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ABSTRACT

Large Language Models (LLMs) reasoning abilities are increasingly being
applied to classical board and card games, but the dominant approach—
involving prompting for direct move generation—has significant drawbacks.
It relies on the model’s implicit fragile pattern-matching capabilities, lead-
ing to frequent illegal moves and strategically shallow play. Here we intro-
duce an alternative approach: We use the LLM to translate natural lan-
guage rules and game trajectories into a formal, executable world model rep-
resented as Python code. This generated model—comprising functions for
state transition, legal move enumeration, and termination checks—serves
as a verifiable simulation engine for high-performance planning algorithms
like Monte Carlo tree search (MCTS). In addition, we prompt the LLM to
generate heuristic value functions (to make MCTS more efficient), and infer-
ence functions (to estimate hidden states in imperfect information games).
Our method offers three distinct advantages compared to directly using the
LLM as a policy: (1) Verifiability: The generated CWM serves as a formal
specification of the game’s rules, allowing planners to algorithmically enu-
merate valid actions and avoid illegal moves, contingent on the correctness
of the synthesized model; (2) Strategic Depth: We combine LLM seman-
tic understanding with the deep search power of classical planners; and
(3) Generalization: We direct the LLM to focus on the meta-task of data-
to-code translation, enabling it to adapt to new games more easily. We
evaluate our agent on 10 different games, of which 4 are novel and created
for this paper. 5 of the games are fully observed (perfect information), and
5 are partially observed (imperfect information). We find that our method
outperforms or matches Gemini 2.5 Pro in 9 out of the 10 considered games.

1 INTRODUCTION

Large Language Models (LLMs) have shown impressive abilities at solving various reasoning
tasks, and recently have been applied as “agents” which can play classical (often multi-
player) games, like Chess, Go, and even complex imperfect information games like Poker
and Bridge. The standard approach is to treat the LLM as a policy, by asking it to pick
a move at each step using a prompting strategy based on the trajectory of observations
and actions seen so far, plus optional text meta data about the game. This method treats
the LLM as an end-to-end “intuitive player”, leveraging its vast training data to recognize
patterns and select moves that seem promising. However, strategic mastery often requires
deep multi-step lookahead, characteristic of a “System 2” deliberation (Kahnemanl 2003).
While strong play can be achieved through training specialist models (Ruoss et al.| [2024
Schultz et all |2025), direct play from generalist LLMs often lacks deep tactical foresight,
despite recent advances in “thinking” (Liao et al., |2025|), as we show empirically in this
paper. In addition, the LLM as policy approach does not work very well on novel games
that are not part of the LLM’s training set, as we will also show.

We propose to use LLMs in a different way, namely as induction engines that can leverage
their prior knowledge to map a small amount of observed trajectory (game play) data, plus
a textual game description, into plausible world models, represented as Python code, using
iterative code refinement methods as in [Tang et al.| (2024a)). We call the result of this pro-
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cess a “Code World Model” (CWM). In the context of game playing, a CWM consists of a
definition of the (possibly latent) state, a function that specifies which moves are legal at
each step, a state transition function, an observation function (for latent states), a reward
function, and a function that checks for termination. Furthermore, for the challenging case
of partially observable games, we introduce a novel paradigm that effectively tasks the LLM
with synthesizing a regularized autoencoder: an inference function (the encoder) maps obser-
vations to plausible latent histories, and the CWM (the decoder) reconstructs observations
from them, with the game’s rules and API serving as a strong structural regularizer.

Although there is prior work that uses LLMs to learn symbolic world models (see Sec. ,
and then leverage them for planning, we differ in three main ways. First, we handle the
case of partially observed and stochastic worlds (such as Poker), whereas all prior work (to
the best of our knowledge) either assumes fully observed and deterministic environments,
or (in the case of |Curtis et al.| (2025))) assumes post-hoc observability; both cases make
model learning much easier. Second, in addition to learning a CWM, we ask the LLM
to generate heuristic value functions, which significantly improves the performance of our
search-based policies, such as MCTS and Information Set MCTS (Cowling et al., 2012]).
Third, we demonstrate that our approach outperforms a state-of-the-art “thinking” LLM
across various two-player games, including novel (or “OOD”) ones which we create, to avoid
contamination issues with the training set of the LLM.

2 BACKGROUND

Interactions in multiplayer games can be described using the formalism of extensive-form
games (Kuhn, [1953; [Shoham & Leyton-Brown, 2009; |Albrecht et al., [2024; Murphy), [2025]):
there is a set N' = {1,2,--- ,n} of n players that take discrete actions a € A. Sequences
of actions are called histories h € H; all games start at the initial empty history, and
end at terminal histories Z C #H. There is a special player called chance (also sometimes
called nature), ¢, which plays with a known, fixed (stochastic) policy—the chance outcome
distribution—e.g., representing dice rolls and card draws. Due to chance events being ex-
plicitly represented by the game environment, each history h can be thought of as a unique
transcription of a game (either finished or in progress) and as a “ground truth” state known
only to the environment. At every history h, there is a player to act 7(h) € MU {c}, and
a set of legal actions A(h) C A. Formally defining states in partially-observable (imperfect
information) games can be tricky, and we defer this to Appendix [Bf to couple it with the
description of the search method (policy generation). Agents encode policies to take actions
m(h) € A(A), where A(-) represents a discrete probability distribution. For each agent ¢, the

goal is to find a policy that maximize its own cumulative reward Zthl ri(h;). However, in
the multiagent setting each individual objective jointly depends on choices of other agents.

Our game environments are based on OpenSpiel (Lanctot et al.,[2019): each implementation
provides logic to determine legal actions, transitions from one ground truth state to the next,
rewards, and player observations in a general way. However, the agent does not know the true
environment model. Instead, it must learn the code world model by using an LLM applied
to a text description of the game, together with example game play data, as described in
detail in Sec. [l Given the learned CWM, we pick the best move by using existing game
solvers: for perfect information games, we use MCTS, and for imperfect information games,
we use Information Set MCTS (see Appendix . In both cases, we optionally augment the
search algorithm with a learned value function, and in the case of ISMCTS, we augment the
search algorithm with a hidden state estimator. We also tried learning a policy using PPO
applied to the (partially observed) CWM: see Appendix @ for details.

3 RELATED WORK

There is a growing interest in evaluating the abilities of LLMs to play games, as exemplified
by the recent release of Kaggle Game Arenaﬂ as well as other recent work (Costarelli
et all, [2024; [Duan et all [2024; [Verma et all 2025 Hu et al. [2025a; Sun et al., |2025;

1See |https://www. kaggle.com/game-arena.
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Cipolina-Kun et al.| [2025; [Hu et al., [2025b} (Guertler et al., [2025). Similar to these papers,
our aim is to design LLM-based agents that play text-based games. Furthermore, like
ggbench (Verma et al.l |2025]), we assess the generality of our agents using novel games, that
are (by construction) out-of-distribution (OOD) for the LLM. However, rather than using
the LLM directly as a policy, we focus on using the LLM to generate a CWM, to which we
then apply standard solvers, such as (IS)MCTS or PPO.

There are a few other papers that also use a model-based approach, similar to ours. “World-
Coder” generates a set of CWM hypotheses from trajectory data using LLM-powered code
synthesis, stores each hypothesis (candidate model) in a tree, and uses Thompson sampling
to decide which hypothesis to ask the LLM to improve, see (Tang et all [2024a)). Given
the learned CWM, WorldCoder uses ReAct-style methods (Yao et al., 2022) for decision-
making. GIF-MCTS (Dainese et al., [2024)) developed a similar method, but uses MCTS for
agent decision-making. Our work extends this past work by considering strategic multiagent
environments, synthesizing value functions (to speed up (IS)MCTS), and synthesizing and
refining inference functions (to handle imperfect information games).

Imperfect information games can be considered a special kind of (multi-agent) partially
observable Markov decision process (POMDP). Learning such models from observational
data is notoriously difficult. In very recent work, |Curtis et al. (2025) introduce “POMDP
Coder”, which learns a partially observed CWM. However, unlike us, they assume the hidden
states are observed in hindsight (at the end of the trajectory). By contrast, we also consider
a “closed deck” scenario, in which the hidden states are never observed. In addition, [Curtis
et all (2025) use a determinized belief space planner (related to the POMCP method of
Silver & Veness| (2010)), whereas we use ISMCTS (see Appendix or PPO (Appendix@.

There are other many other ways to use LLMs for reasoning in games and multiagent
systems. A recent line of work focuses on using LLMs to construct game-theoretic models
of arbitrary scenarios in order to derive and deploy intelligent, strategic policies. |Gemp et al.
(2024) treats an LLM as an environment transition operator, controllable via instruction
sets. An extensive-form game tree is explicitly constructed in OpenSpiel and an equilibrium
over instruction sets is computed. Daskalakis et al| (2024) demonstrates how to design a
game tree for Romeo and Juliet with the assistance of an LLM, subsequently modifying the
tree so that the classic story lies in the support of its Nash equilibrium. Xu et al.| (2025)
embeds several observed Werewolf dialogues in a latent space, clusters the messages to form a
finite action space and resulting game tree, and then runs counterfactual regret minimization
on this discrete latent representation to derive a policy. Mensfelt et al.| (2024a) proposed an
approach to automatically translate natural language descriptions of small bimatrix games to
logic representations (similarly in Mensfelt et al.|(2024b)). Most closely related to this work,
Deng et al.| (2025) automated the construction of explicit (imperfect-information) extensive-
form game trees from natural language descriptions of games, including a debugging module
to ensure the resulting Gambit (Savani & Turocy, [2024) representation was valid. In contrast
to this work, they only conditioned on game descriptions (rules) not observed trajectories
and applied their pipelines to games with game trees containing at most 25 decision nodes
(Kuhn Poker); code-world models offer the potential to scale to much larger game instances
in some cases due to their more efficient encoding of repeat transitions.

