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Abstract

Identifying recurring patterns and rare events in signals is a fundamental chal-
lenge in many fields including healthcare and biomedical sciences. Convolutional
Dictionary Learning (CDL) provides a framework for modeling local structures,
but its use in rare-event detection is unexplored. CDL also faces two challenges:
high computational cost and sensitivity to outliers. We introduce RoseCDL, a scal-
able, robust CDL for unsupervised rare-event detection in long signals. RoseCDL
couples stochastic windowing for efficient training with inline outlier detection
to improve robustness. This makes CDL a practical tool for event discovery in
real-world signals, extending its role beyond compression or denoising.

1 Introduction

Identifying recurring patterns and rare events is central to many domains, from ECG analysis [1] to
EEG [2] and microscopy [3]. While deep supervised pipelines [4—6] are effective, their reliance on
large annotated datasets is prohibitive when events are rare or ambiguous, calling for unsupervised
alternatives. Convolutional Dictionary Learning (CDL; [7]) provides a powerful unsupervised
framework by representing signals as convolutions of learned atoms with sparse activations, and
has seen use in neuroscience, audio, and imaging [2, 8]. Yet CDL remains limited by (i) sensitivity
to outliers, (ii) poor scalability, and (iii) the inability to model rare events, as these vanish in the
reconstruction objective.

We address these challenges with RObust and ScalablE CDL (RoseCDL). RoseCDL couples stochastic
windowing for scalable training with inline outlier detection via reconstruction errors. The method
yields a dictionary that captures common structure while discarding anomalies, and an outlier mask
that directly serves as a rare-event detection map. We validate RoseCDL on synthetic and real-
world datasets, demonstrating scalability, robustness, and unsupervised rare-event discovery in noisy,
high-dimensional settings.
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Algorithm 1 CDL with stochastic windowing.

input X, Niter, Nw, Nrista
Initialize D(©)
for 0 < i < Njter — 1 do
Sample Ny windows in the dataset: (X )we[1,n,]
for 1 < w < Ny do
Approximate sparse code : ZNmsn ~ 7* (DO X))
Compute an outlier mask (cf. Sec. 2)
Compute the loss F' and its gradient V p I’ outside the outlier mask
end for
Best step size a; with SLS : D0+ « DO — o,V S F, (DW, ZNesm; X))
end for
Output D(Niter)

2 Finding common and rare patterns in signals: the RoseCDL algorithm

Let x € R” be a univariate signal of length 7". CDL seeks a dictionary D = (dy)r_, € RE*L of K
patterns of length L < T and corresponding activations Z = (z;)r_, € RE*(T=L+1) guch that

K
&:D*Z:de*zk,
k=1

where * denotes convolution. The standard CDL optimization is

min F(D,Z;x) = Y[|x =D« Z||5+ A|Z|1, st ||dgll2 <1, Vk. (1)

However, in large datasets the aim is not to reconstruct individual training signals but to recover
patterns representative of the population. This leads to

min Ex mZinF(D,Z;x)} L st [ldylle < 1, VE, @)

which shifts CDL toward characterizing distributions of local patterns [9—11].

Classical CDL solvers alternate between a sparse coding step (e.g., FISTA) and a dictionary update.
Their primary bottleneck is the need to process the entire signal at each iteration, rendering them
impractical for large datasets. While online methods [12] offer an improvement, they still rely on
full-signal coding and its high memory cost. This motivates our move to a stochastic, localized
approximation, which is crucial for achieving both scalability and robustness to outliers.

Stochastic windowing Due to the convolutional structure of CDL, distant points in the signal are
only weakly dependent [13]. In practice, the sparse code at time ¢ is rarely influenced by entries at
t + s once s > L, where L is the dictionary length. Thus, the expected loss (2) can be approximated
by restricting the optimization to windows of size Wiy:

minE, mZinF(D,Z;xT)}, st ||dpl2 <1, VE € [1, K], 3)

where windows x start at 7 € [1,T — Wyin + 1], with L < Wy, < T'. Although windowing
introduces border effects and approximate sparse codes, these errors vanish when activations are
sparse and W, is large. Using overlapping windows further mitigates residual boundary artifacts.

