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Abstract

A recent research has shown that an extreme interpretation of imperfect recall1

abstraction – completely forgetting all past information – has led to excessive ab-2

straction issues. Currently, there are no hand abstraction algorithms that effectively3

integrate historical information. This paper aims to develop the first such algorithm.4

Initially, we introduce the KRWI abstraction for Texas Hold’em-style games, which5

categorizes hands based on K-recall winrate features that incorporate historical6

information. Statistical results indicate that, in terms of the number of distinct7

infosets identified, KRWI significantly outperforms POI, an abstraction that identi-8

fies the most abstracted infosets that forget all historical information. Following9

this, we introduce the KrwEmd algorithm, the first hand abstraction algorithm to10

effectively use historical information by combining K-recall win rate features and11

earth mover’s distance for hand classification. Experimental studies conducted12

in the Numeral211 Hold’em environment show that under identical abstracted13

infoset sizes, KrwEmd not only surpasses POI but also outperforms state-of-the-art14

hand abstraction algorithms such as Ehs and PaEmd. These findings suggest that15

incorporating historical information can significantly enhance the performance of16

hand abstraction algorithms, positioning KrwEmd as a promising approach for17

advancing strategic computation in large-scale adversarial games.18

1 Introduction19

Imperfect recall abstraction has proven to be very important for solving large-scale computational20

games, significantly reducing computational complexity. Recently, AI using imperfect recall abstrac-21

tion has developed better-than-human strategies for Texas Hold’em testbed—even when using limited22

computational resources [23, 7, 8].23

AA BBA B

Figure 1: In a 4-phase game hand ab-
straction task, the current goal is to
classify hands A and B.

The task of hand abstraction in Texas Hold’em aims to re-24

duce computational overhead by applying the same strategy25

to similar hands. In an imperfect recall setting [29, 20], the26

hand abstraction in the later phase does not strict depend27

on the results of the hand abstraction in the earlier phase.28

However, the term imperfect recall is often interpreted in29

an extreme manner in practice. Researchers typically un-30

derstand it as completely forgetting all past information—in31

other words, considering only future information—and de-32

sign abstraction algorithms based on this understanding33

[16, 17, 19, 15, 14]. There are two major factors that mainly34

affect the results of abstraction for each phase: the number35

of clustering centers (i.e. centroids), which can be set man-36
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ually, and the number of distinct features that are used to categorize hands at each phase. Recent37

research [12] has found that constructing hand features solely based on future information can lead38

to excessive abstraction. For example, as shown in the Figure 1, two hands: A and B constructed39

with only future information can have the same hand features. As the game progresses, the rate of40

feature repetition among different hands gradually increases, while the distribution of distinct hand41

features assumes a spindle-shaped pattern. Additionally, constructing hand features with historical42

information in addition to the future may differentiate two hands sharing the same future information43

and hence makes more features available for clustering as well as enhances the performance of hand44

abstraction.45

However, there still remain two unsolved issues. First, Fu et al. [12] have introduced a K-recall46

outcome feature, which incorporates historical information. This feature can only identify if elements47

are identical or not, but it lacks the capability to discern the extent of differences between features.48

Therefore, it is difficult to adjust the number of clusters appropriately, which makes it challenging to49

construct an effective hand abstraction algorithm that integrates historical information. Second, due to50

the inability to modify the number of clusters, Fu et al. [12] only compared the performance between51

the maximum clusters cases of integration of historical information (KROI) and no integration52

at all (POI). In this condition, although KROI significantly outperforms POI, the comparison is53

inconclusive because KROI recognizes more abstracted infosets than POI. Thus, it does not prove54

that the performance of abstraction algorithms that integrate historical information is necessarily55

superior under the condition of having the same number of abstracted infosets.56

This paper introduces a framework for constructing hand features based on winrates, with the K-57

recall winrate feature being the most crucial one. Based on this, we developed the K-recall winrate58

isomorphism (KRWI), an abstraction that integrates historical information. Across the same game59

phases, KRWI identifies slightly fewer hand features than KROI but significantly more than POI.60

Importantly, the K-recall winrate feature is capable of discerning the extent of differences between61

features. Therefore, by combining the earth mover’s distance with the K-recall winrate feature, we62

developed the first hand abstraction algorithm that integrates historical information, named KrwEmd,63

and designed an efficient computational method. We validated our approach in the Numeral211 game64

environment, where KrwEmd demonstrated superior performance to POI under the same infosets65

conditions. Additionally, in clustering settings, KrwEmd also outperformed the Ehs and PaEmd66

algorithms, with PaEmd being the current state-of-the-art hand abstraction algorithm.67

2 Background and Notation68

Generally, Texas Hold’em-style poker games are modeled as imperfect information games. However,69

for the task of hand abstraction, games with ordered signals [18, 12] offer a better theoretical tool.70

The game with ordered signals is a subclass of imperfect information games in that they further71

subdivide the nodes (also called histories, states, or trajectories) in imperfect information games into72

mutually independent signals and public nodes. This allows for each aspect to be studied in isolation.73

Under this framework, the hand abstraction task in Texas Hold’em-style games is modeled as signal74

abstraction.75

In a game with ordered signals Γ̃ =
〈
Ñ , H̃, Z̃, ρ̃, Ã, χ̃, τ̃ , γ,Θ, ς, O, ω,⪰, ũ

〉
, there is a set of76

players Ñ = N ∪ {c, pub}, which includes not only the main participants N = {1, . . . , N} but77

also a special nature player c who controls the randomness and an observer player pub who can78

see everything but doesn’t take any actions. The game progresses through a series of public nodes79

X̃ = H̃ ∪ Z̃. Some of these public nodes are terminal public nodes Z̃ where the game ends and80

outcomes are determined, while the others are non-terminal public nodes H̃ . Among the non-terminal81

public nodes, some are where players make decisions within the action space Ã, and the remaining82

are chance public nodes where the nature player reveals signals, with the special action Reveal83

within Ã.84

At every non-terminal public node, ρ̃ : H̃ 7→ N c (i.e.,N ∪ {c}) specifies which player is responsible85

for making an action, and χ̃ : H̃ 7→ 2Ã confines the possible actions they can take. When the nature86

player makes a move, it reveals signals θ ∈ Θ that carry information relevant to the game. These87

signals are then observed by all players except c, O(θ) = (O1(θ), . . . , ON (θ), Opub(θ)), though88

what they can see might differ.89
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The progression from one public node to another is clearly defined τ̃ : H̃ × Ã 7→ X̃ , ensuring that90

the game’s structure is sequential and predictable. Similarly, the signals are revealed according to a91

probability distribution ς : Θ 7→ ∆(Θ), which specifies the likelihood of the next signal given the92

current one. We use h̃ ⊑ h̃′ to indicate that h̃ is a predecessor of h̃′, and θ ⊑ θ′ to indicate that θ is a93

predecessor of θ′. Each phase of the game is the number of times nature player has revealed signals,94

denoted by γ : X̃ 7→ N+. r = {γ(x̃) | x̃ ∈ X̃} represents the phases that a game with ordered95

signals may go through. Since the root is a chance public node, we have min r = 1.96

