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ABSTRACT

Generative adversarial networks (GANs), trained on a large-scale image dataset,
can be a good approximator of the natural image manifold. GAN-inversion, using
a pre-trained generator as a deep generative prior, is a promising tool for im-
age restoration under corruptions. However, the performance of GAN-inversion
can be limited by a lack of robustness to unknown gross corruptions, i.e., the re-
stored image might easily deviate from the ground truth. In this paper, we propose
a Robust GAN-inversion (RGI) method with a provable robustness guarantee to
achieve image restoration under unknown gross corruptions, where a small frac-
tion of pixels are completely corrupted. Under mild assumptions, we show that
the restored image and the identified corrupted region mask converge asymptoti-
cally to the ground truth. Moreover, we extend RGI to Relaxed-RGI (R-RGI) for
generator fine-tuning to mitigate the gap between the GAN learned manifold and
the true image manifold while avoiding trivial overfitting to the corrupted input
image, which further improves the image restoration and corrupted region mask
identification performance. The proposed RGI/R-RGI method unifies two impor-
tant applications with state-of-the-art (SOTA) performance: (i) mask-free seman-
tic inpainting, where the corruptions are unknown missing regions, the restored
background can be used to restore the missing content. (ii) unsupervised pixel-
wise anomaly detection, where the corruptions are unknown anomalous regions,
the retrieved mask can be used as the anomalous region’s segmentation mask.

1 INTRODUCTION

When trained on large-scale natural image datasets, GAN (Goodfellow et al., 2020) is a good ap-
proximator of the underlying true image manifold. It captures rich knowledge of natural images and
can serve as an image prior. Recently, utilizing the learned prior through GANs shows impressive
results in various tasks, including the image restoration (Yeh et al., 2017; Pan et al., 2021; Gu et al.,
2020), unsupervised anomaly detection (Schlegl et al., 2017; Xia et al., 2022b) and so on. In those
applications, GAN learns a deep generative image prior (DGP) to approximate the underlying true
image manifold. Then, for any input image, GAN-inversion (Zhu et al., 2016) is used to search for
the nearest image on the learned manifold, i.e., recover the d-dimensional latent vector ẑ by

ẑ = arg min
z∈Rd

Lrec(x,G(z)), (1)

where G(·) is the pre-trained generator, x is the input image, and Lrec(·, ·) is the loss function mea-
suring the distance between x and the restored image x̂ = G(ẑ), such as l1, l2-norm distance and
perceptual loss (Johnson et al., 2016), or combinations thereof. However, this approach may fail
when x is grossly corrupted by unknown corruptions, i.e., a small fraction of pixels are completely
corrupted with unknown locations and magnitude. For example, in semantic image inpainting (Yeh
et al., 2017), where the corruptions are unknown missing regions, a pre-configured missing regions’
segmentation mask is needed to exclude the missing regions’ influence on the optimization proce-
dure. Otherwise, the restored image will easily deviate from the ground truth image (Figure 1).
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Figure 1: Inverting a corrupted test image in Stanford cars dataset
(Krause et al., 2013) (i) the GAN-inversion restored background can
significantly deviate from the ground truth; In contrast, the RGI
method achieves a robust background restoration under unknown
gross corruptions; (ii) due to the GAN approximation gap, the true
clean image may not live on the GAN learned image manifold; R-
RGI can further fine tune the learned manifold toward the true image
manifold.

For another example, in un-
supervised anomaly detec-
tion (Schlegl et al., 2017),
where the anomalies nat-
urally occur as unknown
gross corruptions and the
residual between the in-
put image and the re-
stored image is adopted
as the anomaly segmenta-
tion mask, i.e., x − G(ẑ),
such a deviation will de-
teriorate the segmentation
performance. However,
the assumption of know-
ing a pre-configured cor-
rupted region mask can be
strong (for semantic in-
painting) or even invalid
(for unsupervised anomaly
detection). Therefore, im-
proving the robustness of
GAN-inversion under un-
known gross corruptions is
important.

Another problem is the GAN approximation gap between the GAN learned image manifold and
the true image manifold, i.e., even without corruptions, the restored image x̂ from Equation 1 can
contain significant mismatches to the input image x. This limits the performance of GAN-based
methods for semantic inpainting and, especially for unsupervised anomaly detection since any mis-
match between the restored image and the input image will be counted towards the anomaly score.
When a segmentation mask of the corrupted region is known, such an approximation gap can be
mitigated by fine-tuning the generator (Pan et al., 2021). However, adopting such a technique under
unknown gross corruptions can trivially overfit the corrupted image and fail at restoration. There-
fore, mitigating GAN approximation gap under unknown gross corruptions is important.

To address these issues, we propose an RGI method and further generalize it to R-RGI. For any
corrupted input image, the proposed method can simultaneously restore the corresponding clean
image and extract the corrupted region mask. The main contributions of the proposed method are:

Methodologically, RGI improves the robustness of GAN-inversion in the presence of unknown
gross corruptions. We further prove that, under mild assumptions, (i) the RGI restored image (and
identified mask) asymptotically converges to the true clean image (and the true binary mask of the
corrupted region) (Theorems 1 and 2); (ii) in addition to asymptotic results, for a properly selected
tuning parameter, the true mask of the corrupted region is given by simply thresholding the RGI
identified mask (Theorem 2). (iii) Moreover, we generalize the RGI method to R-RGI for meaning-
ful generator fine-tuning to mitigate the approximation gap under unknown gross corruptions.

Practically (i) for mask-free semantic inpainting, where the corruptions are unknown missing re-
gions, the restored background can be used to restore the missing content; (ii) for unsupervised
pixel-wise anomaly detection, where the corruptions are unknown anomalous regions, the retrieved
mask can be used as the anomalous region’s segmentation mask. The RGI/R-RGI method unifies
these two important tasks and achieves SOTA performance in both tasks.

2 RELATED LITERATURE

GAN-inversion (Xia et al., 2022a) aims to project any given image to the latent space of a pre-
trained generator. The inverted latent code can be used for various downstream tasks, including
GAN-based image editing (Wang et al., 2022a), restoration (Pan et al., 2021), and so on. GAN-
inversion can be categorized into learning-based, optimization-based, and hybrid methods. The
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objective of the learning-based inversion method is to train an encoder network to map an image into
the latent space based on which the reconstructed image closely resembles the original. Despite its
fast inversion speed, learning-based inversion usually leads to poor reconstruction quality (Zhu et al.,
2020; Richardson et al., 2021; Creswell & Bharath, 2018). Optimization-based methods directly
solve a latent code that minimizes the reconstruction loss in Equation 1 through backpropagation
(which can be time-consuming), with superior image restoration quality. Hybrid methods balance
the trade-off between the aforementioned two methods (Xia et al., 2022a). There are also different
latent spaces to be projected on, such as the Z space applicable for inverting all GANs, mZ space
(Gu et al., 2020), W and W+ spaces for StyleGANs (Karras et al., 2019; Abdal et al., 2019; 2020)
and so on. All these methods do not have explicit robustness guarantees with respect to gross
corruptions 1. To improve the robustness of GAN-inversion, MimicGAN (Anirudh et al., 2018) uses
a surrogate network to mimic the unknown gross corruptions at the test time. However, this method
requires multiple test images with the same corruptions to learn a surrogate network. Here, we focus
on developing a robust GAN-inversion for optimization-based methods, projecting onto the most
commonly used Z space, with a provable robustness guarantee. The proposed method can be applied
to a single image with unknown gross corruptions, and has the potential to be applied to learning-
based as well as hybrid methods, even for different latent spaces, to increase their robustness.

As mentioned in the Introduction, DGP plays an important role in corrupted image restoration.
GAN-inversion is an effective way of exploiting the DGP captured by a GAN. Therefore, GAN-
inversion gains popularity in two important applications of corrupted image restoration: semantic
image inpainting and unsupervised anomaly detection. (Comprehensive reviews on semantic image
inpainting and unsupervised anomaly detection are provided in Appendix A.1 and A.2.)

Mask-free Semantic inpainting aims to restore the missing region of an input image with little or
no information on the missing region in both the training and testing stages. GAN-inversion for
semantic inpainting was first introduced by Yeh et al. (2017) and was further developed by Gu et al.
(2020); Pan et al. (2021); Wang et al. (2022b); El Helou & Süsstrunk (2022) for improving inpainting
quality. Current GAN-inversion based methods have the advantage of inpainting a single image
with arbitrary missing regions, without any requirement for missing region mask information in the
training stage. However, they do require a pre-configured missing region mask for reliable inpainting
of a corrupted test image. Otherwise, the restored image can deviate from the true image. Moreover,
the pre-configured corrupted region mask is also the key in mitigating the GAN approximation
gap (Pan et al., 2021) through generator fine-tuning. Such a pre-configured corrupted region mask
requirement hinders the application of GAN-inversion in mask-free semantic inpainting.

