
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFYING DISENTANGLED REPRESENTATION LEARN-
ING WITH COMPOSITIONAL BIAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing disentangled representation learning methods rely on inductive biases
tailored for specific factors of variation (e.g., attributes or objects). However, these
biases are incompatible with other classes of factors, limiting their applicability
for disentangling general factors of variation. In this paper, we propose a unified
framework for disentangled representation learning, accommodating both attribute
and object disentanglement. To this end, we reformulate disentangled representa-
tion learning as maximizing the compositionality of the latents. Specifically, we
randomly mix two latent representations from distinct images and maximize the
likelihood of the resulting composite image. Under this general framework, we
demonstrate that adjusting the strategy for mixing between two latent representa-
tions allows us to capture either attributes or objects within a single framework. To
derive appropriate mixing strategies, we analyze the compositional structures of
both attributes and objects, then incorporate these structures into their respective
mixing strategies. Our evaluations show that our method surpasses or is comparable
to state-of-the-art baselines such as DisDiff (Yang et al., 2023) in attribute disen-
tanglement (DCI, FactorVAE scores), and LSD (Jiang et al., 2023) and L2C (Jung
et al., 2024) in object property prediction tasks for object disentanglement.

1 INTRODUCTION

Understanding the underlying structure of data is crucial for building robust and interpretable machine
learning models. In particular, by perceiving the world through compositional concepts, unseen
data can be decomposed into simpler, more interpretable components. This approach dramatically
improves data efficiency of learning, as unseen data can be explained as combinations of already
learned concepts (Lake et al., 2017; Kuo et al., 2021). In this context, disentangled representation
learning (Higgins et al., 2018; Bengio & LeCun, 2007) aims to decompose the data into its underlying
factors of variation. As Locatello et al. (2019) theoretically prove that disentangled representation
learning cannot be achieved without inductive biases or direct supervision, the field has focused on
designing appropriate inductive biases to disentangle desirable factors in an unsupervised manner.

Attribute and object disentanglement are two of the most common tasks in disentangled representation
learning. We commonly refer to attributes as properties shared globally across the entire scene (e.g.,
color, lighting, or style), while objects are distinct spatial components within a scene (e.g., individual
entities). Attribute disentanglement (Burgess et al., 2017; Chen et al., 2016; Kim & Mnih, 2018; Chen
et al., 2018; Ren et al., 2022) aims to isolate various features or properties of the data. Disentanglement
between latent variables is often encouraged by additional regularization terms, such as minimizing
Total Correlation in VAEs (Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018), maximizing
mutual information between latents and images Chen et al. (2016); Lin et al. (2020b), or minimizing
mutual information between vector-wise latents (Yang et al., 2023). On the other hand, object-centric
learning focuses on decomposing scenes into individual objects (Burgess et al., 2019; Greff et al.,
2019; Engelcke et al., 2020; Locatello et al., 2020; Jiang et al., 2023). These methods rely on a spatial
exclusiveness bias, where each pixel in an image must correspond to a unique object, implemented
within model architectures such as spatial-attention masks (Burgess et al., 2019; Engelcke et al.,
2020), pixel-mixture decoders (Greff et al., 2019), or slot attention (Locatello et al., 2020).

While both attribute and object disentanglement share the common goal of identifying underlying
factors of variation, the aforementioned inductive biases are crafted specific to their respective target
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factors and are incompatible with each other. Moreover, relying on these inductive biases may limit
their extension to disentangling general factors of variation or scenarios that involve both attributes and
objects in a scene. This challenge motivates us to develop a unified inductive bias capable of capturing
a broader range of factors of variation. In this paper, we present a unified framework for disentangled
representation learning that supports both attribute and object disentanglement. Inspired by the fact
that the goal of disentangled representation learning is to achieve combinatorial generalization, we
formulate disentangled representation learning as the process of maximizing compositionality and
carefully design the composition rule that ensures valid combinations of latents. Specifically, given
two sets of latent representations from different images, we construct a composite representation
by exchanging random subsets of latents and maximize the likelihood of the resulting composite
image. By analyzing the compositional structures of attributes and objects, we derive specific mixing
strategies that enable valid combinations for effective attribute and object disentanglement. Unlike
previous methods, which introduce inductive biases specifically tailored to either attribute or object
disentanglement and are not compatible with both, our framework can handle both types of factors.
Our experiments demonstrate that our framework effectively disentangles both attributes and objects
by simply adjusting the mixing strategy, without altering model architectures or objective functions.

Our contributions are as follows: (1) We present a unified framework for disentangled representation
learning that effectively addresses both attribute and object disentanglement. (2) We derive simple
yet effective mixing strategies for disentangling attributes or objects, drawing from their underlying
compositional structures. (3) We compare our methods with strong baselines specifically designed
for disentangled representation learning and object-centric learning and verify that our method can
achieve comparable or even superior performance to the baselines.

2 BACKGROUND : DISENTANGLED REPRESENTATION LEARNING

In this section, we briefly review the two main streams of disentangled representation learning: at-
tribute and object disentanglement. We discuss how previous methods have achieved disentanglement
and why they are incompatible with each other. More in-depth discussions on related works are
presented in Appendix A.1.

Attribute disentanglement In attribute disentanglement, scenes are assumed to consist of a fixed
number of random variables (Kim & Mnih, 2018). Typical approaches aim to discover independent
latent variables by designing objective functions that promote their statistical independence. For
instance, (Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018) use Total Correlation (Watanabe,
1960) within the VAE framework to assess independence between latent dimensions. Alternatively,
(Lin et al., 2020b; Ren et al., 2022) introduce contrastive regularization, encouraging variations in
each latent variable to produce distinct changes in the output space of GANs. Recently, Yang et al.
(2023) proposed minimizing the upper bound of mutual information between latent variables. These
information-theoretic objectives are suited for scenarios where each data is composed of a fixed set of
factors, with each latent variable corresponding to a specific factor. However, when this assumption is
violated, defining and directly measuring independence between latent variables becomes non-trivial.
For example, in object-centric scenes, the same objects can appear in different spatial locations,
complicating the definition of independence metrics for object representations.

Object disentanglement In object-centric learning, random variables are assumed to be indepen-
dent but share a generative mechanism, such that different orderings of the latents still produce
identical images (Greff et al., 2019). Since measuring independence between object representations
is challenging, object-centric approaches use architectural biases to promote independence indirectly.
Early methods implemented spatial exclusiveness through decoders that render each latent into pairs
of a RGB image and a mask, blending them to form the final output (Burgess et al., 2019; Greff
et al., 2019; Engelcke et al., 2020; Lin et al., 2020a). Each mask corresponds to a distinct region,
inducing spatial exclusivity among the latents. Slot attention (Locatello et al., 2020) adopts a spatially
exclusive mechanism within the encoder, where each latent (slot) exclusively binds to spatial locations
in the input images. These spatial exclusive biases constrain each latent to bind to non-overlapping
spatial regions, and the auto-encoding objective encourages the encoder to cluster spatially correlated
pixels. While these biases facilitate the disentangling of spatial factors, they restrict the ability to
disentangle non-spatial factors like attributes.
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Figure 1: Overview of our method. We introduce a unified framework for disentangled representation
learning, which is compatible with both attribute and object disentanglement. We formulate our
framework as randomly composing latents from two distinct images, and maximizing the likelihood of
resulting composite images (Section 3.1). To disentangle attributes and objects within this framework,
we devise two specific mixing strategies to properly reflect their compositional structures (Section 3.2).
Finally, we maximize the likelihood of composite images and ensure compositional consistency
(Section 3.3). Note that the figure illustrates a specific example for object mixing strategy.