At the end of the game, players receive their payoffs based on the signals and the terminal public97

node, represented by ũ = (ũ1, . . . , ũN ), where ũi : Θ × Z̃ 7→ R. Additionally, each player’s98

survival status is determined at these terminal public nodes, denoted by ω = (ω1, . . . , ωN ), where99

ωi : Z̃ 7→ {true, false}. The signals possess a partial order within their subset, terminal signals100

Θ̃, indicated by ⪰: Θ̃×N ×N 7→ {true, false}. It is required that for any terminal signal θ ∈ Θ̃101

and terminal public nodes z̃ ∈ {z̃′ ∈ Z̃ | ωi(z̃
′) = ωj(z̃

′) = true}, if ⪰ (θ, i, j) = true, then102

ũi(θ, z̃) ≥ ũj(θ, z̃).103

Players make decisions based on their observations of signals and the current non-terminal public104

node. A player may have the same observation for different signals, forming a signal infoset for105

signals they cannot distinguish. For a player i ∈ N , the signal infoset for a signal θ is denoted as106

ϑi(θ) = {θ′ ∈ Θ | Oi(θ) = Oi(θ
′) ∧ Opub(θ) = Opub(θ

′)}. Specifically, for the nature player,107

ϑc(θ) = {θ′ ∈ Θ | Opub(θ
′) = Opub(θ)}. We abuse the notation ϑ ∈ Θi to represent a signal infoset,108

where for any player i ∈ N , Θi is a partition of Θ, representing the collection of player i’s signal109

infosets. Θ(1)
i , . . . , Θ

(|r|)
i are the collections of player i’s signal infosets for each phase, and they110

form a partition of Θi. In games with ordered signals, the signals describe all private information.111

The signal infoset, combined with public nodes, can be transformed into the infoset of an imperfect112

information game. Fu et al. [12] detailed this transformation process.113

The game with ordered signals model allows us to study the issue of signal abstraction independently.114

For this purpose, we introduce a signal (infoset) abstraction profile, α = (α1, ., αN ), where for each115

player i ∈ N , αi is a partition of Θ called the signal (infoset) abstraction. Any ϑ̂ ∈ αi then is116

said to be an abstracted signal infoset for player i, and it can be further divided into several signal117

infosets within Θi. These finer signal infosets collectively form a partition of ϑ̂. In general, two signal118

abstractions cannot be directly compared in terms of performance, but in a few specific cases there119

does exist a special relationship between them, which is called refinement. Consider two abstractions120

αi and βi. If ∀ϑ̂ ∈ βi, there exists one or more abstracted signal infosets in αi such that the union121

of these forms a partition of ϑ̂, then we said that αi refines βi, symbolically αi ⊒ βi. The signal122

abstracted game Γ̃α was derived by substituting Θi with αi across all x̃ ∈ X̃ .123

Perfect/imperfect recall originally describes a property of imperfect information games, indicating124

that players do not need to remember all the information they have observed throughout the game.125

Since games with ordered signals are a subset of imperfect information games, we derived the concept126

of signal perfect/imperfect recall from them. A player i in a game Γ̃ is said to have signal perfect127

recall if, for any θ′1, θ
′
2 ∈ ϑ′, any predecessor θ1 of θ′1 has a corresponding predecessor θ2 of θ′2 such128

that θ2 ∈ ϑ(θ1). If all players have signal perfect recall, the game Γ̃ is said to have signal perfect129

recall. For a game Γ̃ with signal perfect recall, if αi is the signal abstraction of player i ∈ N , let130

(αi, Θ−i) denote the signal abstraction profile where player i adopts the signal abstraction αi while131

other players do not do abstraction. If Γ̃(αi,Θ−i) retains signal perfect recall, then αi is considered a132

signal abstraction with perfect recall; otherwise, it is an signal abstraction with imperfect recall.133

In games with ordered signals, the strategy πi for player i maps from a non-terminal public node134

and a signal infoset to a probability distribution over actions, with the strategy profile denoted as135

π = (π1, . . . , πN ). When all players adopt the strategy profile π, the expected sum of future rewards,136

also known as expected value, for player i at public node x̃ and signal θ is denoted as vπi (θ, x̃),137

and the expected value for the entire game is denoted as vi(π). A Nash equilibrium is a strategy138

profile where no player can obtain a higher expected value by changing their strategy. Formally,139

π∗ is a Nash equilibrium if for every player i, vi(π∗) = maxπi
vi(πi, π

∗
−i), where π−i denotes the140

strategies of all players except i. In two-player zero-sum scenarios, the exploitability of π is denoted141

as ϵ(π) =
maxπ′

1
vi(π

′
1,π2)+maxπ′

2
vi(π1,π

′
2)

2 .142
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3 Related Work143

Our research focuses on hand abstraction techniques in AI systems for Texas Hold’em-style games144

(i.e. the signal abstraction in games with ordered signals), building on the initial works of Shi and145

Littman [25] and Billings et al. [4]. These seminal works introduced the concept of game abstraction,146

which aims to simplify games while preserving essential characteristics. The researchers started by147

manually forming hand buckets as a result of their expertise with game-playing strategy. The first148

automated hand abstraction was that of Gilpin and Sandholm [16]. Later, a model of games with149

ordered signals was given for Texas Hold’em by Gilpin and Sandholm [18]; lossless isomorphism150

(LI) was developed with signal rotation. Despite the elegance of LI, its low compression rates hinder151

its application in large-scale games, whereas lossy abstraction shows potential for such application.152

An expectation-based clustering method was proposed by Gilpin and Sandholm [17] in their work,153

and a histogram-based clustering method was introduced by Gilpin et al. [19]. The former is known154

as Ehs, while the latter is referred to as the potential-aware method. Subsequent studies by Gilpin155

and Sandholm [15] and Johanson et al. [20] compared Ehs and potential-aware methods, concluding156

that the latter holds an advantage in large-scale games. Johanson et al. [20] also introduced the157

use of earth mover’s distance1 (EMD) in potential-aware methods. Ganzfried and Sandholm [14]158

introduced a more efficient approximation algorithm for earth mover’s distance in potential-aware159

methods (PaEmd). Brown et al. [9] further applied PaEmd to distributed environments for solving160

large-scale imperfect-information games. This paradigm has found success in Texas Hold’em AI161

systems and is considered state-of-the-art in hand abstraction. Very recently, Fu et al. [12] proposed162

several novel tools, such as abstraction resolution and common refinement. They introduced two163

signal abstraction: one is the potential outcome isomorphism (POI), which identifies the maximum164

number of abstracted signal infosets considering future information only; The other is the K-recall165

outcome isomorphism (KROI), which identifies the maximum number of abstracted signal infosets166

considering historical information. They emphasized that current imperfect recall signal abstraction167

algorithms, which consider only future information, are prone to excessive abstraction. However,168

they did not provide practical signal abstraction algorithms.169

Other abstraction techniques for decision-making problems include action abstraction [13, 6, 21] and170

general imperfect recall abstraction [10, 11] in extensive-form games, as well as state abstraction and171

action abstraction in reinforcement learning [1, 2].172

4 Winrate Isomorphism173

The first contribution of this paper is an isomorphism framework of winrate-based features, including174

the potential winrate isomorphism (PWI) and the k-recall winrate Isomorphism (KRWI). Compared175

with outcome-based features, winrate-based features offer a streamlined approach, focusing exclu-176

sively on the distribution of loss, draw, and win outcomes of signals emanating from a signal infoset177