To minimize (3), we propose RoseCDL, a stochastic gradient descent algorithm designed to learn the
distribution of patches. At each outer iteration, we sample Ny, overlapping windows (X )1<w<Ny
uniformly to reduce border bias. For each window, we compute an approximate sparse code Z;
by running Ngista iterations of FISTA, yielding Z Neista (D; x,,). Following [14, 15], precise sparse
codes are unnecessary for updating D, so these approximations suffice. The dictionary is updated
using a single stochastic gradient step. To stabilize training, we employ the Stochastic Line Search
(SLS) algorithm [16] to adaptively select the learning rate. The full procedure is outlined in Alg. 1.
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Figure 1: RoseCDL achieves orders-of-magnitude faster convergence without sacrificing solution
quality. (Left, Center) Test loss versus runtime on large 1D and 2D signals shows RoseCDL’s
superior convergence speed. (Right) The final dictionary recovery score confirms solution quality is
competitive with far slower methods.

Inline outlier detection RoseCDL’s second component is an inline outlier detection module. We
model a signal as

x=d, x2z, +dp *x2p + 1, “

where d,, is a common pattern, d; a rare one, and n an artifact. Classical CDL often fails here, as both
high-variance artifacts (n) and rare patterns (d;) prevent stable recovery of d,, while preprocessing
is unreliable at scale [2]. Our key insight is that reconstruction error provides a natural discriminator:
patches containing the frequent pattern d, will be well-reconstructed, whereas those with anomalies
(n) or rare events (d) will yield systematically higher errors. To summarize, the distribution of patch
reconstruction errors F'(D, Z;x,) is expected to form three modes: (i) low errors from chunks of
X, = dg * Zg, (i1) moderately higher errors from x; = dj, * 2, and (iii) large errors from artifacts n.
Thus, reconstruction error discriminates informative from corrupted patches.

With trimmed loss, RoseCDL is more robust to outliers than classical CDL. With non-overlapping
activations of two patterns corrupted by Gaussian noise, classical CDL keeps the frequent pattern d,,
as a fixed point only when the inter-pattern correlation ¢ does not exceed the sparsity threshold .
RoseCDL also retains the rare pattern d, whenever either ¢ < A or the trimming step discards more
windows than the pattern’s activation rate p. The full proposition and proof are given in App. A.

Threshold selection. A key remaining design choice is the statistic used for the trimming threshold
(. We tested standard thresholding strategies from outlier detection (quantile, z-score, and MAD),
and show that the MAD-based criterion provides the most reliable separation in our setting; we
therefore adopt it throughout.

Role of the outlier mask for rare-event detection. A key feature of RoseCDL is its inline outlier
detection module, which produces an outlier mask during training. This mask serves two purposes: (i)
excluding corrupted patches from the loss, thereby improving dictionary robustness, and (ii) enabling
unsupervised rare-event detection by interpreting the mask as a detection map.

3 Numerical experiments

RoseCDL! achieves scalable, robust, and stable performance on both synthetic and real-world
datasets. The method is implemented in PyTorch [17], and our analysis highlights its computational
efficiency and consistent recovery of meaningful patterns under varying conditions. For synthetic
data, we evaluate performance using the convolutional dictionary recovery metric from [13], detailed
in App. C. This metric computes the best assignment between the true and estimated dictionaries,
with similarity measured via convolutional cosine similarity to account for shift invariance.

On RoseCDL scalability. In Fig. 1, we compare RoseCDL against three CDL baselines:
AlphaCsSC [2], Sporco [18], and DeepCDL (an unrolled variant of RoseCDL following [15]). Unlike

'Code is available at : https://github.com/tomMoral/RoseCDL



DeepCDL, which requires backpropagating through sparse codes, RoseCDL leverages alternating
minimization, decoupling updates and reducing overhead.