In summary, we identify two distinct inductive biases that promote independence between latent
variables, either directly or indirectly. As these biases are tailored specifically to each class of factors
of variation (i.e., attributes and objects), they are not only incompatible with each other but also
challenging to extend to disentangling general factors of variation. This challenge motivates us to
seek a unified approach that can accommodate both attribute and object disentanglement.

3 UNIFYING DISENTANGLED REPRESENTATION LEARNING WITH
COMPOSITIONAL BIAS

Our goal is to develop a unified framework for disentangled representation learning, which is
compatible with both attribute and object disentanglement. In the following sections, we illustrate
the overall framework to handle both attribute and object disentanglement (Section 3.1) and how we
derive our new inductive bias from the different compositional structures of each factor of variation
(Section 3.2). Finally, we demonstrate how we design the learning objectives to instantiate this
general framework (Section 3.3). Figure 1 summarizes the overall framework of our method.

3.1 UNIFIED FRAMEWORK FOR LEARNING DISENTANGLED REPRESENTATION

Disentangled representation learning aims to represent an image x ∈ RH×W×C into a set of K
latent representations z = {zi}Ki=1, where each latent zi ∈ Rd is expected to capture independent
factors of variation. Previous approaches achieve this goal by utilizing specific assumptions about
the latent representations, such as statistical independence (Kim & Mnih, 2018; Chen et al., 2018)
or spatial exclusiveness (Greff et al., 2019; Locatello et al., 2020) between the latent variables.
Such assumptions are specific to the type of factors of variation (e.g., attributes or objects) and
imposed by tailored architecture or regularization, making them incompatible with different types of
disentanglement.

Instead, we propose to employ the maximization of compositionality in the representation as a general
objective for disentanglement learning while instantiating various disentanglement structures by
controlling only the composition operator. To this end, we follow (Jung et al., 2024) by randomly
composing latent representations from two images and maximizing the likelihood of the resulting
composite image. Specifically, given two images x1,x2 ∼ p(x) and their representations z1, z2 ∈
RK×d, respectively, we produce their composite representation zc by some composition operator.
Then, we decode zc into a composite image xc and maximize its likelihood p(xc) to ensure the
production of realistic images by:

θ∗ = argmax
θ

p(xc) = argmax
θ

p(Dϕ(π(z
1, z2))) = argmax

θ
p(Dϕ(π(Eθ(x

1), Eθ(x
2)))), (1)
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where Eθ, Dϕ denote an encoder and a decoder, respectively. π(·, ·) represents a mixing operation
between two sequences of representations such that π(z1, z2) = {zci | zci = zriσi

, i ∈ {1, . . . ,K}},
where ri ∈ {1, 2} indicates whether the i-th element is selected from z1 or z2, and σi ∈ {1, . . . ,K}
is an index that determines the order. Note that this formulation does not impose any assumptions
specific to the factors of variation on the latent space. While (Jung et al., 2024) rely on architectural
biases (e.g., slot attention) to improve object representations by maximizing compositionality, our
work primarily explores how different types of factors can be disentangled by carefully designing the
mixing operator π(·, ·). In the following section, we will demonstrate how we derive a specific mixing
operator π(·, ·)—referred to as the mixing strategy—for two representative examples of factors of
variation: attributes and objects.

3.2 MIXING STRATEGY FOR REFLECTING THE COMPOSITIONAL STRUCTURE

The mixing strategy is defined to produce a random composition between two sequences of latent
representations: z1, z2. It is important to note that not all random compositions result in valid
outcomes. For instance, when we mix the ground-truth factors of face attributes, the composition
having two noses becomes an invalid composition. This is because ground-truth factors follow a
certain structure to be composed into a complete image, which we refer to as the compositional
structure of factors of variation. Therefore, we characterize the compositional structure of each
factor of variation, and derive a corresponding mixing strategy. We start by defining disentangled
representation, following (Roth et al., 2023).

Definition 1 (Disentanglement with a factorized support) Let us denote the support of p(x) as
S(p(x)) = {x|p(x) > 0}. Given a sequence of random vectors z = {zi}Ki=1, z is disentangled with

a factorized support if S(p(z)) = S(p(z1)) × S(p(z2)) × · · · × S(p(zK))
def
= S×(p(z)), where ×

denotes Cartesian product.

Note the factorized support implies that for any composition of zi independently encoded from
multiple images, there must exist some real image x represented by z, aligning with our formulation.
To achieve the disentangled representation, following the definition, we design mixing strategies
that achieve qθ(z|x) that the aggregate distribution q̄θ(z) = Ex[qθ(z|x)] has factorized support:
S(q̄θ(z)) = S×(q̄θ(z)). While the factorized support in the definition implies independent sampling
of zi, we theoretically and empirically show that mixing between two images and K images is equiv-
alent (see Appendix A.2). We now illustrate how we derive a mixing strategy between two images
based on the specific compositional structure of factors for attribute and object disentanglement.

Mixing Strategy for Attribute Disentanglement In attribute disentanglement, it is typically
assumed that each scene is composed of K unique factors. For example, a human face consists of
fixed set of features such as eyes, a nose, a mouth, and ears, with each factor being distinctive and
included only once. It indicates that our mixing strategy should guarantee mutual exclusiveness
in mixing z1, z2 to ensure the resulting zc always contains K distinct factors. From definition 1,
this condition translates into the mutual exclusiveness on support between latent variables, i.e.,
S(p(zi)) ̸= S(p(zj)),∀i ̸= j. Based on this compositional structure for attribute disentanglement,
we design a corresponding mixing strategy between two images x1,x2 by randomly selecting each
latent zi exclusively from either z1i or z2i (see Figure 1 (a) above), i.e., each latent zi is drawn from
one of the two, but never from both.

Specifically, let IS be a randomly sampled subset of the index set I = {1, . . . ,K}. The mixing
strategy πattr for attribute disentanglement is defined as:

πattr(z
1, z2) = {z1j |j ∈ IS} ∪ {z2j |j ∈ I − IS} (2)

Our mixing strategy (Equation 2) shares similarities with the random permutation trick used in Factor-
VAE (Kim & Mnih, 2018). FactorVAE enforces a factorized posterior by randomly mixing individual
dimensions of the latent representations across different images. However, it assumes statistical
independence in the latent space and minimizes the KL divergence between the factorized posterior
(the distribution of the randomly mixed samples) and the aggregated posterior (the distribution of the
original samples). While effective for disentangling statistically independent factors of variation, this
objective is inherently limited to such attribute factors, making it non-trivial to extend to disentangling
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other classes of factors, such as objects. In contrast, our approach embeds the inductive bias directly
into the mixing strategy itself, enabling the disentanglement of multiple classes of factors without
requiring modifications to the objective function.