(and its predecessors) as it evolves towards the terminal signals. Winrate-based features are numerical178

vectors of consistent length. In this section, an identical Winrate-based feature uniquely determines179

an abstracted signal infoset. It is worth noting that the similarity of Winrate-based features reflects180

the similarity among signal infosets, allowing for clustering based on these features (see Section 5).181

Both PWI and KRWI share the similar isomorphism construction process for player i in phase r, as182

illustrated in algorithm 1. The difference lies only in the construction operator for the winrate-based183

features, FEATURE, used in lines 5 and 12. The isomorphism construction process starts by iterating184

through all signal infosets of Θ(r)
i and collecting their features. Next, these features are deduplicated185

and stored in lexicographical order within set C(r)i , which is implemented as a vector data structure.186

Within C(r)i , the index of a feature serves as an identifier for an abstracted signal infoset. Then,187

by utilizing a hash table CI(r)i , we can identify an abstracted signal infoset’s identifier based on188

its feature. In the final step, we traverse Θ
(r)
i again, associating the identifier of a signal infoset189

with the identifier of its corresponding abstracted signal infoset, and this relationship is recorded in190

D(r)
i , an isomorphism map. The function Indexi(r, ·) is a domain-specific mapping that assigns a191

unique identifier to each signal infoset at phase r, within the numeric range of 0 to |Θ(r)
i | − 1. In192

1https://en.wikipedia.org/wiki/Earth_mover%27s_distance
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Algorithm 1 Isomorphism Constructor
Require:

r = 1, . . . , R. Phases.
Θ

(r)
i . Signal infoset space for player i.

Indexi(r, ·) : Θ(r)
i 7→ N. Signal infoset index function for player i.

1: procedure ISOMORPHISMCONSTRUCTOR(r, Θ(r)
i , FEATURE(·))

2: Initialize C(r)i vector as empty.
3: Initialize D(r)

i array arbitrarily with length |Θ(r)
i |.

4: for ϑ ∈ Θ
(r)
i do

5: feature← FEATURE(ϑ).
6: Append feature to C(r)i .
7: end for
8: Eliminate duplicates from C(r)i .
9: Sort the elements of C(r)i in lexicographical order.

10: Construct hash table CI(r)i from C(r)i . Store the index lexid and value feature of C(r)i in
CI(r)i as key-value pairs (feature, lexid).

11: for ϑ ∈ Θ
(r)
i do

12: feature← FEATURE(ϑ), idx← Indexi(r, ϑ).
13: Update D(r)

i [idx] with CI(r)i [feature].
14: end for
15: return (C(r)i ,D(r)

i ).
16: end procedure

Texas Hold’em-style games, one optional approach for implementing this function is through lossless193

isomorphism [18, 27].194

4.1 Potential Winrate Isomorphism195

Potential winrate isomorphism (PWI) is a signal abstraction that classify signal infosets based on its196

potential winrate features. These features focus on the distribution of a player’s winrate over terminal197

signals after passing through a given signal infoset, without considering the history of how the player198

reached the signal infoset. Specifically, for player i in phase r, the potential winrate feature associated199

with ϑ ∈ Θ
(r)
i is defined as200

pf
(r)
i (ϑ) = (pf

(r),0
i (ϑ), pf

(r),1
i (ϑ), . . . , pf

(r),N
i (ϑ)), (1)

where201

• pf
(r),0
i (ϑ) denotes the probability that player i ranks lower than least one other player in202

the terminal signals, after passing through ϑ.203

• pf
(r),l
i (ϑ), for l > 0, denotes the probability that player i ranks no lower than any other204

player and ranks higher than exactly l− 1 other players in the terminal signals, after passing205

through ϑ.206

In the terminal phase, the winrate feature is calculated by directly statisticing the game outcomes for207

players in the given signal infoset. Moreover, in the non-terminal phases, we use a recursive approach208

to simplify the computation of the winrate feature, thereby avoiding the need to enumerate every209

signal infoset down to the terminal phase. The recursive formula is210

pf
(r),l
i (ϑ) =

∑
ϑ(r+1)∈Θ

(r+1)
i

ϑ⊑ϑ(r+1)

pf
(r+1),l
i (ϑ(r+1))Pr{ϑ(r+1)|ϑ} (2)
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Preflop Flop Turn River

Recall 0 0 1 0 1 2 0 1 2 3
KRWI 169 1028325 1123442 1850624 34845952 37659309 20687 33117469 529890863 577366243
KROI 100 1137132 1241210 2337912 38938975 42040233 20687 39792212 586622784 638585633

W/O (%) 100.0 90.43 90.51 79.16 89.49 89.58 100.0 83.23 90.33 90.41

Table 1: The number of abstracted signal infosets identified by KRWI, and KROI in each phase and k
of HUNL&HUNLE, with W/O indicating the ratio identified by PWI and POI.

Preflop Flop Turn River
LI 169 1286792 55190538 2428287420

PWI 169 1028325 1850624 20687
POI 169 1137132 2337912 20687

W/O (%) 100.0 90.43 79.16 100.0

Figure 2: The number of abstracted signal infosets
identified by LI, PWI, and POI in each phase of
HUNL&HUNLE, with W/O indicating the ratio iden-
tified by PWI and POI.

The PWI algorithm is derived from the211

POI algorithm [12], and the details of212

the PWI algorithm are elaborated in Ap-213

pendix A.1. Both algorithms use the po-214

tential winrate feature to distinguish be-215

tween different abstracted signal infosets216

in the terminal phase. However, unlike217

POI, PWI also uses the potential winrate218

feature in non-terminal phases to identify219

different abstracted signal infoset classes,220

while POI relies on the potential outcome221

feature (which captures the distribution of the abstracted signal infoset class for future signal infoset).222

In non-terminal phases, the potential winrate feature is a simplified version of the potential outcome223

feature. Unsurprisingly, PWI also results in excessive abstraction similar to POI. As shown in Table224

2, in heads-up limit hold’em (HULHE) and heads-up no-limit hold’em (HUNL), the number of225

abstracted signal infosets identifiable by lossless isomorphism increases with each phase, indicating226

that the game becomes increasingly complex. However, the number of abstracted signal infosets227

identifiable by PWI and POI first increases and then decreases, showing a spindle-shaped pattern.228

And we observed that when only future information is considered, winrate-based features may lead229

to greater information loss compared to outcome-based features. For instance, in the River phase, the230

number of abstracted signal infosets identified by PWI is only 79.16% of that identified by POI.231

4.2 K-Recall Winrate Isomorphism232

As Fu et al. [12] mentioned, supplementing historical information can enhance the ability of signal233

abstraction to identify abstracted signal infosets. Inspired by KROI’s construction approach, we234

developed the k-recall winrate isomorphism (KRWI). The key difference is that instead of using235

k-recall outcome features to distinguish between different signal infosets, KRWI utilizes k-recall236

winrate features.237

In a game with signal perfect recall, all signals within the signal infoset ϑ have their predecessors at238

phase r′, which belong to the identical signal infoset ϑ′. For player i at phase r, the signal infoset239

ϑ ∈ Θ
(r)
i has a k-recall winrate feature (k < r) represented as a numerical array with a dimension of240

