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Abstract—It has been observed by several authors (see [8],
[17], [26]) that well-known periodization strategies like tent or
Chebyshev transforms lead to remarkable results for the recovery
of multivariate functions from few samples. So far, theoretical
guarantees are missing. The goal of this paper is twofold. On
the one hand, we give such guarantees and briefly describe the
difficulties of the involved proof. On the other hand, we combine
these periodization strategies with recent novel constructive
methods for the efficient subsampling of finite frames in Cm.
As a result we are able to reconstruct non-periodic multivariate
functions from very few samples. The used sampling nodes are
the result of a two-step procedure. Firstly, a random draw with
respect to the Chebyshev measure provides an initial node set.
A further sparsification technique selects a significantly smaller
subset of these nodes with equal approximation properties. This
set of sampling nodes scales linearly in the dimension of the
subspace on which we project and works universally for the
whole class of functions. The method is based on principles
developed by Batson, Spielman, and Srivastava [4] and can be
numerically implemented. Samples on these nodes are then used
in a (plain) least-squares sampling recovery step on a suitable
hyperbolic cross subspace of functions resulting in a near-optimal
behavior of the sampling error. Numerical experiments indicate
the applicability of our results.

I. INTRODUCTION

We investigate the worst-case approximation of non-
periodic functions f on the cube [−1, 1]d via function samples
and propose a two-step procedure. Firstly, we have to find a
good set of sample points and secondly, we need a method
to use this information to get an approximation for functions
from the target space.

In the periodic case, it is well-known that choosing suf-
ficiently many uniform random sample nodes in [−1, 1]d

together with a least squares recovery using the Fourier basis
yields near-optimal reconstructions. The rate of convergence
in this case is determined by the function model, in particular
the smoothness s (made rigorous in Section II) with polyloga-
rithmic factors determining the precise behaviour in dimension
d.

The non-periodic case on the other hand is not so clear.
One may try to use a periodization technique to turn f into a
periodic function f̃ and apply the above described procedure
to f̃ . Extending for example f periodically via f̃(x) = f((x
mod 2)−1), i.e. “copying” f over to other cubes, gives such
a periodization but may also introduce discontinuities (as is
the case for the function in Figure 1). We thus aim to find a
periodization, such that f̃ is at least as smooth as f itself.

In Section II we give such a periodization via the cosine
composition operator f̃ = Tcosf acting between suitable
Sobolev-type spaces by

(Tcosf)(x1, . . . , xd) = f(cos(πx1), . . . , cos(πxd)). (1)

For us the important consequence of this is that approximation
algorithms for periodic functions can be taken over to the non-
periodic case, keeping the cosine composition in mind.

If U is a uniform random variable taking values in
[−1, 1], then cos(πU) is distributed according to the Cheby-
shev measure (π

√
1− x2)−1dx on [−1, 1]. Similarly, since

f̃ = Tcosf is even, the d-dimensional Fourier basis (on
[−1, 1]d) boils down to

∏d
`=1 cos(πk`x`). Consequently, going

over to the non-periodic case, we will approximate f using∏d
`=1 cos(k` arccos(x`)), i.e. tensor product Chebyshev poly-

nomials.
The first part of the previous paragraph suggests that we

need to sample points following the Chebyshev distribution

d%D(x) =

d∏
`=1

(
π
√

1− x2
`

)−1

dx. (2)

These random points are near-optimal. To achieve the optimal
error behaviour, we will use a subsampling technique to lower
the number of used sample points even further while still
keeping good approximation properties. This will be explained
in Section III.

Lastly, we will describe our method for function recovery
in Section IV. Our claims are backed up by numerical ex-
periments with the test function f from (6) (tensored cutouts
of a quadratic B-spline), the two-dimensional version being
depicted in Figure 1. The resulting L2-errors as shown in
Figure 3 strongly follow a main decay rate of s = 5/2, the
smoothness of f .

