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Abstract

Federated learning (FL) is a collaborative learning paradigm that aims to protect data privacy.
Unfortunately, recent works show FL algorithms are vulnerable to data reconstruction attacks
(DRA), a serious type of privacy leakage. However, existing works lack a theoretical foundation
on to what extent the devices’ data can be reconstructed and the effectiveness of these attacks
cannot be compared fairly due to their unstable performance. To address this deficiency,
we propose a theoretical framework to understand DRAs to FL. Our framework involves
bounding the data reconstruction error and an attack’s error bound reflects its inherent
effectiveness using Lipschitz constant. We show that a smaller Lipschitz constant indicates
a stronger attacker. Under the framework, we theoretically compare the effectiveness of
existing attacks (such as DLG and iDLG). We then empirically examine our results on
multiple datasets, validating that the iDLG attack inherently outperforms the DLG attack.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) has been a great potential to protect data privacy. In FL,
the participating devices keep and train on their data locally, and only share the trained models, instead
of the raw data, with a central server (e.g., cloud). The server updates its global model by aggregating
the received device models, and broadcasts the updated global model to all participating devices such that
all devices indirectly use all data from other devices. FL has been deployed by many companies (Google
Federated Learning, 2022; Microsoft Federated Learning, 2022; IBM Federated Learning, 2022), and applied
in various privacy-sensitive applications, including content suggestions for on-device keyboards (Bonawitz
et al., 2019), health monitoring (Rieke et al., 2020), and medical imaging (Kaissis et al., 2020).
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Figure 1: Impact of the initial parameters of a
Gaussian distribution on the DRA performance.
The x-axis marks the mean (standard deviation)
of the Gaussian. The high MSE makes it difficult
to conclude statistical significance in the attack
outcome with empirical analysis along.

Unfortunately, recent works show that, even when device models are being shared, it is still possible for an
adversary (e.g., the malicious server) to perform the severe data reconstruction attack (DRA) on FL (Zhu
et al., 2019), where an adversary could directly reconstruct the device’s training data via the shared device
models. Later, a number of enhanced attacks (Hitaj et al., 2017; Wang et al., 2019; Zhao et al., 2020; Wei
et al., 2020; Yin et al., 2021; Jeon et al., 2021; Zhu & Blaschko, 2021; Dang et al., 2021; Balunovic et al.,
2022; Li et al., 2022; Fowl et al., 2022; Wen et al., 2022; Haim et al., 2022; Wu et al., 2023; Noorbakhsh et al.,
2024)) are proposed by either incorporating some (known or unrealistic) prior knowledge or requiring an
auxiliary dataset to simulate the training data distribution.

However, we note that existing DRA methods have several limitations: First, they are sensitive to initialization
(which is also observed in (Wei et al., 2020)). For example, we show in Figure 1 we show that the attack
performance of iDLG (Zhao et al., 2020) and DLG (Zhu et al., 2019) are significantly influenced by initial
parameters (i.e., the mean and standard deviation) of a Gaussian distribution, from which the initial data is
sampled, thus making it difficult to conclude empirically that the two attacks boast a statistically significant
difference in attack outcomes. Second, existing DRAs mainly show comparison results on a FL model at
a snapshot, which cannot reflect attacks’ true effectiveness. As FL training is dynamic, an adversary can
perform attacks in any stage of the training. Hence, Attack A shows better performance than Attack B
at a snapshot does not imply A is truly more effective than B. Third, worse still, they lack a theoretical
understanding on to what extent the training data can be reconstructed. These limitations make existing
DRAs not be easily and fairly compared and hence it is unknown which attacks are inherently more effective.

In this paper, we aim to bridge the gap and propose a theoretical framework to understand DRAs to FL.
Specifically, our framework bounds the error between the private data and the reconstructed counterpart in the
whole FL training, where an attack’s (smaller) error bound reflects its inherent (better) attack effectiveness.
Our theoretical results show that when an attacker’s reconstruction function has a smaller Lipschitz constant,
this attack intrinsically performs better1. Under the framework, we can theoretically compare the existing
DRAs by directly comparing their bounded errors. We test our framework on multiple attacks and benchmark
datasets. E.g., our results show InvGrad (Geiping et al., 2020) performs better than DLG (Zhu et al., 2019)
and iDLG (Zhao et al., 2020) on complex datasets, while iDLG is comparable or slightly better than DLG.

2 Preliminaries and Problem Setup

2.1 Federated Learning (FL)

The FL paradigm enables a server to coordinate the training of multiple local devices through multiple rounds
of global communications, without sharing the local data. Suppose there are N devices and a central server
participating in FL. Each k-th device owns a training dataset Dk = {(xk

j , yk
j )}nk

j=1 with nk samples, and each
sample xk

j has a label yk
j . FL considers the following distributed optimization problem:

1Under realistic attack scenarios where an ideal model exists. For instance, a constant function has LR = 0, but it will have
high first term in 3, as the ideal reconstruction function will have extremely high MSE.
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min
w
L(w) =

∑N

k=1
pkLk(w), (1)

where pk ≥ 0 is the weight of the k-th device and
∑N

k=1 pk = 1; and the k-th device’s local objective is:

Lk(w) = 1
nk

nk∑
j=1

ℓ(w; (xk
j , yk

j ))

with ℓ(·; ·) an algorithm-dependent loss function.

FedSGD is the de facto FL algorithm to solve Equation (1) in an iterative way. In each communication round,
each k-th device only shares the gradients ∇wLk(w) instead of the raw data Dk to the server McMahan et al.
(2017). Specifically, in the current round t, each k-th device first downloads the latest global model (denoted
as wt−1) from the server and initializes its local model as wk

t = wt−1; then it performs (e.g., E) local SGD
updates as below:

wk
t+j ← wk

t+j−1 − ηt+j∇Li(wk
t+j ; ξk

t+j), j = 1, · · · , E

where ηt+j is the learning rate and ξk
t+j is sampled from the local data Dk uniformly at random.

Next, the server updates the global model wt by aggregating full or partial device models. The final global
model is downloaded by all devices for their learning tasks.

• Full device participation. It requires all device models for aggregation, and the server performs wt ←∑N
k=1 pk wk

t with pk = nk∑N

i=1
ni

and wk
t = wk

t+E . Note that full device participation means the server
must wait for the slowest devices, which is often unrealistic in practice.

• Partial device participation. This is a more realistic setting as it does not require the server to know all
device models. Suppose the server only needs K (< N) device models for aggregation and discards the
remaining ones. Let St be the set of K chosen devices in the t-th iteration. Then, the server’s aggregation
step performs wt ← N

K

∑
k∈St

pk wk
t with wk

t = wk
t+E .