Unsupervised pixel-wise anomaly detection aims to extract a pixel-level segmentation mask for
anomalous regions, which plays an important role in industrial cosmetic defect inspection and med-
ical applications (Yan et al., 2017; Baur et al., 2021). Unsupervised pixel-wise anomaly detection
extracts the anomalous region segmentation mask through a pixel-wise comparison of the input im-
age and corresponding normal background, which requires a high-quality background reconstruction
based on the input image (Cui et al., 2022). GANs have the advantage of generating realistic images
from the learned manifold with sharp and clear detail, which makes GAN-inversion a promising tool
for background reconstruction in pixel-wise anomaly detection. GAN-inversion for unsupervised
anomaly detection (Xia et al., 2022b) was first introduced by (Schlegl et al., 2017) and various fol-
lowup works have been proposed (Zenati et al., 2018; Schlegl et al., 2019; Baur et al., 2018; Kimura
et al., 2020; Akcay et al., 2018). Counter-intuitively, instead of pixel-wise anomaly detection, the
applications of GAN-based anomaly detection methods mainly focus on image-level/localization
level (Xia et al., 2022a) with less satisfactory performance. For example, as one of the benchmark
methods on the MVTec dataset (Bergmann et al., 2019), AnoGAN (Schlegl et al., 2017) performs
the worst on image segmentation (even localization) compared to vanilla AE, not to mention the
state-of-the-art methods (Yu et al., 2021; Roth et al., 2022). This is due to two intrinsic issues of
GAN-inversion under unknown gross corruptions: (i) Lack of robustness: due to the existence of
the anomalous region, the reconstructed normal background can easily deviate from the ground truth
background (Figure 1); (ii) Gap between the approximated and actual manifolds (Pan et al., 2021):
even for a clean input image, it is difficult to identify a latent representation that can achieve perfect
reconstruction. When the residual is used for pixel-wise anomaly detection, those two issues will
easily deteriorate its performance.

1Note that the “robustness to defects” mentioned in (Abdal et al., 2019) means that the image together with
the defects can be faithfully restored in the latent space, instead of restoring a defect-free image
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3 ROBUST GAN-INVERSION

In this section, we first give a problem overview. Then, we present the RGI method with a theoretical
justification of its asymptotic robustness properties. A simulation study is conducted to verify the
robustness. Next, we generalize the proposed method to R-RGI to mitigate the GAN approximation
gap. Finally, we give a discussion that connects the proposed method with existing methods.

Overview. Given a pre-trained GAN network on a large-scale clean image dataset, such that the
generator learns the image manifold. For any input image from the same manifold with unknown
gross corruptions, we aim to restore a clean image and a corrupted region mask (Figure 2).

Figure 2: RGI/R-RGI for mask semantic inpainting and unsupervised anomaly detection: Given a
pre-trained GAN network on a large-scale clean image dataset, such that the generator learns the
image manifold. For any input image from the same manifold with unknown gross corruptions, the
proposed RGI/R-RGI can restore a clean image G(x) and and identify the corrupted region mask
M by solving the optimization problems thereof. Therefore, we unifies two important applications:
(i) mask-free semantic inpainting; and (ii) unsupervised pixel-wise anomaly detection

Notation. Before we introduce the RGI method, we first introduce the following notations: For
any positive integer k, we use [k] to denote the set {1, 2, . . . , k}; For any index set Λ ⊆ [m] × [n],
we use |Λ| to denote the cardinality of Λ; For any matrix T , the l-norm ∥T∥l (e.g. ∥T∥1, ∥T∥∞) is
calculated by treating T as a vector, and we use IT to denote the non-zero mask of T , i.e. (IT )ij = 0
if Tij = 0 and 1 otherwise; For any two sets A and B, we use dHl (A,B) := supa∈A infb∈B ∥a −
b∥l to denote the one-sided l-norm Hausdorff distance between A and B, noting that when A is
a singleton, it becomes the standard l-norm distance dl(a,B) := infb∈B ∥a − b∥l; For any two
matrices A and B, we use ⊙ to denote element-wise product, i.e., (A⊙B)ij = AijBij .

3.1 ROBUST GAN-INVERSION

Assume that the GAN learns an accurate image manifold, i.e., there is no approximation gap between
the GAN learned image manifold and true image manifold, such that any input image x ∈ Rm×n

with gross corruptions s∗ ∈ Rm×n follows: x = G(z∗) + s∗, where z∗ ∈ Rd is the true latent
code and G(·) is a pre-trained generator, i.e., G(·) : Rd → Rm×n. Further, assume that s∗ admits
sparsity property, i.e., ∥s∗∥0 ≤ n0, where n0 is the number of corrupted pixels. Given x, we aim to
restore G(z∗) (or z∗), and consequently, achieve (i) semantic image inpainting, i.e., G(z∗), or (ii)
pixel-wise anomaly detection, i.e., M∗ = Ix−G(z∗). To achieve so, we propose to learn the latent
representation z and the corrupted region mask M at the same time, i.e.,

min
z∈Rd,M∈Rm×n

Lrec((1−M)⊙ x, (1−M)⊙G(z)) s.t. ∥M∥0 ≤ n0. (2)
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The reconstruction loss term Lrec(·, ·) measures the distance between the input image and the gen-
erated one outside the corrupted region, which guides the optimization process to find the latent
variable z. Intuitively, when solving for the mask along with the latent variable, we aim to allocate
the n0 mask elements such that reconstruction loss is minimized. It is easy to check that the true
solution G(z∗) and M∗ is optimal. Moreover, if we assume that z∗ is the only latent code such that
∥x−G(z∗)∥0 ≤ n0, then we have uniqueness.

However, Equation 2 with ∥ · ∥0 is hard to solve. To address this issue, we relax Equation 2 to an
unconstrained optimization problem that can be solved directly using gradient decent algorithms:

min
z∈Rd,M∈Rm×n

Lrec((1−M)⊙ x, (1−M)⊙G(z)) + λ∥M∥1. (3)

Equation 3 is named RGI, where the second term penalizes the mask size to avoid a trivial solution
with the mask expanding to the whole image. Intuitively, the second term encourages a small mask;
however, the reconstruction loss will increase sharply once the learned mask cannot cover the cor-
rupted region. By carefully selecting the tuning parameter λ, we will arrive at a solution with (i) a
high-quality image restoration with negligible reconstruction error; (ii) an accurate mask that covers
the corrupted region. The following two theorems justify our intuition.

Theorem 1 (Asymptotic optimality of z) Assume (i) GAN learns an accurate image manifold, i.e.,
there exists z∗ such that ∥x−G(z∗)∥0 ≤ n0; (ii) z is bounded for both Equation 2 and Equation 3,
or equivalently there exists R > 0 such that ∥z∥1 ≤ R, i.e., z ∈ Sd with Sd := [−R,R]d; (iii)
Lrec(·) = ∥ · ∥22; and (iv) G(z) is continuous. Let ẑ(λ) be any optimal z solution of Equation 3 with
tuning parameter λ, and Z∗ be the optimal z solution set of Equation 2, we have d∞(ẑ(λ),Z∗) ↓ 0

as λ ↓ 0. Moreover, denote ñ = minz∈Sd ∥x−G(z)∥0 and Z̃ = {z ∈ Sd | ∥x−G(z)∥0 = ñ}, we
have d∞(ẑ(λ), Z̃) ↓ 0 as λ ↓ 0. If we further assume a unique z∗ = argminz∈Sd ∥x−G(z)∥0, i.e.,
Z̃ = {z∗}, then ẑ(λ) → z∗ as λ ↓ 0.

Note that Assumption (ii) is only for the proof purpose. We could always choose a large enough R to
include all possible optimal solutions so that the optimality of Equation 2 and Equation 3 remains.
Remark: Theorem 1 states that the optimal z solution of the RGI method, G(ẑ), converges to
the true background G(z∗) as λ ↓ 0, regardless of the corruption magnitude, which proves the
robustness of the RGI method to unknown gross corruptions, and is the key to image restoration.

Theorem 2 (Asymptotic optimality of M ) Follow the same assumptions and notations in Theo-
rem 1. Let M̂(λ) be any optimal M solution of (3), and M̃ := {I(x−G(z̃))|z̃ ∈ Z̃} ⊆ {M ∈
{0, 1}m×n|∥M∥0 ≤ ñ}. We have d∞(M̂(λ),M̃) ↓ 0 as λ ↓ 0. Moreover, there is a finite λ̃ > 0

such that for any λ ≤ λ̃, there is an M̃ ∈ M̃ such that M̃ = IM̂(λ). If we further assume Z̃ = {z∗},

then (i) M̂(λ) → M∗ as λ ↓ 0, and (ii) for any λ ≤ λ̃, IM̂(λ) = M∗.