We have two aims with this paper. Firstly, we want to
demonstrate the power and versatility of subsampling by
applying it to the Chebyshev setting. And secondly, we want to
give a theoretical explanation of why Chebyshev distributed
sample points are suitable for the recovery of non-periodic
functions. While other methods cap at certain decay rates or
only give half the rate due to deterministic components (see
Section IV for such methods), our method gives an optimal
main decay rate of s.



II. PERIODIZATION OPERATOR AND EMBEDDINGS

In preparation of what is to follow, we fix some notation
and give a few definitions. N denotes the positive integers
and N0 = N ∪ {0}. The parameter d ∈ N is used for the
dimension. Bold characters are used for vectors from some
d-dimensional space. The real parameter s is always assumed
to satisfy s > 0. Let D = [−1, 1]d. On D we distinguish
between two L2-spaces. Firstly, L2(D) denotes the usual space
of square-integrable functions with respect to the Lebesgue
measure. Secondly, L2(%D) is the space of square-integrable
functions on D with respect to the Chebyshev measure from
(2). The inner product on this latter space is denoted by 〈f, g〉%.

The torus is Td = (R/(2Z))d, where we will use D as the
fundamental domain. In other words, Td is derived from D
by identifying opposite sides of D. L2(Td) denotes the usual
space of square-integrable periodic functions.

For m ∈ N0 the (classical) Sobolev space Hm
mix(D) of

dominating mixed smoothness is the space of all f ∈ L2(D)
such that ‖f‖Hm

mix(D) = ‖f‖L2(D) +
∑
α‖∂αf‖L2(D) < ∞,

where we sum over all α ∈ Nd0 with 0 ≤ maxi∈[d] αi ≤ m.
In case of fractional smoothness s > 0, Hs

mix(D) is defined
via the Besov-type norm

‖f‖Hs
mix(D) = ‖f‖L2(D) +

∑
e⊂[d]RMe (f) <∞. (3)

Here, M ≥ s is a fixed integer and RMe (f) is given by

RMe (f)2 =
∑

j∈Nd
0(e) 22s|j|1 sup|h`|≤2−j`‖∆m,e

h f‖2L2(D),

where Nd0(e) = {j ∈ Nd0 | j` = 0 ∀` /∈ e}, ∆m,e
h =∏

`∈e ∆m
h`,`

and ∆m
h`,`

is the mth-order forward difference in
the `th coordinate direction of step size h`.

The periodic Sobolev space Hs
mix(Td) consists of all f ∈

L2(Td) for which

‖f‖2Hs
mix(T

d) =
∑
k∈Zd

|f̂k|2
d∏
`=1

(
1 + |k`|2

)s
<∞,

where the Fourier coefficients of a function f are given by

f̂k = 2−d
∫
Td

f(x) e−πik·x dx, k ∈ Zd.

Finally, we consider the L2(%D)-normalized Chebyshev
polynomials of the first kind

Tk(x) =
√

2
min{1,k}

cos(k arccos(x)), k ∈ N0. (4)

Taking tensor products of these polynomials, we set

ηk(x) =
∏d
`=1 Tk`(x`), k = (k`)

d
`=1 ∈ Nd0. (5)

With these definitions in mind we move on to the topic
of periodization. Of the many ways to extend functions in
a periodic fashion we choose to study the operator Tcos as
defined in (1). On the one hand, thinking purely in terms of
smoothness, the analysis of Tcos comes down to the chain rule
and its generalizations. On the other hand, Tcos is not bounded
as an operator from L2(D) to L2(Td), i.e. Tcos does not
mesh well with integrability. Since Sobolev spaces measure

a combination of both smoothness and integrability, the study
of the action of Tcos on these spaces is somewhat delicate.
Nonetheless, employing tools such as maximal functions, the
Fefferman-Stein inequality and the Riesz-Thorin interpolation
theorem we are able to prove the following theorem in [21].