Quantifying the degree of non-IID (heterogeneity): Real-world FL applications often do not satisfy
the IID assumption for data among local devices. Li et al. (2020) proposed a way to quantify the degree
of non-IID. Specifically, let L∗ and L∗

k be the minimum values of L and Lk, respectively. Then, the term
Γ = L∗ −

∑N
k=1 pkL∗

k is used for quantifying the degree of non-IID. If the data are IID, then Γ obviously
goes to zero as the number of samples grows. If the data are non-IID, then Γ is nonzero, and its magnitude
reflects the heterogeneity of the data distribution.

2.2 Optimization-based DRAs to FL

Existing DRAs assume an honest-but-curious server, i.e., the server has access to all device models in all
communication rounds, follows the FL protocol, and aims to infer devices’ private data. Given the private data
x ∈ [0, 1]d with private label y2, we denote the reconstructed data by a malicious server as (x̂, ŷ) = R(wt),
where R(·) indicates a data reconstruction function, and wt can be any intermediate global model. Modern
optimization-based DRAs use different R(·), but mainly based on gradient matching. Specifically, they solve
the below optimization problem:

R(wt) = arg min
x′∈[0,1]d,y′

GML(gwt(x, y), gwt(x′, y′)) + λReg(x′) (2)

where we denote the gradient of loss w.r.t. (x, y) be gwt
(x, y) = ∇wL(wt; (x, y)) for simplicity of notation.

GML(·, ·) means the gradient matching loss (i.e., the distance between the real gradients and estimated
gradients) and Reg(·) is an auxiliary regularizer for the reconstruction. Here, we list GML(·, ·) and Reg(·) for
three representative DRAs, and more attacks are shown in Appendix D.1.2.

2This can be a single data sample or a batch of data samples.
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Algorithm 1 Iterative solvers for optimization-based DRAs
Input: Model parameters wt; true gradient g(x, y); η, λ.
Output: Reconstructed data x̂.

1: Initialize dummy input(s) x′
0 from a Gaussian distribution, and dummy label(s) y′

0
2: for i = 0; i < I; i + + do
3: L(x′

i) = GML(gwt (x, y), gwt (x′
i, y′

i)) + λReg(x′
i)

4: x′
i+1 ← SGD(x′

i; θi) = x′
i − η∇x′

i
L(x′

i)
5: x′

i+1 = Clip(x′
i+1, 0, 1)

6: end for
7: return x′

I

• DLG (Zhu et al., 2019) uses the mean squared error as the gradient matching loss, i.e.,
GML(gwt

(x, y), gwt
(x′, y′)) = ∥gwt

(x, y)− gwt
(x′, y′)∥2

2 and does not use a regularizer.
• iDLG (Zhao et al., 2020) estimates the label y before solving Equation (2). iDLG solves x̂ =

arg minx′ Ex[GML(gwt(x, y), gwt(x′, ŷ)) + λReg(x′)], assuming the estimated label is ŷ, where it uses
the same GML(·) as DLG and also does not have a regularizer.

• InvGrad (Geiping et al., 2020) improves upon DLG and iDLG. It first estimates the private label as ŷ in
advance. Then it uses a negative cosine similarity as GML(·) and a total variation regularizer RegTV(·) as
an image prior. Specifically, InvGrad solves for x̂ = arg minx′ Ex[1− ⟨gwt (x,y),gwt (x′,ŷ)⟩

∥gwt (x,y)∥2·∥gwt (x′,ŷ∥2
+ λRegTV(x′)].

Algorithm 1 shows the pseudo-code of iterative solvers for DRAs and Algorithm 4 in Appendix shows more
details for each attack. As the label y can be often accurately inferred, we now only consider reconstructing
the data x for notation simplicity. Then, the attack performance is measured by the similarity sim(x̂, x)
between x̂ and x. The larger similarity, the better attack performance. In the paper, we use the common
similarity metric, i.e., the negative mean-square-error sim(x̂, x) = −E∥x̂ − x∥2, where the expectation E
considers the randomness during reconstruction.

3 A Theoretical Framework to Understand DRAs to Federated Learning

Though many DRAs to FL have been proposed, it is still unknown how to theoretically compare the
effectiveness of existing attacks, as stated in Introduction. In this section, we understand DRAs to FL from a
theoretical perspective. We first derive a reconstruction error bound for convex objective losses. The error
bound involves knowing the Lipschitz constant of the data reconstruction function. Directly calculating the
exact Lipschitz constant is computationally challenging. We then adapt existing methods to calculate its
upper bound. We argue that an attack with a smaller upper bound is intrinsically more effective. We also
emphasize our theoretical framework is applicable to any adversary who knows the global model during FL
training (see below Theorem 3.2 and Theorem 3.3).

3.1 Bounding the Data Reconstruction Error

Given random data x from a device, our goal is to bound the common norm-based reconstruction error3, i.e.,
E∥x−R(wt)∥2 at any round t, where R(·) can be any DRA and the expectation considers the randomness
in R(·), e.g., due to different initializations. Directly bounding this error is challenging because the global
model dynamically aggregates local device models, which are trained by a (stochastic) learning algorithm and
whose learning procedure is hard to characterize during training. To alleviate this issue, we introduce the
optimal global model w⋆ that can be learnt by the FL algorithm. Then, we can bound the error as follows:

E∥x−R(wt)∥2 = E∥x−R(w⋆) +R(w⋆)−R(wt)∥2

≤ 2
(
E∥x−R(w⋆)∥2 + E∥R(w⋆)−R(wt)∥2)

. (3)
3The norm-based mean-square-error (MSE) bound can be easily generalized to the respective PSNR bound. This is because

PSNR = -10 log (MSE). However, it is unable to generalize to SSIM or LPIPS since these metrics do not have an analytic form.
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Figure 2: Iterative solvers for DRAs as unrolled deep feed-forward networks. We map the i-th SGD iteration in
DRAs into a single network layer, and stack I layers to form an I-layer deep network. Feeding forward data through
the I-layer network is equivalent to executing I SGD updates. The trainable parameters {θi} are colored in blue in
Algorithm 1, and θi connects the i-th layer and i + 1-th layer. These parameters can be learned from intermediate
reconstructed data x′

i by training the deep feed-forward network.

Note that the first term in Equation (3) is a constant and can be directly computed under a given reconstruction
function R(·) and a convex loss used in FL. Specifically, if the loss in each device is convex, the global model
can converge to the optimal w∗ based on theoretical results in (Li et al., 2020). Then we can obtain R(w∗)
per attack and compute the first term. In our experiments, we run the FL algorithm until the loss difference
between two consecutive iterations is less than 1e−5, and treat the final global model as w∗.

Now our goal reduces to bounding the second term. However, it is still challenging without knowing any
property of the reconstruction function R(·). In practice, we note R(·) is often Lipschitz continuous, which
can be verified later.
Proposition 3.1. R(·) is LR-Lipschitz continuous: there exists a constant LR such that ∥R(v)−R(w)∥ ≤
LR∥v−w∥, ∀v, w. The smallest LR is called the Lipschitz constant.