(k + 1)(N + 1):241

rf
(r,k)
i (ϑ) = (pf

(r)
i (ϑ); pf

(r−1)
i (ϑ); . . . ; pf

(r−k)
i (ϑ)) (3)

When r′ is less than r, pf (r′)
i (ϑ) denotes the potential winrate feature for the predecessor signal242

infoset ϑ′ of ϑ at phase r′. Since we have stored all the potential winrate features of ϑ ∈ Θ
(r)
i through243

PC(r)i ,PD(r)
i and assigned them unique identifiers in Algorithm A1. To save storage space and244

facilitate retrieval, what we actually store is245

rfi
(r,k)
i (ϑ) = (PD(r)

i [ϑ],PD(r−1)
i [ϑ], . . . ,PD(r−k)

i [ϑ)) (4)

PD(r′)
i [ϑ] is the identifier for the potential winrate feature of the predecessor ϑ′ of ϑ in the r′ phase,246

r′ ≤ r. For algorithm details, please refer to Appendix A.2.247

Just as the potential winrate feature is a simplified version of the potential outcome feature, the248

k-recall winrate feature is a simplified version of the k-recall outcome feature. Table 1 shows the249

number of signal infosets that KRWI and KROI can identify and their ratio in HUNL&HULHE. We250

were pleasantly surprised to find that while the ratio of PWI to POI resolution can drop below 80%,251
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when k is set to its maximum value, i.e. r− 1, the ratio of KRWI to KROI resolution can reach nearly252

90% at a minimum, with most of the information preserved. Also, we can easily observe that the253

number of abstracted signal infosets identified by KRWI is much higher than that identified by POI.254

5 K-Recall Winrate Abstraction with Earth Mover’s Distance255

Fu et al. [12] introduced potential and k-recall outcome features, referred to as outcome-based features,256

to distinguish different abstracted signal infosets. In the previous section, we developed potential and257

k-recall winrate features, termed winrate-based features, for the same purpose. In these two methods,258

Each unique feature corresponds to a single abstracted signal infoset. Intuitively, we can infer that259

feature similarity might reflect the similarity among abstracted signal infosets, enabling further260

abstraction and compression for application in large-scale games. However, assessing similarity with261

outcome-based features is challenging because the identification code indicates only the category,262

without reflecting the degree of similarity. In contrast, winrate-based features represent winrates,263

which are inherently comparable, allowing for an easy definition of distances between them.264

For the signal information sets ϑ, ϑ′ of player i at phase r, we can define the distance of their k-recall265

winrate feature as266

d(rf
(r,k)
i (ϑ), rf

(r,k)
i (ϑ′)) =

k∑
j=0

wj · Emd(pf (r−j)
i (ϑ), pf

(r−j)
i (ϑ′)) (5)

Among Equation (5), Emd is the operator used to calculate the earth mover’s distance (EMD) [24].267

The EMD calculates the distance between two histograms using optimal transport theory. Since it268

requires solving linear programming equations, the computational complexity of the EMD is sensitive269

to the dimensionality of the histograms, and approximate algorithms are usually used for larger-scale270

problems. However, the dimensionality of winrate-based features is small, with a dimension of 3 in a271

two-player scenario, so we attempt to use a fast algorithm for accurately computing the EMD [5].272

w0, . . . , wk are hyperparameters used to control the importance of EMD at each phase r, . . . , r − k.273

We use the KMeans++ algorithm [3], combined with the distance of their k-recall winrate feature, to274

cluster the abstracted signal infosets of KRWI. We named this algorithm KrwEmd.275

Although calculating EMD on small-dimensional histograms is already very fast, clustering ac-276

tual Texas Hold’em still faces a significant computation. For example, for the River phase of277

HUNL&HULHE, the clustering input size of the KRWI abstracted signal infoset is approximately278

5.8× 108. When we set the number of centroids to 20000, a single Kmeans++ iteration takes about279

19000 core hours on a computer with a 2.40GHz clock frequency, which is a significant time cost.280

Therefore, we need to find ways to reduce this time cost. We have developed an accelerated algorithm,281

please refer to Appendix A.3 for details.282

6 Experimental Setup283

Preflop Flop Turn

LI 100 2260 62020

Recall 0 0 1 0 1 2
KRWI 100 2234 2248 3957 51000 51070
KROI 100 2250 2260 3957 51176 51228

W/O (%) 100.0 99.29 99.47 100.0 99.67 99.69

Figure 3: The number of abstracted signal infosets
identified by LI, PWI, and POI in each phase of
HUNL&HUNLE, with W/O indicating the ratio iden-
tified by PWI and POI.

We conducted experiments on the Nu-284

meral211 Hold’em [12] testbed. Nu-285

meral211 is a two-player three-phase286

Taxes Hold’em-style game with more287

complex hand systems than the Leduc288

Hold’em [26] and Rhode Island Hold’em289

[25] test environments, making it suitable290

for studying hand abstraction issues. De-291

tailed rules are included in Appendix B.292

Table 3 shows the number of abstracted293

signal infosets recognized by KRWI and294

KROI, along with lossless isomorphism,295

in Numeral211 Hold’em.296

Let α = (α1, α2) be the signal abstraction we would like to assess. We will test the strength of297

the signal abstraction by measuring exploitability of the approximate equilibrium derived using the298
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CSMCCFR algorithm [30, 22] in different abstracted signal infoset scales. We gauge the performance299

over exploitability. For doing that, we consider both symmetric and asymmetric abstraction scenarios.300

In this symmetric abstraction setting, we measure the exploitability of approximate equilibrium301

that is yielded when both the players in the game employ signal abstraction in the original game.302

However, it may lead to the abstraction pathology [28]. To avoid such problems, we illustrate the303

theoretical performance of the signal abstraction under evaluation through asymmetric abstraction.304

The approximate equilibrium in the signal abstracted games Γ̃(α1,Θ2) and Γ̃(Θ1,α2) is obtained to305

obtain π∗,1 and π∗,2, respectively. Finally, we concat the two strategies to get π′ = (π∗,1
1 , π∗,2

2 ) and306

check the exploitability of π′.307

7 Experiment308
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Figure 4: Full abstraction setting experiment, trained for 5.5× 1010 iterations.

Firstly, we provide an evaluation of the performance of KRWI (2-RWI) compared with KROI (2-ROI)309

and POI (0-ROI) approaches and lossless isomorphism. We keep the most abstracted signal infosets310

identified under the full abstraction setting. Note that POI is the common refinement of existing311

signal abstraction algorithms that only consider future information. And, since previous works cannot312

control the number of abstracted infoset, they cannot justify their performance in that considering313

historical information in signal abstraction was better than that in signal abstraction with the same314

number of abstracted infoset. To investigate this issue, we included KrwEmd and set the clustering315

scale to be consistent with POI. Note here, that 2-RWI and 2-ROI share the same capability of infoset316

recognition in Preflop and Flop, while POI is only a little bit worse than 2-RWI and 2-ROI in Flop.317

Thus, we can directly allow clustering of KrwEmd abstraction use the abstracted signal infosets318

identified by POI in Preflop and Flop, and only perform clustering in River. Here, we design four319

sets of hyper-parameters: (w0, w1, w2), i.e., exponentially decreasing: (16, 4, 1), linearly decreasing:320

(7, 5, 3), constant: (1, 1, 1), and increasing: (3, 5, 7) in the importance of historical information. We321

only show the result of best- and worst-performing parameters (to make the figure neat). The full322

figures appear in the Appendix C. Figure 4a shows the result of symmetric abstraction, while Figure323

4b shows the result of asymmetric abstraction. We observed that both symmetric and asymmetric324

abstractions maintained consistent abstraction performance without abstraction pathologies. As325

expected, overfitting was observed in the symmetric abstraction scenario while in the asymmetric326

scenario overfitting was significant only for POI. The performance difference between 2-RWI and327

2-ROI is small, which means that under the full abstraction setting, using simple winrate-based328

features instead of complex outcome-based features can achieve nearly the same performance. Even329

with the worst parameter configuration (increasing importance), KrwEmd with the same number of330

abstracted signal inforsets as POI still outperforms POI.331
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Figure 5: Performance comparison of KrwEmd versus other imperfect recall signal abstraction
algorithms considering only future information, trained for 3.7× 1010 iterations.