4 METHODS

At a high level, when confronted with a new game, our general game playing agent follows
these steps: First, it plays a few games to completion using a random policy. The data
collected during each game forms a trajectory, which consists of observations, rewards, legal
actions, and states at each timestep. Second, it uses a textual description of the rules of the
game, plus the generated trajectories, to learn a CWMEl Finally, the agent plays the game
in an arena against other opponents, using an MCTS policy built on top of the synthetic
CWM. For imperfect information games (IIGs) we use ISMCTS instead of MCTS. If all the

2Note: We could potentially update the CWM after each step of game play, as we acquire new
data, but in this paper, we learn the model up-front, given the initial offline trajectories and game
description, for reasons of efficiency.
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synthesized elements are correct, as the amount of play-time compute increases, the playing
behavior of our agent gets closer to optimal. Thus, in contrast with LLM-as-a-policy agents,
we shift the burden on the LLM from producing a good policy to producing a good world
model, which in turn enables planning methods to turn compute into playing performance.

4.1 SYNTHESIZING THE CODE WORLD MODEL

A CWM is a playable, approximate copy of a target game. It contains functions providing
logic to update the game state when an action is taken (transition function, which includes a
termination), the legal actions given a state, the observation given a state (observations and
state differ in the case of 1IGs), the distribution for chance nodes, and the reward function
for a state. All these functions are deterministic, with randomness entering the game only
through the actions of the chance player. To synthesize a new CWM, we provide the LLM
with the game’s rules and offline trajectories, and demand that it creates a CWM following
the OpenSpiel API (Lanctot et al., |2019) format. See Appendix |G| for prompt details.

A single-shot generation of the CWM will often be insufficient to produce a correct imple-
mentation of the game unless we add some kind of corrective feedback. Thus we subject the
initial CWM to iterative refinement (Dainese et al |2024; [Tang et al.,|2024b)) to improve its
quality. For refinement, a series of unit tests are automatically generated from the offline
trajectories. For each transition in an offline trajectory, unit tests are generated in order
to check the correctness of the CWM predictions as compared with the original trajectory
(states, observations, rewards, legality of actions), and the absence of execution errors.

In the case of IIGs, this process requires that the offline trajectories contain not only the
observations of the game and the actions of the players, but also the hidden states and
the actions of all other players (including chance). The post-hoc availability of hidden
states, an assumption also used in concurrent work (Curtis et al., [2025), can sometimes be
unrealistic. Sec [£.4] introduces a novel approach to handle CWM learning from partially
observed trajectories.

Unit tests are binary, so we can measure the transition accuracy as the rate of correctness
of such tests. We refine the CWM until perfect transition accuracy (1.0) is achieved or our
refinement budget runs out. We feed back the stack traces from failed unit tests to the LLM
to help the refinement. We consider two separate approaches to refinement:

Conversation (sequential refinement). This is a serial “chat mode” approach, in which
the stack trace of a newly failed unit test is appended to our previous interactions with
the LLM to create the new prompt, and a new CWM addressing the unit test failure is
requested. Failed unit tests derived from the offline trajectories are submitted to the LLM
until all pass.

Tree search. Just like in the REx approach (Tang et al., |2024bsa), we maintain multiple
CWNDMs in a refinement tree structure, and use Thompson sampling to choose which CWM
to refine next, favoring those that either have high transition accuracy or have been refined
few times. Each LLM call consists of a fresh prompt that contains the CWM chosen to be
refined, the refinement instructions, and the stack trace of a failed unit test for that CWM.
The prompts and hyperparameters used during synthesis are presented in Appendix [G]

4.2 SYNTHESIZING INFERENCE FUNCTIONS FOR IIGs

One of the novelties of our work is the synthesis of inference functions to enable the use
of ISMCTS planning with the learned CWM at play time in imperfect information games
(IIGs). To see why this is necessary, note that ISMCTS requires that at each game step ¢
the agent can estimate the hidden state of the game s;, as explained in Appendix [Bl More
precisely, at play time, agent i must be able to sample from its belief state pys(s¢|o}.;,at.,),
where M is the estimated CWMP} Since exact inference incurs an exponential cost in the
worst case, we ask the LLM to synthesize code to approximately sample from the posterior,

3For players other than i, we assume a uniform prior on the legal actions defined by the CWM.
Only the support of this prior affects our approach, as we will focus on posterior support, see below.
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utilizing only agent i’s actions ai., and observations o}, so far from the offline trajectory.
We consider two alternative approaches to achieve this goal: hidden history inference and
hidden state inference. We describe these below.

Hidden history inference. Since all the functions in the CWM are deterministic, the
posterior over the hidden state s; can be obtained from the posterior over the action history
h;, which includes the actions of the chance player. In this approach, the agent controlling
player i asks the LLM to create a function that samples h; ~ pas(he]ot.;,at.,). The CWM

can then be used to execute h; and recreate a history of hidden states §1.;, and observations
o%.,. A unit test is created for each time step ¢ in which player i acts, verifying that the
sampled values match the run time evidence (i.e., 6! = o! and @ = a}). This allows
refinement (on the offline trajectories) to be applied to the inference function.

Once the refined inference function passes all unit testﬁﬁ (i.e., inference accuracy is 1.0), we

can claim that the sampled h; belongs to the support of pas(he|ot ., al.,), and therefore, the
§; generated by this process belongs to the support of pas(s¢|ot ., al.,,). Although this does
not guarantee that s, is correctly distributed, the correct support is already very informative,
given the extremely sparse support of state posteriors in games. Furthermore, this approach
guarantees that the sampled posterior state §; is a valid CWM state. Note that at play time
the (test) inference accuracy can drop below 1.0 (depending on how well the synthesized
inference code generalizes to novel observations), meaning that the approximate posterior
samples might not always belong to the support of the actual posterior. However, §; is still
guaranteed by construction to be a valid hidden state in the CWM.

Hidden state inference. Rather than obtaining a state posterior sample indirectly
through the action history, it is also possible to ask the LLM to create code that directly
samples §; ~ pps(s¢|o}.;,a’). Then, the CWM can be used to obtain ¢, from §;. Correctness
of the inference function can be partially validated by a unit test at each time step that ver-
ifies that the sampled values match the actual observations, 6; = o;. CWM refinement can
then be used to improve the synthesized inference function. State inference is potentially
much simpler than full history inference, but it cannot guarantee that the produced sample
S¢ belongs to the support of the posterior, nor that it constitutes a valid CWM hidden state,
because it ignores the dependency between consecutive states.

4.3 SYNTHESIZING VALUE FUNCTIONS

Another novelty of our work is the synthesis of value functions to speed up and improve
value estimation in MCTS and ISMCTS. This can be faster (and potentially more accurate)
than estimating the value of a new leaf node through random rollouts. To synthesize a
deterministic value function V' (s) to estimate the value of the (potentially hidden) state at
leaf nodes, we can prompt the LLM to generate code, just as we did for learning the CWM.
However, value functions are not refined, since there is no ground truth to compare to.
Instead, multiple functions are generated and the best one is selected through a tournament.

4.4 OPEN DECK VS CLOSED DECK DURING TRAINING

So far we assumed that the offline trajectories (used to train the CWM) contained hidden
state information even for IIGs. Concurrent work Curtis et al. (2025) also assumes the
ability to peek at hidden states. We refer to this setup as open deck synthesiﬂ This setup
is justified in several practical scenarios, such as in a cooperative training environment where
players share information to learn the mechanics of the game, during the design phase of a
new game where developers have full access to the state, or when a human expert provides
fully annotated “open-book” demonstrations to bootstrap an agent’s understanding.

“Unlike the CWM functions, inference functions are stochastic (samplers). Thus, their unit tests
are potentially stochastic, but for correct inference functions they will deterministically pass.

SWe want to emphasize that in our open deck setting, hidden state information is only available
in the offline trajectories to aid CWM synthesis, and not during actual game play. Thus the players
only ever see observations, but the CWM learner may see hidden states (in the open deck setting).
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However, there are scenarios in which the agent can only ever access its own observations
and actions, so that the open deck assumption is violated. This would be the case, e.g., if
the agent plays a novel game online. We refer to this scenario as closed deck synthesis; to
the best of our knowledge, this scenario has not been addressed in prior CWM work.

To handle this scenario, we propose to combine the pieces introduced in the previous sections
to build a regularized CWM “autoencoder”. The idea is as follows: we ask the LLM to
generate a CWM and a hidden history inference function, just like above, but we drop all
the unit tests that are not verifiable without access to the hidden information (i.e., those
checking the transition accuracy between consecutive hidden states), and we just keep the
ones that we can verify (i.e., checking the result of mapping observations to hidden states
and back to observations). We additionally add unit tests to a few iterations of random
play ensuring that there are no execution errors. In other words, we refine based on the
inference accuracy and lack of execution errors. This generates a kind of autoencoder, where
the inference function acts as an encoder, producing a hidden sequence of actions h; from
ol ai, and the CWM acts as a decoder, recreating the observations and actions from
the latent h;. Instead of a bottleneck, or a regularization term, the game rules and the
required OpenSpiel APT (used in the unit tests) introduced in the context of the LLM act as
regularizers to prevent trivial latent spaces from being discovered. Valid posterior histories
ht (i.e., those that pass all unit tests) can be used to obtain a lower bound on the likelihood

of the CWM, as follows: pas(0f.,) = >, pM(?li:t|ht)p]W(ht) < par (0l 4 |he)par (he) = par (o).
(The last equality follows because par(04.plhe) = 1 when all unit test pass.) This lower
bound is tightest when h; is the maximum a posteriori, but is valid for any sample.