Mixing Strategy for Object Disentanglement Object-centric learning often assumes that a scene
is composed of a set of objects, where all objects are belong to the same class of factors of vari-
ation (Greff et al., 2019). For instance, as all objects belong to same class of factor, replacing an
object in image with any object from different images remain realistic. Therefore, each disentan-
gled representation zi can encode any object, indicating that all zi share the same support set, i.e.,
S(p(zi)) = S(p(zj)) for i, j ∈ {1, . . . ,K}. Since all zi share the same support, for disentangled
representation, it satisfies S(p(z)) = S(p(z1)) × ... × S(p(zK)) = S(p(zr1)) × ... × S(p(zrK )),
where ri ∈ {1, . . . ,K} in definition 1. It indicates that there must exist z from some image x for
any arbitrary combinations of object representations without considering mutual exclusiveness as
in mixing for attributes. This necessitates a mixing strategy that accommodates arbitrary object
combinations, enabling the replacement of any zi with any zj . Accordingly, the mixing strategy for
object disentanglement involves randomly sampling K elements from the joint set z1

⋃
z2 ∈ R2K×D.

Unlike the mixing strategy for attributes, this approach permits random exchanges between z1i and z2j
between different indices (see Figure 1 above). Specifically, denoting ISn as a randomly sampled
subset of the index set I = {1, . . . ,K} with cardinality n, i.e., {IS |IS ⊆ I, |IS | = n}. Then the
corresponding mixing strategy πobj for object disentanglement is defined as:

πobj(z
1, z2) = {z1j |j ∈ ISn} ∪ {z2j |j ∈ ISK−n}, n ∼ U(0,K) (3)

3.3 LEARNING OBJECTIVES

In this section, we illustrate the overall learning objectives to instantiate our framework. Following the
recent approaches, our framework is built upon the auto-encoding framework. Specifically, instead
of directly reconstructing the image, we minimize a denoising objective using a diffusion decoder,
following state-of-the-art methods (Yang et al., 2023; Jung et al., 2024) for both attribute and object
disentanglement, as:

LDiff(θ, ϕ) = Eϵ∼N (0,I),t∼U(0,1)

[
w(t) · ∥Dϕ(xt, t, Eθ(x))− ϵ ∥2

]
, (4)

where xt =
√
ᾱtx+

√
1− ᾱt is a noised image of x with timestep t, ᾱt =

∏t
i(1− βi) is a schedule

function, and w(t) is the weighting parameter. As we use diffusion decoder Dϕ, we use iterative
decoding when generating composite image xc from the diffusion decoder but omit the expression for
notational simplicity. In addition to the auto-encoding objective, we employ two additional objectives:
likelihood maximization objective and compositional consistency objective.

Maximizing Likelihood of Composite Images Given xc composed by our mixing strategy, we
maximize the likelihood of xc. To maximize the likelihood of the composite image xc, we lever-
age a pre-trained diffusion model Gψ for its reliable likelihood estimations and robust generative
performance. Since the denoising loss in diffusion models serves as an upper bound for the nega-
tive log-likelihood (Ho et al., 2020), minimizing the denoising loss with respect to xc effectively
increases the likelihood p(xc). However, due to the expensive and noisy computation of gradients in
back-propagating through a large diffusion model, we follow (Poole et al., 2022; Jung et al., 2024)
and apply an approximated gradient to optimize p(xc):

∇θLPrior(θ) = Et,ϵ[w(t)(Gψ(x
c
t , t)− ϵ)

∂xc

∂θ
], (5)

where t ∼ U(tmin, tmax) is a timestep, w(t) is a timestep-dependent function, ϵ ∼ N (0, I) is a
Gaussian noise. xct =

√
ᾱtx

c + σtϵ denotes a noised image of xc with the forward diffusion process
and w(t) is usually set to σ2

t following (Poole et al., 2022).

While Jung et al. (2024) also maximize the compositionality of object-representations with the
generative prior, the authors propose reusing Dϕ—the diffusion decoder jointly trained with the
encoder in Equation 4—for Gψ , optimizing ∇θL′

Prior(θ) = Et,ϵ[w(t)(Dϕ(x
c
t , t, z

c)− ϵ)∂x
c

∂θ ] instead
of Equation 5. We argue that diffusion decoder Dϕ is in fact estimates p(xc|zc) rather than p(xc),
making them unsuitable for estimating p(xc). Thus, we instead opt for a separately pre-trained
unconditional diffusion model for Gψ .
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Compositional Consistency Loss In addition to maximizing the likelihood p(xc), we encourage
computational consistency between zc and ẑc = Eθ(Dϕ(z

c)) to avoid generating realistic images
regardless of the given zc. A straightforward way to promote compositional consistency is to minimize
the cosine distance between zc and the inverted latent ẑc = Eθ(Dϕ(z

c)). However, our empirical
observations reveal that this direct minimization alone is insufficient to prevent misalignment between
xc and zc. In practice, we find that z from all of the images tend to cluster closely together in the
latent space, when directly minimizing cosine distance between zc and ẑc. This clustering causes
the distance between ẑc and zc to remain small, even when the generated composite image xc does
not faithfully correspond to zc, thereby reducing the effectiveness of the compositional consistency
loss. To address this issue, we instead minimize the relative distance between zc and ẑc, i.e., the
distance relative to negative samples, which are latents from other random images. This prevents the
encoder from collapsing the posterior into a single mode, as zc must not only match ẑc but also be
distinguished from negative samples. Formally, we define the compositional consistency loss as:

LCon(θ) = − log
exp(d(ẑc, zc)/τ)∑

i∈{1,...,B} exp(d(ẑc, zi)/τ)
, (6)

where τ and d(·) denote temperature and cosine similarity, respectively, and B is a batch size. Note
that we should consider the correspondence between zc = {zc1, . . . , zcK} and ẑc = {ẑc1, . . . , ẑcK}
to compute the cosine distance. This can be problematic for object disentanglement, as object-
disentangled representations can have permuted orders due to our mixing strategy. In this case, we
first apply the Sinkhorn-Knopp algorithm (Cuturi, 2013) to compute a soft assignment between zc

and ẑc, then use the assignment-weighted sum of the distances to compute the loss.

Overall Objectives In summary, our framework is built upon an auto-encoding framework, which
is implemented with denoising objective. To maximize the compositionality of composite images, we
maximize the likelihood of the composite image xc with pre-trained diffusion model Gψ , and enforce
compositional consistency to ensure resulting xc consistent to zc. The overall objective is given as:

LTotal(θ, ϕ) = LDiff(θ, ϕ) + λPriorLPrior(θ) + λConLCon(θ), (7)

where λPrior and λCon controls the relative importance of the objectives. Note that these objectives
are not tailored specific to each factor of variation, but instead shared for both attribute and object
disentanglement.

