Ac , 1
ρ̄ (π2)#γ⋆|Ac

)
, is a coupling of (π1)#γ⋆|Ac + (π2)#γ⋆|A and (π2)#γ⋆|A +

(π2)#γ⋆|Ac . Moreover, the third equality follows from the fact that∫
Z×Z

1{∥z1 − z2∥ > 0}d ((Id × Id)# ((π2)#γ⋆|A)) (z1, z2) = 0.

Finally, the last equality follows from the fact that Ac = {∥z1 − z2∥ > ε}. This shows that
TV(P̃,Q) ≤ ρ, and concludes the proof.

D.1.2 Proof of Corollary 2.2

Proof. Assertion (i) follows from (5) by setting ε to zero, resulting in P̃ = P. Moreover,
assertion (ii) follows from (5) by setting ρ = 0, resulting in P̃ = Q.

D.1.3 Proof of Proposition 2.3

Proof. We first prove that any distribution Q ∈ Bε,ρ(P) admits a random variable decomposi-
tion Z2 as described in (6). Since 1{∥z1 − z2∥ > ε} is lower semicontinuous, by [39][Theorem
4.1] there exists a coupling γ⋆ ∈ Γ(P,Q) which attains the infimum in LPε(P,Q) ≤ ρ.
Furthermore, given Z1 ∼ P, consider the conditional distribution Z2|Z1 ∼ γ∗

Z1
, and define

the (random) event AZ1 := {∥z2 − Z1∥ ≤ ϵ}. Moreover, we denote by γ∗
Z1

|AZ1
the restriction

of γ∗
Z1

to the event AZ1 , and by γ∗
Z1

|AZ1
its normalized version. Similarly, γ∗

Z1
|Ac

Z1
is the

normalized version of the restriction to the complement Ac
Z1

. We then construct the random
variables B, N , and C as follows:

B|Z1 ∼ Bern
(
γ∗

Z1
(∥z2 − Z1∥ > ε)

)
,

N |Z1 = 1(B = 1) · 0 + 1(B = 0) · (Z ′
2 − Z1)|Z1, and

C|Z1 = 1(B = 1) · Z ′′
2 |Z1 + 1(B = 0) · 0,

(17)

where Z ′
2|Z1 and Z ′′

2 |Z1 follow the probability distributions γ∗
Z1

|AZ1
and γ∗

Z1
|Ac

Z1
, respectively.

Here B, N , C are dependent with marginals satisfying the properties in the statement of
the proposition. We now define Z̃2 := (Z1 + N)1{B = 0} + C1{B = 1}, and aim to show
that Z2

d= Z̃2. Following the construction in (17), conditioning Z̃2 on Z1 yields
Z̃2|Z1 = (Z1 + N |Z1) · 1{B|Z1 = 0} + C|Z1 · 1{B|Z1 = 1}

= Z ′
2|Z1 · 1{B|Z1 = 0} + Z ′′

2 |Z1 · 1(B|Z1 = 1).
Now recall from (17) that the conditional random variable B|Z1 follows a Bernoulli distribu-
tion with parameter γ∗

Z1
(∥z2 − Z1∥ > ε) = γ∗

Z1
(Ac

Z1
). Thus, the distribution of Z̃2|Z1 be-

comes γ∗
Z1

(AZ1) ·γ∗
Z1

|AZ1
+γ∗

Z1
(Ac

Z1
) ·γ∗

Z1
|Ac

Z1
. Moreover, since γ∗

Z1
(AZ1) ·γ∗

Z1
|AZ1

= γ∗
Z1

|AZ1

and γ∗
Z1

(Ac
Z1

) · γ∗
Z1

|Ac
Z1

= γ∗
Z1

|Ac
Z1

, we have that Z̃2|Z1 ∼ γ∗
Z1

. Therefore, the distribution of
Z̃2 is is equal to

Z̃2 = EZ1 [Z̃2|Z1] ∼ (π2)#γ∗ = Q,

which concludes the proof of the first direction.
We now prove the converse: any random variable Z2 of the form (6) is distributed according
to some distribution Q belonging to the LP ambiguity set Bε,ρ(P). To show this, we employ
Proposition 2.1, which reduces the problem to showing that Q belongs to the union on the
right-hand side in (5). We start by defining the random variable