5 EXPERIMENTS

Following the approach described in Sec. [4} we build an agent, which we call CWM-(IS)MCTS,
which performs CWM synthesis (using either open or closed deck trajectories), and then
plays using MCTS or ISMCTS. (We also tried learning a policy using PPO; see Appendix@
for details.) We measure the playing abilities of our agent on multiple games against three
other agents: A random legal action executor called Random; an (IS)MCTS agent that has
access to the game’s ground truth (GT) code, including inference functions but not value
functions, which we call GT-(IS)MCTS; and an LLM as a policy, which we call Gemini 2.5Pro
(we use “dynamic thinking”, rather than specifying a thinking budget). All methods have
access to the same data: the rules of the game as text and 5 offline trajectories. (IS)MCTS
approaches always run 1,000 simulations before taking an action, using either the value
function or 10 rollouts (in which all players act randomly) to determine the initial value of
a new leaf node. A sketch of the information flow for each agent is given in Appendix [F]

To validate the generality of our approach we use both perfect and imperfect information
games, as well as well-known and OOD games. The perfect information games are: Tic-
tac-toe, Connect four, Backgammon, Generalized tic-tac-toe (OOD), and Generalized
chess (OOD). The imperfect information games are: Leduc poker, Bargaining, Gin rummy,
Quadranto (OOD), and Hand of war (OOD). The out-of-distribution (OOD) games are not
part of the LLMs training set, and have been created by us for these experiments. See
Appendix [H] for the rules of each game.

5.1 SYNTHESIS ACCURACY

The CWM agent operates by synthesizing a CWM of the game (and potentially other
auxiliary functions) prior to playing the game, see Sec. [4] for details. We use Gemini 2.5
Pro for synthesis. For the concrete prompts used during synthesis, see Appendix [G} For
examples of synthesized code, see Appendix [I|

Refinement attempts to increase the fraction of units tests that pass, iterating until all pass
or the budget for LLM calls is exhausted. The fraction of unit tests that the CWM passes is
the training transition accuracy, and the fraction of tests that the inference function passes
is the training inference accuracy. To check for overfitting to the offline trajectories, after
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synthesis, we measure the accuracy on a separate test set of 10,000 transitions, randomly
sampled from 100 games where each player is randomly assigned a random policy or MCTS
on the ground truth game code. This yields the test transition accuracy and test inference
accuracy. The test set is never used to train on; instead it is used to estimate the accuracy
of the learned CWMs. Finally, at play time against the LLM as a policy, online transitions
are observed, and again used to assess the accuracy of the CWM and inference functions.

5.1.1 PERFECT INFORMATION GAMES

For perfect information games, we find that we can learn a correct CWM for all the games,
and that the resulting learned models have high test (generalization) accuracy. Both conver-
sation and tree search work very well in this setting. Appendix [C] contains precise numbers
(Tables 4| and [5] respectively), and shows the quick convergence of the CWM with the num-
ber of LLM calls (Fig. @ We will stick with tree search for the remainder of this paper,
since its ability to backtrack confers it additional resilience in harder settings.

5.1.2 IMPERFECT INFORMATION GAMES, OPEN DECK

In the case of imperfect information games (open deck learning), we find that the transition
accuracy of the learned CWMs is very high, except for Gin rummy, where the training
accuracy is just 84% and the test accuracy is 79%. See Table [1| for details. We hypothesize
this is due to its high degree of logical and procedural complexity. Unlike games with more
uniform rules, Gin rummy involves a multi-stage scoring phase (knocking, laying off melds,
calculating deadwood, and checking for undercuts) that is difficult for the LLM to capture
perfectly in code from a small number of trajectories. This highlights a key frontier for
CWM synthesis: mastering games with intricate, multi-step procedural subroutines.

We also measure the inference accuracy obtained by the synthetic inference functions. We
tried both hidden history and hidden state inference (see Sec. Results with hidden
history inference (shown in Table [1{and Fig are slightly better, so this will be the method
of choice for the CWM-ISMCTS agent. (The results with hidden state inference are provided in
Appendix Table |§| and Fig. ) Results for 3 of the 5 games are good, but once again we
see that results for Gin rummy are quite poor (inference accuracy is only about 52%), and to
a lesser extent Hand of war (inference accuracy is about 94%), even though CWM accuracy
for Hand of war is good (about 98%). This suggests that hidden history inference is harder
than learning the transition dynamics from a fully observed sequence of trajectories.

Table 1: Imperfect info. games, CWM refinement via tree search, hidden history inference.

Game 00D transition accuracy inference accuracy 4 LLM calls
train test online train test online

Bargaining X 1.0000 0.9827 1.0000 1.0000 1.0000 1.0000 23.0

Leduc poker X 1.0000 0.9977 0.9942 1.0000 1.0000 1.0000 4.4

Gin rummy X 0.8360 0.7881 0.9044 0.6550 0.5189 0.9678 701.2

Quadranto 4 1.0000 1.0000 1.0000 1.0000 0.9864 0.9916 6.0

Hand of war (4 1.0000 0.9814 0.9868 1.0000 0.9357 1.0000 144.0

5.1.3 IMPERFECT INFORMATION GAMES, CLOSED DECK

Finally, we consider CWM synthesis with refinement in the novel closed deck setup in
which no hidden information is available, not even post-hoc. The results in Table [2| show
degradation on the synthesis quality with respect to the open deck setting of Table[l} Despite
this, game play performance does not degrade significantly, as we show in the next section.

5.2 ARENA: GAME PLAY PERFORMANCE

In this section, we test how the previous synthesis results translate into playing performance
against other opponents in our game arena. Since the CWM synthesis process is stochastic,
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transition acc. (train) transition acc. (test) inference acc. (train) inference acc. (test)
Dataset

1.0
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0.8
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5 Gin rummy
204 —— Hand of war
—— Leduc poker
0.2
~ Quadranto

0246 8101214161820 0 2 4 6 8 101214161820 0 2 4 6 8 101214161820 0 2 4 6 8 101214161820
Number of LLM calls Number of LLM calls Number of LLM calls Number of LLM calls

Figure 1: Evolution of the transition and inference accuracy with the number of LLM calls
for imperfect games with refinement via tree search and hidden history inference.

Table 2: Imperfect information games, hidden history inference, closed deck.

inference accuracy

Game OOD # LLM calls
train test online

Bargaining X 1.00000 0.67359 0.76000 88.2

Leduc poker X 1.00000 0.97080 0.96585 9.0

Gin rummy X 0.06215 0.10397 0.53953 467.2

Quadranto v 1.00000 0.95183 0.96085 99.0

Hand of war v 0.98125 0.92846 0.94835 475.4

we repeat it 5 times, automatically rejecting bad samples (see Appendix , and pick a
random CWM for each match. Results correspond to the average of 100 matches.

5.2.1 PERFECT INFORMATION GAMES

All of our perfect information games are ternary-outcome games, so we are limited to win,
lose, or draw (W/L/D). Fig. [2 shows the performance of our CWM-MCTS agent, when acting
as Player 0 or Player 1, against three different competitors. A player forfeits when it fails
to provide a valid action in the allotted time. The middle pair of bars of each panel show
CWM-MCTS playing against GT-MCTS, an upper bound for performance that uses the ground
truth (GT) code of the game for planning. Both agents are similarly good, without either of
them clearly winning in any of the games. This highlights the quality of our code synthesis.
CWM-MCTS is able to beat Gemini 2.5Pro (which is used as a policy) in all the considered
games. For detailed numerical results, see Table[7]in Appendix[C] We used a synthetic value
function for Gen. tic-tac-toe, see Fig. [0 for the ablation without value function.

Backgammon Connect four Tic-tac-toe Gen. tic-tac-toe Gen. chess

Vs Vs vs vs Vs vs vs Vs vs vs Vs vs vs Vs vs
Gemini 2.5Pro GT-MCTS ~ Random Gemini 2.5Pro GT-MCTS ~ Random Gemini 2.5Pro GT-MCTS ~ Random Gemini 2.5Pro GT-MCTS ~ Random Gemini 2.5Pro GT-MCTS ~ Random
e Oe Oe OCe Oe Oe OCe Oe Oe OCe Oe Oe e Oe Oe

W Win Win by Forfeit Draw Loss M Loss by Forfeit O CWM-MCTS as Player 0 @ CWM-MCTS as Player 1

Figure 2: W/L/D rates for game play between CWM-MCTS and three opponents. CWMs are
refined via tree search and hidden history inference.