Theorem 2.1: If s > 1/2, the linear operator Tcos :
Hs

mix(D)→ Hs
mix(Td) is bounded.

There is another interesting property of the periodization
operator Tcos. A simple calculation reveals that (Tcosf)

∧
k =

〈f, ηk〉%
∏d
`=1

√
2
−min{1,k`}. In light of the above theorem

we conclude:

Corollary 2.2: If s > 1/2 and f ∈ Hs
mix(D), we have

∑
k∈Nd

0

|〈f, ηk〉%|2
d∏
`=1

(
1 + |k`|2

)s
. ‖f‖2Hs

mix(D) <∞.

Below, in Section IV, we consider an explicit example
function constructed from tensor products of B-splines (see
also Figure 1).
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Fig. 1: Surface plot of the test function from (6) for d = 2.

Remark 2.3: For the purposes of this short note we have
formulated the results of this section in the Hilbert space
setting. However, with the same techniques we are able to
prove analogous results for the more general Besov spaces
Srp,qB(D) of dominating mixed smoothness as well. The
definition of these spaces is based on generalizations of the
norm in equation (3).

Within the context of Besov spaces the operator Tcos can be
interpreted not just as a periodization, but also as a generalized
change of variables. In this regard our work is closely related
to [6], [13], [27] and [28].

Finally, in analogy to the classical function spaces on the
torus based on the Fourier system it makes sense to define
function spaces based on Chebyshev coefficients. A theory
of such spaces in an isotropic setting is developed in the
works [5], [12], [14], [15], [18], [19], [31], [33] among others.
Our results give novel insight into the relationship between



the classical Sobolev spaces on D and these Chebyshev–type
spaces in the d-dimensional setting.

III. SUBSAMPLING

To efficiently recover functions on D we need to find suit-
able sample points xi ∈ D, i ∈ [n]. This class of points will
be used for the whole function space and thus needs to be cal-
culated only once. To do so, we start by sampling O(m logm)
random points according to the probability measure %D from
(2) and use a subsampling technique based on Weaver’s KS2-
conjecture (proven in [22] and further developed in [29], see
[24] for a complete account) to reduce the budget to O(m).
We start with the following theorem from [25], [29].

Theorem 3.1: Let c, A,B > 0 and u1, . . . ,uM ∈ Cm with
‖ui‖22 ≤ cmM for all i = 1, . . . ,M and

A‖w‖22 ≤
M∑
i=1

|〈w,ui〉|2 ≤ B‖w‖22

for all w ∈ Cm. Then there is a J ⊂ [M ] of size #J ≤ bm
with

A′ · m
M
‖w‖22 ≤

∑
j∈J
|〈w,uj〉|2 ≤ B′ · m

M
‖w‖22

for all w ∈ Cm, where b, A′, B′ > 0 only depend on c, A,B
(and can be given explicitly).

In Theorem 3.1 the constants A and B are called the frame
bounds and the system u1, . . . ,uM is called a frame. The
strategy here is to use ui = [ηk(xi)]k∈Λ as the frame, where
Λ is a set of frequencies. The indices J ⊂ [M ] as chosen in
the above theorem will give sample points {xj}j∈J suitable
for approximation.

Theorem 3.1 only shows the existence of such a good set of
sampling points. It also leaves no control on the oversampling
factor b (e.g. if c = 1, A = 1/2 and B = 3/2, Theorem 3.1
gives b = 3284, A′ = 11.65 and B′ = 4926). Constructive
subsampling methods with arbitrary oversampling factors b >
1 + ε were studied in [2].

Theorem 3.2: Let u1, ...,uM ∈ Cm, choose b > 1 + 1
m and

assume M ≥ bm. There is a polynomial time algorithm to
construct a J ⊂ [M ] with #J ≤ dbme and

1

M

M∑
i=1

|〈w,ui〉|2 ≤ 89
(b+ 1)2

(b− 1)3
· 1

m

∑
j∈J
|〈w,uj〉|2

for all w ∈ Cm.