4 EXPERIMENT

Implementation Details We use the same encoder and decoder architectures as the baselines (Yang
et al., 2023; Jung et al., 2024) for a fair comparison. Following the state-of-the-art methods in
attribute (Yang et al., 2023) and object (Jiang et al., 2023) disentanglements, we employ a pre-
trained VAE (Rombach et al., 2022) to represent an image as a latent feature and a latent diffusion
model (Rombach et al., 2022) for the decoder Dϕ. Since the diffusion decoder operates on VAE
features, we design image encoder to take VAE features as an input. When generating the image xc

from zc, we iteratively decode images using only a few steps (1 to 4 steps) following DDIM (Song
et al., 2020) to efficiently reduce the costly iterative decoding process. As back-propagating the
gradients through all of the denoising step is often computationally prohibitive, we follow recent
work in diffusion-based optimization (Clark et al., 2023; Prabhudesai et al., 2023) and truncate the
gradient at the last iteration of decoding. Also, to ensure reliable image generation via few-step
decoding, we use a v-prediction objective when training the diffusion model (Salimans & Ho, 2022).
For the generative prior Gψ , we train an unconditional diffusion model on each training dataset from
scratch. More implementation details can be found in the Appendix A.4.

4.1 ATTRIBUTE DISENTANGLEMENT

Datasets We evaluate our method on three standard datasets in disentangled representation learning.
Shapes3D (Kim & Mnih, 2018) consists of 3D shapes with 6 ground truth factors. Cars3D (Reed
et al., 2015) is a dataset of 3D car models with 3 ground truth factors. MPI3D (Gondal et al., 2019)
contains physical 3D objects with 7 factors of variation. All experiments are conducted at a 64x64
image resolution, following (Ren et al., 2022; Yang et al., 2023).
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Table 1: Comparisons of attribute disentanglement on the FactorVAE score and DCI disentanglement
metrics. Our method achieves state-of-the-art performance in almost all of the datasets, except
FactorVAE score in Cars3D.

Method Cars3D Shapes3D MPI3D

FactorVAE DCI FactorVAE DCI FactorVAE DCI

FactorVAE (Kim & Mnih, 2018) 0.906±0.052 0.161±0.019 0.840±0.066 0.611±0.082 0.152±0.025 0.240±0.051
β-TCVAE (Chen et al., 2018) 0.855±0.082 0.140±0.019 0.873±0.074 0.613±0.114 0.179±0.017 0.237±0.056

InfoGAN-CR (Lin et al., 2020b) 0.411±0.013 0.020±0.011 0.587±0.058 0.478±0.055 0.439±0.061 0.241±0.056
LD (Voynov & Babenko, 2020) 0.852±0.039 0.216±0.072 0.805±0.064 0.380±0.064 0.391±0.039 0.196±0.038

GS (Härkönen et al., 2020) 0.932±0.018 0.209±0.031 0.788±0.091 0.284±0.034 0.464±0.036 0.229±0.042
DisCo (Ren et al., 2022) 0.855±0.074 0.271±0.037 0.877±0.031 0.708±0.048 0.371±0.030 0.292±0.024

DisDiff-VQ (Yang et al., 2023) 0.976±0.018 0.232±0.019 0.902±0.043 0.723±0.013 0.617±0.070 0.337±0.057

Ours 0.877±0.089 0.365±0.073 0.975±0.059 0.837±0.105 0.668±0.055 0.409±0.035

floor 
hue

orienobject
shape

object
scale

object
color

wall
hueSourceTarget

attr direction appearanceaxisSourceTarget
attr

Figure 2: Qualitative results on Shapes3D and Cars3D. We swap each latent of source image with the
one in target image. Our model successfully identifies six underlying factors in shape3D. In Cars3D,
our method discovered three factors including appearance, direction, axis.

Evaluation Metrics We use two evaluation metrics: the FactorVAE (Kim & Mnih, 2018) score
and the DCI (Eastwood & Williams, 2018) metric. The FactorVAE score measures disentanglement
using majority vote classifiers trained to predict the changing ground-truth factor. The DCI metric
quantifies disentanglement by assessing each dimension’s dominance in predicting each attribute.
Since our method induces a vector-wise disentanglement, we perform PCA as post-processing on the
representation before evaluation, following (Du et al., 2021; Yang et al., 2023).

Baselines We compare our method with state-of-the-art baselines: (1) VAE-based methods, includ-
ing FactorVAE Kim & Mnih (2018) and β-TCVAE Chen et al. (2018), (2) GAN-based methods,
including InfoGAN-CR Lin et al. (2020b), GANspace (GS) Härkönen et al. (2020), LatentDiscovery
(LD) Voynov & Babenko (2020), and DisCo Ren et al. (2022), and (3) the diffusion-based model
DisDiff Yang et al. (2023). We mostly follow the experimental settings in DisDiff and use the same
encoder and diffusion decoder architecture as DisDiff.

Main Results We first report the comparison results of our method with baselines for attribute
disentanglement in Table 1. Our method outperforms all baselines on the Shapes3D and MPI3D
datasets by a clear margin, achieving 8% higher FactorVAE scores and 15.7% to 21.4% higher DCI
metrics compared to the second-best baselines. For the Cars3D dataset, our method achieves the best
DCI metric. Notably, on Shapes3D and MPI3D datasets, our method outperforms the state-of-the-art
baseline DisDiff (Yang et al., 2023) with substantial margin. This indicates the effectiveness of our
objective in directly enforcing the support factorization between latent representations via our mixing
strategy for disentangling factors, compared to using an approximate measure such as the upper
bound of mutual information between latents.

Note that our method also significantly outperforms FactorVAE (Kim & Mnih, 2018), which similarly
utilizes random mixing of representations. We hypothesize that our method benefits from flexible
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choice of model architectures. Specifically, FactorVAE is specifically designed to disentangle
between latent dimensions within VAE framework to explicitly minimize Total Correlation. In
contrast, our framework can freely choose the model architecture, so our model benefits from
vector-wise disentanglement and expressive decoder, i.e., diffusion model, which are known to have
better disentanglement and representation quality. Overall, the quantitative results demonstrate the
effectiveness of our model in attribute disentanglement.

To further analyze the quality of our disentangled representations, we perform image generation
by swapping the latent representations between images in Fig. 2. We first encode a randomly
sampled target image and six randomly sampled source images into K latent representations each.
For each k ∈ {1, ...,K}, we then construct swapped representations by replacing the k th latent
representation from the target image with the k th latent representation from the source images and
decode these swapped representations. The results demonstrate the effectiveness of our method in
attribute disentanglement and compositional image generation. Surprisingly, in the Shapes3D dataset,
our method successfully identifies all six ground-truth factors of variation. In the Cars3D dataset, our
method captures three independent factors, enabling controlled manipulation of each factor.