Next, we compared the performance of KrwEmd with the currently applied signal abstraction332

algorithms Ehs and PaEmd. It should be noted that POI is the common refinement both for Ehs and333

PaEmd, meaning that the maximum number of abstracted signal infosets they can recognize will not334

exceed that of POI. Thus, we set a compression rate that is 10 times lower than that of POI, while not335

performing abstraction for Preflop. The final number of abstracted infosets is set to (100, 225, 396).336

To exclude the influence of random events on performance, we generated 3 sets of abstractions337

for Ehs and PaEmd each. KrwEmd used hyperparameters (w3,0, w3,1, w3,2;w2,0, w2,1) in Flop and338

River, which are exponentially decreasing (16, 4, 1; 4, 1), linearly decreasing (7, 5, 3; 5, 3), constant339

(1, 1, 1; 1, 1), and increasing (3, 5, 7; 5, 7) in the importance of historical information. Additionally,340

since PaEmd uses approximate EMD calculations, its approximate distance is asymmetric, making it341

difficult for the algorithm to converge. We truncated after 1000 iterations on a single core, with an342

average cost of 1427.7s, while Ehs and KrwEmd both achieved convergent clustering results, requiring343

an average of 12.3 and 96.7 iterations, with average time costs of 11.2s and 341.4s, respectively.344

Figure 5a shows the results of symmetric abstraction experiments, while Figure 5b shows the results of345

asymmetric abstraction experiments. We observed that both symmetric and asymmetric abstractions346

maintained consistent abstraction performance, similar to the full abstraction scenario, without347

significant abstraction pathologies. The experimental results show that KrwEmd’s performance is348

far superior to that of Ehs and PaEmd under all parameter settings. Our experiments also confirmed349

that, despite PaEmd’s convergence issues, it is indeed a more effective abstraction algorithm than350

Ehs. Additionally, we further validated that the importance of historical information decreases351

progressively from bottom to top, although this time the best-performing parameter was exponentially352

decreasing rather than linearly decreasing as in the previous experiment.353

These two experiments validate that considering historical information is indeed more effective than354

considering future information only in signal abstraction even in imperfect recall setting.355

8 Conclusion356

This research introduces the first imperfect recall signal abstraction algorithm that considers historical357

information. This algorithm has the ability to adjust the scale of the abstracted signal infosets. Based358

on this, we fully verified that the imperfect recall signal abstraction and abstraction algorithms359

considering historical information is superior to that only considering future information. Therefore,360

the KrwEmd algorithm has replaced the PaEmd algorithm and become the SOTA in this field. Based361

on the KrwEmd algorithm, we are expected to build a stronger Texas Hold’em AI.362
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Algorithm A1 Potential Winrate Isomorphism
Require:

r = 1, . . . , R. Phases.
Θi =

⋃R
r=1 Θ

(r)
i . Signal infoset space for player i.

Indexi(r, ·) : Θ(r)
i 7→ N. Signal infoset index function for player i.

1: procedure POTENTIALWINRATEISOMORPHISM(Θi)
2: for r = R to 1 do
3: if r == R then
4: FEATUREFUNC← POTENTIALWINRATEFEATURELASTPHASE(·).
5: else
6: FEATUREFUNC← POTENTIALWINRATEFEATURE(·, r, PC(r+1)

i ,PD(r+1)
i ).

7: end if
8: (PC(r)i ,PD(r)

i )← ISOMORPHISMCONSTRUCTOR(r, Θ(r)
i , FEATUREFUNC).

9: end for
10: return (PC(1)i ,PD(1)

i ), . . . , (PC(R)
i ,PD(R)

i ).
11: end procedure
12: procedure POTENTIALWINRATESFEATURELASTPHASE(ϑ)
13: return pf

(R)
i (ϑ) ▷ compute according Equation (1)

14: end procedure
15: procedure POTENTIALWINRATEFEATURE(ϑ, r, PC(r+1)

i , PD(r+1)
i )

16: featureϑ ← zero array with length N + 1

17: for ϑ′ ∈ Θ
(r+1)
i , such that ∃θ′ ∈ ϑ′,∃θ ∈ ϑ: ς(θ′|θ) > 0 do

18: idx← Indexi(r + 1, ϑ′), abs← PD(r+1)
i [idx], featureϑ′ ← PC(r+1)

i [abs].
19: for j = 0 to N do
20: featureϑ[j]← featureϑ[j] + featureϑ′ [j]Pr{ϑ′|ϑ}
21: end for
22: end for
23: end procedure

A Algorithm Details449

A.1 Potential Winrate Isomorphism450

Algorithm A1 describes the computation process for potential winrate isomorphism. This algorithm451

operates in reverse, starting from the game’s final phase R.452

A.2 K-Recall Winrate Isomorphism453

Algorithm A2 constructs the k-recall winrate isomorphism using the k-recall winrate feature. This454

process requires the prior construction of the potential winrate isomorphism map PD(r)
i using455

Algorithm A1.456

A.3 Accelerating Distance Computing for K-Recall Winrate Features457

According to Equation (5), we note that the distance calculation between a k-recall winrate isomor-458

phism class and a centroid’s k-recall winrate feature can be decomposed into k+1 pairs of potential459

winrate feature EMD calculations. The potential winrate feature of the hand remains unchanged,460

while only the potential winrate feature of the centroid changes. Decomposing the calculation into the461

EMDs of potential winrate features involves significantly fewer computations than directly calculating462

the EMD of two k-recall winrate features. Specifically, for the River phase of HUNL&HULHE, we463

have the compression ratio as 169+1028325+1850624+20687
529890863 = 2899805

529890863 = 0.0054725.464

Algorithm A3 describes how we accelerate the batch EMD computation between a centroid and all465

KRWI classes’ k-recall winrate features. It should be noted that the K-recall winrate feature involved466

in the calculation of the centroid in the algorithm is in the form of Equation (3), while the K-recall467

winrate feature in RC(r,k) is in the form of Equation (4). This method reduced the computational468
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Algorithm A2 K-Recall Winrate Isomorphism
Require:

r = 1, . . . , R. Phases.
Θ

(r)
i . Signal infoset space for player i.

Indexi(r, ·) : Θ(r)
i 7→ N. Signal infoset index function for player i.