Z3 := (Z1 + N)1{B = 0} + Z11{B = 1},

where Z1, N , and B are the same random variables as in the definition of Z2 in (6). Let P̃
denote the distribution of Z3. Then, the pair (Z1, Z3) induces a coupling γ13 ∈ Γ(P, P̃). By
construction we have γ13(∥z1 − z3∥ > ε) = 0, implying that

inf
γ∈Γ(P,̃P)

∫
Z×Z

1{∥z1 − z3∥ > ε}dγ(z1, z3) ≤
∫

Z×Z
1{∥z1 − z3∥ > ε}dγ13(z1, z3) ≤ 0.
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Using the definition of the W∞ distance in (1), this is equivalent to W∞(P, P̃) ≤ ε. Next,
we verify that TV(P̃,Q) ≤ ρ. Note that (Z3, Z2) induces a coupling γ32 ∈ Γ(P̃,Q) satisfying∫

Z×Z
1{∥z3 − z2∥ > 0}dγ32(z3, z2) ≤ 0 · Prob(B = 0) + 1 · Prob(B = 1) ≤ ρ,

where the equality follows from ∥(Z3 − Z2)|(B = 0)∥ = 0 and the fact that the indicator
function is bounded by 1. Therefore,

TV(P̃,Q) := inf
γ∈Γ(̃P,Q)

∫
Z×Z

1{∥z1 − z2∥ > 0}dγ(z1, z2) ≤ ρ,

Putting everything together, we have that Q ∈
⋃

P̃: W∞(P,̃P)≤ε

{
Q ∈ P (Z) : TV(P̃,Q) ≤ ρ

}
,

which completes the proof.

D.1.4 Proof of Proposition 2.5

Proof. Let Q ∈ Bε,ρ(P). We will show that s#Q belongs to the LP ambiguity set Bkε,ρ(s#P).

LPkε(s#P, s#Q) = inf
γ̃∈Γ(s#P,s#Q)

∫
R×R

1{|z̃1 − z̃2| > kε}dγ̃(z̃1, z̃2)

= inf
γ̃∈(s×s)#Γ(P,Q)

∫
R×R

1{|z̃1 − z̃2| > kε}dγ̃(z̃1, z̃2)

= inf
γ∈Γ(P,Q)

∫
R×R

1{|z̃1 − z̃2| > kε}d((s × s)#γ)(z̃1, z̃2)

= inf
γ∈Γ(P,Q)

∫
Z×Z

1(|s(z1) − s(z2)| > kε)dγ(z1, z2)

≤ inf
γ∈Γ(P,Q)

∫
Z×Z

1(∥z1 − z2∥ > ε)dγ(z1, z2)

= LPε(P,Q),

where the second equality follows from the equality Γ(s#P, s#Q) = (s × s)#Γ(P,Q) (see
[3][Lemma 2]), and the inequality follows from the fact that s is k-Lipschitz, i.e., |s(z1) −
s(z2)| ≤ k∥z1 − z2∥.

D.2 Proofs of Section 3

D.2.1 Proof of Proposition 3.4

Proof. We prove the proposition in two steps. First, we show that the right-hand side in
(10) is an upper bound on the β-quantile of any distribution in Bε,ρ(P). Second, we prove
that there exists a sequence of distributions Qn ∈ Bε,ρ(P), whose β-quantiles converge to it.

Step 1. We prove, by contradiction, that Quant(β;Q) ≤ Quant(β + ρ;P) + ε, for all
Q ∈ Bε,ρ(P). Suppose there exists Q̃ satisfying

Q̃ ∈ Bε,ρ(P) and Quant(β; Q̃) > Quant(β + ρ;P) + ε. (18)

We will show that this leads to

LPε(P, Q̃) = inf
γ∈Γ(P,Q̃)

∫
R×R

1{|z1 − z2| > ε}dγ(z1, z2) > ρ.