We evaluate runtime and optimization cost on two large-scale datasets: (i) 1D multivariate signals of
length 50,000 with two channels (App. B), and (ii) 2D semi-synthetic images of 2000 x 2000 pixels.
Cost is measured as the objective F'(D, Z*(D); x) on a test set.

optimizer Adam SLS

window size 10L 20L 50L 100L 10L 20L 50L 100L

validationloss 3.0% 3.8% 2.7% 2.7% -02% —-02% —-02% —0.4%
runtime 15.4% 12.3% 12.5% 12.7% 21.7%  21.2%  16.3%  17.6%

Table 1: Comparison of Adam and SLS with different window sizes.

Results highlight RoseCDL’s scalability. GPU-optimized training, £ftconv-based convolutions and
alternate minimization yield substantial speedups. To further examine scaling, we vary window sizes
for 1D signals with 7' = 100,000 and A = 0.8, using both Adam and SLS while fixing (window X
batch) for full GPU utilization. As reported in Tab. 1, RoseCDL achieves validation losses within
4% of A1phaCSC across settings, yet runs in only 12-22% of its time (roughly 5x faster). For signal
length scalability, we evaluate performance on signals ranging from 10k to 1M time samples. As
detailed in Tab. 2, RoseCDL demonstrates sublinear scaling, while A1phaCSC fails beyond 100k
samples. This superior scalability enables RoseCDL to process signals substantially larger than
existing full-signal sparse coding methods. It is important to note that A1phaCSC does not support
two-dimensional data and was excluded from image-based experiments.

T 10k 30k 100k 300k 1M

Runtime RoseCDL (s) 152 16.4 326  68.0 202.8
Runtime AlphaCSC (s) 67.5 102.8 1985 N/A N/A

Table 2: Runtime comparison between RoseCDL and A1phaCSC for varying signal sizes 7.

RoseCDL on real-world data We evaluated No detection ~ z-score (2=1)
RoseCDL on real-world and benchmark datasets. — 051 1

We used the Physionet Apnea-ECG dataset [19] g 0.0 LA WV | \W/\,
without preprocessing, ensuring evaluation directly b3

on raw signals and multiple datasets from the TSB- 03 ' i

UAD benchmark [20]. N 054 ]

On Apnea-ECG, we trained a three-atom dictionary 5 0.0 —NWA/*\,-— _‘M,M
from a 10 min ECG segment with outlier blocks and < s |

tested on clean segments. Without outlier detection, ’ ' '

the model converges to noise-like atoms. In con- M 05 1

trast, RoseCDL reliably filters high-variance blocks, € ol |

enabling recovery of characteristic ECG patterns. b iy u w

On the TSB-UAD benchmark, we compared 0'50-0 05 0.0 05
RoseCDL with Matrix Profile (MP), Autoencoder Time (s.) Time (s.)

(AE), and One-Class SVM (OC-SVM). As reported  Fjgure 2: Learned atoms with and without out-
in Tab. 3, RoseCDL consistently matches or out-  Jiers detection method, on 10 bad trials of sub-
performs these methods in AUC while achieving ject a02 of dataset Physionet Apnea-ECG.
significantly lower runtimes.

These results demonstrate that RoseCDL robustly extracts meaningful patterns from corrupted,
unprocessed signals across diverse datasets.

4 Conclusion

We introduced RoseCDL, a scalable and robust framework for Convolutional Dictionary Learning
(CDL) enabling unsupervised rare-event detection. By modeling local patch distributions, RoseCDL



RoseCDL AE MP OC-SVM
Simulated 0.97 0.94 091 0.61

MITDB 0.81 0.59 0.76 0.66
MGAB 0.58 061 091 0.52
ECG 0.92 091 047 0.92

Table 3: AUC ROC scores of different anomaly detection methods across datasets.

couples stochastic windowing with inline outlier detection, yielding a simple pipeline that learns
common patterns and recovers rare ones from residuals. This scalable, interpretable approach extends
CDL to noisy real-world data, opening new directions for large empirical studies and scientific
applications.
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A Analytical study

Proposition A.1 (Stability of the common pattern). Let X be a population of signals composed of
two patterns d, and dy, with non-overlapping activations, corrupted by additive Gaussian noise
€ ~ N(0,01). Define c = d] d,, and let p be the proportion of d, activations. In the noiseless case:

i. dg is a fixed point of classical CDL with K = 1ifc < \

ii. dy is a fixed point of RoseCDL with K = 1 either when ¢ < X\ or when the trimming
threshold discards a fraction of windows greater than p.