5.2.2 IMPERFECT INFORMATION GAMES, OPEN DECK

Our imperfect information games contain a mixture of ternary-outcome games, zero-sum
games and general-sum games (see Table [3|for a summary of all the games’ characteristics).
Win/loss/draw rates and payoff distributions are shown in Fig. 3| Except for Hand of war,
CWM-ISMCTS beats or matches Gemini 2.5Pro in all imperfect information games. In the case
of Gin rummy, this should be interpreted as Gemini 2.5Pro being a very weak player, you
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can check its forfeit rate in Table For Leduc poker, although our average performance is
superior, we also observe high variance. For Bargaining we used a synthetic value function,
which results in a significant improvement when CWM-ISMCTS acts as player 1 (see Fig. El
in Appendix . C| for the corresponding ablation). We did not observe an improvement or
degradation in performance when value functions were applied to the other games.

Bargaining Leduc poker Gin rummy Quadranto Hand of war

vs vs vs vs vs vs vs vs
Gemini 2.5Pr0 GT_ISMCTS  Random Gemini 2.5Pr0 GT_ISMCTS ~ Random Gemini 2.5Pr0 GT_ISMCTS Random Gemint 2.5%r0 GT ISMCTS  Random Gemini 2.5pr0 GT 1SMCTS  Random
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Figure 3: W/L/D rates and payoff distributions for game play between CWM-ISMCTS and
three opponents. CWMs are refined via tree search and hidden history inference, open deck.

5.2.3 IMPERFECT INFORMATION GAMES, CLOSED DECK

Finally, we consider the closed deck setting, in which games are strictly partially observable,
and no hidden state information or actions from other players are available in the offline
trajectories. Results degrade w.r.t. the open deck setting, but CWM-ISMCTS-Closed continues
to beat or match Gemini 2.5Pro (with high variance in the case of Leduc poker). We
hypothesize that the non-intuitive improvement of CWM-ISMCTS-Closed at Hand of war
w.r.t. the open deck setting could be due to the freedom to synthesize simpler state spaces
when playing closed deck. Refer to Tables [I2] and [[3] in Appendix [C] for detailed results.

Bargaining Leduc poker Gin rummy Ouadranto Hand of war

vs vs vs. vs vs vs
Gemini 2.5Pr0 GT_ISMCTS ~ Random Gemini 2.5Pr0 GT_ISMCTS ~ Random Gemini2.5pr0 GT v 2500 GT MCTs Rand mint 2.50r0 G 1smcTs

Wi Sees 300 TR T

~150 — —

O e O e O e O @€ O e O e O e O e O e O e O e O e O e O e O e
W Player Return Opponent Return O CWM-ISMCTS as Player 0 @ CWM-ISMCTS as Player 1 | Win Win by Forfeit Draw Loss W Loss by Forfeit

S

g

Figure 4: W/L/D rates and payoff distributions for game play between CWM-ISMCTS and
three opponents. CWMs refined via tree search and hidden history inference, closed deck.

6 DISCUSSION

In this work we extend the existing CWM framework by considering two-player games,
performing value function code synthesis to improve player performance, introducing the
concept of “inference as code” to enable state estimation in imperfect information games,
and providing a learning algorithm (based on code-based autoencoders) to enable learning in
the novel closed deck (strict partial observability) setting. Our results show the superiority of
this approach with respect to LLMs as policies on multiple perfect and imperfect information
games, including newly created ones.

However, we also notice that our method struggles to learn the rules of Gin rummy, an
imperfect information game with intricate logic, especially in the very challenging closed
deck setting. In future work, we hope to extend our method to enable active and online
learning of the world model, so the agent can more effectively discover the true hidden
causal mechanisms underlying each game (c.f., (Geng et all [2025)). In addition, we would
like to extend the technique to handle open-world games with free-form text and/or visual
interfaces, so as to evaluate it on larger sets of novel games, see (Ying et all [2025)).
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A INFORMATION ON THE GAMES

A summary of the games that we use in our experiments is given in Table [3]

Table 3: Details of the games that we use. The columns have the following meaning: OOD:
whether the game is novel (no source code on the internet); Observability: Full means
perfect information game, partial means imperfect information game; Payoff: W/L/D means
Win/Lose/Draw, General means general sum; # Actions: number of possible actions; Obs.
dim.: dimensionality of the observation tensor IS dim.: dimensionality of the information
set (i.e., game’s hidden state).

Name OOD  Observability Payoff # Actions Obs. dim. IS dim.
Backgammon X Full W/L/D 1352 200
Connect four X Full W/L/D 7 126
Tic-tac-toe X Full W/L/D 9 27
Gen. tic-tac-toe 4 Full W/L/D 36 108
Gen. chess v Full W/L/D 5555 250
Bargaining X Partial General 121 93 309
Leduc poker X Partial Zero-sum 3 16 30
Gin rummy X Partial Zero-sum 241 644 655
Quadranto v Partial W/L/D 5 9 7
Hand of war v Partial W/L/D 16 27 73
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B INFORMATION SET MONTE CARLO TREE SEARCH

Recall that a history encodes the sequence of actions taken by all players, including chance.
But in an imperfect information game, not all aspects of the history are observable. For
instance, in a game of poker, h contains information about the cards held by all players (as
chosen by the dealers actions), but some of this information is private and hence not known
by some players. After an action is executed and added to the history (hi—1,a:) = hy, each
player i € N perceives individual observations oi(h;). The state (from the perspective of an
agent i) is then a function of 0, e.g., just the last observation.

To choose actions in an IIG, we can use the Information Set
MCTS method of (Cowling et al.| [2012), which we now de-
scribe. First, recall that in classical MCTS, there is a root
node corresponding to the current state of the game which
all simulations start from, and non-root nodes which corre-
spond to states that occur after the root state. At each node,
statistics such as average values state-action values, Q(s,a),
and simulation counts are maintained. The main differences
in ISMCTS are: (i) the simulations start at a distribution of
possible ground truth states and (ii) statistics are maintained
and aggregated across information states with respect to the
current player.

Figure [5| contains an example with a simplified poker game
with a deck of three cards (Jack, Queen, King). In this ex-
ample, the current player has received the King as a private
card and no actions have yet been taken, so there are only two
ground truth states: the opponent could have either the Queen
or the Jack. An iteration first samples the Queen and contin-
ues with this ground truth state hg, sampling actions, and
generating histories hq, ho, h3, and so on until the first node
not in the tree is encountered. It is then added to the tree,
and a random rollout policy takes over until a terminal state.
The dotted boxes are the analogs of nodes stored in a tree (or
lookup table) and correspond to information states. Return
estimates (7.e., Q-value statistics) and visit counts are main-
tained in these nodes as in classical MCTS (Coulom) 2007
(aggregated over different samplings of ground truth states),
and UCB is used to select actions in the standard way (Kocsis
& Szepesvari, [2006)).
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Figure 5: ISMCTS. A
search tree is built over pos-
sible ground truth histories
(e.g. hi, ho, ...). Because
the player cannot distin-
guish between certain his-
tories, statistics are aggre-
gated at the level of infor-
mation sets (dotted boxes),
which group all histories
that appear identical to the
player.
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C ADDITIONAL EXPERIMENTAL RESULTS

In the interest of space, some additional experimental results are included in this section.

C.1 SYNTHESIS

C.1.1 ACCURACY OF LEARNED TRANSITION AND INFERENCE FUNCTIONS

Comparing Table [f] and [} it is apparent that even though both options work reasonably
well, tree search has the edge, both in terms of accuracy (higher) and number of LLM calls
(lower).

Table 4: Perfect information games, refinement via tree search.

transition accuracy

Game 00D # LLM calls
train test online

Backgammon X 1.00000 0.99932 1.00000 16.8

Connect four X 1.00000 1.00000 1.00000 2.0

Tic-tac-toe X 1.00000 1.00000 1.00000 2.0

Gen. tic-tac-toe 4 1.00000 1.00000 1.00000 2.4

Gen. chess (4 1.00000 1.00000 1.00000 5.2

Table 5: Perfect information games, refinement via conversation.

transition accuracy

Game 00D # LLM calls
train test online

Backgammon X 1.00000 0.99944 1.00000 13.2

Connect four X 1.00000 1.00000 1.00000 3.2

Tic-tac-toe X 1.00000 1.00000 1.00000 2.0

Gen. tic-tac-toe v 1.00000 1.00000 1.00000 2.4

Gen. chess (4 1.00000 1.00000 1.00000 4.2

Table 6: Imperfect info. games, refinement via tree search, hidden state inference.