4.2 OBJECT DISENTANGLEMENT

Datasets We evaluate our method for object disentanglement on three multi-object datasets.
CLEVR-Easy (Singh et al., 2022b) contains images with 2-3 objects in different colors, shapes,
and positions. CLEVR (Johnson et al., 2017) consists of images containing 3-10 objects, further
differing in size and material compared to CLEVR-Easy. In CLEVR-Tex (Singh et al., 2022b),
textures are added to objects and backgrounds of the CLEVR dataset, leading more complex scenes
with diverse materials. All images in the datasets are center-cropped and resized to 128× 128 pixels.

Evaluation Protocol We evaluate the quality of object representations through an object property
prediction task, following (Jiang et al., 2023; Jung et al., 2024). For each property, we train a
network to predict the property based on frozen object representations. Correspondences between the
each representation and GT objects are determined through Hungarian matching using masks. For
baselines, slot-attention masks are used for matching. In contrast, as our method does not produce
masks, we identify the corresponding region of the object representation by averaging the differences
in output images when we compose each representation with other representations. For the classifier,
we employ a 2-layer MLP with a hidden dimension of 256. We report accuracy for categorical
properties and mean squared error (MSE) for continuous properties.

Baselines We compare our method with object-centric learning methods leveraging slot-attention:
SA (Locatello et al., 2020) and SLASH (Kim et al., 2023). Also, we compare our method against
state-of-the-art methods using the diffusion decoders: LSD (Jiang et al., 2023) and L2C (Jung et al.,
2024). It’s worth noting that ours does not employ slot attention or any kinds of spatial-exclusiveness
biases. For a fair comparison, we employ the same encoder architecture across all baselines including
ours, and all diffusion-based methods share the same decoder.

Main Results Tab. 2 presents the results of the object property prediction task. Our method
achieves competitive performance compared to state-of-the-art baselines, LSD (Jiang et al., 2023)
and L2C (Jung et al., 2024), demonstrating its effectiveness in object-centric learning. Notably, our
method outperforms LSD on CLEVR-Tex and achieves comparable performance on CLEVR and
CLEVR-Easy. Considering the primary difference between LSD and our method is the use of slot
attention versus the compositionality maximization by mixing strategy, our method’s competitive
performance validates the effectiveness of our mixing strategy as a strong inductive bias for object
disentanglement. In comparison to L2C, our method achieves better performance on CLEVR and
CLEVR-Easy while being competitive on CLEVR-Tex. In CLEVR dataset, we observed that slot
attention in L2C got undesirable positional biases. Since L2C maximizes conditional likelihood
p(xc|zc), it can be achieved by local encoding and decoding instead of maximizing p(x). Overall,
the competitive performance of our method compared to strong baselines verifies that our mixing
strategy provides robust inductive bias for object-centric learning.

We further explore the compositionality of our latent representations in Fig. 3. Given pairs of
images, we encode each image into K object representations and construct a mixed representation by
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Table 2: Comparison of object disentanglement on property prediction. For the position∗ property of
CLEVREasy dataset, we use the discrete labels provided in the dataset and reports the accuracy.

Method
CLEVREasy CLEVR CLEVRTex

Shape Color Position∗ Shape Color Material Position Shape Material Position
(↑) (↑) (↑) (↑) (↑) (↑) (↓) (↑) (↑) (↓)

SA 72.25 72.33 44.08 79.4 91.30 93.18 0.064 30.44 7.890 0.482
SLASH 86.06 89.23 46.97 83.28 92.26 93.16 0.078 53.13 37.49 0.148

LSD 96.03 98.05 50.29 87.66 91.46 94.87 0.062 68.25 51.54 0.197
L2C 92.78 93.57 47.62 73.61 74.03 86.93 0.168 71.54 51.62 0.116

Ours 95.81 95.38 50.72 87.04 93.93 94.81 0.032 70.90 52.2 0.133

∅

∅

Remove

Insert

∅

∅Remove

Insert

Figure 3: Qualitative results on object-wise manipulation in CLEVR and CLEVRTex. Objects
depicted with red arrows are replaced by the the one depicted with green arrows. Successful object-
wise manipulation verifies that our method successfully disentangles the objects. We also find empty
latent (depicted with ϕ), which makes our approach capable of handling varying number of objects.

randomly exchanging one latent between images. The mixed representations are then decoded with
the decoder to produce final composite images. In Fig. 3, we replace one object (depicted with red
arrow) from first column with the object (depicted with red arrow) from first row’s image. In second
to fifth column, we identify successful insertion of the individual objects depicted in to first row into
the first column’s image. Meanwhile, the objects depicted with red arrows are successfully removed
from the original scene. It demonstrates that our method successfully disentangle individual objects.
Notably, in fifth row and fifth column, we observe that our method allows the emergence of latent
encoding empty information. When manipulate such latent, it does not add any of the objects (in fifth
column) or remove none of the objects (in fifth row) from the original images. It highlights that our
method is capable of capturing varying number of objects.

4.3 ABLATION STUDY

Impact of Losses We conduct an ablation study on the impact of each term in our objectives and
present the results in Tab. 3. The results indicate that incorporating all three losses of diffusion (LDiff),
prior (LPrior), and cycle loss (LCon) is essential for our method. In attribute disentanglement learning,
sequentially adding each loss term consistently improves performance, with the best results achieved
when all losses are combined. In contrast, for object disentanglement learning, clear performance
gains across all three property predictions are observed only when using all loss terms together,
possibly due to differences in the mixing strategy.

Impact of Mixing Strategy We investigate the importance of an appropriate mixing strategy for
attribute and object disentanglement learning. We experimented with object mixing and attribute
mixing applied interchangeably to attribute disentanglement learning and object disentanglement
learning, respectively. The results are shown in the bottom three rows of Tab. 3. The results show
that the interchanged mixing strategy significantly degrades performance, in both attribute and object
disentanglement learning, highlighting the importance of a proper mixing strategy in our method.
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Table 3: Ablation study on our method. We investigate the impact of each learning objective and
mixing strategy. It confirms that our method work best with all of the objectives and proper choice of
mixing strategy improves disentanglement.

Shape3D Clevr

FactorVAE DCI Shape (↑) Color (↑) Position (↓)

Impact of Losses

LDiff 0.492 0.175 62.270 88.580 0.111
LDiff + LPrior 0.597 0.224 63.393 86.943 0.126
LDiff + LCon 0.769 0.597 64.210 80.279 0.116
LDiff + LPrior + LCon 1.000 0.887 87.039 93.928 0.032

Impact of Mixing Strategy Attribute mixing 1.000 0.887 65.236 80.520 0.119
Object mixing 0.634 0.127 87.040 93.928 0.033

object attribute object attributeRemove

Insert Remove

InsertInsert∅ ∅

Remove

(a) OOD example 1 (b) OOD example 2 (c) Decoded images from different mixing strategy

Figure 4: Qualitative analysis on our method. Our analysis verifies that our method can generalize to
out-of-distribution (OOD) scenes (a), (b) and highlights the importance of choosing an appropriate
mixing strategy (c).