Remark: Theorem 2 states that the optimal M solution of the RGI method, M̂ , converges to the
true corrupted region mask M∗ as λ ↓ 0, regardless of the corruption magnitude. Moreover, there is
a fixed λ̃, if we choose a tuning parameter λ ≤ λ̃, the true corrupted regions mask can be identified
by simply thresholding the M̂ , i.e., M∗ = IM̂(λ), which is the key for pixel-wise anomaly detec-
tion. The proof of Theorems 1 and 2 are provided in Appendix B. A simulation study to verify the
robustness of proposed RGI method is provided in Appendix C.

3.2 RELAXED ROBUST GAN-INVERSION

In traditional GAN-inversion methods (Yeh et al., 2017; Pan et al., 2021), without mask informa-
tion, fine-tuning the generator parameters will lead to severe overfitting towards the input image.
However, fine-tuning is the key step to mitigate the gap between the learned image manifold and
any specific input image (Pan et al., 2021). The proposed approach makes fine-tuning possible, i.e.,

min
z∈Rd,M∈Rm×n,θ∈Rw

Lrec((1−M)⊙ x, (1−M)⊙G(z; θ)) + λ∥M∥1. (4)

Equation 4 is named R-RGI. This problem can also be solved directly using gradient decent types
of algorithm with carefully designed parameters for learning parameter θ. We found the following
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strategy gives better performance: at the beginning of the solution process, we fix θ. When we get
a stable reconstructed image as well as the mask, then we optimize θ together with all the other
decision variables with a small step size for limited iterations.

In this section, we address the robustness of GAN-inversion methods and show the asymptotic opti-
mality of the RGI method. Moreover, the R-RGI enables fine-tuning of the learned manifold towards
a specific image for better restoration quality and thus improves the performance of both tasks.

3.3 DISCUSSIONS

Connection to robust machine learning methods. The RGI method roots in robust learning meth-
ods (Caramanis et al., 2012; Gabrel et al., 2014), which aims to restore a clean signal (or achieve
robust parameter estimation) in the presence of corrupted input data. Robust machine learning meth-
ods, including robust dimensionality reduction (Candès et al., 2011; Xu et al., 2010; Peng et al.,
2012), matrix completion (Candès & Recht, 2009; Jain et al., 2013), use statistical priors to model
the signal to be restored, such as low rank, total variation, etc. Those statistical priors limit its appli-
cations involving complex natural images, e.g., the restoration of corrupted human face images.

Similarly, we also aim for signal restoration from a corrupted input signal, but with two key differ-
ences: (i) instead of the restrictive statistical priors, we adopt a learned deep generative prior (Pan
et al., 2021), i.e., G(z), which plays a key role in modeling complex natural images. (ii) instead of
recovering the corruptions, we learn a sparse binary mask M that covers the corrupted region, which
is much easier than learning corruptions itself. The RGI method significantly extends the traditional
robust machine learning methods to a wider range of applications.

Connection to robust statistics. The proposed method also has a deep connection with
traditional robust statistics (Huber, 2011): when adopting an l2-norm reconstruction loss,
the loss function of Equation 3 can be simplified as

∑
ij fij(z;λ) where fij(z;λ) ={

(x−G(z))2ij , if 2(x−G(z))2ij < λ

λ− λ2

4(x−G(z))2ij
, otherwise (Equation 6 in the proof of Theorem 1), which shares

a similar spirit as M -estimators, e.g., metric Winsorizing and Tukey’s biweight, thus inherits the
robustness with respect to outliers. Moreover, Equation 3 allows a flexible way of incorporating
robustness to reconstruction loss functions beyond convex formulations, such as the perceptual loss
and discriminator loss (Pan et al., 2021).

4 CASE STUDY

4.1 MASK-FREE SEMANTIC INPAINTING

Semantic inpainting is an important task in image editing and restoration. (Please see Appendix
A.1 for a comprehensive literature review on this topic.) Among all the methods, GAN-inversion
based methods have the advantage of inpainting a single image with arbitrary missing regions with-
out any requirement for mask information in the training stage. However, the requirement of a
pre-configured corrupted region mask during testing hinders its application in mask-free semantic
inpainting. In this section, we aim to show that the RGI method can achieve mask-free seman-
tic inpainting by inheriting the mask-free training nature of GAN-inversion based methods, while
avoiding the pre-configured mask requirement during testing. Therefore, we will compare with the
state-of-the-art GAN-inversion based image inpainting methods that projecting onto the Z space,
including (a) Yeh et al. (2017) without a pre-configured mask (Yeh et al. (2017) w/o mask) baseline;
(b) Yeh et al. (2017) with a pre-configured mask ((Yeh et al., 2017) w/ mask); and (c) Pan et al.
(2021) with a pre-configured mask (Pan et al. (2021) w/ mask).

Datasets and metrics. We evaluate the proposed methods on three datasets, the CelebA (Liu et al.,
2015), Stanford car (Krause et al., 2013), and LSUN bedroom (Yu et al., 2015), which are commonly
used for benchmarking image editing algorithms. We consider two different cases: (i) central block
missing, (ii) random missing and (iii) irregular shape missing (see Appendix I). We fill in the missing
entry with pixels from N(−1, 1). PSNR and SSIM are used for performance evaluation. Please see
Appendix D for implementation details.
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Table 1: Semantic inpainting performance of Yeh et al. (2017) (w/ and w/o mask), Pan et al. (2021)
(w/ mask), RGI and R-RGI

Datasets Cases metrics methods
Yeh et al.
w/o mask

Yeh et al.
w/ mask RGI Pan et al.

w/ mask R-RGI

CelebA
Case (i) PSNR ↑ 11.50 20.82 19.70 21.74 20.05

SSIM ↑ 0.358 0.492 0.451 0.570 0.509

Case (ii) PSNR ↑ 19.64 22.63 21.52 27.63 23.73
SSIM ↑ 0.440 0.536 0.490 0.766 0.655

Cars
Case (i) PSNR ↑ 16.57 17.50 16.89 20.98 19.31

SSIM ↑ 0.359 0.377 0.363 0.636 0.618

Case (ii) PSNR ↑ 17.36 17.71 17.52 21.61 21.18
SSIM ↑ 0.361 0.382 0.363 0.650 0.588

LSUN
bedroom

Case (i) PSNR ↑ 16.15 19.27 17.67 21.36 18.72
SSIM ↑ 0.405 0.428 0.416 0.587 0.567

Case (ii) PSNR ↑ 19.26 19.66 19.72 22.30 22.29
SSIM ↑ 0.419 0.433 0.420 0.599 0.557

Comparison Results. The PSNR and SSIM of image restoration are shown in Table 1. We can
observe that (i) the RGI outperforms the Yeh et al. (2017) w/o mask baseline, and achieves a com-
parable performance with Yeh et al. (2017) w/ mask – the best possible result without fine-tuning
the generator. However, there is no pre-configured mask requirement in the RGI method, which
demonstrates RGI’s robustness to unknown gross corruptions. Such performance improvement is
significant, especially on CelebA dataset, where GAN learns a high quality face manifold (high
SSIM/PSNR value in Yeh et al. (2017) w/ mask). (ii) the R-RGI further improves the image restora-
tion performance with fine-tuning the generator, which achieves a comparable performance with the
(Pan et al., 2021) w/ mask – the best possible result with fine-tuning the generator. Such perfor-
mance improvement is significant, especially on Stanford cars and LSUN bedroom datasets, where
even the performance of Yeh et al. (2017) w/ mask is limited, indicating a large GAN approximation
gap. As shown in Figure 3, the mask-free generator fine-tuning by R-RGI guarantees a high-quality
image restoration. More qualitative results are in Appendix D.

Figure 3: Case (i): Restored images on Cars (Krause et al., 2013) and LSUN (Yu et al., 2015).

4.2 UNSUPERVISED PIXEL-WISE ANOMALY DETECTION

Unsupervised pixel-wise anomaly detection is becoming important in product cosmetic inspection.
The extracted pixel-wise accurate defective region masks are then used for various downstream
tasks, including aiding pixel-wise annotation, providing precise defect specifications (i.e. diameter,
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area) for product surface quality screening, and so on, which cannot be achieved by current sample
level/localization level algorithms. The RGI/R-RGI method is developed for such an unsupervised
fine-grained surface quality inspection task in a data-rich but defect/annotation-rare environment,
which is common for mass production such as consumer electronics, steel manufacturing, and so
on. In those applications, it is cheap to collect a large number of defect-free product images, while
expensive and time-consuming to collect and annotate defective samples due to the super-high yield
rate and expert annotation requirements.