To simplify notation, we define a := Quant(β + ρ;P) and b := Quant(β + ρ;P) + ε. Following
(18), b must satisfy FQ̃(b) < β. Hence, there exists ∆ > 0 such that

FP(a) − FQ̃(b) ≥ ρ + ∆.
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Now, for an arbitrary coupling γ ∈ Γ(P, Q̃), we have
FP(a) − FQ̃(b)

=
∫ a

−∞

∫ ∞

−∞
dγ(z1, z2) −

∫ ∞

−∞

∫ b

−∞
dγ(z1, z2)

=
∫ a

−∞

∫ b

−∞
dγ(z1, z2) +

∫ a

−∞

∫ ∞

b+
dγ(z1, z2) −

∫ a

−∞

∫ b

−∞
dγ(z1, z2) −

∫ ∞

a+

∫ b

−∞
dγ(z1, z2)

≤
∫ a

−∞

∫ ∞

b+
1{|z1−z2|>ε}dγ(z1, z2)

≤
∫ ∞

−∞

∫ ∞

−∞
1{|z1−z2|>ε}dγ(z1, z2),

Since the above holds for every γ ∈ Γ(P, Q̃), we conclude that

inf
γ∈Γ(P,Q̃)

∫
R×R

1{|z1−z2|>ε}dγ(z1, z2) ≥ ρ + ∆,

which contradicts the fact that Q̃ ∈ Bε,ρ(P). This proves that Quant(β;Q) ≤ Quant(β +
ρ;P) + ε, for all Q ∈ Bε,ρ(P).

Step 2. We construct a sequence of distributions Qn ∈ Bε,ρ(P) satisfying, as n → ∞,
Quant(β;Qn) → Quant(β + ρ;P) + ε.

We define the sequence of distributions Qn through their cumulative distribution functions
as

FQn
(q) =


FP(q − ε), q < Quant

(
β − 1

n ;P
)

+ ε

β − 1
n , Quant

(
β − 1

n ;P
)

+ ε ≤ q < Quant
(
β − 1

n + ρ;P
)

+ ε

FP(q − ε), q ≥ Quant
(
β − 1

n + ρ;P
)

+ ε.

(19)

To simplify notation, for the rest of the proof, we define q
(1)
n := Quant(β − 1

n ;P) + ε and
q

(2)
n := Quant(β − 1

n + ρ;P) + ε. The intuition behind the construction of Qn is as follows:
first, Qn is obtained by translating the distribution P to the right by ε, and then, the mass
between [q(1)

n , q
(2)
n ) is moved to the point q

(2)
n . We refer to the illustration on the left in

Figure 1 for a visualization of this intuition. From this construction, it is clear that the
LPε(P,Qn) is bounded by

FQn

(
q(2)

n

)
− FQn

(
q(1)

n

)
= FQn

(
Quant

(
β − 1

n
+ ρ;P

)
+ ε

)
− FQn

(
Quant

(
β − 1

n
;P
)

+ ε

)
= FP

(
Quant

(
β − 1

n
+ ρ;P

))
−
(
β − 1

n

)
= ρ,

showing that the sequence Qn belongs to the LP ambiguity set Bε,ρ(P). Finally, we prove
that the sequence of β-quantiles of Qn converges to Quant(β + ρ;P) + ε from below. From
the construction in (19), we know that the following two properties hold:

• FQn
(q) < β, ∀ q < q

(2)
n ;

• FQn
(q) ≥ β, ∀ q ≥ q

(2)
n , n ≥ 1

ρ .

Combining these two inequalities, we have that Quant(β;Qn) = q
(2)
n , which admits a limit

as n goes to infinity:

q(2)
n = Quant

(
β − 1

n
+ ρ;P

)
+ ε

n→∞−→ Quant(β + ρ;P) + ϵ

where the convergence follows from the left-continuity of the quantile function, which
follows from the right-continuity of the cumulative distribution function. This concludes the
proof.
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D.2.2 Proof of Proposition 3.5

Proof. Similarly to Proposition 3.4, we prove this in two steps. First, we show that the
right-hand side in (11) is a lower bound on the coverage at q of any distribution in Bε,ρ(P).
Second, we prove that there exists a sequence of distributions Qn ∈ Bε,ρ(P), whose coverage
at q converges to it.

Step 1. We prove, by contradiction, that FQ(q) ≥ FP(q − ε) − ρ, for all Q ∈ Bε,ρ(P). Suppose
there exists Q̃ satisfying

Q̃ ∈ Bε,ρ(P) and FQ̃(q) < FP(q − ε) − ρ. (20)
We will show that this leads to

LPε(P, Q̃) = inf
γ∈Γ(P,Q̃)

∫
R×R

1{|z1 − z2| > ε}dγ(z1, z2) > ρ.