Game 00D transition accuracy inference accuracy 2 LLM calls
train test online  train test online

Bargaining X 1.0000 0.9482 0.8712 1.0000 1.0000 1.0000 32.8

Leduc poker X 1.0000 0.9854 0.9942 1.0000 1.0000 1.0000 4.2

Gin rummy X 0.8999 0.8293 0.8909 1.0000 0.9513 0.9738 813.4

Quadranto (4 1.0000 1.0000 0.9991 1.0000 0.9911 0.9876 7.4

Hand of war v 1.0000 0.9782 0.9806 1.0000 1.0000 1.0000 28.0
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C.1.2 ACCURACY OF LEARNED TRANSITION AND INFERENCE FUNCTIONS
VS NUMBER OF LLM CALLS

transition acc. (train) transition acc. (test)

1.0{ = {1 =

0.84 1 Dataset
20.64 | —— Backgammon
g0.
5 Connect four
£ 0.44 9 —— Gen. chess

—— Gen. tic-tac-toe
0.24 1 .
Tic-tac-toe
0.0 1

024 6 81012141618200 2 4 6 8 101214161820
Number of LLM calls Number of LLM calls

Figure 6: Evolution of the transition accuracy of the best generated CWM with the number
of LLM calls for perfect games (with CWM refinement via tree search).
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Figure 7: Evolution of the transition and inference accuracy with the number of LLM calls
for imperfect games with refinement via tree search and hidden state inference.
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Figure 8: Evolution of the inference accuracy with the number of LLM calls for imperfect
games with refinement via tree search with closed deck.
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C.1.3 TREE SEARCH SETTINGS

We use the following settings for treesearch throughout our experiments.

o heuristic_weight=5.0: Weight on the heuristic value (higher means more ex-
ploitation). The heuristic weight C' adjusts the parameters « and S of the Beta
prior on each arm [Tang et al.| (2024b). In particular, we set a = 1 4+ C' x h and
B =14 (1—C) x h, where the heuristic value h is the average pass rate of the unit
tests.

e num_retries=500: Number of retries for tree search.
e num_tests_on_init=5: Number of tests of each type to include on the first synthesis.

e num_tests_on_error=1: Number of failed tests of each type to include during code
refinement.

e min_heuristic_value_on_init=0.01: Minimum heuristic value to consider a node
for expansion on initialization.

e min_heuristic_value_gain=0.01: Minimum heuristic value gain to consider a node
for expansion.
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C.2 DETAILED PER-GAME ARENA RESULTS

For games in which the outcomes are win, lose or draw, we show the frequency of these 3
outcomes in 3 different columns, for each agent. For games with arbitrary payoff (Bargaining,
LeDuc-Poker, Gin Rummy), we show the payoff to each player in 2 different columns. We
consider the case when our agent acts as Player 0 or Player 1, and show these in different
rows, to account for first-mover advantage.

For imperfect information games, we show results for hidden history inference (open deck
learning), hidden state inference (open deck learning), and hidden history inference (closed
deck learning).

For games in which the outcomes are win, lose or draw, we also report (in small font) the
number of games with outcome that were forfeited vs the total number of games with that
outcome. (A forfeit means the agent has either thrown an exception or tried to execute an
illegal action, since our game arena API does not allow the agent to see which actions are
legal at a given point in the game.)

C.2.1 PERFECT INFORMATION GAMES

Table 7: Win rates using CWM refinement via tree search against multiple opponents. For
each game, results in the first (second) row correspond to our agent going first (second).

G p Gemini 2.5 Pro GT-MCTS Random
ame
Win (forfeit/n)  LoOSS (forfeit/n) Draw () Win Loss Draw Win Loss Draw
Backe 1.00 (100/100) 0.00 (0/0) 0.00 (o) 0.08 0.92 0.00 0.98 0.02 0.00
(ACeAmOn @ 1.00 ooy 0.00 @) 0000 007 093 000 098 0.02_ 0.00
C ¢ O 1.00 (2/100) 0.00 (0/0) 0.00 (o) 0.69 0.31 0.00 1.00 0.00 0.00
oMo ) 100 /e 000 @ 000 028 072 000 100 0.00_ 0.00
Tic-tac-t X 0.05 (o/5) 0.00 (0/0) 0.95 (95) 0.00 0.00 1.00 0.97 0.00 0.03
Rt O 0000 0000 100w 000 000 100075 0.00_ 0.25
G tio-tac-t X 0.89 (0/89) 0.10 (0/10) 0.01 0.88 0.12 0.00 1.00 0.00 0.00
O IO O 093 0ms 007 em 000 037 063 000 100 0.00_ 0.00
G hess A 1.00 (92/100) 0.00 (0/0) 0.00 (o) 0.18 0.43 0.39 1.00 0.00 0.00
en. chess & 1.00 (9771000  0.00 (0/0) 0.00 (0 049 0.17 034 1.00 0.00 0.00
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C.2.2 HIDDEN HISTORY INFERENCE

Table 8: Payoffs using CWM refinement via tree search and hidden history inference against
multiple opponents. For each game, results in the first (second) row correspond to our agent

going first (second).

Gemini 2.5 Pro GT-ISMCTS Random
Game P

Us Them Us Them Us Them

Bareaini gE  8.90 3.31 8.01 526 821 241
(CVEMMTE mm 880 473 751 544 812 281

Led y ¢ o003 003  -0.65 065 086 -0.86
(NOPORT #4155 o155 024 <024 109 -1.09

i 120.54 -120.54 -115.62 115.62 -4.92  4.92

I TUIIY o 19300 -123.00 -115.62 115.62 -15.99 15.99

Table 9: Win rates using CWM refinement via tree search and hidden history inference
against multiple opponents. For each game, results in the first (second) row correspond to

our agent going first (second).

G P Gemini 2.5 Pro GT-ISMCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw m) Win Loss Draw Win Loss Draw
deont 0.91 aesony  0.08 (o/s) 0.0l 1y 0.06 002 092 027 003 0.70
Quadranto @ 075 wm  0080py 0070 011 008 081031 006 0.63_
Hond of @ 03506 056 aisey 0.09 020 0.72 008 033 057 0.10
and ol war gy 0.33 /33 0.62 sose2y  0.05) 031 061 0.08 033 0.62 0.05
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C.2.3 HIDDEN STATE INFERENCE

Table 10: Payoffs using CWM refinement via tree search and hidden state inference against
multiple opponents. For each game, results in the first (second) row correspond to our agent
going first (second).

G Gemini 2.5 Pro GT-ISMCTS Random
ame
Us Them Us Them Us Them
o <] ] 8.48 4.32 7.46 4.17 7.70 2.72
Bargaining

66.42  -66.42 -114.39 114.39 -28.29 28.29

Ginrummy g 15177 49177 19177 12177 492 4.9

Table 11: Win rates using CWM refinement via tree search and hidden state inference
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

G P Gemini 2.5 Pro GT-ISMCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw m) Win Loss Draw Win Loss Draw
deont 0.58 (659 0.40 (0/40) 002 013 002 085 019 0.04 0.77
Quadanto @ 037w 0540s0 0090 014 001 085026 007 0.67_
Hond of @ 041 ey 0.49 (0/49) 0.10 iy 0.25 0.61 0.14 059 028 0.13
and ol war gy 0.44 (/a1 0.40 (0/40) 0.16 ae) 042 041 0.17 0.63 024 0.13
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C.2.4 HIDDEN HISTORY INFERENCE WITH CLOSED DECK LEARNING

Table 12: Payoffs using CWM refinement via tree search with closed deck against multiple
opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

G Gemini 2.5 Pro GT-ISMCTS Random
ame
Us Them Us Them Us Them
o [s])] 7.03 5.91 7.01 5.98 7.37 3.76
Bargaining

29.52 -29.52 -114.39 11439 -119.31 119.31

Ginrummy g 6396 63.96 -119.31 119.31 -121.77 121.77

Table 13: Win rates using CWM refinement via tree search with closed deck against multiple
opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

G P Gemini 2.5 Pro GT-ISMCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw m) Win Loss Draw Win Loss Draw
deont 0.69 (0/69) 0.26 (0/26) 0.053 0.08 005 087 023 005 0.72
Quadanto @ 071 emy  0220py 0070 013 009 078027 005 068
Hond of @ 041 ey 0.42 (0/42) 017 an 031 057 012 061 024 0.15
and ol war gy 0.54 (/54 0.25 (0/25) 0.21 @y 047 040 0.13  0.62 026 0.12
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C.3 FORFEIT RATES FOR NON-TERNARY-OUTCOME GAMES

Table 14: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search and hidden history inference against multiple opponents. This is the rate at which
each agent forfeits the game by failing to execute a legal action. For each game, results in
the first (second) row correspond to our agent going first (second).

Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

2 0.00 0.00 0.00 0.00 0.00 0.00

Game

B
Bargaining G

Gin rummy a

Table 15: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search and hidden state inference against multiple opponents. This is the rate at which
each agent forfeits the game by failing to execute a legal action. For each game, results in
the first (second) row correspond to our agent going first (second).

Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

BB 0.00 0.00 0.00 0.00 0.00 0.00

Game

Bargaining

Gin rummy a

Table 16: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search with closed deck against multiple opponents. This is the rate at which each agent
forfeits the game by failing to execute a legal action. For each game, results in the first
(second) row correspond to our agent going first (second).

Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

g 0.00 0.00 0.00 0.00 0.00 0.00

Game

B
Bargaining G

Gin rummy a
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C.4 VALUE FUNCTION ABLATIONS

As explained in the main text, the purpose of value functions is to speed up (IS)MCTS
by providing a better value initialization for new leaf nodes. This can also result in higher
quality selections for a fixed budget. Synthetic value functions are generated by the LLM in
one-shot, and its usefulness assessed via a tournament ran on top of the synthesized CWM.
Agents using different value functions (or potentially no value function) compete against
each other the synthesized CWM to evaluate performance.

The use of value function only delivered improvements in the case of Gen. tic-tac-toe and
Bargaining, so our agent only used value functions when playing those games. Note that
the choice to use value functions or not can be assessed before actual online game play, by
having the agent play locally (with and without using a value function) on its own synthetic
CWM as a proxy, and assessing which option is most beneficial.

Fig. [0 shows the ablation corresponding to not using a value function in Gen. tic-tac-toe
and Bargaining.