Next, we present our theoretical results and their proofs are seen in Appendix B and Appendix C.

Theoretical results with full device participation: We first analyze the case where all devices participate
in the aggregation on the server in each communication round. Assume the FedAvg algorithm stops after T
iterations and returns wT as the solution. Let L, µ, σk, G be defined in Assumptions A.1-A.4 (more details in
Appendix A) and LR be defined in Proposition 3.1.
Theorem 3.2. Let Assumptions A.1-4 hold. Choose γ = max{8L/µ, E} and learning rate ηt = 2

µ(γ+t) . Let
B =

∑N
k=1 p2

kσ2
k + 6LΓ + 8(E − 1)2G2. Then, for any round t, FedAvg with full device participation satisfies

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4B

µ2 + (γ + 1)∥w1 −w∗∥2
)

. (4)

Theoretical results with partial device participation: As discussed in Section 2, partial device
participation is more practical. Recall that St contains the K active devices in the t-th iteration. To show
our theoretical results, we require the K devices in St are selected from a distribution (e.g., p1, p2, · · · , pN )
independently and with replacement, following (Sahu et al., 2018; Li et al., 2020). Then FedAvg performs
aggregation as wt ← 1

K

∑
k∈St

wk
t .

Theorem 3.3. Let Assumptions A.1-A.4 hold. Let γ, ηt, and B be defined in Theorem 3.2, and define
C = 4

K E2G2. For any round t, FedAvg with St device participation satisfies

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4(B + C)
µ2 + (γ + 1)∥w1 −w∗∥2

)
. (5)

3.2 Computing the Lipschitz Constant for Data Reconstruction Functions

In this part, we show how to calculate the Lipschitz constant for data reconstruction function. Our idea is
to first use the strong connection between optimizing DRAs and the corresponding unrolled deep neural
networks; and then adapt existing methods to approximate the Lipschitz upper bound.

Iterative solvers for optimization-based DRAs as unrolled deep feed-forward networks: Recent
works Chen et al. (2018); Li et al. (2019); Monga et al. (2021) show a strong connection between iterative
algorithms and deep network architectures. The general idea is: starting with an abstract iterative algorithm,
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Algorithm 2 AutoLip
Require: function f and its computation graph

(g1, ..., gH)
Ensure: Lipschitz upper bound LAutoLip ≥ Lf

1: ϕ0(x) = x; ϕh(x) = f(x)
2: ϕh(x) = gh(x, ϕ1(x), · · · , ϕh−1(x)),∀h ∈ [1, H]
3: Z = {(z0, ..., zH) : ∀h ∈ [0, H], ϕh is constant ⇒

zh = ϕh(0)}
4: L0 ← 1
5: for h = 1 to H do

6: Lh ←
h−1∑
i=1

max
z∈Z
∥∂igh(z)∥2Li

7: end for
8: return LAutoLip = LH

Algorithm 3 Power method to calculate the matrix
ℓ2-norm
Require: affine function f : Rn → Rm, #iterations

Iter
Ensure: Upper bound of the Lipschitz constant Lf

1: for j = 1 to Iter do
2: v ← ∇g(v) where g(x) = 1

2∥f(x)− f(0)∥2
2

3: λ← ∥v∥2
4: v ← v/λ
5: end for
6: return Lf = ∥f(v)− f(0)∥2

we map one iteration into a single network layer, and stack a finite number of (e.g., H) layers to form a deep
network, which is also called unrolled deep network. Feeding the data through an H-layer network is hence
equivalent to executing the iterative algorithm H iterations. The parameters of the unrolled networks are
learnt from data by training the network in an end-to-end fashion. From Algorithm 1, we can see the trajectory
of an iterative solver for an optimization-based DRA corresponds to a customized unrolled deep feed-forward
network. Specifically, we treat the initial x′

0 (and wt) as the input, the intermediate reconstructed x′
i as

the i-th hidden layer, followed by a nonlinear clip function, and the final reconstructed data x̂ = x′
I as the

output of the network. Given intermediate {x′
i} with a set of data samples, we can train parameterized

deep feed-forward networks (universal approximation) to fit them, e.g., via the greedy layer-wise training
strategy Bengio et al. (2006), where each θi means the model parameter connecting the i-th layer and i + 1-th
layer. Figure 2 visualizes the unrolled deep feed-forward network for the optimization-based DRA.
Definition 3.4 (Deep Feed-Forward Network). An H-layer feed-forward network is an function TMLP (x) =
fH ◦ ρH−1 ◦ · · · ◦ ρ1 ◦ f1(x), where ∀h, the h-th hidden layer fh : x 7→Mhx + bh is an affine function and ρh

is a non-linear activation function.
Upper bound Lipschitz computation: Virmaux & Scaman (2018) showed computing the exact Lipschitz
constant for deep (even 2-layer) feed-forward networks is NP-hard. Hence, they resort to an approximate
computation and propose a method called AutoLip to obtain an upper bound of the Lipschitz constant.
AutoLip relies on the concept of automatic differentiation Griewank & Walther (2008), a principled approach
that computes differential operators of functions from consecutive operations through a computation graph.
When the operations are all locally Lipschitz-continuous and their partial derivatives can be computed and
maximized, AutoLip can compute the Lipschitz upper bound efficiently. Algorithm 2 shows the details.

With Autolip, Virmaux & Scaman (2018) showed that a feed-forward network with 1-Lipschitz activation
functions has an upper bounded Lipschitz constant below.
Lemma 3.5. For any H-layer feed-forward network with 1-Lipschitz activation functions, the AutoLip upper
bound becomes LAutoLip =

∏H
h=1 ∥Mh∥2, where Mh is defined in Definition 3.4.

Note that a matrix ℓ2-norm equals to its largest singular value, which could be computed efficiently via the
power method (Mises & Pollaczek-Geiringer, 1929). More details shown in Algorithm 3 (A better estimation
algorithm leads to a tighter Lipschitz bound). The used Clip activation function is 1-Lipschitz. Hence, by
applying Lemma 3.5 to the optimization-based DRAs, we can derive an upper bounded Lipschitz LR.

4 Evaluation

4.1 Experimental Setup

Datasets and models: We conduct experiments on three benchmark image datasets, i.e., MNIST (LeCun,
1998), Fashion-MNIST(FMNIST) (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009). We examine
our theoretical results on the FL algorithm that uses the ℓ2-regularized logistic regression (ℓ2-LogReg) and
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Figure 3: Results of federated ℓ2-LogReg on MNIST (Row 1) FMNIST (Row 2) CIFAR10 (Row 3), impact
of E, N, T, left to right —single image recovery. Dashed lines are average empirical reconstruction errors
obtained by existing DRAs, while solid lines are upper bound errors obtained by our theoretical results.
Y-axis is in a log scale. We observe that iDLG slightly outperforms DLG both empirically and theoretically;
a larger E and N incur larger upper bound error, while a larger T generates a smaller upper bound error.
Empirical attacks are insensitive to these parameters.

convex 2-layer linear convolutional network (2-LinConvNet) (Pilanci & Ergen, 2020), since their loss functions
satisfy Assumptions A.1-A.4. In the experiments, we evenly distribute the training data among the N devices.
Based on this setting, we can calculate L, µ, σk, and G used in our theorems, respectively. In addition, we can
compute the Lipschitz constant LR via the unrolled feed-forward network. These values together are used
to compute the upper bound of our Theorems 3.2 and 3.3. More details about the two algorithms, unrolled
feed-forward network, and calculation of parameter values shown in Appendix D.1.