PD(r)
i : N 7→ N. Potential winrate isomporphism map.

1: procedure KRECALLWINRATEISOMORPHISM(Θi, k)
2: for r = 1 to R do
3: k′ ← MIN(r − 1, k).
4: FEATUREFUNC← KRECALLWINRATEFEATURE(·, r, k′).
5: (RC(r,k

′)
i ,RD(r,k′)

i )← ISOMORPHISMCONSTRUCTOR(r, Θ(r)
i , FEATUREFUNC).

6: end for
7: return (RC(1,0)i ,RD(1,0)

i ), . . . , (RC(k+1,k)
i ,RD(k+1,k)

i ), . . . , (RC(R,k)
i ,RD(R,k)

i ).
8: end procedure
9: procedure KRECALLWINRATESFEATURE(ϑ, r, k)

10: initial a empty vector feature.
11: for s = r to r − k do
12: ϑ′ ← the predecessor signal infoset of ϑ in the s phase for player i.
13: idx← Indexi(s, ϑ

′), abs← PD(s)
i [idx].

14: Append feature with abs.
15: end for
16: return feature
17: end procedure

cost of EMD from 19000 core hours to approximately 104 core hours, which is significantly lower469

than the time cost of summarizing the distance for each KRWI class, which is about 524 core hours470

and is an unavoidable O(1) cost.471

The distance batch calculation for each centroid can be processed independently and distributed472

across tens of multi-core computer (e.g. 96-core computers), with each computer responsible for473

calculating the features of some centroids in one iteration, which are then aggregated. Using this474

technique, we can reduce an iteration to a few hours, which is acceptable for Texas Hold’em AI475

training.476

B Numerall211 Hold’em Rules477

Numeral211 Hold’em is played according to the following rule:478

1. Ante: Each player antes 5 chip into the pot at the start of the hand.479

2. Hole Card: Both players are dealt one private card face down, known as the hole card.480

3. Deck: The deck consists of a standard poker deck, excluding the Jokers, Kings, Queens,481

and Jacks, resulting in a total of 40 cards. There are four suits: spades (♠), hearts (♡), clubs482

(♣), and diamonds (♢), each containing ten cards numbered 2 through 9, and including the483

ten (T) and ace (A).484

4. First Betting Phase: Following the distribution of hole cards, a phase of betting occurs.485

Players can choose to check or bet, with the bet size set at 10 chips.486

5. Flop: After the initial betting phase, a single community card, termed the flop, is revealed487

from the deck.488

6. Second Betting Phase: Another phase of betting takes place after the flop, with the bet size489

increasing to 20 chips.490

7. Turn: After the Second betting phase, another community card, termed the turn, is revealed491

from the deck.492

8. Third Betting Phase: Another phase of betting takes place after the turn, with the bet size493

still set at 20 chips.494
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Algorithm A3 Distance Batch
Require:

r = 1, . . . , R. Phases.
RC(r,k)i : N 7→ Nk+1. K-recall winrate feature set.
PC(r)i : N 7→ [0, 1]N+1. Potential winrate feature set.
PD(r)

i : N 7→ N. Potential winrate isomporphism map.
rc = (pc(r), . . . , pc(r−k)). K-recall winrate feature of the input centroid.

Ensure:
Distances of all k-recall winrate feature with centroid.

1: procedure DISTANCEBATCH(w0, . . . , wk, rc, r, k)
Initial phase s empty earth mover’s distance vector EmdDis(s) for s = r, . . . , r − k.
Initial empty output distance vector Dis.

2: for t = 0 to k do
3: for pf in PC(s)i do
4: Append EmdDis(r−t) with Emd(pf, rc[t])
5: end for
6: end for
7: for rfi inRC(r,k)i do
8: dis← 0.
9: for t = 0 to k do

10: dis← dis+ wt ∗ EmdDis(r−t)[PD(r−t)
i [rfi[t]]].

11: end for
12: Append Dis with dis.
13: end for

return Dis.
14: end procedure

9. Showdown: If neither player folds, a showdown occurs. Players reveal their cards, aiming495

to form the best possible hand. The player with the highest-ranked hand wins the pot. In496

the case of a tie, the pot is split evenly. The Table 2 show the hand ranks of Numeral211497

Hold’em.498

10. Betting Options: Throughout the game, players have options to fold, call, or raise. In each499

betting phase, the total sum of bets and raises is limited to a maximum of 4, with fixed bet500

sizes of 10 chips in the first phase and 20 chips in the last two betting phases.501

C Supplementary Data for Experiment 1502

Figure 6 show all of the result in experiment 1.503
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Rank Hand Prob. Description Example
1 Straight flush 0.00321 3 of cards with consecutive rank and

same suit. Ties are broken by high-
est card.

T♠9♠8♠2♣

2 Three of a kind 0.01587 3 of cards with the same rank. Ties
are broken by the card’s rank.

T♠T♡T♣2♣

3 Straight 0.04347 3 of cards with consecutive rank.
Ties are broken by the highest card
rank.

T♠9♡8♣2♢

4 Flush 0.15799 3 of cards with the same suit. Ties
are broken by the highest card rank,
then second highest card rank, then
third highest card rank.

T♠8♠6♠2♣

5 Pair 0.34065 2 of cards with the same rank. Ties
are broken by the rank of the pair,
then by the rank of the third card.

T♠T♡8♣2♢

6 High card 0.43881 None of the above. Ties are bro-
ken by comparing the highest ranked
card, then the second highest ranked
card, and then the third highest
ranked card

T♠8♡6♣2♢

Table 2: Hand ranks of Numeral211 Hold’em

�✁
✂✄☎✆✁
✂✄☎✝✁
✞✆✁
✟✠✡☛☞✌✄✍✄✍✄✍
✟✠✡☛☞✌✄✍✎✄✏✄✍
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Figure 6: All data within experiment 1

NeurIPS Paper Checklist504

1. Claims505

Question: Do the main claims made in the abstract and introduction accurately reflect the506

paper’s contributions and scope?507

Answer: [Yes]508

Justification: We have clearly defined our scope and contributions in both the abstract and509

introduction sections.510

Guidelines:511

• The answer NA means that the abstract and introduction do not include the claims512

made in the paper.513
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• The abstract and/or introduction should clearly state the claims made, including the514

contributions made in the paper and important assumptions and limitations. A No or515

NA answer to this question will not be perceived well by the reviewers.516

• The claims made should match theoretical and experimental results, and reflect how517

much the results can be expected to generalize to other settings.518

• It is fine to include aspirational goals as motivation as long as it is clear that these goals519

are not attained by the paper.520

2. Limitations521

Question: Does the paper discuss the limitations of the work performed by the authors?522

Answer: [NA]523

Justification: This paper introduces a novel hand abstraction algorithm that has been experi-524

mentally validated to outperform the previous state-of-the-art (SOTA) algorithm, PaEmd,525

and no significant flaws have been identified thus far.526

Guidelines:527

• The answer NA means that the paper has no limitation while the answer No means that528

the paper has limitations, but those are not discussed in the paper.529

• The authors are encouraged to create a separate "Limitations" section in their paper.530