Proof. We consider a dictionary D € R*% with a single atom d. As we consider signals composed
of patterns with no overlap, we can separate each segment and we have a population of signals
X = zd; +e, withz € R, e ~ N(0,0%I) and d; = d, with probability 1 — p and d;, with probability
p, with ||dg|l2 = ||ds||]2 = 1. We consider all atoms d,d,,d; to be unit norm. Wlog, we can
consider z = 1, as this amounts to rescaling the value of \,,,,, and we consider that ¢, = d'd, and
ey, =dTdy are positive, as we can consider —d otherwise. We also consider that the noise level is
small enough such that 0% < ¢;.

This model is a simplified model in which we have a population of signals where we want to identify
the pattern of an event d, from the pattern of a rare event dy.

In this setting, if we further have that the auto-correlation of d with d, and d; is maximal when they
are aligned, then the sparse coding of a signal X can be computed with the following formula:

0 if cteld<A
(X,d) = -
Z(X.d) {cher/\ otherwise )
with ¢ = d T d;, which has value ¢, with probability 1 — p and ¢, otherwise.
We can compute the loss value for this z* (X, d) for X where z* is non-zero:
* 1 * *
F(d, 2" X) = 51X = 2"d]3 + All=" [y (©)
1
=3 (IX[I3 = 2(c+e"d=A)(c+e'd)+](c+e'd—AN)d|3) + Ac+e'd— )|
(N
1
=3 (IX)13—2(c+e"d=N)(c+e'd)+(c+e'd— N> +2\(c+e'd—N))
®)
1
=3 (IX[I3 =2(c+e"d=A)(c+e'd—A) + (c+e'd—N)?) )
1
=5 (IX]5 = (c+e"d = 1)?) (10)
1
= 5 (dill3 = (e = ) + [lell3 = (T d)* = 2(1 = (c = N))ed) (11)
(12)
Taking the expectation over the noise yields:
1
E[F(d, 2" X)) =5 (1= (¢ =2+ (L - 1)o?) (13)

For ¢ between A and 1, this function is decreasing in ¢, meaning that for two samples constructed
with d,, and dy, if the correlation ¢g = d'd, is larger than the correlation ¢, = d"d,, then the
reconstruction loss for sample 0 is smaller in expectation than the reconstruction loss for a sample 1.

We can also compute the gradient of this function with respect to d. Note that with the KKT condition
defining z*, we have that the V, F'(d, zx; X)) = 0, and thus we do not need to compute the Jacobian
of z* when computing the derivative of F' with respect to d. The gradient reads:

VaF(d,z"; X) = 2" (2"d — X) (14)
=(2*)%d - 2*X (15)
=(c+e'd=N2 d—(c+e'd—N)(d +e) (16)
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Figure B.3: True dictionary in experiments on synthetic data.

Taking the expectation over the noise yields:

Ee [VaF(d,z*; X)) = ((c = \)? + 0°)d — (¢ — N)d; + Ec [¢ ' de] (17)
o2d
= ((c=N)?*+20%)d — (c — \)d; (18)

This yields
E[VaF(d,z5X)] = (1 = p)(ca — A)? + plco — A)? +20°) d— (1—p)(ca — A)dg — p(cp, — A)dy,

In the noiseless case, if d = d,, and A\ < ¢, = (db)Tda < 1, with the classical algorithm, the
expected gradient reads

Ex [VaF(da, 2" X)) = —(1 = PAQL = Ny + p((ca = N2dy = (= Ndp)  (19)

= (plca =N = (1= p)A(1 = X)) da — p(cp — N)ds (20)
This gradient is not colinear with d,, showing that d, is not a fixed point of the projected gradient
descent algorithm in this context. Even in a noiseless and very simple setting, the d, is not a solution
of the Classical CDL algorithm.