Attack baselines: We test our theoretical results on four optimization-based data reconstruction attacks,
i.e., DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020), InvGrad (Geiping et al., 2020), and the GGL (Li et al.,
2022). The algorithms and descriptions of these attacks are deferred to Appendix D.1. We test these attacks
on recovering both the single image and a batch of images in each device.

Parameter setting: Several important hyperparameters in the FL training would affect our theoretical
results: the total number of devices N , the total number of global rounds T , and the number of local SGD
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Figure 4: Results of federated 2-LinConvNet on MNIST (Row 1), FMNIST (Row 2), CIFAR10 (Row 3),
impact of E, N, T from left to right—single image recovery.

updates E. By default, we set T = 100 and E = 2. We set N = 10 on the three datasets for the single
image recovery, while set N = 15, 10, 5 on the three datasets for the batch images recovery, considering
their different difficulty levels. we consider full device participation. When studying the impact of these
hyperparameters, we fix others as the default value.

4.2 Experimental Results

In this section, we test the upper bound reconstruction error by our theoretical results for single image
and batch images recovery. We also show the average (across 10 iterations) reconstruction errors that are
empirically obtained by the baseline DRAs with different initializations. The best possible (one-snapshot)
empirical results of the baseline attacks are also reported in Table 1 in Appendix D.2.

4.2.1 Results on single image recovery

Figure 3-Figure 5 show the single image recovery results on the three datasets and two FL algorithms,
respectively. We have several observations. First, iDLG has smaller upper bound errors than DLG, indicating
iDLG outperforms DLG intrinsically. One possible reason is that iDLG can accurately estimate the labels,
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Figure 5: Results of federated ℓ2-LogReg (Row 1) and 2-LinConvNet (Row 2) on Robbing, impact of E, N, T
left to right—single image recovery. We observe that Robbing has much smaller bounded errors and is even
smaller than GGL (See Figure 3). This is because the equation solving used by Robbing is accurate on the
simple federated ℓ2-LogReg model that uses a linear layer.

which ensures data reconstruction to be more stable. Such a stable reconstruction yields a smaller Lipschitz LR,
and thus a smaller upper bound in Theorem 3.2. InvGrad is on top of iDLG and adds a TV regularizer, and
obtains smaller error bounds than iDLG. This implies the TV prior can help stabilize the data reconstruction
and hence is beneficial for reducing the error bounds. Note that the error bounds of these three attacks are
(much) larger than the average empirical errors, indicating there is still a gap between empirical results and
theoretical results. Further, GGL has (much) smaller bounded errors than DLG, iDLG, and InvGrad. This is
because GGL trains an encoder on the whole dataset to learn the image manifold, and then uses the encoder
for data reconstruction, hence producing smaller LR. In Figure 3(b), we observe its bounded error is close to
the empirical error. For instance, we calculate that the estimated LR for the DLG, iDLG, InvGrad, and
GGL attacks in the default setting on MNIST are 22.17, 20.38, 18.43, and 13.36, respectively.

Second, the error bounds are consistent with the average empirical errors, validating they have a strong
correlation. Particularly, we calculate that the Pearson correlation coefficients between the error bound and
the averaged empirical error on these attacks in all settings are larger than 0.9.

Third, the error bounds do not show consistent correlations with the best empirical errors. For instance, we
can see GGL has lower error bounds than InvGrad on ℓ2-LogReg, but its best empirical error is larger than
InvGrad on MNIST (3.14 vs 3.09). Similar observations on CIFAR10 on federated 2-LinConvNet, where
InvGrad’s error bound is smaller than iDLG’s, but its best empirical error is larger (4.33 vs 3.37). More
details see Table 1 in Appendix D.2. The reason is that the reported empirical errors are the best possible
one-snapshot results with a certain initialization, which do not reflect the attacks’ inherent effectiveness.
Recall in Figure 1 that empirical errors obtained by these attacks could be sensitive to different initializations.
In practice, the attacker may need to try many initializations (which could be time-consuming) to obtain the
best empirical error.

Impact of E, N , and T : When the local SGD updates E and the number of total clients N increase, the
upper bound error also increases. This is because a large E and N will make FL training unstable and hard
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(a) Impact of E (b) Impact of N (c) Impact of T

(d) Impact of E (e) Impact of N (f) Impact of T

(g) Impact of E (h) Impact of N (i) Impact of T

Figure 6: Results of federated ℓ2-LogReg on MNIST(a-c), FMNIST(d-f) CIFAR10(g-i)—batch images recovery.

to converge, as verified in (Li et al., 2020). On the other hand, a larger total number of global rounds T
tends to produce a smaller upper bounded error. This is because a larger T stably makes FL training closer
to the global optimal under convex loss.

4.2.2 Results on batch images recovery

Figures 8-10 in Appendix D.2 show the results of batch images recovery on the three image datasets. As
federated 2-LinConvNet has similar trends, we only show federated ℓ2-LogReg results for simplicity. Our
key observations are: First, similar to results on single image recovery, GGL performs the best; InvGrad
outperforms iDLG, which outperforms DLG both empirically and theoretically. Moreover, a larger E and N
incur larger upper bound error, while a larger T generates smaller upper bound error. Second, both empirical
errors and upper bound errors for batch images recovery are much larger than those for single image recovery.
This indicates that batch images recovery are more difficult than single image recovery, as validated in many
existing works such as (Geiping et al., 2020; Yin et al., 2021).

10
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Figure 7: Impact of #classes and batch size on MNIST.

5 Discussion

First term vs second term in the error bound 3: We calculate the first term and second term of the
error bound in our theorem in the default setting. The two terms in DLG, iDLG, InvGrad, and GGL on
MNIST are (30.48, 396.72), (25.25, 341.10), (22.06, 218.28), and (20.21, 29.13) respectively. The second term
dominates the error bound with significantly higher value.

Error bounds vs. degree of non-IID: The non-IID of data across clients can be controlled by the number
of classes per client—small number indicates a larger degree of non-IID. Here, we tested #classes=2, 4, 6, 8
on MNIST and the results are shown in Figure 7(a). We can see the bounded errors are relatively stable vs.
#classes on DLG, iDLG, and GGL, while InvGrad has a larger error as the #classes increases. The possible
reason is that DLG and iDLG are more stable than InvGrad, which involves a more complex optimization.