Gen. tic-tac-toe with Value Function
Vs Vs Vs Vs Vs vs

Gemini 2.5Pro GT-MCTS Random Gemini 2.5Pro GT-MCTS Random

O e O e O e

o Win Win by Forfeit Draw M Loss QO CWM-MCTS as Player 0 @ CWM-MCTS as Player 1
Bargainingl history inf. with Value Function
vs S Vs vs Ve Vs
Gemini 2.5Pr0  GT_ISMCTS Random Gemini 2.5Pr0  GT_ISMCTS Random
10 10
8 8
6 6

IS
IS

~
~

0 0

o e o e o e o e o e o e
M Player Return Opponent Return O CWM-ISMCTS as Player 0 @ CWM-ISMCTS as Player 1
Bargaining closed deck with Value Function
Vs Vs vs Vs Vs vs
Gemini 2.5Pro  GT_ISMCTS Random Gemini 2.5Pro  GT_ISMCTS Random
10 10
8 8
6 6
4 4
2 2
0
o e o e o e o e o e o e
M Player Return Opponent Return O CWM-ISMCTS as Player 0 @ CWM-ISMCTS as Player 1

Figure 9: Ablation for Gen. tic-tac-toe and Bargaining. Effect of using synthesized value
functions (right column) vs not (left column) to improve planning in CWMs.
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D PranNNING wWITH PPO INSTEAD OF (IS)MCTS

D.1 TRAINING A PPO AGENT ON TOP OF A CWM

The CWM agent discussed in the main paper relies on (IS)MCTS to take actions within its
learned CWM. While effective, this online planning process can be slow. We investigate an
alternative approach: amortizing the planning computation into a reactive policy, trained
with the PPO algorithm (Schulman et al., [2017)).

We entirely learn this PPO policy within the learned CWM environment. For each game,
we train a PPO-CWM agent (acting either as Player 0 or Player 1) to maximize its rewards
against an opponent that uniformly picks a legal action.

Mapping JSON observations to 1D tensors: The CWM represents observations in
the JSON format provided by OpenSpiel, whereas the actor-critic networks we use (which
are based on MLPs and RNNs) requires fixed-size 1D arrays as inputﬂ Consequently, we
need a procedure to map each JSON into a flat tensor representation. We generate this
mapping programmatically by prompting a LLM as shown below, providing the CWM
training sequences as examples.

You are an expert reinforcement learning researcher and Python programmer.
Your task is to implement the following two functions which form a bijective pair:

def observation_to_tensor(obs) -> np.ndarray: # 1D
def tensor_to_observation(tensor) -> np.ndarray: # 1D

An example input dataset is as follows:
{example}

First reason about the problem and possible corner cases. Finally output only
the resulting two functions without any placeholders.

Architecture. Our PPO agent uses an actor-critic architecture. For perfect information
games, the actor and critic networks share a common feature extractor consisting of two
256-unit fully-connected layers with tanh activations. The actor head is a final linear layer
that outputs logits for each action, which are then masked to ensure only legal moves are
considered. The critic head is a separate linear layer that outputs a single scalar value.

For imperfect information games, we augment this architecture with a recurrent neural
network to process historical information. An input observation x; is first passed through a
256-unit linear layer (with tanh activation). The result is fed into an RNN along with the
previous hidden state h;_1 to produce an output vector. This output is concatenated with
the original input x; and passed through a final 256-unit hidden layer (with tanh activation)
before being fed to the actor and critic heads as described above.

PPO training. The PPO-CWM agent is trained for a total of 10M agent steps inside the
CWM, using the hyperparameters in Table From the two-player trajectories collected,
we extract the single-agent sequence of observations, actions, and rewards corresponding to
the PPO-CWM agent. This filtered data is used to compute the advantages and the final
PPO loss objective.

For each game, and each player, we train 5 PPO-CWM agents with different seeds, and
select the one with the highest win rate against the random opponent for final evaluation.
This agent is then benchmarked in the Arena, as described in Sec. We include matches
against our CWM MCTS agent to compare both approaches for leveraging the CWM.

5We could use transformers, which can handle JSON strings, for the actor and critic, but such
models would be much slower to train.
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Table 17: PPO hyperpameters.

Module Hyperparameter Value
Environment Number of environments 50
Rollout horizon in environment 100
Advantage ~ 0.99
A 0.95
Loss € clipping 0.2
Value loss coeflicient 0.5
Entropy loss coefficient start 0.1
Entropy loss coefficient end 0.01
Entropy loss coefficient schedule Linear
Learning Optimizer Adam (Kingma & Bay, [2014)
Learning rate 0.0003
Max. gradient norm 0.5
Learning rate annealing False
Number of minibatches (MFRL) 10
Number of epochs (MFRL) 4

D.2 RESULTS

Arena results are presented in Tables [I8] to 22] Note that PPO-CWM was not trained on
Gin Rummy due to the poor performance of the CWM on that game. All the CWMs in
this section have been trained on 100 offline trajectories.

PPO-CWM vs. Random. PPO-CWM outperforms the random agent for all the games.

PPO-CWM vs. Gemini 2.5 Pro. Our PPO-CWM agent outperforms or matches
Gemini in all the games. For perfect information games, PPO-CWM wins in Backgammon,
Generalized Chess and Tic-Tac-Toe; and exhibits mixed results (winning as one player and
losing as the other) in Connect Four and Generalized Tic-Tac-Toe. For imperfect information
games, for both open deck and closed deck, PPO-CWM wins in Bargaining and Quadranto,
and ties in Hand of War and Leduc Poker.

PPO-CWM vs. CWM MCTS. For perfect information games, where the learned CWM
is a near-perfect replica of the environment, PPO-CWM is outperformed by our CWM-
MCTS agent. The only exception is Generalized Tic-Tac-Toe when PPO-CWM acts as
Player 0. For imperfect information games, PPO-CWM wins in two games (Hand of War
and Bargaining) and loses in the other two games (Leduc poker and Quadranto).

D.2.1 GAMES WITH PERFECT INFORMATION
Table 18: PPO-CWM win rates using CWM refinement via tree search against multiple

opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

a P CWM MCTS Gemini 2.5 Pro GT-MCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw (m)  Win (forfeit/n)  LOSS (forfeityny Draw (ny Win Loss Draw Win Loss Draw
Back 0.01 (o/1) 0.99 (0/99) 0.00 (o) 1.00 (100/100)  0.00 (0/0) 0.00 (o) 0.02 0.98 0.00 0.92 0.08 0.00
TR @ 0m3em  09Tepn 0000 100wy 000ew 000« 001 099 000 094 006 000
c 4 four O 0.00 (0/0) 1.00 (0/100) 0.00 (0) 0.92 (0/92) 0.08 (o/8) 0.00 (o) 0.00 1.00 0.00 1.00 0.00 0.00
LN ) 000 e 100 o _0.00.@ __ 0020 _ 098 omy ___0.000 __0.00__100__0.00__099 001 0.00_
Tic-tac-t x 0.00 (0/0) 0.00 (0/0) 1.00 (100)  0.00 (0/0) 0.00 (0/0) 1.00 (100) 0.00 0.00 1.00 1.00 0.00 0.00
T O 000 ew 100 opw 000w 087Tws _ 0120ay 001w 000 _L00_ 000 _09L 00l 0.08_
G tiotaot x 0.45 (0/45) 0.55 (0/55) 0.00 (o) 0.91 (0/91) 0.09 (0/9) 0.00 (o) 0.54 0.46 0.00 1.00 0.00 0.00
SRR O 00k 0960 0000 0380w 0620w 0000 005 0.95 000 099 001 000
a hes A 0.00 (o/0) 1.00 (0/100) 0.00 (0) 0.94 (90/94) 0.06 (o/6) 0.00 (o) 0.00 1.00 0.00 1.00 0.00 0.00
en. chess & 0.08 (/9 0.92 (0/92) 0.00 ) 0.95 (5/95) 0.05 (0/3) 0.00 @  0.08 092 0.00 1.00 0.00 0.00
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D.2.2 HIDDEN HISTORY INFERENCE

Table 19: PPO-CWM win rates using CWM refinement via tree search and hidden history
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

G P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw (m) Win (forfeit/n) LOSS (forfeit/ny Draw m) Win Loss Draw Win Loss Draw
Quadrant 0.04 (0/4) 0.68 (0/68) 0.28 28y  0.75 (0/75) 0.25 (0/25) 0.00 (o) 0.00 0.64 0.36 0.55 0.16 0.29
T @ 0080w 0340 058y 0Tsom)  0d50p9 01000 004 058 038 056 011 033
Hand of we @  0.63 @6/63) 0.26 (0/26) 0.11 a1y 0.34 (o/349 0.45 (0/45) 0.21 21 0.30 0.60 0.10 0.63 0.23 0.14
anc oL war gy 0.69 @ejee)  0.27 (0/21) 0.04 1y 0.54 (o4 0.31 (o/31) 0.15 a5y 052 039 009 069 024 0.07

Table 20: PPO-CWM payoffs using CWM refinement via tree search and hidden history
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them  Us Them Us Them

gE 794 429 8.41 3.82 8.16  4.76 7.67 2091

Game P

Bargaining

Leduc poker P

D.2.3 HIDDEN STATE INFERENCE

Table 21: PPO-CWM win rates using CWM refinement via tree search and hidden state
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

a P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
ame
Win (forfeit/n)  LOSS (forfeit/n) Draw (n) Win (forfeit/n)  LOSS (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw
adrant 0.00 (0/0) 0.63 (0/63) 0.37 37 0.76 (0/76) 0.17 (0/17) 0.07 () 0.00 0.60 0.40 0.56 0.10 0.34
QA @ 000w 08Semy 0120y 082wm 03w 001w 000 085 012 066 019 015
Hand of we . 0.63 (0/63) 0.26 (0/26) 0.11 a1y 0.34 (2739 0.45 (0/45) 0.21 21y 0.19 0.69 0.12 0.67 0.22 0.11
ancd oL War gy 0.54 (o/51) 0.38 (0/38) 0.08 5y  0.50 (o/50) 0.31 (o/31) 0.19 a9y 049 045 006 058 025 0.17