More qualitative analysis In Fig 4-(a, b), we observe that our method is capable of generating
out-of-distribution (OOD) examples that do not exist in the dataset, but can be created through
composition. Notably, using the CLEVR-Easy dataset, which comprises images with 2-3 objects,
our method can generate high-quality images containing either a single object or 4 objects through
composition, by inserting or removing the representation that does not encodes object. In Fig 4-(c),
we compare images composed from models trained using different mixing strategies: object mixing
and attribute mixing. As demonstrated in the main results and our ablation study, the object mixing
strategy allows for object-level manipulation. In contrast, while the attributed mixing strategy, also
supported by the prior loss, produces images of reasonable quality, but it does not achieve object-level
modifications. Specifically, when object slots are swapped, the changes in the image are not confined
to a single object but also alter the properties of other objects.

5 LIMITATIONS AND FUTURE WORK

While our method aims to identify underlying factors of variations by compositionality within the
representation, discovered factor may not exactly aligned to ground-truth factors. As data may not be
decomposed in a unique way, it’s challenging to discover the exact decomposition of data using our
method. In this work, our framework demonstrates how to uncover the general factors of variation,
focusing on the representative examples in the field (e.g., attributes and objects.). For future work, we
will further explore nuanced and intricate factors of variation within the data.

6 CONCLUSION

In this paper, we introduced a unified framework for disentangled representation learning that is
compatible with both attribute and object disentanglement. We formulate disentangled representation
learning as the process of maximizing compositionality within the representation, enabling both
attribute and object disentanglement by controlling only the composition operator. Although compati-
ble with both attribute and object disentanglement, our method achieved competitive performance
against strong baselines in each domain.
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A APPENDIX

A.1 RELATED WORK

Disentangled Representation Learning Disentangled representation learning for attribute disen-
tanglement heavily rely on regularization terms in learning objectives (Burgess et al., 2017; Chen
et al., 2016; Kim & Mnih, 2018; Chen et al., 2018; Ren et al., 2022; Yang et al., 2023). VAE-based
models (Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018) demonstrates that controlling
the importance of total correlation between latent dimensions hidden in the ELBO bounds encour-
ages to disentangle independent factors. Empowered with enhanced generative models such as
GANs (Goodfellow et al., 2020) and diffusion models (Ho et al., 2020), (Chen et al., 2016; Lin et al.,
2020b) optimizes the mutual information between latents and generated images by GANs, and (Ren
et al., 2022; Yang et al., 2023) proposed to optimize contrastive loss (Oord et al., 2018) or mutual
information between the latents using pretrained GANs and diffusion model, respectively. Such
information-theoretic approaches have shown promising disentangling capabilities, but it becomes
challenging when a scene does not consist of fixed combination of factors, especially when there
exists repeated appearances of the same factors, as seen in object-centric scenes.

Object-Centric Learning Built on the observation that each pixel in a scene must correspond
exclusively to an unique object, the spatial-exclusive mechanism has been recognized as a key
inductive bias in object-centric learning (Burgess et al., 2019; Greff et al., 2019; Engelcke et al., 2020;
Locatello et al., 2020; Kim et al., 2023; Singh et al., 2022a). Early attempts in object-centric learning
employed spatial masks to compose independently decoded RGB images from each latent (Burgess
et al., 2019; Greff et al., 2019; Lin et al., 2020a; Engelcke et al., 2020). In addition to the spatial-
exclusive bias, iterative refinement of each latent representation gradually improves the initially
inaccurate spatial association between each latent and the pixels of the image (Greff et al., 2019). In
slot attention (Locatello et al., 2020), each latent (slot), is randomly initialized and iteratively refined
by a dot-product attention mechanism normalized over the slots. This mechanism induces competition
between the slots to bind to spatial locations in the scene. Empowered by strong generative models
combined with Slot Attention, recent studies (Singh et al., 2022a; Jiang et al., 2023; Wu et al., 2023;
Jung et al., 2024) have demonstrated remarkable performance in unsupervised object discovery on
complex real-world datasets. While these architectural biases excel at object disentanglement, strong
assumption on spatial exclusiveness limits their applicability to disentangling non-spatial exclusive
factors, such as attributes.

A.2 PROOF ON EQUIVALENCE BETWEEN MIXING TWO AND MULTIPLE IMAGES.

In this section, we explain why the random mixing between two images (i.e., zc = π(z1, z2)) can
replace the random composition of zi from K images. Formally, we will show that:

IfS(p(z)) = S(p(zc)) then S(p(z)) = S×(p(z)), (8)

where the factorized support S×(p(z)) = S(p(z1)) × S(p(z2)) × · · · × S(p(zK)) represents the
random composition of each latent variable zi from K images.

Proof. Given S(p(z)) = S(p(zc)), we can prove the followings:

1. If p(z1)p(z2) > 0 then p(z1, z2) > 0.
Note that p(z1) > 0 and p(z2) > 0 (⇔ p(z1)p(z2) > 0) indicates the existence of z1, z2
with z11 = z1, z

2
2 = z2. By mixing z1 and z2, we can compose z∗ where z∗1 = z1, z

∗
2 = z2.

Then, by the definition of the support that S(p(z)) = {z|p(z) > 0} and the given condition
z∗ ∈ S(p(zc)) = S(p(z)), p(z1, z2) ≥ p(z∗) > 0.

2. Assume that for some k ≥ 2, if
∏k
i=1 p(zi) > 0 → p(z1, z2, . . . , zk) > 0 then∏k+1

i=1 p(zi) > 0 → p(z1, z2, . . . , zk, zk+1) > 0.
Note that

∏k+1
i=1 p(zi) > 0 implies p(zk+1) > 0 and

∏k
i=1 p(zi) > 0. By the given assump-

tion, p(z1, z2, . . . , zk) > 0 and there exists z1, z2 where z1i = zi for i ∈ {1, . . . , k}
and z2k+1 = zk+1. By mixing z1 and z2, we can compose z∗ where z∗i = zi for
i ∈ {1, . . . , k + 1}. As a result, by the given condition z∗ ∈ S(p(zc)) = S(p(z)),
p(z1, z2, . . . , zk, zk+1) ≥ p(z∗) > 0.
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# of samples for mixing Factor VAE DCI

2 0.975±0.040 0.837±0.105
64 0.966±0.032 0.802±0.088

Table 4: Effects of number of samples used in mixing strategy

3. By mathematical induction, we conclude that if
∏K
i=1 p(zi) > 0 then p(z) > 0.

Note that (3) implies S(p(z)) = S×(p(z)), since S×(p(z)) can be expressed as {z|p(zi) > 0}. By
using mathematical induction, we have proved that random mixing between two images can replace
the random composition of multiple images to achieve disentanglement.

A.3 EMPIRICAL RESULTS DIFFERENCE BETWEEN MIXING TWO AND MULTIPLE IMAGES.