From the inequality in (20), we know that there exists ∆ > 0 such that
FQ̃(q) ≤ FP(q − ε) − (ρ + ∆).

Meanwhile, for any coupling γ ∈ Γ(P, Q̃), we have
ρ + ∆ ≤ FP(q − ε) − FQ̃(q)

=
∫ q−ε

−∞

∫ ∞

−∞
dγ(z1, z2) −

∫ ∞

−∞

∫ q

−∞
dγ(z1, z2)

=
∫ q−ε

−∞

∫ q

−∞
dγ(z1, z2) +

∫ q−ε

−∞

∫ ∞

q+
dγ(z1, z2) −

∫ q−ε

−∞

∫ q

−∞
dγ(z1, z2) −

∫ ∞

(q−ε)+

∫ q

−∞
dγ(z1, z2)

≤
∫ q−ε

−∞

∫ ∞

q+
1{|z1−z2|>ε} dγ(z1, z2)

≤
∫
R×R

1{|z1−z2|>ε} dγ(z1, z2).

Taking an infimum over γ ∈ Γ(P, Q̃), we obtain that the LPε(P, Q̃) > ρ, which contradicts
the fact that Q̃ ∈ Bε,ρ(P). This proves that FQ(q) ≥ FP(q − ε) − ρ, for all Q ∈ Bε,ρ(P).

Step 2. We construct a sequence of distributions Qn ∈ Bε,ρ(P) satisfying, as n → ∞,
FQn

(q) → FP(q − ε) − ρ.

We define the sequence of distributions Qn through their cumulative distribution functions
as

FQn(γ) =


FP(γ − ε), γ < Quant

(
FP(q − ε) − ρ + 1

n ;P
)

+ ε

FP(q − ε) − ρ + 1
n , Quant

(
FP(q − ε) − ρ + 1

n ;P
)

+ ε ≤ γ

< Quant
(
FP(q − ε) + 1

n ;P
)

+ ε

FP(γ − ε), γ ≥ Quant
(
FP(q − ε) + 1

n ;P
)

+ ε.

To simplify notation, for the rest of the proof, we define q
(1)
n = Quant(FP(q −ε)−ρ+ 1

n ;P)+ε

and q
(2)
n = Quant(FP(q − ε) + 1

n ;P) + ε. The intuition behind the construction of Qn is as
follows: first, Qn is obtained by translating the distribution P to the right by ε, and then,
the mass between [q(1)

n , q
(2)
n ) is moved to the point q

(2)
n . We refer to the illustration on the

right in Figure 1 for a visualization of this intuition. From this construction, it is clear that
the LPε(P,Qn) is bounded by

FQn

(
q(2)

n

)
− FQn

(
q(1)

n

)
= FP

(
Quant

(
FP(q − ε) + 1

n
;P
))

− FP

(
Quant

(
FP(q − ε) − ρ + 1

n
;P
))

= FP(q − ε) + 1
n

−
(

FP(q − ε) − ρ + 1
n

)
= ρ,
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showing that the sequence Qn belongs to the LP ambiguity set Bε,ρ(P). Moreover, when
n ≥ 1

ρ , we have that q ∈ [q(1)
n , q

(2)
n ) holds, and therefore

FQn
(q) = FP(q − ε) − ρ + 1

n

n→∞−→ FP(q − ε) − ρ.

This concludes the proof.

D.3 Proofs of Section 4

D.3.1 Proof of Theorem 4.1

Proof. By conditioning on {(Xi, Yi)}n
i=1, we obtain

Prob
{

Yn+1 ∈ Cε,ρ(Xn+1; P̂n)|{(Xi, Yi)}n
i=1

}
= FPtest

(
QuantWC

ε,ρ

(
1 − α; P̂n

))
= FPtest

(
Quant

(
1 − α + ρ; P̂n

)
+ ε
)

≥ FP

(
Quant

(
1 − α + ρ; P̂n

)
+ ε − ε

)
− ρ

= FP

(
Quant

(
1 − α + ρ, P̂n

))
− ρ,

where the first equality follows from Definition 12, the second equality follows from Propo-
sition 3.4, and the first inequality is a consequence of Proposition 3.5. Now, taking the
expectation with respect to {(Xi, Yi)}n

i=1, we obtain

Prob
{

Yn+1 ∈ C1−α
ε,ρ

(
Xn+1; P̂n

)}
≥ E

[
FP

(
Quant

(
1 − α + ρ, P̂n

))]
− ρ

≥ ⌈n(1 − α + ρ)⌉
n + 1 − ρ,

where the second inequality follows from the guarantee E
[
FP(Quant(β; P̂n))

]
≥ ⌈nβ⌉/(n + 1)

(see [9][Lemma D.3]). This concludes the proof.