Error bounds vs. batch size: Our batch results use a batch size 20. Here, we also test batch size=10, 15,
25, 30 and results are in Figure 7(b). We see bounded errors become larger with larger batch size. This is
consistent with existing observations (Geiping et al., 2020) on empirical evaluations.

Error bounds on closed-form DRAs: Our theoretical results can be also applied in closed-form attacks.
Here, we choose the Robbing attack (Fowl et al., 2022) for evaluation and its details are in Appendix D.1.2.
The results for single image and batch images recovery on the three datasets and two FL algorithms are
shown in Figure 5 and 11. We can see Robbing obtains both small empirical errors and bounded errors
(which are even smaller than GGL). This is because its equation solving is suitable to linear layers, and hence
relatively accurate on the federated ℓ2-LogReg and federated 2-LinConvNet models.
Practical use of our error bound: Our error bound has several benefits in practice. First, it can provide
guidance or insights to attackers, e.g., the attack performance can be estimated with our error bound prior to
the attacks. Then, attackers can make better decisions on the attacks, e.g., try to improve the attack beyond
the worst-case bound (using different settings), choose to not perform the attack if the estimated error is too
high. Second, it can understand the least efforts to guide the defense design, e.g., when we pursue a minimum
obfuscation of local data/model (maintain high utility) and minimum defense based on worst-case attack
performance could be acceptable in practice.

Gap between theoretical bounds & empirical results: The bounds discussed in the paper represent the
worst-case errors, inherent to a theoretical analysis, while the empirical results shown is the average outcome
from our experiments. In Section 4.2.1, we point out that the correlation between the two is high, indicating
a strong consistency in the relationship between the theoretical bounds and the experimental results while
the gap persists. The bounds we have shown reliably rank attack effectiveness relative to one another, which
is their primary purpose. For example, the tighter bound for InvGrad over DLG aligns with its superior
empirical performance, validating the framework’s utility for comparative analysis.

Convex-loss assumption and practical relevance: Extending our analysis to non-convex losses (e.g.,
deep neural networks) is an important direction. Our choice to focus on convex losses was motivated by the
need for tractable theoretical guarantees, which provide foundational insights into attack effectiveness. While
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real-world FL often uses non-convex objectives, our framework establishes a baseline for understanding how
reconstruction errors propagate in a simpler setting. We acknowledge this limitation and emphasize it as a
critical area for future work.

6 Related Work

Existing DRAs to FL are roughly classified as optimization based and close-form based.

Optimization-based DRAs to FL: A series of works (Hitaj et al., 2017; Zhu et al., 2019; Wang et al.,
2019; Zhao et al., 2020; Wei et al., 2020; Yin et al., 2021; Jeon et al., 2021; Dang et al., 2021; Balunovic
et al., 2022; Sun et al., 2021; Fowl et al., 2022; Wen et al., 2022; Li et al., 2022; Wang et al., 2023) formulate
DRAs as the gradient matching problem, i.e., an optimization problem that minimizes the difference between
gradient from the raw data and that from the reconstructed counterpart. Some works found the gradient
itself includes insufficient information to well recover the data (Jeon et al., 2021; Zhu & Blaschko, 2021). For
example, Zhu & Blaschko (2021) show there exist pairs of data (called twin data) that visualize different,
but have the same gradient. To mitigate this issue, a few works propose to incorporate prior knowledge
(e.g., total variation (TV) regularization (Geiping et al., 2020; Yin et al., 2021), batch normalization (BN)
statistics (Yin et al., 2021)) into the training data, or introduce an auxiliary dataset to simulate the training
data distribution (Hitaj et al., 2017; Wang et al., 2019; Jeon et al., 2021) (e.g., via generative adversarial
networks (GANs) Goodfellow et al. (2014)). Though empirically effective, these methods are less practical or
data inefficient, e.g., TV is limited to natural images, BN statistics are often unavailable, and training an
extra model requires a large amount of data.

Closed-form DRAs to FL: A few recent works (Geiping et al., 2020; Zhu & Blaschko, 2021; Fowl et al.,
2022) derive closed-form solutions to reconstruct data, but they require the neural network used in the FL
algorithm be fully connected (Geiping et al., 2020), linear/ReLU Fowl et al. (2022), or convolutional (Zhu &
Blaschko, 2021).

We will design a framework to theoretically understand the DRA to FL in a general setting, and provide a
way to compare the effectiveness of existing DRAs.

7 Conclusion

Federated learning (FL) is vulnerable to Data Reconstruction Attacks where an adversary leaks all information
about the input data. Existing attacks mainly enhance the empirical attack performance, but lack a theoretical
understanding. We study DRAs to FL from a theoretical perspective. Our theoretical results provide a
unified way to compare existing attacks theoretically. We also validate our theoretical results via evaluations
on multiple datasets and baseline attacks. Future works include: 1) designing better Lipschitz estimation
algorithms to obtain tighter error bounds; 2) generalizing our theoretical results to non-convex losses; and
3) designing theoretically better DRAs (i.e., with smaller Lipschitz) as well as effective defenses against the
attacks (i.e., ensuring larger Lipschitz of their reconstruction function), inspired by our framework.
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Algorithm 4 Optimization-based data reconstruction attacks (e.g., DLG, iDLG, InvGrad, and GGL)
Input: Model parameters wt; true gradient g(x, y); η, λ; public generator G(·), transformation operator T .
Output: Reconstructed data x̂.

1: if DLG then
2: x′

0 ∼ N (0, 1), y′
0 ∼ N (0, 1)

3: else
4: if GGL then
5: z′

0 ∼ N (0, Iu);
6: else
7: x′

0 ∼ N (0, 1) // Initialize dummy input(s)
8: end if
9: Estimate y as ŷ via methods in Zhao et al. (2020) for a single input or Yin et al. (2021) for a batch inputs

10: end if
11: for i = 0; i < I; i + + do
12: if DLG then
13: g(x′

i, y′
i)← ∇wL(wt; (x′

i, y′
i))

14: GMLi ← ∥g(x, y)− g(x′
i, y′

i)∥2
2

15: x′
i+1 ← x′

i − η∇x′
i
GMLi

y′
i+1 ← y′

i − η∇y′
i
GMLi

16: else if iDLG then
17: g(x′

i, ŷ)← ∇wL(wt; (x′
i, ŷ))

18: GMLi ← ∥g(x, y)− g(x′
i, ŷ)∥2

2
19: x′

i+1 ← x′
i − η∇x′

i
GMLi

20: else if InvGrad then
21: g(x′

i, ŷ)← ∇wL(wt; (x′
i, ŷ))

22: GMLi ← 1− ⟨g(x,y),g(x′
i,ŷ)⟩

∥g(x,y)∥2·∥g(x′
i
,ŷ∥2

23: x′
i+1 ← x′

i − η∇x′
i

(
GMLi + λRegTV(x′

i)
)

24: else if GGL then
25: x′

i = G(z′
i)

26: g(x′
i, ŷ)← ∇wL(wt; (x′

i, ŷ))
27: GMLi ← ∥g(x, y)− T (g(x′

i, ŷ))∥2
2

28: Reg(G, z′
i) = (∥zi∥2

2 − k)2

29: z′
i+1 ← z′

i − η∇z′
i

(
GMLi + λReg(G, z′

i)
)

30: end if
31: x′

i+1 = max(x′
i+1, 0)

32: end for
Return x′

I or G(z′
I)

A Assumptions

To ensure FedAvg guarantees to converge to the global optimal, existing works have the following assumptions
on the local devices’ loss functions {Lk}.
Assumption A.1. {Lk}′s are L-smooth: Lk(v) ≤ Lk(w) + (v−w)T∇Lk(w) + L

2 ∥v−w∥2
2, ∀v, w.