In contrast, when using the least trimmed square procedure with a trimming threshold rejecting a
proportion p of the samples, we can show that d,, is a fixed point in the noiseless setting. As seen in
(13), the loss for samples X associated with d; is smaller than the loss for samples associated with
d,, and therefore rejecting p samples from the gradient computation leads to:

Ex [VaF(dg, 2" X)] = —(1—p)A(1 — N)d, (21)
as the gradient is colinear with d, thus d, is a fixed point of the projected gradient descent and of
the learning procedure. O

B Data simulation

The synthetic multivariate 1D signals X € RP*7 used in Sect. 3 are generated from a dictionary

D e REXPXL 4 sparse activation vector Z € RE*(T=L+1) "and a random Gaussian noise & ~
N (0,0%) as X = D « Z + ¢. In this definition,

¢ P is the number of channels,

T is the length of the signal,

¢ K is the number of atoms,

* L is the length of the atoms.

In the experiments conducted in Sect. 3, we generated signals of length 7' = 50 000 with P = 2
channels from dictionaries with K = 2 atoms of length L. = 64. The atoms were generated from
sine and gaussian waveforms, as illustrated in Fig. B.3. The activations Z were randomly generated
sparse Dirac combs with sparsity 0.4 % and the noise level was set to o = 0.1.



C Dictionary evaluation

In our methodology, we evaluate the effectiveness of a learned dictionary, denoted as D c RE'xP XL/,
by comparing it against a set of true dictionary patterns, represented as D € RX*F*Z and computing
a “recovery score”, using the convolutional cosine similarity following optimal assignment, as defined
by [13]. The learned dictionary and the true patterns are structured as three-dimensional arrays,
where dimensions correspond to the number of atoms, channels, and atoms’ duration. The learned
dictionary may differ from the true dictionary in terms of the number of atoms and the length of time
atoms, typically featuring more atoms and extended durations.

The evaluation process involves a computational step known as multi-channel correlation. In this
step, each atom of the learned dictionary is systematically compared with each pattern in the true
dictionary. This comparison is carried out channel by channel, aggregating the results to capture the
overall similarity between the dictionary atom and the pattern.

After performing these comparisons for all combinations of atoms and patterns, we create a matrix
that represents the correlation strengths between each pair. To objectively assess the quality of the
learned dictionary, we use an optimization technique called the Hungarian algorithm. This algorithm
finds the best possible “matching” between the learned dictionary atoms and the true patterns, aiming
to maximize the overall correlation.

The final score, which quantifies the performance of the learned dictionary, is derived by averaging the
values of these optimal matchings. This score is scaled between 0 and 1, where 1 represents the best
possible performance. A higher score indicates that the learned dictionary more accurately represents
the true dictionary patterns, providing a measure of its quality and effectiveness in capturing the
essential features of the data.

Mathematically, the recovery score between the dictionaries D and D can be expressed as follow:

K
1
score = e Z Cij=(i) (22)
i=1
where j*(i),i = 1,..., K denote the results of the linear sum assignment problem [21]° on correla-

tion matrix C' := Corr (D,ﬁ) e REXK' with Vi € [1,K],Vj € [1, K],
Ci,j = max 1COI']1'2D <D“ﬁ]> [l] ER , (23)

I=1,...,L+L'—

where D; € RP*E and ZA)J» € RP*L', The multivariate “2D” correlation between the two matrices
D and D is defined as follow:

Corryp (D, 13) = i Corrip (dmcip) € RLHL/-1 , 24)
p=1

where d, € R and cZ,, € RY. The 1D “full” correlation between the two vectors d and d is defined
as follow, Vt € [1,L+ L' —1]:

L
Corrip (d, d) [f] = (d* d) t—T+1 =Y dlldi —t+T]eR | (25)
=1
where T := max (L, L’).

D Experiments setup

2We use SciPy’s implementation.
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