Theorem 3.2 enables us to choose an oversampling factor
b close to 1, but it also has the disadvantage of only giving
a lower bound. However, this suffices for our purposes. We
will use Algorithms 1 and 3 from [2] for our numerical
experiments.

IV. NUMERICAL EXPERIMENTS

As an example, we follow [1] and consider the function

f(x) =
∏d
`=1B2(x`) (6)

with

B2(x) =

{
−x

2

4 −
x
2 + 1

2 , −1 ≤ x ≤ 0
x2

8 −
x
2 + 1

2 , 0 < x ≤ 1
.

B2 is a cutout of a piecewise quadratic B-spline. Since spaces
of dominating mixed smoothness have the cross norm property
we observe that f ∈ B

5/2
2,∞(D) or, on the scale of Sobolev

spaces, f ∈ Hs
mix(D) if and only if s < 5/2 (see (7) below).

This fact is reflected in the observed decay rates in Figure 3.
In terms of the L2(%D)-normalized Chebyshev polynomials of
the first kind Tk from (4) we have

B2(x) =
15

32
T0(x)− π − 1

2π
√

2
T1(x)− 1

32
√

2
T2(x)

− 3

2π
√

2

∞∑
k=3

sin(kπ/2)

k(k2 − 4)
Tk(x).

(7)

We approximate functions over D via the following proce-
dure. Given a hyperbolic cross

Λ = Λd,R = {k ∈ Nd0 :

d∏
`=1

max{1, k`} ≤ R}

with d,R ∈ N, set m := #Λ (for estimates on the size of Λd,R
see [7] and [20], but note that the hyperbolic cross is defined
slightly different there). We now draw M := d4m logme
random points according to the probability measure %D (see
Figure 2 (left plot) and note the higher concentration of points
at the boundary). Letting this set be denoted by X = {xi : i ∈
[M ]}, we define the vectors ui =

[
ηk(xi)

]
k∈Λ

with ηk(xi) as
in (5). Using an oversampling factor of b = 1.1 the algorithm
from Theorem 3.2 gives a set J = {j1, . . . , jn} ⊂ [M ] of
size #J = n ≤ dbme, such that the O(m) points {xj}j∈J
approximate functions on [−1, 1]d just as well (asymptotically)
as the O(m logm) random points X .
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Fig. 2: M = 2000 random Chebyshev [uniform] sample
points (light gray, A ≈ 0.766 [0.375], B ≈ 1.225 [0.628]),
subsampled to n = 117 [116] points (black, A ≈ 0.026 [0.01],
B ≈ 1.872 [1.068]), using m = 107 frequencies (hyperbolic
cross, oversampling factor b = 1.1)

Figure 2 (left plot) shows the subsampling step for d = 2
and R = 20, so that m = 107 and M = 2000. The algorithm



finds a subset of n = 117 ≤ d1.1 ·107e points that are suitable
for function approximation. The quality of a point set in this
case is measured by the smallest and largest singular values
(i.e. the condition) of the matrix (#X)−1/2 [ηk(x)]x∈X,k∈Λ.
For the M = 2000 random points the smallest and largest
singular values respectively are A ≈ 0.766 and B ≈ 1.225.
For the n = 117 subsampled points these come out as A ≈
0.026 and B ≈ 1.872.

Calculating coefficients ck,k ∈ Λ via the least squares
systemηk1(xj1) · · · ηkm(xj1)

...
...