In additional to theoretic result, we provide empiricial results on our mixing strategy between
two and multiple images (we use 64 here) are equivalent. We conduct experiments on attribute
disentanglement with three different seeds and report FactorVAE and DCI in Table 4. We identified
there is no meaningful difference between mixing two or 64 images, which supports our theoretical
result.

A.4 ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details. When we train our method, we fix
batch size of 64 and learning rate of 0.0001 across all of the experiments. We use λPrior = 1 and
λCon = 0.01 for all experiments except λCon = 0.1 for the experiments in MPI3D dataset. We fix
number of latents K = 10 in attribute disentanglement experiment following the best configuration
of DisDiff (Yang et al., 2023) and K = 4, 11, 11 for CLEVREasy, CLEVR, CLEVRTex, respectively,
for object disentanglement.

Table 12,7,8,14 summarizes the hyper-parameters of our encoder and decoder architectures used in
the experiments. Following DisDiff (Yang et al., 2023) and LSD (Jiang et al., 2023), we employ
pretrained vq-vae 1 and kl-regularized auto-encoder model 2 in attribute distentanglement and
object disentanglement, respectively. In attribute disentanglement experiment, the encoder maps the
input x into 1-dimensional vector z ∈ RKD and we uniformly divide it into K latents. In object
disentanglement experiment, to support the mapping from varying number of inputs (e.g., different
spatial resolutions of UNet feature) into K latent representations, we adopt QFormer (Li et al., 2023).
Specifically, we have K learnable queries {q}K ∈ RK×D and those queries are updated via multiple
self attention layers and cross attention layers, where the keys and values are linearly projected from
unet feature of x. For QFormer, we use 4 layers with 8 attention heads and hidden dimension of 256.

A.5 MATCHING TECHNIQUE

We have developed a technique to identify the specific region corresponding to an object’s represen-
tation based on composed images of that representation. For a given target object representation,
we first random sample multiple images and encode them into object representations. For each
image, we then replace one object representation with the target object representation and decode
the mixed representations. The images generated from this composed representation may include
the target object if it is appropriately encoded. To determine the object region, we measure the RGB
variance between the generated images. Additionally, we use the original image containing the target
object representation and select the region that closely matches the original. Finally, we combine two
metrics—the variance and the distance to the original image—to accurately specify the region.

1 https://huggingface.co/stabilityai/sd-vae-ft-ema-original
2 https://ommer-lab.com/files/latent-diffusion/celeba.zip
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Conv 3 × 3 × 3 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
ResBlock 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
ResBlock 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
FC 4096 × 10

Table 5: Encoder Architecture
used in attribute disentangle-
ment.

ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1

Table 6: ResBlock in the En-
coder

Input Resolution 16
Input Channels 3
Input Channels 4
β scheduler Linear
Mid Layer Attention Yes
# Res Blocks / Layer 2
# Heads 8
Base Channels 64
Attention Resolution [1,2,4,4]
Channel Multipliers [1,2,4,4]

Table 7: Decoder Architecture
used in attribute disentangle-
ment

Input Resolution 16
Input Channels 3
Output Resolution 16
Self Attention Middle Layer
Base Channels 128
Channel Multipliers [1,1,2,4]
# Heads 8
# Res Blocks / Layer 1

Table 8: Unet Encoder Architec-
ture used in object disentangle-
ment.

Input Resolution 16
Input Channels 4
β scheduler Linear
Mid Layer Attention Yes
# Res Blocks / Layer 2
# Heads 8
Base Channels 192
Attention Resolution [1,2,4,4]
Channel Multipliers [1,2,4,4]

Table 9: Decoder Architecture
used in object disentanglement.

Input Resolution 16
Input Channels 3
β scheduler Linear
Mid Layer Attention Yes
# Res Blocks / Layer 2
# Heads 8
Base Channels 64
Attention Resolution [1,2,4,4]
Channel Multipliers [1,2,4,4]

Table 10: Generative Prior Ar-
chitecture used in attribute dis-
entanglement.

Input Resolution 16
Input Channels 4
β scheduler Linear
Mid Layer Attention Yes
# Res Blocks / Layer 2
# Heads 8
Base Channels 192
Attention Resolution [1,2,4,4]
Channel Multipliers [1,2,4,4]

Table 11: Generative Prior Ar-
chitecture used in object disen-
tanglement.

Conv 3 × 3 × 3 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
ResBlock 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
ResBlock 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
FC 4096 × 10

Table 12: Encoder Architec-
ture used in attribute disentan-
glement.

ReLU
Conv 3 × 3 × 128 × 128, stride=1
BatchNorm2d
ReLU
Conv 3 × 3 × 128 × 128, stride=1

Table 13: ResBlock in the En-
coder

Input Resolution 16
Input Channels 4
β scheduler Linear
Mid Layer Attention Yes
# Res Blocks / Layer 2
# Heads 8
Base Channels 192
Attention Resolution [1,2,4,4]
Channel Multipliers [1,2,4,4]

Table 14: Generative Prior Ar-
chitecture used in object disen-
tanglement.

A.6 COMPUTING RESOURCES

We conduct all our experiments on a GPU Server consists of Intel Xeon Gold 6230 CPU, 256GB
RAM, and 8 NVIDIA RTX 3090 GPUs (with 24GB VRAM), or 8 NVIDIA RTX 6000 GPUs (with
48GB VRAM). It takes about 24 GPU hours and from 36 to 48 GPU hours for attribute and object
disentanglement experiment, respectively.
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Table 15: Quantitative Results of unsupervised segmentation in CLEVR dataset

Method FG-ARI mIoU mBO

Slot-Attention SBD Mask Slot-Attention SBD Mask Slot-Attention SBD Mask

LSD 82.00 91.74 22.69 25.59 22.98 25.84
L2C 54.01 80.05 19.30 25.61 20.36 26.33
Ours - 91.20 - 26.54 - 26.65

Table 16: Quantitative Results of unsupervised segmentation in CLEVRTex dataset

Method FG-ARI mIoU mBO

Slot-Attention SBD Mask Slot-Attention SBD Mask Slot-Attention SBD Mask

LSD 46.54 71.64 45.87 56.26 46.93 56.75
L2C 77.07 82.55 56.59 58.33 53.25 58.68
Ours - 87.68 - 58.88 - 59.12

A.7 UNSUPERVISED SEGMENTATION

In this secntion, we additionally measured unsupervised segmentation performance of pretrained
encoders. Unlike slot-attention-based methods, our method does not have a built-in mechanism
to directly express group memberships between pixels. Therefore, we trained a Spatial Broadcast
Decoder (Watters et al., 2019) on top of the frozen latent representations to predict explicit object
masks for each latent representation. We train Spatial Broadcast Decoder with a reconstruction
loss to recover the original image from frozen latents in an unsupervised manner, and it requires
minimal training costs as the encoder remains frozen and the decoder is shallow (See details in
Table 17). We trained the decoder for 30k iterations with learning rate of 1e-3. After training Spatial
Broadcast Decoder, we extract explicit object masks for each latent and evaluate our method against
two strongest baselines in slot-attention-based works, LSD and L2C, on CLEVR and CLEVRTex
datasets. For a fair comparison, we evaluate the baselines using both slot-attention mask and object
masks obtained by training a Spatial Broadcast Decoder on their frozen slot representations. The
results are reported in Table 15, Table 16 and Figure 5.