Table 22: PPO-CWM payoffs using CWM refinement via tree search and hidden state
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them  Us Them Us Them

ge 817 4.61 851 3.83 8.10  4.48 7.87 3.31

Game P

Bargaining

Leduc poker z
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D.2.4 HIDDEN HISTORY INFERENCE WITH CLOSED DECK LEARNING

Table 23: PPO-CWM win rates using CWM refinement via tree search with closed deck
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

G P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random

ame
Win (forfeit/n)  LOSS (forfeit/n) Draw (m) Win (forfeit/n) LOSS (forfeit/ny Draw m) Win Loss Draw Win Loss Draw
0.04 (0/4) 0.72 (0/72) 0.24 24y 0.87 (o787 0.11 (o/11) 0.02 (2 0.00 0.58 0.42 0.41 0.19 0.40

Quadranto ‘

. e ! 0.05 ©o/5_ ___0.37 oppmy_ 058 ss) _ 0.66 o) __ 011 oy 023 e _0.05 _0.46_ 049 041 017 042
Hand of we @  1.00 (oo/100)  0.00 (070 0.00 (o) 0.31 (1/31) 0.57 (0/57) 0.12 a2y 0.38 0.50 0.12 0.63 0.19 0.18
anc oL war oy 1.00 (00/100)  0.00 (0/0) 0.00 @  0.54 (o5 0.31 (o/31) 0.15 15y 043 047 0.0 065 016 0.19

Table 24: PPO-CWM payoffs using CWM refinement via tree search with closed deck
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them  Us Them Us Them

g8 588 6.04 720 491 5.94 6.04 7.23 3.81

Game P

Bargaining

Leduc poker P
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E AUTOMATIC REJECTION OF BAD CWM SAMPLES

The CWM refinement process can occasionally produce a low-quality CWM. This is rarely
the case for perfect information games, where more information is available for refinement
and unit tests are more strict, but we have observed this happening in the case of imperfect
information games. To reduce this effect, in the case of imperfect information games, we
sample 5 CWDMs, create a CWM-ISMCTS agent from each one, and make those agents
compete against each other. Agents are then ranked according to the average payoff obtained
in those competitions. Agents that are worse than the best scoring agent by more than 10%
of the observed utility range are rejected.

Since we do not have access to the ground truth game for these competitions, the agents
use the CWM of one of them as a stand-in for the actual game. We call the CWM used
to play the game the host. This means that we have 2 possible hosts x 5 agents acting as
Player 0 x 5 agents acting as Player 1. This results in a total of 50 possible matches. Since
the outcome of a match is stochastic, we repeat each match 50 times. Execution failures or
the execution of illegal actions during these games result in both players losing the game.

F  SKETCH OF INFORMATION FLOW OF EACH AGENT

Here we provide a sketch of the information flow for each the agents. Of course, many
details are omitted, and the prompts are highly simplified, see Appendix [G] for the actual
prompts.

def 1lm_agent_generator(LLM, rules, traj):
prompt = (f"You are playing a game with these rules: {rules}.\n"
f"Example trajectories: {traj}.\n")

def policy(action_obs_history):
return LLM(prompt + f"Action-observation history: {action_obs_history}.
"Pick the next best action."”)
return policy

n

def cwm_agent_perfect_info_generator(LLM, rules, traj, GT=False):
M = induce_cwm(LLM, rules, traj) if not GT else ground_trutn_M
V = induce_value_fn(LLM, rules, traj, M)

def policy(action_obs_history):
return MCTS(action_obs_history[-1], M, V)
return policy

def cwm_agent_imperfect_info_generator(LLM, rules, traj, GT=False):
(M, I) = induce_cwm_pomdp(LLM, rules, traj) if not GT else ground_trutn_MI
V = induce_value_fn(LLM, rules, traj, M)
def policy(action_obs_history): return ISMCTS(action_obs_history, M, V, I)
return policy

def induce_cwm_zero_shot(LLM, rules, traj):
prompt = (f"You are playing a game with these rules: {rules}.\n"
f"Generate python code that matches this API: {fn_signature}\n”
f”"The code should pass these unit tests: {make_tests(traj)}\n")
return LLM(prompt)
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G SYSTEM AND AGENT PROMPTS

G.1 TREE SEARCH

Our tree search prompt is:

You are an expert python programmer who is building the game of {game_name}.
Here is a description of the game:
{game_desc}

The goal is to implement a python function with the following signature.
# START FUNCTION SIGNATURE

{function_signature}

# END FUNCTION SIGNATURE

The original implementation is as follow. Please try to refine the original code.
# START CODE BLOCK

{orig_code}

# END CODE BLOCK

Your code should satisfy the following unit tests.

Your code should fix the TODO errors in the comments of the unit tests, if any.
# START UNIT TESTS

{test_code}

# END UNIT TESTS

Do not repeat the unit tests, only return the functions.
Do not leave placeholders.

Do not repeat the function signature.
Do not copy the unit tests.

Only produce code that is compact.
Do write comments explaining what the code does.
Do use helper functions to reduce code duplication.

Start by reasoning about the game and the unit tests.
Also reason about the errors and possible fixes.

Finally, try to write {num_targets} versions of the code.
Make sure each code is in a different code blocks starting with ~~~python.

function_signature contains the function definition for the LLM to fill out, while test_code
defines the properties (expressed as unit tests) that the resulting code needs to satisfy.

function_signature and test_code both depend on if the game is a perfect or imperfect
information game, whether it is being learnt in an open or closed deck fashion, and if the
inference is perform via hidden history or hidden state inference. These variations are

defined in the following sections.

Finally, orig_code is the code being refined at each iteration. On the first iteration, this

paragraph is not present.

(G.2 PERFECT INFORMATION GAMES

function_signature is defined as follows:

Action: str
State: dict[str, Any]
PlayerObservation: dict[str, Any]
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def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken.

nnn

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal.""”

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""

def get_rewards(state: State) -> list[float]:
"""Returns the rewards per player from their last action.

nnn

def get_legal_actions(state: State) -> list[Action]:
"""Returns legal actions that can be taken in current state.

nnn

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for player."”"”

test_code tests the transition between two states, testing each of the API calls defined in
function_signature. Here is an example transition unit test for tic tac toe, where the board
is provided as a flat 1D array:

class TestTransition2(unittest.TestCase):
def test_transition_2(self):
state = {'board': [None, None, None, None, 'x', None, 'o
current_player_mark': 'x'}

, None, None],

self.assertEqual (@, get_current_player(state))
self.assertEqual('0Q', get_player_name(0))
self.assertEqual([0.0, 0.0], get_rewards(state))

self.assertEqual ([{'board': [None, None, None, None, 'x', None, 'o', None, None], '
current_player_mark': 'x'}, {'board': [None, None, None, None, 'x', None, 'o',
None, Nonel], 'current_player_mark': 'x'}], get_observations(state))

self.assertSetEqual(set(['x(0,0)', 'x(0,1)"', 'x(0,2)', 'x(1,0)", 'x(1,2)', 'x(2,1)",
'x(2,2)'1), set(get_legal_actions(state)))
self.assertEqual ({'board': [None, None, None, 'x', 'x', None, 'o', None, Nonel,
current_player_mark': 'o'}, apply_action(state, 'x(1,0)'))

If this test has failed, the LLM is provided with the python error message in the form of
a comment before the test. The use of self.assertEqual style functions ensures that the
LLM is provided with a rich description of how the expected and actual data structures
vary.

G.3 HIDDEN HISTORY INFERENCE FUNCTION SYNTHESIS, OPEN DECK

function_signature starts with the version from Section then adds the inference def-
inition:
def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | Nonel],
player_id: int) -> list[Action]:
"""Stochastically sample one of many potential history of actions for all players(
including 'chance' and 'terminal')

This is given only a single player's observations and actions, and needs to recreate
the player_id's observations

unit_text again starts with the definition from Section [G.I] then adds the following test for
added inference function:

state = INITIAL_STATE

obs_action_history = {obs_action_history}

obs_and_action_iter = iter(obs_action_history)

current_player_obs, current_player_action = next(obs_and_action_iter)
player_id = {player_id}
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for action in resample_history(obs_action_history, player_id):
print(f"In state {{state}}")
if get_current_player(state) == player_id:
self.assertEqual(current_player_obs, get_observations(state)[player_id])
print(f"Recreated observation {{current_player_obs}}")
self.assertEqual(current_player_action, action)
current_player_obs, current_player_action = next(obs_and_action_iter)

print(f"Taking action {{action}}")

state = apply_action(state, action)
try:

next(obs_and_action_iter)

raise ValueError('Failed to iterate through all observations.')
except StopIteration:

pass
self.assertEqual(player_id, get_current_player(state))

where INITIAL_STATE is provided at the beginning of the unit tests and is the static first
state of the game. obs_action_history is the history of observations and actions for player
player_id for which we want to resample the history of actions that lead to the current
observations.

Note the presence of print statements inside the unit test. The last ten lines of standard
output are provided to the LLM in addition to the error message.