There are three categories of unsupervised pixel-wise anomaly detection methods, including robust
optimization based methods, deep reconstruction based methods (including GAN-inversion based
methods), and deep representation based methods (Cui et al., 2022) (Please see Appendix A.2 for
a comprehensive literature review). In addition to the AnoGAN (Schlegl et al., 2017) baseline, we
will compare with the SOTA method in each category, including the RASL (Peng et al., 2012), the
SOTA method in robust optimization method, which improves the RPCA (Candès et al., 2011) to
solve the linear misalignment issue; DRAEM (Zavrtanik et al., 2021) which is the SOTA method in
deep-reconstruction based methods; and PatchCore (Roth et al., 2022), a representative deep repre-
sentation based method that performs the best on the MVTec (Bergmann et al., 2019) dataset. We
aim to show that with a simple robustness modification, the RGI/R-RGI will significantly improve
the baseline AnoGAN’s performance and outperform the SOTA. We use a PGGAN (Karras et al.,
2017) as the backbone network and a l2 norm reconstruction loss term (Lrec). For AnoGAN, the
pixel-wise reconstruction residual |x̂−x| is used as the defective region indicator. We apply a simple
thresholding of the residual and report the Dice coefficient of the best performing threshold.

Datasets. We notice that the popular benchmark datasets, including MVTec AD (Bergmann et al.,
2019) and BTAD (Mishra et al., 2021) for industrial anomaly detection, are not suitable for this task
due to the following reasons: (i) the annotation of those datasets tends to cover extra regions of the
real anomaly contour, which favors localization level methods. (ii) The number of clean images
in most of the categories is small (usually 200 ∼ 300 images), which may not be sufficient for
GAN training. A detailed discussion of the MVTec dataset can be found in Appendix E. To gain
a better control of the defect annotation and better reflect the data-rich but defect/annotation-rare
application scenario, we generate a synthetic defect dataset based on Product03 from the BTAD
(Mishra et al., 2021) dataset. The synthetic dataset contains 900 defect-free images for training and
4 types of defects for testing, including crack, scratch, irregular, and mixed large (100 images in
each category). Qualitative and quantitative comparisons with SOTA methods will be conducted on
this dataset. The synthetic defect generation process are provided in Appendix F.

Metrics. We use the Dice coefficient to evaluate the pixel-wise anomaly detection performance,
which is widely adopted for image segmentation tasks. Dice coefficient is defined as (2∥M̂ ⊙
M∥0)/(∥M̂∥0 + ∥M∥0), where M̂ ∈ Rm×n is the predicted binary segmentation mask for the
anormalous region and M ∈ Rm×n is the true binary segmentation mask with 1 indicating the
defective pixels and 0 otherwise. Notice that pixel-wise AUROC score (Bergmann et al., 2019) is
sensitive to class imbalance, which may give misleading results in defective region segmentation
tasks when the defective region only covers a small portion of pixels in the whole image (This is
often the case in industrial cosmetic inspection or medical applications (Baur et al., 2021; Mou et al.,
2022; Zavrtanik et al., 2021). We mainly compare the Dice coefficients for different methods.

Compare with the AnoGAN baseline on on synthetic defect dataset. The results are shown in
Table 2 and Figure 4 (a). (i) Compared to AnoGAN(Schlegl et al., 2017), the only modification
in the RGI method is the additional sparsity penalty term of the anomalous region mask M to en-
hance its robustness. However, with such a simple modification, RGI significantly outperforms the
AnoGAN’s performance under large defects (‘mix large’), where the large anomalous region can
easily lead to a deviation between the AnoGAN restored image and the real background. (ii) The
R-RGI achieves a significant and consistent performance improvement over the RGI and AnoGAN
methods. The generator fine-tuning process closes the gap between the GAN learned normal back-
ground manifold and the specific test image, which leads to better background restoration and mask
refinement. The implementation details and more qualitative results can be found in Appendix G.

Compare with the SOTA methods on on synthetic defect dataset. The results are shown in Table
2 and Figure 4 (b). R-RGI method performs the best in all defect types. The limited modeling
capability of the low-rank prior used in RASL (Peng et al., 2012) leads to its bad performance; As a
localization level method, PatchCore (Roth et al., 2022) can successfully localize the defect (Figure
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Figure 4: Performance comparison among different methods.

Table 2: Pixel-wise anomaly detection performance on synthetic defect dataset

methods metrics Defects
crack irregular scratch mixed large

RASL Dice ↑ 0.293 (0.101) 0.246 (0.181) 0.280 (0.167) 0.355 (0.100)
AUROC ↑ 0.868 (0.044) 0.817 (0.061) 0.834 (0.079) 0.784 (0.066)

PatchCore Dice ↑ 0.277 (0.157) 0.448 (0.167) 0.350 (0.103) 0.683 (0.138)
AUROC ↑ 0.936 (0.040) 0.973 (0.036) 0.966 (0.033) 0.972 (0.029)

AnoGAN Dice ↑ 0.457 (0.117) 0.422 (0.208) 0.436 (0.212) 0.540 (0.131)
AUROC ↑ 0.954 (0.021) 0.956 (0.030) 0.947 (0.030) 0.949 (0.023)

RGI Dice ↑ 0.458 (0.119) 0.420 (0.194) 0.430 (0.192) 0.617 (0.110)
AUROC ↑ 0.951 (0.021) 0.952 (0.027) 0.944 (0.029) 0.949 (0.022)

DRAEM Dice ↑ 0.473 (0.212) 0.697 (0.152) 0.639 (0.169) 0.825 (0.108)
AUROC ↑ 0.951 (0.035) 0.988 (0.013) 0.982 (0.017) 0.989 (0.195)

R-RGI Dice ↑ 0.809 (0.109) 0.758 (0.135) 0.745 (0.167) 0.810 (0.064)
AUROC ↑ 0.977 (0.037) 0.988(0.015) 0.980 (0.020) 0.968 (0.015)

(Roth et al., 2022)). However, the loss of resolution deteriorates its pixel-level anomaly detection
performance; The DRAEM (Zavrtanik et al., 2021) jointly trains a reconstructive sub-network and a
discriminative sub-network with additional simulated anomaly samples on top of the clean training
images. Its performance highly relies on the coverage of the simulated anomaly samples and is more
sensitive to large anomalies. More importantly, by incorporating the so-called mask free fine-tuning,
the R-RGI method successfully improves the baseline AnoGAN method’s performance over those
SOTA methods on this task. More qualitative results can be found in Appendix G.

5 CONCLUSION

Robustness has been a long pursuit in the field of signal processing. Recently, utilizing GAN-
inversion for signal restoration gains popularity in various signal processing applications, since it
demonstrates strong capacity in modeling the distribution of complex signals such as natural images.
However, there is no robustness guarantee in the current GAN-inversion method.

To improve the robustness and accuracy of GAN-inversion in the presence of unknown gross corrup-
tions, we propose an RGI method. Furthermore, we prove the asymptotic robustness of the proposed
method, i.e., (i) the restored signal from RGI converges to the true clean signal (for image restora-
tion); (ii) the identified mask converges to the true corrupted region mask (for anomaly detection).
Moreover, we generalize RGI method to R-RGI method to close the GAN approximation gap, which
further improves the image restoration and unsupervised anomaly detection performance.

The RGI/R-RGI method unifies two important tasks under the same framework and achieves SOTA
performance: (i) Mask-free semantic inpainting, and (ii) Unsupervised pixel-wise anomaly detec-
tion.

9



Published as a conference paper at ICLR 2023

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4432–4441, 2019.

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded
images? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8296–8305, 2020.
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Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International conference on information processing in medical imaging, pp. 146–
157. Springer, 2017.
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A COMPREHENSIVE LITERATURE REVIEW

This section provides comprehensive literature reviews of mask-free semantic inpainting and unsu-
pervised pixel-wise anomaly detection, including but not limited to GAN-inversion based methods.

A.1 COMPREHENSIVE LITERATURE REVIEW FOR MASK-FREE SEMANTIC INPAINTING

Mask-free Semantic inpainting aims to restore the corrupted region of an input image with little or
no information on the corruptions. To achieve this goal, multiple traditional single image semantic
inpainting methods exploit fixed image priors, including total variation (Afonso et al., 2010; Shen
& Chan, 2002), low rank (Hu et al., 2012), patch off set statistics (He & Sun, 2012) and so on.
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However, due to the fixed image prior, those method have strong assumptions on the input image,
such as smoothness, containing similar structure or patches, which may fail when dealing with large
missing regions with novel content, i.e., recovering the nose or mouth in facial images (Yeh et al.,
2017).

Notice that various convolutional neural network based methods for semantic inpainting has been
proposed (Pathak et al., 2016; Iizuka et al., 2017; Li et al., 2017; Yu et al., 2018; Liu et al., 2018;
Yu et al., 2019; Li et al., 2020; Suvorov et al., 2022; Song et al., 2018; Yan et al., 2018; Liu et al.,
2019a;b; Nazeri et al., 2019; Ren et al., 2019; Xiong et al., 2019; Zeng et al., 2019; 2020; Zhao et al.,
2021; Zhu et al., 2021). In addition to the requirement of a pre-configured mask for inpainting an
input image, they usually need mask information in the training stage, either the same fixed mask
as the region to be inpainted (Pathak et al., 2016), or trying to cover irregular missing regions by
randomly sampling a rectangular mask with random location (Yang et al., 2017), or a fixed set of
irregular masks (Liu et al., 2018) or generating masks following a set of rules (Yu et al., 2019; Zhao
et al., 2021). Those methods cannot fulfill the mask-free semantic inpainting goal.