On the CLEVR dataset, our method achieved the best mIoU and mBO scores, along with comparable
FG-ARI. A high FG-ARI indicates that each mask captures complete objects, confirming the effec-
tiveness of our method in object disentanglement. However, we observed that the background is often
split across multiple latents. This occurs because the constant backgrounds in CLEVR do not affect
compositional generation and therefore avoid penalties from the compositional loss. As constant
backgrounds carry null information, this does not impact the quality of object representations. On the
CLEVRTex dataset, our method outperformed both LSD and L2C across all three metrics. As shown
in Figure 5, our method consistently encodes complete objects into distinct latents, whereas LSD and
L2C frequently split objects across multiple latents. This explains the high FG-ARI achieved by our
method and verifies its superior object disentanglement. Additionally, unlike CLEVR, as CLEVRTex
has various background colors, our model successfully encodes all of the background information
into a single latent.

Together, the experiments on unsupervised segmentation also confirm that our method achieves
robust object-wise disentanglement. It is notable that our method outperforms baselines in object
segmentation without relying on spatial clustering architectures such as slot attention. This highlights
the strength of our approach.
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Table 17: Spatial Broadcast Decoder Architecture used for Unsupervised Segmentation

ConvTranspose2d 64 × 64 × 5 × 5, stride=2, padding=2, output_padding=1
ReLU
ConvTranspose2d 64 × 64 × 5 × 5, stride=2, padding=2, output_padding=1
ReLU
ConvTranspose2d 64 × 64 × 5 × 5, stride=2, padding=2, output_padding=1
ReLU
ConvTranspose2d 64 × 64 × 5 × 5, stride=2, padding=2, output_padding=1
ReLU
ConvTranspose2d 64 × 64 × 5 × 5, stride=1, padding=2
ReLU
ConvTranspose2d 64 × 64 × 5 × 5, stride=1, padding=1
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Figure 5: Qualitative results on unsupervised segmentation in CLEVR and CLEVRTex dataset
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A.8 ADDITIONAL EXPERIMENTS ON COMPLEX DATASET

To explore scalability of our method, we additionally conduct experiments on CelebA-HQ for attribute
disentanglement and MultiShapeNet (MSN) (Stelzner et al., 2021) for object disentanglement,
respectively.

Attribute Disentanglement in CelebA-HQ For the CelebA-HQ dataset, we use the attribute-
mixing strategy to disentangle attribute factors. As CelebA-HQ has much more visual complexity
compares to synthetic datasets, we replace a shallow encoder used in main experiment with Resnet-18
encoders. For generative prior, we leverage a off-the-shelf unconditional diffusion model 3. We
trained our model for 150k iterations with learning rate of 1e-4.

To verify the disentanglement of the learned representations, we swap each latent vector one by one
between two images and present the qualitative results in Figures 6 and Figure 7. In the third columns
of each figure, we observe that while the source images lack bangs, the swapped images successfully
generate bangs while preserving other attributes. Similarly, in the fourth and fifth columns, the facial
expressions and skin tones of the target images are effectively transferred to the source images. These
qualitative results demonstrate that our attribute-mixing strategy is capable of disentangling attribute
factors, even in complex datasets like CelebA-HQ.

Object Disentanglement in MultiShapeNet We validate our method on MSN dataset with object-
wise manipulation and unsupervised segmentation. The model architecture and hyper-parameters
were kept the same as in the previous object disentanglement experiments. For the object-wise
manipulation task, we encode pairs of images into N = 5 object representations and exchange
random object latents between the pairs to construct composite images. As shown in Figure 8, our
method successfully performed object-level insertion and removal, demonstrating that each latent
representation distinctly captures individual objects. This confirms that our approach effectively
disentangles object representations within the latent space.

For the unsupervised segmentation task, we measure FG-ARI, mIoU, mBO on object masks following
common practices in object-centric literature. As our method does not have a built-in mechanism
to directly express group memberships between pixels, we additionally train Spatial Broadcast
Decoder (Watters et al., 2019) on the frozen latent representations to predict explicit object masks
for each latent representation (please refer to Appendix A.7 for details). The results are reported in
Table 18. Among the competitive slot-attention based baselines, our method achieves second-best
performances across all of three metrics. The high segmentation scores of L2C are mainly due
to its slot-attention-based regularization term (see Equation 8 in the L2C paper), which explicitly
encourages the slot masks to align with object shapes. Except for L2C, our method outperforms
rests of the baselines (LSD, SLATE) across all metrics, even though ours does not employ any of a
spatial clustering mechanism like slot attention. These results demonstrate the effectiveness of our
framework in disentangling object representations in a complex dataset.

3 https://huggingface.co/CompVis/ldm-celebahq-256
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Source Target Bang Smile Skin

Figure 6: Qualitative results on unsupervised segmentation. We replace source latent representation
to target latent representation one by one.

Source Target Bang Smile Skin

Figure 7: Qualitative results on unsupervised segmentation. We replace source latent representation
to target latent representation one by one.
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Table 18: Quantitative Results on unsupervised segmentation in MSN dataset. All the values of
SLATE+, LSD, L2C are from L2C paper.

Model FG-ARI mIoU mBO

SLATE+* 70.44 15.55 15.64
LSD* 67.72 15.39 15.46
L2C* 89.8 59.21 59.4
Ours 76.92 24.19 24.3

∅

Remove

In
se
rtobject

Figure 8: Qualitative results on object-wise manipulation in MSN dataset. Objects depicted with red
arrows are replaced by the the one depicted with green arrows. Successful object-wise manipulation
verifies that our method successfully disentangles the objects.

A.9 EFFECT OF RANDOM SEEDS ON PERFORMANCE

We repeat our experiments on object disentanglement with 3 different seeds and report the values in
Table 19. Our method shows comparable performance in object-centric tasks.

Table 19: Quantitative results on object disentanglement with 3 different runs for our model

Method
CLEVREasy CLEVR CLEVRTex

Shape Color Position∗ Shape Color Material Position Shape Material Position
(↑) (↑) (↑) (↑) (↑) (↑) (↓) (↑) (↑) (↓)

SA 72.25 72.33 44.08 79.4 91.30 93.18 0.064 30.44 7.890 0.482
SLASH 86.06 89.23 46.97 83.28 92.26 93.16 0.078 53.13 37.49 0.148

LSD 96.03 98.05 50.29 87.66 91.46 94.87 0.062 68.25 51.54 0.197
L2C 92.78 93.57 47.62 73.61 74.03 86.93 0.168 71.54 51.62 0.116

Ours 93.74±2.10 94.29±0.97 49.42±1.15 85.72±0.37 93.79±0.22 94.93±0.07 0.058±0.006 68.29±2.55 47.89±4.89 0.143±0.009
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