Assumption A.2. {Lk}′s are µ-strongly convex: Lk(v) ≥ Lk(w) + (v−w)T∇Lk(w) + µ
2 ∥v−w∥2

2, ∀v, w.
Assumption A.3. Let ξk

t be sampled from the k-th device’s data uniformly at random. The variance of
stochastic gradients in each device is bounded: E

∥∥∇Lk(wk
t , ξk

t )−∇Lk(wk
t )

∥∥2 ≤ σ2
k, ∀k.

Assumption A.4. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E

∥∥∇Lk(wk
t , ξk

t )
∥∥2 ≤ G2, ∀k, t.

Note that Assumptions A.1 and A.2 are generic. Typical examples include regularized linear regression,
logistic regression, softmax classifier, and recent convex 2-layer ReLU networks (Pilanci & Ergen, 2020). For
instance, the original FL (McMahan et al., 2017) uses a 2-layer ReLU networks. Assumptions A.3 and A.4
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are used by the existing works (Stich, 2018; Stich et al., 2018; Yu et al., 2019; Li et al., 2020) to derive the
convergence condition of FedAvg to reach the global optimal. Note that the loss of deep neural networks
is often non-convex, i.e., do not satisfy Assumption A.2. We acknowledge it is important future work to
generalize our theoretical results to more challenging non-convex losses.

B Proof of Theorem 3.2 for Full Device Participation

Our proof is mainly inspired by the proofs in Stich (2018); Yu et al. (2019); Li et al. (2020).

Notations: Let N be the total number of user devices and K(≤ N) be the maximal number of devices that
participate in every communication round. Let T be the total number of every device’s SGDs, and E be
the number of each device’s local updates between two communication rounds. Thus T/E is the number of
communications, assuming E is dividable by T .

Let wk
t be the model parameter maintained in the k-th device at the t-th step. Let IE be the set of global

aggregation steps, i.e., IE = {nE | n = 1, 2, · · · }. If t + 1 ∈ IE , i.e., the devices communicate with the server
and the server performs the FedAvg aggregation on device models. Then the update of FedAvg with partial
devices active can be described as

vk
t+1 = wk

t − ηt∇Lk(wk
t , ξk

t ), (6)

wk
t+1 =

{
vk

t+1 if t + 1 /∈ IE ,∑N
k=1 puvk

t+1 if t + 1 ∈ IE .
(7)

Motivated by (Stich, 2018; Li et al., 2020), we define two virtual sequences vt =
∑N

k=1 pkvk
t and wt =∑N

k=1 pkwk
t . vt+1 results from an single step of SGD from wt. When t + 1 /∈ IE , both are inaccessible.

When t + 1 ∈ IE , we can only fetch wt+1. For convenience, we define gt =
∑N

k=1 pk∇Lk(wk
t ) and

gt =
∑N

k=1 pk∇Lk(wk
t , ξk

t ). Hence, vt+1 = wt − ηtgt and Egt = gt.

Before proving Theorem 3.2, we need below key lemmas that are from Stich (2018); Li et al. (2020).
Lemma B.1 (Results of one step SGD). Assume Assumptions A.1 and A.2 hold. If ηt ≤ 1

4L , we have

E ∥vt+1 −w⋆∥2 ≤ (1− ηtµ)E ∥wt −w⋆∥2 + η2
t E ∥gt − gt∥

2 + 6Lη2
t Γ + 2E

N∑
k=1

pk

∥∥wt −wt
k

∥∥2

where Γ = L∗ −
∑N

k=1 pkL⋆
k ≥ 0.

Proof sketch: Lemma B.1 is mainly from Lemma 1 in Li et al. (2020). The proof idea is to bound three
terms, i.e., the inner product ⟨wt − w∗,∇L(wt)⟩, the square norm ||∇L(wt)||2, and the inner product
⟨∇Lk(wt), wk

t −wt⟩, ∀k. Then, the left-hand term in Lemma B.1 can be rewritten in terms of the three terms
and be bounded by the right-hand four terms in Lemma B.1. Specifically, 1) It first bounds ⟨wt−w∗,∇L(wt)⟩)
using the strong convexity of the loss function (Assumption A.2); 2) It bounds ||∇L(wt)||2 using the smoothness
of the loss function (Assumption A.1); and 3) It bounds ⟨∇Lk(wt), wk

t −wt⟩, ∀k using the convexity of the
loss function (Assumption A.2).
Lemma B.2 (Bounding the variance). Assume Assumption A.3 holds. Then E ∥gt − gt∥

2 ≤
∑N

k=1 p2
uσ2

u.
Lemma B.3 (Bounding the divergence of {wk

t }). Assume Assumption A.4 holds, and ηt is non-increasing
and ηt ≤ 2ηt+E for all t ≥ 0. It follows that E

[∑N
k=1 pk ∥wt −wt

k∥
2
]
≤ 4η2

t (E − 1)2G2.

Now, we complete the proof of Theorem 3.2.

Proof. First, we observe that no matter whether t+1 ∈ IE or t+1 /∈ IE in Equation (7), we have wt+1 = vt+1.
Denote ∆t = E ∥wt −w⋆∥2. From Lemmas B.1 to B.3, we have

∆t+1 = E ∥wt+1 −w⋆∥2 = E ∥vt+1 −w⋆∥2 ≤ (1− ηtµ)∆t + η2
t B (8)
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where B =
∑N

k=1 p2
uσ2

u + 6LΓ + 8(E − 1)2G2.

For a diminishing stepsize, ηt = β
t+γ for some β > 1

µ and γ > 0 such that η1 ≤ min{ 1
µ , 1

4L} = 1
4L and

ηt ≤ 2ηt+E . We will prove ∆t ≤ v
γ+t where v = max

{
β2B

βµ−1 , (γ + 1)∆1

}
.