Another closely related field is named blind image inpainting, which aims to inpaint a single cor-
rupted image without the need for the corrupted regions mask (Liu et al., 2019b; Wang et al., 2020;
Qian et al., 2018; Wu et al., 2019; El Helou & Süsstrunk, 2022). However, most of them need
a training set of possible corruptions (and/or corrupted region masks), which again restricts their
ability to generalize to unknown gross corruptions. Thus, they are not mask-free methods.

GAN-inversion for semantic inpainting was first introduced by Yeh et al. (2017) and was further de-
veloped by Gu et al. (2020); Pan et al. (2021); Wang et al. (2022b) for improving inpainting quality.
They have the advantage of inpainting a single image with arbitrary missing regions, without any
requirement for mask information in the training stage. However, they do require a pre-configured
corrupted region mask for reliable inpainting during testing.

The RGI method inherits the mask-free training nature of GAN-inversion based semantic inpainting
methods, while avoiding the pre-configured mask requirement during testing. Thus, we can achieve
mask-free semantic inpainting for a single test image with arbitrary gross corruptions.

A.2 COMPREHENSIVE LITERATURE REVIEW FOR UNSUPERVISED PIXEL-WISE ANOMALY
DETECTION

Unsupervised pixel-wise anomaly detection aims to extract a pixel-level segmentation mask for
anomalous regions, which plays an important role in industrial and medical applications (Yan et al.,
2017; Baur et al., 2021). Unlike image-level (identify anomalous samples) or localization level
(i.e., localize anomaly) anomaly detection, unsupervised pixel-wise anomaly detection extracts the
anomalous region segmentation mask through a pixel-wise comparison of the input image and corre-
sponding normal background. Therefore, it requires a high-quality background reconstruction based
on the input image. To achieve this goal, robust optimization methods rely on the statistical prior
knowledge of the background (such as low-rank (Bouwmans & Zahzah, 2014) and smoothness (Yan
et al., 2017)), which is effective when the true background satisfies those assumptions. However,
such assumptions can be restrictive and highly dependent on the properties of background image for
specific applications. In contrast, the deep reconstruction based methods (Pang et al., 2021) methods
reconstruct the normal background from a learned subspace and assume such a subspace does not
generalize to anomalies. Autoencoder (AE) (Bergmann et al., 2018), variational AE (VAE) (Kingma
& Welling, 2013) and its variants (please see the review paper (Baur et al., 2021)) are popular tools.
However, such assumptions may not always hold, i.e., an AE that achieves a satisfactory reconstruc-
tion of normal regions of the input image also “generalize” so well that it can always reconstruct
the abnormal inputs as well (Gong et al., 2019). Some solutions, such as MemAE (Gong et al.,
2019) and PAEDID (Mou et al., 2022) restrict this generation capability by reconstructing the back-
ground from a memory bank of clean training images, DRAEM Zavrtanik et al. (2021) restrict this
generation capability by integrating an discriminated network. Another category of unsupervised
approaches are deep representation-based methods, which learns the discriminate embeddings of
normal images from a clean training set and achieve anomaly detection by comparing the embed-
ding of a test image and the distribution of the normal image embeddings, such as PatchCore(Roth
et al., 2022), Padim (Defard et al., 2021), Cflow (Gudovskiy et al., 2022) STFPM (Wang et al.,
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2021). Those methods usually serves as localization tools since the comparison in the embedded
space will lead to the loss of resolution.

Recently GAN-based anomaly detection methods have gained popularity in reconstruction based
methods (Xia et al., 2022b). GANs have the advantage of generating realistic images from the
learned manifold with sharp and clear detail, regardless of image type (Pang et al., 2021), which
make GAN a promising tool for background reconstruction for pixel-wise anomaly detection. In-
spired by this idea, Schlegl et al. (2017) borrowed the GAN-inversion for unsupervised anomaly
detectionand various followup works has been proposed, including EBGAN (Zenati et al., 2018), f-
AnoGAN (Schlegl et al., 2019) and GANomaly (Akcay et al., 2018), which mainly focus on improv-
ing inference speed. Counterintuitively, instead of pixel-wise anomaly detection, the applications of
GAN-based anomaly detection methods mainly focus on image-level/localization level (Xia et al.,
2022a) with a less satisfactory performance. For example, as one of the benchmark methods on the
MVTec dataset (Bergmann et al., 2019), AnoGAN (Schlegl et al., 2017) performs the worst on im-
age segmentation (even localization) compared to vanilla AE, not to say the state-of-the-art methods
(Yu et al., 2021; Roth et al., 2022). This is due to the intrinsic issues of GAN-inversion: (i) Lack
of robustness: due to the existence of the anomalous region, the reconstructed normal background
can easily deviate from the ground truth background (Figure 1); (ii) Gap between the approximated
and actual manifolds (Pan et al., 2021): even for a clean input image, it is difficult to identify a la-
tent representation that can achieve perfect reconstruction. When the residual is used for pixel-wise
anomaly detection, those issues will easily deteriorate its performance.

We aim to demonstrate the performance improvement of GAN-based anomaly detection method
by RGI, which makes the GAN-inversion-based methods practical in pixel-wise anomaly detection
tasks.

B PROOF TO THEOREMS 1 AND 2

B.1 PROOF TO THEOREMS 1

Under the assumption, there exists z∗ such that ∥x−G(z)∥0 ≤ n0. Thus (z∗,M∗) solves Equation 2
to its optimal value of 0.

Denote Z∗∗ = {z ∈ Sd | ∥x−G(z)∥ ≤ n0}. Note that for any z ∈ Z∗∗, we could set M = Ix−G(z)

with ∥M∥0 ≤ n0 and then (z,M) also solves Equation 2 to its optimal value of 0. On the other
hand, for any z /∈ Z∗∗, i.e., ∥x − G(z)∥0 ≥ n0 + 1, ∥(1 − M) ⊙ (x − G(z))∥22 > 0 unless
∥M∥ ≥ ∥x − G(z)∥0 ≥ n0 + 1, which renders such M is infeasible. Thus, we conclude that
Z∗∗ = Z∗.

The same optimality arguments apply to every z̃ ∈ Z̃ as Z̃ ⊆ Z∗. We next prove that Equation 3
asymptotically converges to Z̃ , which will complete the proof.

Denote f(z,M ;λ) := ∥(1 −M) ⊙ (x − G(z))∥22 + λ∥M∥1 the objective function of Equation 3.
Select any z̃ ∈ Z̃ and let M̃ = Ix−G(z̃), and we note that f(z̃, M̃ ;λ) = λñ.

Now consider for any given z, we could next calculate M̂(z) which minimizes f(z, M̂ ;λ). Note
that

f(z,M ;λ) =
∑
i,j

((1−Mij)(x−G(z))2ij + λ|Mij |) :=
∑
i,j

fij(z,Mij ;λ)

with
∂f

∂Mij
=

∂fij
∂Mij

= 2(x−G(z))2ij(Mij − 1) + λ∂|Mij |,

where ∂|Mij | is the partial differential of |Mij |.

It is clear that ∂fij
∂Mij

< 0 for Mij < 0 and ∂fij
∂Mij

> 1 for Mij > 1, and thus the optimal M̂ij ∈ [0, 1].
Within the interval (0, 1), we in addition have

∂fij
∂Mij

= 2(x−G(z))2ij(Mij − 1) + λ, (5)
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and ∂fij
∂Mij

= 0 solves to

M̂∗
ij = 1− λ

2(x−G(z))2ij
.

Discussion:

• If 2(x − G(z))2ij ≥ λ: ∂fij
∂Mij

< 0 for Mij ∈ (0, M̂∗
ij) and ∂fij

∂Mij
> 0 for Mij ∈ (M̂∗

ij , 1],

proving the optimality of M̂ij = M̂∗
ij .

• If 2(x−G(z))2ij < λ: ∂fij
∂Mij

> 0, for Mij ∈ (0, 1), thus pointing to the optimal M̂ij = 0.

Combining those two cases, introduce (·)+ := max{·, 0} and we have

M̂ij =

(
1− λ

2(x−G(z))2ij

)
+

.

We now take the optimal M̂ back to f and get

fij(z, M̂ ;λ) =

{
(x−G(z))2ij , if 2(x−G(z))2ij < λ,

λ− λ2

4(x−G(z))2ij
, otherwise. (6)

Define
µ(λ) :=

ñ+ 2

4
λ ≥ λ/2,

while also noting that µ ↓ 0 as λ ↓ 0. For any z ∈ Sd, define the index set

Λλ(z) = {(i, j) | (x−G(z))2ij > µ(λ)}

and
Z(λ) = {z ∈ Sd | |Λλ(z)| ≤ ñ}.