D.3.2 Proof of Corollary 4.2

Proof. Note that ⌈n(1 − β + ρ)⌉/(n + 1) − ρ ≥ 1 − α is guaranteed by n(1 − β + ρ) ≥
(n + 1)(1 − α + ρ) + 1, which is further guaranteed by β ≤ α + (α − ρ − 2)/n. This concludes
the proof.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope, including both theoretical results and empirical
findings. Each technical contribution stated in the introduction is supported by a
formal theorem or proposition with a complete proof.
Guidelines:

• The answer NA means that the abstract and introduction do not include the
claims made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: We acknowledge that our method for estimating the parameters of
the LP ambiguity set requires access to a few test samples. While this enables a
data-driven instantiation of the ambiguity set and remains practical in settings with
limited test data, we recognize it as a limitation. This point is discussed explicitly
in Remark B.2 of the appendix. Developing approaches that avoid relying on test
samples—e.g., by leveraging calibration variability as in [9]—is a valuable direction
for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their
paper.

• The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

23



• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [Yes]
Justification: All required assumptions are stated in the main text as part of the
propositions, theorems, and corollaries. Complete proofs for all results are provided
in Appendix D. Each result is properly numbered and referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?
Answer: [Yes]
Justification: All information necessary to reproduce the main experimental re-
sults—including data generation, evaluation procedures, and implementation de-
tails—is provided in Section 5 of the main text and Appendix C. These details
ensure the reproducibility of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.
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• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The algorithm and all experimental code are implemented in Python
and will be released on GitHub upon acceptance, together with instructions to
reproduce the main results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.

cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might

not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

• The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [Yes]
Justification: All experimental settings—including data splits, calibration procedures,
and evaluation metrics—are detailed in Section 5, with additional implementation
details provided in Appendix C.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as

supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the empirical distribution of accuracy over 30 random
calibration-test splits by plotting individual points for each split in Figure 3, which
transparently reflects the variability induced by data splitting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors

should preferably report a 2-sigma error bar than state that they have a 96%
CI, if the hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [Yes]
Justification: The computational resources, including hardware type (CPU/GPU),
are described in Appendix C. Runtime and memory usage were not tracked, as the
experiments are lightweight and reproducible on standard hardware.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research adheres to the NeurIPS Code of Ethics. It does not
involve human subjects, sensitive data, or real-world deployments with potential
societal impact. All results are reproducible, and the code will be released upon
acceptance.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [NA]
Justification: This work is foundational and does not involve specific applications or
deployments. While robust prediction under distribution shift can support decision-
making in domains such as healthcare or autonomous systems, the paper does not
target any particular use case and therefore does not entail direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
system learns from feedback over time, improving the efficiency and accessibility
of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
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Justification: This work does not involve the release of pretrained models, large-scale
datasets, or tools that pose significant risk of misuse. The research is theoretical and
algorithmic in nature, and all released code is for reproducibility of the experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [Yes]
Justification: All external assets used in this work—including code and datasets—are
properly cited in the paper, and their licenses have been respected in accordance
with the stated terms of use (see Appendix C). No proprietary or restricted-access
data was used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [Yes]
Justification: We introduce new code for our method and experiments, which is
documented and will be made publicly available upon acceptance. The code includes
clear instructions for reproducing all results and is structured to facilitate ease of
use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part

of their submissions via structured templates. This includes details about
training, license, limitations, etc.
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• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research
with human subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing and
therefore does not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original,
or non-standard component of the core methods in this research? Note that if
the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.
Answer: [NA]
Justification: This research does not involve the use of large language models (LLMs)
in any part of the core methodology. Any LLM usage was limited to minor writing
assistance and had no impact on the scientific content or originality of the work.
Guidelines:
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• The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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