ηk1
(xjn) · · · ηkm

(xjn)


 ck1

...
ckm

 ≈
f(xj1)

...
f(xjn)


we approximate f ≈

∑
k∈Λ ckηk. Figure 3 shows the

sampling error ‖f −
∑

k∈Λ ckηk‖L2(%D) against the number
of samples n (after the subsampling step). Note that this
procedure is inherently probabilistic, explaining the fluctua-
tions in the plot. We compare this to the theoretical bound
n−2.5(log n)2.5(d−1)+0.5 from [25], Section 7 (building on
concentration inequalities for matrices from [23]) and improv-
ing over [16], see also [32]. The authors in [10] give the final
sharp, however non-constructive, version based on Theorem
3.1, which solved an outstanding open problem from [11].
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Fig. 3: Sampling errors in the L2(%D)-norm using the Cheby-
shev basis for f ∈ H5/2−ε

mix (D) from (6).

This gives an improved rate compared to the
approximation with the half period cosine basis
Vk(x) =

√
2
−δ0,k

cos
(
πk x+1

2

)
(L2(D)-normalized) over

[−1, 1], where we have

B2(x) =
23

24
√

2
V0(x) +

∞∑
k=1

(
6 sin(πk/2)

π3k3
− (−1)k

π2k2

)
Vk(x).

Compared to the above, we only need to take uniform
samples over [−1, 1]d and change the basis functions to
ψk(xi) =

∏d
`=1 Vk`(x

i
`). Figure 2 (right plot) demonstrates

the subsampling step and Figure 4 shows the sampling error
(with respect to L2(D)). While other, smaller order factors
(e.g. polylogarithmic) are not known, we still observe a main
decay rate of 3/2 (compared to 5/2 in the Chebyshev setting).

Note that the half period cosine is the natural basis of
H1

mix(D) and the linear decay is guaranteed. In [1], the basis
of H2

mix(D) was considered with guaranteed quadratic decay.
In the numerical experiment there the rate 5/2 was obtained
similar to the Chebyshev setting.

We also want to emphasize that the error in Figure 3
is measured in the stronger L2(%D)-norm compared to the
L2(D)-norm used in Figure 4. This is due to∫

D

|g(x)|2d%D(x) ≥ π−d
∫
D

|g(x)|2dx

for functions g, for which the integrals are defined (as is the
case for continuous functions on D), while no comparable
bound can be made in the other direction.
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Fig. 4: Sampling errors in the L2(D)-norm using the half
period cosine basis for f ∈ H5/2−ε

mix (D) from (6).

Note that our procedure of finding the appropriate sampling
nodes is probabilistic in nature. However, once the node set
is fixed it works for the whole class of functions (unit ball in
a certain Sobolev space) unlike the Monte-Carlo methods like
in [9], where the node set might change for each function to
approximate. One may ask for deterministic constructions of
point sets to approximate non-periodic functions over D. In
[30] and [34] so called rank-1 Chebyshev lattices (see Figure
5) were considered. In the same way as above, one uses func-
tion evaluations at those lattice points to get the coefficients for
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Fig. 5: Rank-1 Chebyshev lattice based on a Fibonacci lattice

tensored Chebyshev basis functions ηk at frequencies given by
a hyperbolic cross. Example 3.24 from [34] also uses a cutout
of a quadratic B-spline. While the theory there only gives a
decay rate of n−(1−ε) for all ε > 0 (note the difference in
notation there), the plots suggest an actual rate of n−(1.25−ε),
which can be verified by our analysis. These constructive
methods therefore only give half the rate compared to our
method. Still, it should be noted that on lattices one can use
FFT-techniques to accelerate the computation which are not
possible for our unstructured (random) sample points. Also
see [3] for further methods using sparse grids.

V. CONCLUSION

We give analytic and numerical evidence that for the recov-
ery of non-periodic functions belonging to classical spaces
over [−1, 1]d sampling points following a Chebyshev dis-
tribution together with Chebyshev polynomials (see Figure
3) achieve state of the art error decay. Section II gives the
theoretical framework for this where the periodization operator
Tcos plays a crucial role in the analysis. We conclude that
transforming non-periodic functions to periodic ones using the
cosine composition Tcos helps in finding efficient approxima-
tion algorithms.
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