We next show that any z /∈ Z(λ) cannot be optimal. For any z /∈ Z(λ), we have |Λλ(z)| ≥ ñ+ 1.
We also note that when (x−G(z))2ij ≥ µ(λ) ≥ λ/2, we have

f̂ij(z;λ) > λ− λ2

4µ(λ)
= (1− 1

ñ+ 2
)λ.

Therefore
f(z,M ;λ) > (ñ+ 1)(1− 1

ñ+ 2
)λ > ñλ = f(z̃, M̃ ;λ),

proving the non-optimality of such z.

As we limit the optimal solution to Z(λ), we now show that dH∞(Z(λ), Z̃) ↓ 0 as λ ↓ 0.

Assume the statement is not true, i.e., there exists ϵ0 > 0 such that dH∞(Z(λ), Z̃) ≥ ϵ0 for any
λ > 0. Denote Ξ = {λ ⊆ [m]× [n] | |Λ| ≤ ñ}, which is clearly finite. For any Λ ∈ Ξ, denote

ZΛ(λ) = {z ∈ Sd | (x−G(z))2ij ≤ µ(λ), ∀(i, j) ∈ Λ}

and we have the following decomposition of Z(λ):

Z(λ) = ∪Λ∈ΞZΛ(λ),

which is mathematically saying that Z(λ) can be decomposed by enumerating all the possible
cases of choosing ñ elements from [m] × [n]. Combined with the fact that Ξ is finite, we have
dH∞(Z(λ), Z̃) = maxΛ∈Ξ dH∞(ZΛ(λ), Z̃) ≥ ϵ0.

Note that as Z(λ) decreasing with respect to λ, dH∞(Z(λ), Z̃) is also decreasing, and the same ap-
plies to ZΛ(λ) for any Λ ∈ Ξ. Therefore, there exists a particular Ψ ∈ Ξ such that dH∞(ZΨ(λ), Z̃) ≥
ϵ0 for any λ > 0 (If not, for any Λ, there exists λ(Λ) such that dH∞(ZΛ(λ(Λ)), Z̃) <
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ϵ0, and taking λ′ = minΛ∈Ξ λ(Λ) we get dH∞(Z(λ′), Z̃) = maxΛ∈Ξ dH∞(ZΛ(λ′), Z̃) ≤
maxΛ∈Ξ dH∞(ZΛ(λ(Λ)), Z̃) < ϵ0, contradicting the assumption).

Denote for this particular Ψ, UΨ(λ) := {z ∈ ZΨ(λ) | d∞(z, Z̃) ≥ ϵ0} ̸= ∅. Notice that UΨ(λ) is
compact as it is both closed and bounded, and decreasing with respect to λ. Therefore, let λi ↓ 0 be
any decreasing series to 0, and from Cantor’s intersection theorem, we have

∩∞
i=0U

Ψ(λi) ̸= ∅.
Note that for any z ∈ ∩∞

i=0U
Ψ(λi), it is clear that (x − G(z))Ψ = 0, i.e., ∥x − G(z)∥0 ≤ ñ thus

z ∈ Z̃ , a contradiction to d∞(z, Z̃) ≥ ϵ0.

Finally, as we have for any ẑ(λ) optimal to Equation 3, as ẑ(λ) ∈ Z(λ) we have 0 ≤ d∞(ẑ(λ), Z̃) ≤
dH∞(Z(λ), Z̃) ↓ 0 as λ ↓ 0, or d∞(ẑ(λ), Z̃) ↓ 0 as λ ↓ 0, which completes the proof.

B.2 PROOF TO THEOREM 2

M̃ ⊆ {M ∈ {0, 1}m×n | ∥M∥0 ≤ ñ} comes straightforward from the definition of Z̃ . We now
decompose Z̃ in the same fashion as Z(λ). For any Λ ∈ Ξ let Z̃Λ := {z ∈ Sd | (x − G(z))ij =

0, ∀(i, j) /∈ Λ}, and we have ∪Λ∈ΞZ̃Λ = {z ∈ S | ∥x − G(z)∥0 ≤ ñ} = Z̃ , the last quality from
the minimality of ñ. For the same reason, Z̃Λ is empty unless |Λ| = ñ. Note that Z̃Λ is closed and
thus compact following the continuity of G, and thus the compactness of Z̃ .

For any non-empty Z̃Λ and (i, j) ∈ Λ we have infz∈Z̃Λ |(x − G(z))ij | > 0. If not, following the
continuity of G, there exists z ∈ Z̃Λ such that (x − G(z))ij = 0, so ∥x − G(z)∥0 ≤ ñ − 1, a
contradiction to the minimality of ñ. (Note that in the case of Z̃Λ = ∅, infz∈Z̃Λ |(x − G(z))ij | =
+∞). Denote s := minΛ∈Ξ min(i,j)∈Λ infz∈Z̃Λ |x−G(z)|ij > 0, which is independent from λ.

Given the continuity of G, for any ϵ > 0, there exists r > 0 such that for any z, z′ ∈ Sd with
∥z − z′∥∞ < r, we have ∥G(z) − G(z′)∥∞ < ϵ. Specifically, we consider s/2 as ϵ and have the
corresponding rs/2, and we select λ̃ > 0 satisfying

dH∞(Z(λ̃), Z̃) ≤
rs/2

2
and λ̃ ≤ s2

3(ñ+ 1)
<

s2

2
.

Notice such a λ̃ exists, since dH∞(Z(λ̃), Z̃) ↓ 0 as λ ↓ 0.

For any λ ≤ λ̃, consider any optimal solution of Equation 3 as (ẑ(λ), M̂(λ)) and we have there
exists z̃ ∈ Z̃ such that ∥ẑ(λ)− ẑ∥∞ = d∞(ẑ(λ), Z̃) from the compactness of Z̃ . Note that

∥ẑ(λ)− ẑ∥∞ = d∞(ẑ(λ), Z̃) ≤ dH∞(Z(λ), Z̃) ≤ dH∞(Z(λ̃), Z̃) ≤ rs/2/2,

and thus ∥G(ẑ) − G(z̃)∥∞ < s/2. As z̃ ∈ Z̃ , there exists Λ ∈ Ξ such that z̃ ∈ Z̃Λ, noting that
|Λ| = ñ. For any (i, j) ∈ Λ, it is clear that |(x − G(ẑ(λ)))ij | ≥ |(x − G(z̃))ij | − |(G(ẑ(λ) −
G(z̃))ij | ≥ s− s/2 = s/2. Therefore, we have λ < 2(x−G(ẑ(λ)))2ij .

Therefore, for any (i, j) ∈ Λ,

1 ≥ M̂(λ)ij = 1− λ

2(x−G(ẑ(λ)))2ij
≥ 1− 2λ

s2
↑ 1, as λ ↓ 0.

Note that M̂(λ)ij > 0. We also have

fij(ẑ(λ), M̂(λ);λ) = λ− λ2

4(x−G(ẑ(λ)))2ij
≥ λ− λ2

s2
≥ λ− λ

3(ñ+ 1)

where the last inequality from λ ≤ λ̃ ≤ s2/3(ñ+ 1).

Next, we prove that for any (i, j) /∈ Λ, we have M̂(λ)ij = 0. Assuming there exists (i′, j′) /∈ Λ

such that M̂(λ)i′j′ ̸= 0, we have 2(x−G(ẑ(λ)))2i′j′ ≥ λ and thus

fi′j′(ẑ(λ), M̂(λ);λ) = λ− λ2

4(x−G(ẑ(λ)))2i′j′
≥ λ

2
.

18



Published as a conference paper at ICLR 2023

Therefore,

f(ẑ(λ), M̂(λ);λ) =
∑

(i,j)∈Λ

fij(ẑ(λ), M̂(λ);λ) +
∑

(i,j)/∈Λ

fij(ẑ(λ), M̂(λ);λ)

≥ ñ(λ− λ

3(ñ+ 1)
) +

λ

2
> ñλ,

which is a contradiction to the optimality of (ẑ(λ), M̂(λ)) since f(z̃, M̃ ;λ) = λñ. Therefore, for
any (i, j) /∈ Λ, we have M̂(λ)ij = 0.

In conclusion, let M̃ = Ix−G(z̃) ∈ M̃ and we have d∞(M̂(λ),M̃) ≤ ∥M̂(λ), M̃∥∞ ≤ 2λ/s2 ↓ 0

as λ ↓ 0. It is also clear that M̃ = IM̂(λ) as long as λ < λ̃, which completes the proof.

C SIMULATION STUDY

In this section, we verify the robustness of the RGI method under gross corruptions using simulation.