We prove it by induction. Firstly, the definition of v ensures that it holds for t = 1. Assume the conclusion
holds for some t, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2
t B

≤
(

1− βµ

t + γ

)
v

t + γ
+ β2B

(t + γ)2

= t + γ − 1
(t + γ)2 v +

[
β2B

(t + γ)2 −
βµ− 1
(t + γ)2 v

]
≤ v

t + γ + 1 .

By the L̄-Lipschitz continuous property of Rec(·),

∥Rec(wt)− Rec(w∗)∥ ≤ L̄ · ∥wt −w⋆∥ .

Then we have
E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 · E ∥wt −w⋆∥2 ≤ L̄2∆t ≤ L̄2 v

γ + t
.

Specifically, if we choose β = 2
µ , γ = max{8 L

µ , E} − 1, then ηt = 2
µ

1
γ+t . We also verify that the choice of ηt

satisfies ηt ≤ 2ηt+E for t ≥ 1. Then, we have

v = max
{

β2B

βµ− 1 , (γ + 1)∆1

}
≤ β2B

βµ− 1 + (γ + 1)∆1 ≤
4B

µ2 + (γ + 1)∆1.

Hence,

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 v

γ + t
≤ L̄2

γ + t

(4B

µ2 + (γ + 1)∆1

)
.

C Proofs of Theorem 3.3 for Partial Device Participation

Recall that wk
t is k-th device’s model at the t-th step, IE = {nE | n = 1, 2, · · · } is the set of global aggregation

steps; gt =
∑N

k=1 pk∇Lk(wk
t ) and gt =

∑N
k=1 pkLk(wk

t , ξk
t ), and vt+1 = wt − ηtgt and Egt = gt. We denote

by Ht the multiset selected which allows any element to appear more than once. Note that Ht is only well
defined for t ∈ IE . For convenience, we denote by St = HN(t,E) the most recent set of chosen devices where
N(t, E) = max{n|n ≤ t, n ∈ IE}.

In partial device participation, FedAvg first samples a random multiset St of devices and then only performs
updates on them. Directly analyzing on the St is compliated. Motivated by Li et al. (2020), we can use a
thought trick to circumvent this difficulty. Specifically, we assume that FedAvg always activates all devices at
the beginning of each round and uses the models maintained in only a few sampled devices to produce the
next-round model. It is clear that this updating scheme is equivalent to that in the partial device participation.
Then the update of FedAvg with partial devices activated can be described as:

vk
t+1 = wk

t − ηt∇Lk(wk
t , ξk

t ), (9)

wk
t+1 =

{
vk

t+1 if t + 1 /∈ IE ,
samples St+1 and average {vk

t+1}k∈St+1 if t + 1 ∈ IE .
(10)
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Note that in this case, there are two sources of randomness: stochastic gradient and random sampling of
devices. The analysis for Theorem 3.2 in Appendix B only involves the former. To distinguish with it, we use
an extra notation ESt(·) to consider the latter randomness.

First, based on Li et al. (2020), we have the following two lemmas on unbiasedness and bounded variance.
Lemma C.1 shows the scheme is unbiased, while Lemma C.2 shows the expected difference between vt+1 and
wt+1 is bounded.
Lemma C.1 (Unbiased sampling scheme). If t + 1 ∈ IE, we have ESt

(wt+1) = vt+1.

Lemma C.2 (Bounding the variance of wt). For t + 1 ∈ I, assume that ηt is non-increasing and ηt ≤ 2ηt+E

for all t ≥ 0. Then the expected difference between vt+1 and wt+1 is bounded by

ESt
∥vt+1 −wt+1∥2 ≤ 4

K
η2

t E2G2.

Now, we complete the proof of Theorem 3.3.

Proof. Note that

∥wt+1 −w∗∥2 = ∥wt+1 − vt+1 + vt+1 −w∗∥2

= ∥wt+1 − vt+1∥2︸ ︷︷ ︸
A1

+ ∥vt+1 −w∗∥2︸ ︷︷ ︸
A2

+ 2⟨wt+1 − vt+1, vt+1 −w∗⟩︸ ︷︷ ︸
A3

.

When expectation is taken over St+1, the last term (A3) vanishes due to the unbiasedness of wt+1.

If t + 1 /∈ IE , A1 vanishes since wt+1 = vt+1. We use Lemma C.2 to bound A2. Then it follows that

E ∥wt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w⋆∥2 + η2
t B.

If t + 1 ∈ IE , we additionally use Lemma C.2 to bound A1. Then

E ∥wt+1 −w∗∥2 = E ∥wt+1 − vt+1∥2 + E ∥vt+1 −w∗∥2

≤ (1− ηtµ)E ∥wt −w⋆∥2 + η2
t B + 4

K
η2

t E2G2

= (1− ηtµ)E ∥wt −w⋆∥2 + η2
t (B + C), (11)

where C = 4
K E2G2 is the upper bound of 1

η2
t
ESt
∥vt+1 −wt+1∥2.

We observe that the only difference between equation 11 and equation 8 is the additional C. Thus we can use
the same argument there to prove the theorems here. Specifically, for a diminishing stepsize, ηt = β

t+γ for some
β > 1

µ and γ > 0 such that η1 ≤ min{ 1
µ , 1

4L} = 1
4L and ηt ≤ 2ηt+E , we can prove E ∥wt+1 −w∗∥2 ≤ v

γ+t

where v = max
{

β2(B+C)
βµ−1 , (γ + 1)∥w1 −w∗∥2

}
.

Then by the L̄-Lipschitz continuous property of Rec(·),

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 · E ∥wt −w⋆∥2 ≤ L̄2∆t ≤ L̄2 v

γ + t
.

Specifically, if we choose β = 2
µ , γ = max{8 L

µ , E} − 1,

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 v

γ + t
≤ L̄2

γ + t

(4(B + C)
µ2 + (γ + 1)∥w1 −w∗∥2

)
.
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D Experiments

D.1 More Experimental Setup

D.1.1 Details about the FL algorithms and unrolled feed-forward network

We first show how to compute calculate L, µ, σu, and G in Assumptions 1-4 on federated ℓ2-regularized
logistic regression (ℓ2-LogReg) and federated 2-layer linear convolutional network (2-LinConvNet); Then we
show how to compute the Lipschitz LR on each data reconstruction attack.

Federated ℓ2-LogReg: Each device k’s local objective is Lk(w) = 1
n̄

∑n̄
j=1 log(1+exp(−yj⟨w, xk

j ⟩))+γ∥w∥2.
In our results, we simply set γ = 0.1 for brevity.

• Compute L: first, all Lk’s are 1
4 ( 1

n̄

∑
j ∥xk

j ∥2)-smooth (Papailiopoulos, 2018); then L =
maxk∈[N ]

1
4 ( 1

n̄

∑
j ∥xk

j ∥2) + 2γ;

• Compute µ: all Lk’s are γ-strongly convex for the γ regularized ℓ2 logistic regression (Papailiopoulos,
2018) and µ = γ.