• The paper should point out any strong assumptions and how robust the results are to531

violations of these assumptions (e.g., independence assumptions, noiseless settings,532

model well-specification, asymptotic approximations only holding locally). The authors533

should reflect on how these assumptions might be violated in practice and what the534

implications would be.535

• The authors should reflect on the scope of the claims made, e.g., if the approach was536

only tested on a few datasets or with a few runs. In general, empirical results often537

depend on implicit assumptions, which should be articulated.538

• The authors should reflect on the factors that influence the performance of the approach.539

For example, a facial recognition algorithm may perform poorly when image resolution540

is low or images are taken in low lighting. Or a speech-to-text system might not be541

used reliably to provide closed captions for online lectures because it fails to handle542

technical jargon.543

• The authors should discuss the computational efficiency of the proposed algorithms544

and how they scale with dataset size.545

• If applicable, the authors should discuss possible limitations of their approach to546

address problems of privacy and fairness.547

• While the authors might fear that complete honesty about limitations might be used by548

reviewers as grounds for rejection, a worse outcome might be that reviewers discover549

limitations that aren’t acknowledged in the paper. The authors should use their best550

judgment and recognize that individual actions in favor of transparency play an impor-551

tant role in developing norms that preserve the integrity of the community. Reviewers552

will be specifically instructed to not penalize honesty concerning limitations.553

3. Theory Assumptions and Proofs554

Question: For each theoretical result, does the paper provide the full set of assumptions and555

a complete (and correct) proof?556

Answer: [NA]557

Justification: This paper introduces a novel algorithm and validates its effectiveness through558

experiments, without involving theory or proofs.559

Guidelines:560

• The answer NA means that the paper does not include theoretical results.561

• All the theorems, formulas, and proofs in the paper should be numbered and cross-562

referenced.563

• All assumptions should be clearly stated or referenced in the statement of any theorems.564

• The proofs can either appear in the main paper or the supplemental material, but if565

they appear in the supplemental material, the authors are encouraged to provide a short566

proof sketch to provide intuition.567
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• Inversely, any informal proof provided in the core of the paper should be complemented568

by formal proofs provided in appendix or supplemental material.569

• Theorems and Lemmas that the proof relies upon should be properly referenced.570

4. Experimental Result Reproducibility571

Question: Does the paper fully disclose all the information needed to reproduce the main ex-572

perimental results of the paper to the extent that it affects the main claims and/or conclusions573

of the paper (regardless of whether the code and data are provided or not)?574

Answer: [Yes]575

Justification: We have provided detailed information on the testbed, evaluation metrics, and576

experimental scenarios in Section 6. Additionally, specific experimental parameters and577

equipment are given in Section 7. Therefore, we have included sufficient details in the paper578

to reproduce the experiments.579

Guidelines:580

• The answer NA means that the paper does not include experiments.581

• If the paper includes experiments, a No answer to this question will not be perceived582

well by the reviewers: Making the paper reproducible is important, regardless of583

whether the code and data are provided or not.584

• If the contribution is a dataset and/or model, the authors should describe the steps taken585

to make their results reproducible or verifiable.586

• Depending on the contribution, reproducibility can be accomplished in various ways.587

For example, if the contribution is a novel architecture, describing the architecture fully588

might suffice, or if the contribution is a specific model and empirical evaluation, it may589

be necessary to either make it possible for others to replicate the model with the same590

dataset, or provide access to the model. In general. releasing code and data is often591

one good way to accomplish this, but reproducibility can also be provided via detailed592

instructions for how to replicate the results, access to a hosted model (e.g., in the case593

of a large language model), releasing of a model checkpoint, or other means that are594

appropriate to the research performed.595

• While NeurIPS does not require releasing code, the conference does require all submis-596

sions to provide some reasonable avenue for reproducibility, which may depend on the597

nature of the contribution. For example598

(a) If the contribution is primarily a new algorithm, the paper should make it clear how599

to reproduce that algorithm.600

(b) If the contribution is primarily a new model architecture, the paper should describe601

the architecture clearly and fully.602

(c) If the contribution is a new model (e.g., a large language model), then there should603

either be a way to access this model for reproducing the results or a way to reproduce604

the model (e.g., with an open-source dataset or instructions for how to construct605

the dataset).606

(d) We recognize that reproducibility may be tricky in some cases, in which case607

authors are welcome to describe the particular way they provide for reproducibility.608

In the case of closed-source models, it may be that access to the model is limited in609

some way (e.g., to registered users), but it should be possible for other researchers610

to have some path to reproducing or verifying the results.611

5. Open access to data and code612

Question: Does the paper provide open access to the data and code, with sufficient instruc-613

tions to faithfully reproduce the main experimental results, as described in supplemental614

material?615

Answer: [No]616

Justification: The experiments in this paper are time-consuming, and we utilized a large617

number of machines to simultaneously conduct various parts of the experiments. Currently,618

we do not have a ready-to-use script for one-click deployment of the experiments (the time619

required to run on a single computer is unacceptable). In the future, we will open-source620

this work and provide the code to reproduce these experiments.621
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Guidelines:622

• The answer NA means that paper does not include experiments requiring code.623

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/624

public/guides/CodeSubmissionPolicy) for more details.625

• While we encourage the release of code and data, we understand that this might not be626

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not627

including code, unless this is central to the contribution (e.g., for a new open-source628

benchmark).629

• The instructions should contain the exact command and environment needed to run to630

reproduce the results. See the NeurIPS code and data submission guidelines (https:631

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.632

• The authors should provide instructions on data access and preparation, including how633

to access the raw data, preprocessed data, intermediate data, and generated data, etc.634

• The authors should provide scripts to reproduce all experimental results for the new635

proposed method and baselines. If only a subset of experiments are reproducible, they636

should state which ones are omitted from the script and why.637

• At submission time, to preserve anonymity, the authors should release anonymized638

versions (if applicable).639

• Providing as much information as possible in supplemental material (appended to the640

paper) is recommended, but including URLs to data and code is permitted.641

6. Experimental Setting/Details642

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-643

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the644

results?645

Answer: [Yes]646

Justification: As stated in the reproducibility statement, we have provided detailed informa-647

tion on the testbed, evaluation metrics, and experimental scenarios in Section 6. Additionally,648

specific experimental parameters and equipment are given in Section 7.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The experimental setting should be presented in the core of the paper to a level of detail652

that is necessary to appreciate the results and make sense of them.653

• The full details can be provided either with the code, in appendix, or as supplemental654

material.655

7. Experiment Statistical Significance656

Question: Does the paper report error bars suitably and correctly defined or other appropriate657

information about the statistical significance of the experiments?658

Answer: [No]659

Justification: Due to the long experimental time and limited sample size, error bars cannot660

be provided. In the first experiment (Figure 4), the baseline settings adopt fixed abstraction661

settings and have a large performance gap, so the performance of strategies solved by662

CSMCCFR is stable and not easily affected by random factors. In the second experiment663

(Figure 5), random factors may indeed affect individual experimental data. Therefore, we664

sampled the control group multiple times and drew the performance range, which is far665

lower than the performance of our algorithm under the worst parameters, which also proves666

the effectiveness of the algorithm.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The authors should answer "Yes" if the results are accompanied by error bars, confi-670

dence intervals, or statistical significance tests, at least for the experiments that support671

the main claims of the paper.672

• The factors of variability that the error bars are capturing should be clearly stated (for673

example, train/test split, initialization, random drawing of some parameter, or overall674

run with given experimental conditions).675

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,676

call to a library function, bootstrap, etc.)677

• The assumptions made should be given (e.g., Normally distributed errors).678

• It should be clear whether the error bar is the standard deviation or the standard error679

of the mean.680

• It is OK to report 1-sigma error bars, but one should state it. The authors should681