Data Generation. A Progressive GAN (Karras et al., 2017) network is trained on the training set
of 200599 aligned face images of size 128× 128 from CelebFaces Attributes dataset (CelebA (Liu
et al., 2015)) and the pre-trained generator G(·) is extracted. Then we generate a test image x with
central block corruptions (≈ 25% pixels) by: (i) Sample z ∈ R500 from the multivariate standard

normal distribution, i.e., z N(0, I); (ii) Generate x by xij =

{
eij , if i, j ∈ {33, . . . , 96}
G(z)ij , otherwise

,

where eij ∼ N(e, 1) and e is the mean corruption level. The pixel values of images generated by
G(·) are approximately between [−1, 1]. To verify the robustness of the RGI method, we vary the
mean corruption level e in the range of {−1,−0.5, 0, 0.5, 1}. The process is repeated to generate
100 input corrupted images for each mean corruption level.

Solution Procedure For each mean corruption level, we use three methods to restore G(z): (i) l2:
Solving Equation 1 with l2 reconstruction loss Lrec(·) = ∥ · ∥22; (ii) l1: Solving Equation 1 with
l1 reconstruction loss Lrec(·) = ∥ · ∥1; (iii) RGI: Solving Equation 3 with l2 reconstruction loss
Lrec(·) = ∥ · ∥22 . All methods are solved by ADAM (Kingma & Ba, 2014) for 1000 iterations. The
root mean squared image restoration error (RMSE) of 100 input images is recorded, i.e.,

RMSE =

√√√√ 1

100

100∑
i=1

1

mn
∥G(zi)−G(ẑi)∥22,

where G(z) and G(ẑ) are the true and restored backgrounds, respectively.

Results: The RMSE of image restoration results under different corruption levels from methods (i)-
(iii) is shown in Figure 5. The RGI method demonstrated superior robustness with an RMSE close
to zero with respect to all five different corruption levels. l2 and l1 reconstruction losses perform
significantly worse under large corruption magnitude, which is expected since they seek an image
on the learned manifold that is close to the input image (even though l1 reconstruction loss adds to
the robustness a little bit), which can lead to significant deviation of the image restoration.

D DETAILED DISCUSSION ON SEMANTIC IMAGE INPAINTING

D.1 IMPLEMENTATION DETAILS

A Progressive GAN (Karras et al., 2017) network is used as the backbone network. Notice that
the discriminator network is usually used to regularize the generated image, such that the generated
image looks real. Different methods incorporate the discriminator differently. It can either be in-
corporated as a separate penalty term in the objective function (Yeh et al., 2017), incorporated as a
modified reconstruction loss term (Pan et al., 2021) or ignored in the loss function (Gu et al., 2020).
For a fair comparison, we use a weighted combination of an l2 norm (with weight 1) and a dis-
criminator penalty term (with weight 0.1) as the reconstruction loss for comparison methods. In all
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Figure 5: RMSE of image restoration by RGI and GAN-inversion with l1, l2 loss.

experiments, the optimization problems Equation 1 (GAN-inversion), Equation 3 (RGI) and Equa-
tion 4 (R-RGI) are solved by ADAM (Kingma & Ba, 2014) for 2000 iterations, with a learning rate
of 0.1 for both z and M . For Equation 4 (R-RGI), we use the last 500 iterations for mask-free fine-
tuning with the learning rate of 1e−5 for θ. The tuning parameter λ is selected by cross-validation.
Notice that using SSIM and PSNR gives different corss-validation results and here we report both:

(i) CelebA: block missing RGI and R-RGI: λSSIM = λPSNR = 0.07; random missing RGI:
λSSIM = 0.2, λPSNR = 0.5, R-RGI: λSSIM = 0.25, λPSNR = 0.6.

(ii) Stanford cars: block missing RGI λSSIM = 0.9, λPSNR = 1.0, R-RGI: λSSIM = λPSNR =
0.9; random missing RGI: λSSIM = λPSNR = 1.0, R-RGI: λSSIM = λPSNR = 0.8.

(iii) LSUN bedroom: block missing RGI: λSSIM = λPSNR = 0.8, R-RGI: λSSIM = λPSNR =
0.7; random missing RGI: λSSIM = 0.8, λPSNR = 1.0, R-RGI: λSSIM = 0.6, λPSNR = 0.9.

D.2 DATASETS DETAILS

CelebA (Liu et al., 2015) contains a training set of 200,599 aligned face images. We resize them
to the size of 128 × 128. We use the remaining 2000 images as the test set. Missing regions are
generated as follows: (i) central block missing of size 32 × 32 and (ii) random missing (≈ 50%
pixels). We fill in the missing entry with pixels from N(−1, 1). We randomly select 100 test images
to evaluate algorithm performance.

Stanford cars (Krause et al., 2013) contains 16,185 images of 196 classes of cars and is split into
8,144 training images and 8,041 testing images. We crop the image based on the provided bounding
boxes and resize them to the size of 128× 128. Missing regions are generated as follows: (i) central
block missing of size 16× 16 and (ii) random missing (≈ 25% pixels). We fill in the missing entry
with pixels from N(−1, 1). The training and test set partitions provided by the dataset are used. We
randomly select 100 test images to evaluate algorithm performance.

LSUN bedroom (Yu et al., 2015) contains 3,033,042 images for training and 300 images for vali-
dation. We resize the images to the size of 128× 128. Missing regions are generated as follows: (i)
central block missing of size 16×16 and (ii) random missing (≈ 25% pixels). We fill in the missing
entry with pixels from N(−1, 1). We randomly select 100 images from the validation set to evaluate
algorithm performance.

Next, we will show the qualitative image restoration results on these datasets. Notice that we avoid
showing the CelebA result due to copyright/privacy concerns.

D.3 QUALITATIVE IMAGE RESTORATION RESULTS

Figure 6 shows the qualitative image restoration results on Stanford cars (Krause et al., 2013) dataset.
From columns 2-4, we can observe that the RGI method has a comparable performance as (Yeh
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et al., 2017) w/ mask, which improves the image restoration performance of (Yeh et al., 2017) w/o
mask. However, the performance of Yeh et al. (2017) even with mask information is not satisfactory
(for example, the second row of Figure 6), this is mainly due to the GAN approximation gap (Pan
et al., 2021). In this case, further generator fine-tuning will significantly improve the faithfulness of
restored images, which can be observed from columns 5-6.

Figure 7shows the qualitative image restoration results on the LSUN bedroom (Yu et al., 2015)
dataset. A similar conclusion can also be drawn.

(a) Case (i): block missing

(b) Case (ii): random missing

Figure 6: Restored images by Yeh et al. (2017) (w/ and w/o mask), Pan et al. (2021) (w/ mask), RGI
and R-RGI on Stanford cars (Krause et al., 2013) dataset.
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(a) Case (i): block missing

(b) Case (ii): random missing

Figure 7: Restored images by Yeh et al. (2017) (w/ and w/o mask), Pan et al. (2021) (w/ mask), RGI
and R-RGI on LSUN bedroom (Yu et al., 2015) dataset.

E DETAILED RESULTS ON THE MVTEC AD DATASET

Annotation issues of the MVTec AD dataset. Figure 8 shows example images from the MVTec
dataset as well as the corresponding annotations. It is clear that the annotation covers a larger area
than the exact defect contour, which will favor localization level methods such as PatchCore (Roth
et al., 2022). However, this level of annotation is neither sufficient to fulfill the fine-grained surface
quality inspection goal, such as providing precise defect specifications (i.e. diameter, length, area)
for product surface quality screening, nor serve as an effective dataset for training/evaluating pixel-
wise anomaly detection algorithms.
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Figure 8: Example defective products and their annotations from the MVTec AD dataset: The blue
circle indicates the defects. we can see that the annotation tends to cover extra regions of the real
anomaly contour.

Qualitative assessment on MVTec AD. Figure 9 shows the qualitative results of the wood product.
We can observe that both the performance of RGI and AnoGAN are poor, where the restored images
are far from the true background, which leads to a noisy anomalous segmentation mask. The main
reason is the small size of the training set, where the learned generator tends to overfit (memorize)
the training set (Karras et al., 2020; Webster et al., 2019) rather than generalize to images in the test
set. This will lead to a huge gap between the learned training image manifold and the testing image
manifold. By generator fine-tuning, the R-RGI can mitigate this gap to improve both the background
reconstruction and anomalous region identification performance.

Figure 9: Comparison between the restored backgrounds and detected anomalies on wood product:
the first row indicates the input image and reconstructed background by various methods; the second
row indicates the defective region segmentation mask annotation from the MVTec AD dataset and
the detected anomalous region segmentation mask by various methods.

However, the success of the RGI/R-RGI method is built upon the assumption of a large training
dataset such that the generator can learn a reasonable manifold which can generalize to unseen test
samples. Mask-free fine-tuning can then mitigate the GAN approximation gap to further improve its
performance. When the training set size is too small, where the generator tends to overfit (memorize)
the training set, merely relying on the mask-free fine-tuning can lead to an unstable result.