• Compute σk and G: we first traverse all training data ξk
t in the k-th device in any t-th round and then

use them to calculate the maximum square norm differences
∥∥∇Lk(wk

t , ξk
t )−∇Lk(wk

t )
∥∥2. Similarly, G

can be calculated as the maximum value of the expected square norm
∥∥∇Lk(wk

t , ξk
t )

∥∥2 among all devices
{k} and rounds {t}.

Federated 2-LinConvNet (Pilanci & Ergen, 2020). Let a two-layer network f : Rd → R with m neurons
be: f(x) =

∑m
j=1 ϕ(xT uj)αj , where uj ∈ Rd and αj ∈ R are the weights for hidden and output layers, and ϕ(·)

is an activation function. Two-layer convolutional networks with U filters can be described by patch matrices
(e.g., images) Xu, u = 1, · · · , U . For flattened activations, we have f(X1, · · ·Xu) =

∑U
u=1

∑m
j=1 ϕ(Xuuj)αj .

We consider the 2-layer linear convolutional networks and its non-convex loss is defined as:

min
{αj ,uj}m

j=1

L({αj , uj}) = 1
2∥

U∑
u=1

m∑
j=1

Xuujαju − y∥2
2. (12)

Pilanci & Ergen (2020) show that the above non-convex problem can be transferred to the below convex
optimization problem via its duality. and the two problems have the identical optimal values:

min
{wu∈Rd}U

u=1

L({wu}) = 1
2∥

U∑
u=1

Xuwu − y∥2
2. (13)

We run federated learning with convex 2-layer linear convolutional network, where each device trains the
local loss Lk({wu}U

u=1) and it can converge to the optimal model w∗ = {w∗
u}.

• Compute L: Let w = {wu}U
u=1. For each client k, we require its local loss Lk should satisfy

∥▽Lk(w)−▽Lk(v)∥2 ≤ Lk ∥w− v∥2 for any w, v; With Equation 13, we have∥∥∥∥∥
U∑

u=1
(Xk

u)T Xk
u(w− v)

∥∥∥∥∥
2

≤ Lk ∥w− v∥2

; Then we have the smoothness constant Lk to be the maximum eigenvalue of
∑U

u=1(Xk
u)T Xk

u, which is
∥

∑U
u=1(Xk

u)T Xk
u∥2; Hence, L = maxk ∥

∑U
u=1(Xk

u)T Xk
u∥2.

• Compute µ: Similar as computing L, µ is the min eigenvalue of
∑U

u=1(Xk
u)T Xk

u for all k, that is,
µ = mink ∥

∑U
u=1(Xk

u)T Xk
u∥2.
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Table 1: Best empirical errors (log scale) of the baseline attacks on the three datasets in the default setting.
Data/Algorithm Fed. ℓ2-LogReg: single Fed. 2-LinConvNet: single Fed. ℓ2-LogReg: batch

DLG iDGL InvGrad GGL DLG iDGL InvGrad GGL DLG iDGL InvGrad GGL
MNIST 3.48 3.38 3.09 3.14 3.69 3.50 3.42 3.29 6.38 6.28 6.08 4.94

FMNIST 3.54 3.42 3.35 3.25 3.84 3.58 3.52 3.13 6.44 6.35 6.29 4.98
CIFAR10 4.32 4.13 4.13 3.92 4.52 3.37 4.33 3.70 6.46 6.45 6.63 5.31

• Compute σk and G: Similar computation as in ℓ2-regularized logistic regression.

Unrolled feed-forward network and its training and performance. In our experiments, we set the
number of layers to be 20 in the unrolled feed-forward network for the three datasets. We use 1,000 data
samples and their intermediate reconstructions to train the network. To reduce overfitting, we use the greedy
layer-wise training strategy. For instance, the average MSE (between the input and output of the unrolled
network) of DLG, iDLG, InvGrad, and GGL on MNIST is 1.22, 1.01, 0.76, and 0.04, respectively—indicating
that the training performance is promising. After training the unrolled network, we use the AutoLip algorithm
to calculate the Lipschitz LR.

D.1.2 Details about Data Reconstruction Attacks

GGL (Li et al., 2022): GGL considers the scenario where clients realize the server will infer their private
data and they hence perturb their local models before sharing them with the server as a defense. To handle
noisy models, GGL solves an optimization problem similar to InvGrad, but uses a pretrained generator as a
regularization. The generator is trained on the entire MNIST dataset and can calibrate the reconstructed
noisy image to be within the image manifold. Specifically, given a well-trained generator G(·) on public
datasets and assume the label y is inferred by iGLD, GGL targets the following optimization problem:

z∗ = arg min
z∈Rk

GML(g(x, y), T (g(G(z), y))) + λReg(G; z), (14)

where z is the latent space of the generative model, T is a lossy transformation (e.g., compression or
sparsification) acting as a defense, and Reg(G; z) is a regularization term that penalizes the latent z if it
deviates from the prior distribution. Once the optimal z∗ is obtained, the image can be reconstructed as
G(z∗) and should well align the natural image.

In the experiments, we use a public pretrained GAN generator for MNIST, Fashion-MNIST, and CIFAR.
We adopt gradient clipping as the defense strategy T performed by the clients. Specifically, T (g, S) =
g/ max(1, ∥g∥2/S). Note that since G(·) is trained on the whole image dataset, it produces stable reconstruction
during the optimization.

Robbing (Fowl et al., 2022): Robbing approximately reconstructs the data via solving an equation without
any iterative optimization. Assume a batch of data x1, x2, · · ·xn with unique labels y1, y2, · · ·yn in the form
of one-hot encoding. Let ⊘ be element-wise division. Then, Robbing observes that each row i in ∂Lt

∂yt
, i.e.,

∂Lt

∂yi
t
, actually recovers

xt = ∂Lt

∂yi
t

xt ⊘
∂Lt

∂yi
t

.

In other others, Robbing directly maps the model to the reconstructed data. Hence, in our experiment, the
unrolled feed-forward neural network reduces to 1-layer ReLU network. We then estimate Lipschitz upper
bound on this network.

D.2 More Experimental Results

Table 1 show the best one-snapshot empirical results of the four attacks on the two FL algorithms in the
default setting.

Figures 8-10 show the batch images recovery results by the four considered DRAs on federated ℓ2-LogReg.
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(a) Impact of E (b) Impact of N (c) Impact of T

Figure 8: Results of federated ℓ2-LogReg on MNIST—batch images recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 9: Results of federated ℓ2-LogReg on FMNIST—batch images recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 10: Results of federated ℓ2-LogReg on CIFAR10—batch images recovery.

Figure 11 shows the batch image recovery results by Robbing on federated 2-LinConvNet.
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(a) Impact of E (b) Impact of N (c) Impact of T

Figure 11: Results of federated ℓ2-LogReg on Robbing—batch images recovery.
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