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis682

of Normality of errors is not verified.683

• For asymmetric distributions, the authors should be careful not to show in tables or684

figures symmetric error bars that would yield results that are out of range (e.g. negative685

error rates).686

• If error bars are reported in tables or plots, The authors should explain in the text how687

they were calculated and reference the corresponding figures or tables in the text.688

8. Experiments Compute Resources689

Question: For each experiment, does the paper provide sufficient information on the com-690

puter resources (type of compute workers, memory, time of execution) needed to reproduce691

the experiments?692

Answer: [Yes]693

Justification: We discuss the computational resources and time cost of the experiments in694

Sections 5, 7, and Appendix A.3.695

Guidelines:696

• The answer NA means that the paper does not include experiments.697

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,698

or cloud provider, including relevant memory and storage.699

• The paper should provide the amount of compute required for each of the individual700

experimental runs as well as estimate the total compute.701

• The paper should disclose whether the full research project required more compute702

than the experiments reported in the paper (e.g., preliminary or failed experiments that703

didn’t make it into the paper).704

9. Code Of Ethics705

Question: Does the research conducted in the paper conform, in every respect, with the706

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?707

Answer: [Yes]708

Justification: We carefully review the NeurIPS Code of Ethics and ensure that the research709

aligns with it in all aspects.710

Guidelines:711

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.712

• If the authors answer No, they should explain the special circumstances that require a713

deviation from the Code of Ethics.714

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-715

eration due to laws or regulations in their jurisdiction).716

10. Broader Impacts717

Question: Does the paper discuss both potential positive societal impacts and negative718

societal impacts of the work performed?719

Answer: [Yes]720

Justification: We discuss the impact of this work in Section 8. As noted, this work represents721

the SOTA in hand abstraction algorithms and could be used to create more powerful Texas722

Hold’em AI.723

Guidelines:724

• The answer NA means that there is no societal impact of the work performed.725
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• If the authors answer NA or No, they should explain why their work has no societal726

impact or why the paper does not address societal impact.727

• Examples of negative societal impacts include potential malicious or unintended uses728

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations729

(e.g., deployment of technologies that could make decisions that unfairly impact specific730

groups), privacy considerations, and security considerations.731

• The conference expects that many papers will be foundational research and not tied732

to particular applications, let alone deployments. However, if there is a direct path to733

any negative applications, the authors should point it out. For example, it is legitimate734

to point out that an improvement in the quality of generative models could be used to735

generate deepfakes for disinformation. On the other hand, it is not needed to point out736

that a generic algorithm for optimizing neural networks could enable people to train737

models that generate Deepfakes faster.738

• The authors should consider possible harms that could arise when the technology is739

being used as intended and functioning correctly, harms that could arise when the740

technology is being used as intended but gives incorrect results, and harms following741

from (intentional or unintentional) misuse of the technology.742

• If there are negative societal impacts, the authors could also discuss possible mitigation743

strategies (e.g., gated release of models, providing defenses in addition to attacks,744

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from745

feedback over time, improving the efficiency and accessibility of ML).746

11. Safeguards747

Question: Does the paper describe safeguards that have been put in place for responsible748

release of data or models that have a high risk for misuse (e.g., pretrained language models,749

image generators, or scraped datasets)?750

Answer: [NA]751

Justification: Our work focuses solely on introducing a more efficient algorithm for hand752

abstraction and does not involve the release of data or models.753

Guidelines:754

• The answer NA means that the paper poses no such risks.755

• Released models that have a high risk for misuse or dual-use should be released with756

necessary safeguards to allow for controlled use of the model, for example by requiring757

that users adhere to usage guidelines or restrictions to access the model or implementing758

safety filters.759

• Datasets that have been scraped from the Internet could pose safety risks. The authors760

should describe how they avoided releasing unsafe images.761

• We recognize that providing effective safeguards is challenging, and many papers do762

not require this, but we encourage authors to take this into account and make a best763

faith effort.764

12. Licenses for existing assets765

Question: Are the creators or original owners of assets (e.g., code, data, models), used in766

the paper, properly credited and are the license and terms of use explicitly mentioned and767

properly respected?768

Answer: [Yes]769

Justification: This paper provides comprehensive citations for all comparative methods770

involved, and all comparison experiments were re-implemented without using existing tools771

or code.772

Guidelines:773

• The answer NA means that the paper does not use existing assets.774

• The authors should cite the original paper that produced the code package or dataset.775

• The authors should state which version of the asset is used and, if possible, include a776

URL.777

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.778
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• For scraped data from a particular source (e.g., website), the copyright and terms of779

service of that source should be provided.780

• If assets are released, the license, copyright information, and terms of use in the781

package should be provided. For popular datasets, paperswithcode.com/datasets782

has curated licenses for some datasets. Their licensing guide can help determine the783

license of a dataset.784

• For existing datasets that are re-packaged, both the original license and the license of785

the derived asset (if it has changed) should be provided.786

• If this information is not available online, the authors are encouraged to reach out to787

the asset’s creators.788

13. New Assets789

Question: Are new assets introduced in the paper well documented and is the documentation790

provided alongside the assets?791

Answer: [NA]792

Justification: This paper does not release any new assets.793

Guidelines:794

• The answer NA means that the paper does not release new assets.795

• Researchers should communicate the details of the dataset/code/model as part of their796

submissions via structured templates. This includes details about training, license,797

limitations, etc.798

• The paper should discuss whether and how consent was obtained from people whose799

asset is used.800

• At submission time, remember to anonymize your assets (if applicable). You can either801

create an anonymized URL or include an anonymized zip file.802

14. Crowdsourcing and Research with Human Subjects803

Question: For crowdsourcing experiments and research with human subjects, does the paper804

include the full text of instructions given to participants and screenshots, if applicable, as805

well as details about compensation (if any)?806

Answer: [NA]807

Justification: This paper does not involve human subjects.808

Guidelines:809

• The answer NA means that the paper does not involve crowdsourcing nor research with810

human subjects.811

• Including this information in the supplemental material is fine, but if the main contribu-812

tion of the paper involves human subjects, then as much detail as possible should be813

included in the main paper.814

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,815

or other labor should be paid at least the minimum wage in the country of the data816

collector.817

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human818

Subjects819

Question: Does the paper describe potential risks incurred by study participants, whether820

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)821

approvals (or an equivalent approval/review based on the requirements of your country or822

institution) were obtained?823

Answer: [NA]824

Justification: This paper does not involve human subjects.825

Guidelines:826

• The answer NA means that the paper does not involve crowdsourcing nor research with827

human subjects.828
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• Depending on the country in which research is conducted, IRB approval (or equivalent)829

may be required for any human subjects research. If you obtained IRB approval, you830

should clearly state this in the paper.831

• We recognize that the procedures for this may vary significantly between institutions832

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the833

guidelines for their institution.834

• For initial submissions, do not include any information that would break anonymity (if835

applicable), such as the institution conducting the review.836
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