F SYNTHETIC DEFECT GENERATION ON BTAD PRODUCT03

The detailed defect generation process is discussed in this section. Product03 has 1000 defective
free images, from which we randomly select 100 images for defect generation. To improve the
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faithfulness of generated defective images, we collect the binary defective region masks (equals to 1
for defective pixels and 0 otherwise) from the annotations of the MVTec AD (Bergmann et al., 2019)
dataset and organize them into 4 categories, including crack, irregular, scratch, and mixed large
(defective region area larger than 400 pixels) type of defective region masks. Then, we generate the
synthetic defective image xsys,j

i by:

xsys,j
i = (1−M j

i )⊙ xi +M j
i ⊙ Cj

i , i ∈ [1, ...100], j ∈ {crack, irregular, scratch,mixed large},

where xi is the ith input defect-free image, M j
i is the ith randomly selected mask from the jth

category. Cj
i ∈ Rm×n×3 is an image with constant channel values to fill in the defective region. To

avoid trivial anomaly detection, we set Cj
i as the average pixel value of the defective region, i.e.,

C[:, :, k]ji =

∑
p1∈[m],p2∈[n] M

j
i [p1, p2, k]xi[p1, p2, k]∑

p1∈[m],p2∈[n] M
j
i [p1, p2, k]

, k ∈ [3].

Finally we have 4 categories of synthetic defects with 100 defective images in each category. Ex-
amples of generated defective images are shown in Figure 10. We can observe that the defects are
close to the background color, which makes them hard to distinguish even with human eyes. This
avoids trail defect detection.

Figure 10: Generated synthetic defective images.

G DETAILED RESULTS ON THE BTAD DATASET

G.1 IMPLEMENTATION DETAILS

We use a PGGAN (Karras et al., 2017) as the backbone network and a l2 norm reconstruction
loss term (Lrec) for RGI and R-RGI methods. The tuning parameter λ is selected via cross
validation by using Dice coefficient as the metric. For RGI, the following values are selected:
λcrack = λirregular = λscratch = λmixed large = 0.4. For R-RGI, the following values are
selected: λcrack = 0.12, λirregular = 0.1, λscratch = 0.14, λmixed large = 0.06. All optimiza-
tion problems are solved by ADAM (Kingma & Ba, 2014) for 2000 iterations, with a learning rate
of 0.1 for both z and M . For R-RGI, we use the last 1500 iterations for mask-free fine-tuning with
the learning rate of 1e−5 for θ.
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G.2 QUALITATIVE RESULTS

Figure 11: Comparison between the restored backgrounds and detected anomalies (after optimal
thresholding) among AnoGAN (Schlegl et al., 2017), RGI and R-RGI: The first row indicates the
input images and true anomalous region segmentation masks. The following rows are restored
backgrounds and detected anomalous region masks by different methods.

Figure 12: Raw anomaly scores and detected anomalies (after optimal thresholding) among DRAEM
(Zavrtanik et al., 2021), RASL (Peng et al., 2012) and PatchCore (Roth et al., 2022): The first row
indicates the input images and true anomalous region segmentation masks. The following rows are
raw anomaly scores and detected anomalous region masks (after optimal thresholding) by different
methods.
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H APPLICATION ASPECT OF THE PROPOSED METHOD

In this section, we will discuss the application aspect of the proposed method.

H.1 COMPUTATIONAL ASPECT

As mentioned in Section 2, RGI/R-RGI is a first attempt to address the current robustness and ap-
proximation gap issue of GAN-inversion. Therefore, we choose to study the optimization-based
GAN-inversion methods, because of its popularity and significant advantage of superior image
restoration quality (Zhu et al., 2020; Richardson et al., 2021; Creswell & Bharath, 2018). However,
the proposed RGI/R-RGI method faces a similar computational challenge as optimization-based
GAN-inversion methods: the inversion process of each input image requires solving an optimiza-
tion problem of similar size, which can be computationally expensive. Generalizing the proposed
method to learning-based as well as hybrid GAN-inversion methods for better computational effi-
ciency is an immediate extension, and we leave it for future work.

H.2 REDUCING THE TRAINING SAMPLE SIZE REQUIREMENT

The proposed R-RGI method can reduce the training data requirement for GAN-based anomaly de-
tection methods (Schlegl et al., 2017; 2019). GAN-based methods (Xia et al., 2022b) are important
directions in anomaly detection, which usually needs a large dataset of cleaning training images.
Insufficient training samples is one of the major sources of the GAN approximation gap. Failing to
address such a gap will lead to the poor performance (in addition to the robustness issue) of most
of current GAN-inversion based anomaly detection methods (Xia et al., 2022b; Zenati et al., 2018;
Schlegl et al., 2019; Baur et al., 2018; Kimura et al., 2020; Akcay et al., 2018).

As can be seen from the experiment result in unsupervised anomaly detection (Table 2), the per-
formance improvement of RGI over the AnoGAN is still limited, which indicates a large GAN
approximation gap, i.e., there is still a large mismatch between the closest image in the learned im-
age manifold and the ground truth background of the input test image, beyond the robustness issue.
By addressing such a gap in R-RGI, we observed a significant performance improvement in all 4
different defect scenarios, and the R-RGI outperforms the SOTA method (DRAEM) on this task.

I MASK-FREE IMAGE INPAINTING OF IRREGULAR MISSING REGIONS

In this section, we include the mask-free semantic image inpainting result when the missing re-
gion is of irregular shapes, as missing case (iii). The irregular missing masks are from Irregular
Mask Dataset (Liu et al., 2018). The qualitative result is shown in Figure 13 and Figure 14. The
quantitative result is shown in Table 3. We can observe that the inpainting performance of irregular
missing in case (iii) and block missing in case (i) are fairly close (Tables 3 and 1). This is expected
since there is no mask information involved in both the training and testing stage of the proposed
method, which avoids potential overfitting to any specific missing mechanism. In other words, the
irregular missing, block missing or even random missing are all ‘unknown gross corruptions’ to the
RGI/R-RGI method.

Table 3: Case (iii) irregular missing region: semantic inpainting performance of Yeh et al. (2017)
(w/ and w/o mask), Pan et al. (2021) (w/ mask), RGI and R-RGI

Datasets Cases metrics methods
Yeh et al.
w/o mask

Yeh et al.
w/ mask RGI Pan et al.

w/ mask R-RGI

CelebA Case (iii) PSNR ↑ 13.72 21.25 19.86 22.71 20.42
SSIM ↑ 0.358 0.503 0.592 0.570 0.547

Cars Case (iii) PSNR ↑ 17.07 17.57 17.04 21.34 20.20
SSIM ↑ 0.359 0.361 0.357 0.633 0.613

LSUN
bedroom Case (iii) PSNR ↑ 17.52 19.00 18.20 21.30 19.77

SSIM ↑ 0.393 0.424 0.412 0.599 0.575
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Figure 13: Case (iii) irregular missing region: restored images by Yeh et al. (2017) (w/ and w/o
mask), Pan et al. (2021) (w/ mask), RGI and R-RGI on Stanford cars (Krause et al., 2013) dataset.

Figure 14: Case (iii) irregular missing region: restored images by Yeh et al. (2017) (w/ and w/o
mask), Pan et al. (2021) (w/ mask), RGI and R-RGI on LSUN bedroom (Yu et al., 2015) dataset.

J SENSITIVITY ANALYSIS OF λ

The tuning parameter λ in RGI/R-RGI (equation 3 and equation 4) is important in both mask-free
semantic inpainting and unsupervised pixel-wise anomaly detection applications. In this section, we
provide the empirical sensitivity analysis using examples from both applications.

Sensitivity analysis of λ in mask-free semantic image inpainting. Figure 15 shows the SSIM
value change with respect to λ in mask-free semantic inpainting of block missing experiment on
CelebA (Liu et al., 2015) dataset. In this experiment, we vary the tuning parameter λ in the
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Figure 15: SSIM value change with respect to λ in mask-free semantic inpainting of block missing
experiment on CelebA (Liu et al., 2015) dataset.

Figure 16: Dice value change with respect to λ in unsupervised pixel-wise anomaly detection of
crack defect experiment.

range of [0.05, 0.25]. A plateau region can be observed for both the RGI ([0.05, 0.10]) and R-RGI
([0.05, 0.15]) method, where similar inpainting performance as the optimal λ∗ can be obtained.

Sensitivity analysis of λ in unsupervised pixel-wise anomaly detection. Figure 16 shows the
Dice value change with respect to λ in in unsupervised pixel-wise anomaly detection of crack defect
experiment on the synthetic dataset. For RGI, we vary the tuning parameter λ in the range of
[0.05, 1.00]. A large plateau region ([0.20, 0.60]) can be observed, where similar semantic inpainting
performance as the optimal λ∗ can be obtained. For R-RGI, we vary the tuning parameter λ in the
range of [0.06, 0.6]. Compared to RGI, R-RGI has an additional generator fine-tuing step when
optimizing the mask M , which makes R-RGI more sensitive to λ. However, we can still observe
a plateau region ([0.06, 0.2]), where acceptable semantic inpainting performance, compared to the
optimal λ∗, can be obtained. The existence of such a plateau region in both applications makes it
easier for the tuning of λ.
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