G.4 HIDDEN STATE INFERENCE FUNCTION SYNTHESIS

function_signature again starts with the version from Section [G.1] then adds the inference
function definition:

def resample_state(obs_action_history: list[tuple[PlayerObservation, Action | None]],
player_id: int) -> list[int]:
"""Stochastically sample one of the reachable statess for player given the observation
and action history that recreates the player's observation."""

unit_test again starts with the definition from Section [G.1] then adds the following test for
added inference function above:

obs_action_history = {obs_action_history}
player_id = {player_id}
resampled_state = resample_state(obs_action_history, player_id)

self.assertEqual(obs_action_history[-1][@], get_observations(resampled_state)[player_id

D

G.5 HIDDEN HISTORY INFERENCE FUNCTION SYNTHESIS, CLOSED DECK

function_signature is similar to that in Section [G.2}

def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | Nonel],
player_id: int, last_is_terminal: bool) -> list[Action]:
"""Stochastically sample one of many potential histories of actions for all players(
including 'chance' and 'terminal')
given only a single player's observations and actions.

It needs to recreate the player_id's observations.
last_is_terminal indicates if the last player observation is from end of game when
player_id is -4."""

Note the extra argument last_is_terminal. This indicates that the final observation in
obs_action_history is of the terminal state. This allows adding tests that resample the
entire game from the beginning to the terminal state, testing the ability of the LLM to
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predict the final reward of the player. In open deck, the transition tests cover this. For
simplicity, we assumed that the rewards are terminal but this is easy to relax.

The corresponding unit_tests for the inference function is:

state = INITIAL_STATE
obs_action_history = {obs_action_history}
player_id = {player_id}
last_is_terminal = {ends_in_terminal}
obs_and_action_iter = iter(obs_action_history)
current_player_obs, current_player_action = next(obs_and_action_iter)
for action in resample_history(obs_action_history, player_id, last_is_terminal):
print(f"In state {{state}}")
if get_current_player(state) == player_id:
self.assertEqual(current_player_obs, get_observations(state)[player_id])
print(f"Recreated observation {{current_player_obs}}")
self.assertEqual(current_player_action, action)
current_player_obs, current_player_action = next(obs_and_action_iter)

print(f"Taking action {{action}}")

state = apply_action(state, action)
try:

next(obs_and_action_iter)

raise ValueError('Failed to iterate through all observations.')
except StopIteration:

pass

Again, this is very similar to unit_test in Section but also covers the terminal state
of the game and it’s associated reward.

Note that no transition unit tests are added as we do not have access to the state. However,
just testing the inference function is not enough to ensure that the resulting closed deck
game is playable. Instead, a random play test is added to unit_test:

state = {initial_state}
rg = np.random.RandomState ({seed})
for it in range(1000): # upper bound on game length
current_player = get_current_player(state)
rewards = get_rewards(state)
assert len(rewards) ==
print (f"State is {{state}}, current player is {{current_player}}, rewards are {{
rewards}}")

if current_player == -4: # Game over
break
if current_player in [0,1]: # Real players
print(f"Observation for current player is {{get_observations(state)[current_player
13"
else:
assert current_player == -1

legal_actions = get_legal_actions(state)
chosen_action = rg.choice(legal_actions)
print(f"Taking action {{repr(chosen_action)}} from {{len(legal_actions)}} options,
first 10 are {{[*legal_actions][:10]1}}")
state = apply_action(state, chosen_action)
else:
raise ValueError(f"Game did not end after 1000 steps."”)

This tests that if every player randomly picks a valid move, the game will correctly play
and terminate. Note that we assume access to the static and deterministic initial state of
the game, before any chance nodes have taken place. This could also be synthesized by the
LLM instead.
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G.6 RESAMPLING THE STATE AT GAME PLAYING TIME FOR IMPERFECT INFORMATION
GAMES

When playing the game, we allow the system to up to 10 tries to get a valid state that
produces the current observations:

for retry in range(10):
json_state = {start_state}
try:
actions = resample_history(obs_action_history, player_id)
for action in actions:
json_state = apply_action(json_state, action)
state_log.append(json_state)
except Exception as e: # Running generated code, could raise anything.

continue
recreated_obs = get_observations(json_state)[player_id]
if recreated_obs == obs_action_history[-1][0]:

return json_state

Additionally, if the ISMCTS process fails due to, e.g., poor understanding of the game
termination criteria in the CWM, we fall back to resampling the state and then return a
uniformly sampled legal action from that state.

G.7 VALUE FUNCTION SYNTHESIS

Our value function synthesis function prompt is

[N

You are an expert python programmer. You are playing the game {game}, and need
to synthesize a value function for monte carlo tree search.

{game_description}
For reference, the game is implemented as follow
{code}

The function you need to write is:
{value_function}

It should return the reward at terminal states, and otherwise an estimate of the
value for each non-terminal states.

It should always be a float:
{player_tests}

Terminal states should match rewards:
{terminal_tests}

To write a good value function first reason about the game and produce a heuristic value
that is informative, and do not just output zeros everywhere other than terminal
states.

Finally ONLY output the new value_function, do not output any other text, code,

explanations or placeholders.

The response code must be a single CODE BLOCK that uses this format:

The opening fence: ~~“python

The closing fence:

[N

Where value_function is

[N

def value_function(state: dict[str, Any], player_id: int) -> float:
"""Returns the value estimate for player_id in state.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For terminal states the function returns the true return. For ongoing play
the function should return a value estimate that reflect the winning potential
of the player with given player_id.

nnn

[N

player_tests and terminal_tests is the list of example

[N

{current_player}
self.assertIsInstance(value_function(state, {current_player}), float)
if {current_player} == pyspiel.PlayerId.TERMINAL:
rewards = get_rewards(state)
for player in range(len(rewards)):
self.assertEqual(rewards[player], value_function(state, player))
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H GAME RULES
H.1 BACKGAMMON

Backgammon is a two-player board game that combines strategy and luck. The object is to
move all of your checkers off the board before your opponent does. Here's a
breakdown of the rules:

**xThe Board and Setup:*x*

* xxThe Board:** The board consists of 24 narrow triangles called **points**. These
points are grouped into four quadrants of six points each:
* **xInner/Home Board:** The quadrant closest to each player's starting position.
* *xQuter Board:x* The quadrant further from each player's starting position.

* **xThe Bar:** The area in the middle of the board, separating the two sides.

* *xThe Bear-Off Area:*x The area off the board where checkers are moved once they reach

the player's home board.

* *xCheckers:*x Each player has 15 checkers of one color (typically black and white).

* **xDice:** Two dice are used to determine movement.

* xxDoubling Cube (Optional but common):*x A cube with the numbers 2, 4, 8, 16, 32, and
64, used to increase the stakes of the game.

*xInitial Setup:xx*
Each player's 15 checkers are set up in a specific configuration on the points:

* 2 checkers on the opponent's 24-point.
* 5 checkers on the opponent's 13-point.
* 3 checkers on their own 8-point.
* 5 checkers on their own 6-point.

**Gameplay : **

1. xxStarting the Game:** Each player rolls one die. The player with the higher roll
goes first. If the rolls are the same, they roll again until one player rolls
higher. The player who goes first uses the numbers rolled on *both* dice to make
their first move.

2. **%Rolling the Dice:** On subsequent turns, each player rolls two dice.

3. **Moving Checkers:x* After rolling the dice, the player must move their checkers
according to the numbers rolled.

* *xSeparated Moves:*x Each die represents a separate move. You can move one checker
the distance of one die's roll and another checker the distance of the other

die's roll.

* **Combined Move:** You can move one checker the combined distance of both dice

rolls, but *only ifx the point you would land on for the first die's roll is not
blocked (see "Blocked Points” below).

* **Mandatory Moves:** You must move your checkers if possible. If you can only make
one of the two moves indicated by the dice, you must make that move. If you can
make both, you must make both.

* xxNo Legal Moves:** If you cannot make any legal moves based on the dice roll,

your turn ends.

4. xxPoint Direction:** You always move your checkers from your opponent's inner board
towards your own home board. The points are numbered 1 to 24, where 24 is the
latest point in your opponent's inner board. Each move makes the checker move to
smaller numbered points.

5. *xLanding on a Point:x*
* xxEmpty Point:** You can land on an empty point.
* *%Point Occupied by Your Own Checkers:** You can land on a point occupied by any
number of your own checkers.
* **xPoint Occupied by Opponent's Checkers:*x
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* xxBlots:xx If a point is occupied by *only one* of your opponent's checkers, it
's called a "blot.” If you land on a blot, you "hit" the opponent's checker.
The hit checker is placed on the *xbarxx.

* *x*Blocked Points:x* If a point is occupied by *two or morex of your opponent's
checkers, it is "blocked.” You *cannot* land on a blocked point.

6. **Entering from the Bar:** If a player has checkers on the bar, they must re-enter
them onto the board before making any other moves.

* xxRe-entry Points:** You can re-enter a checker from the bar onto a point in your
opponent's home board that corresponds to the number rolled on a die. For
example, if you roll a 3, you can re-enter a checker onto your opponent's 3-
point.

* xxBlocked Re-entry:*x If the corresponding point in your opponent's home board is
blocked by two or more of your opponent's checkers, you cannot re-enter using
that die roll.

* *xPriority:** You must use any available die rolls to re-enter checkers from the
bar. If you can re-enter one checker but not the other based on your dice roll,
you must still re-enter the one you can. If you cannot re-enter any checkers,
your turn ends.

7. *xDoubles:** If you roll doubles (e.g., two 4s), you can use each number xfour times
*. So, two 4s means you have four moves of 4. You can use these moves in any
combination, as long as they are legal. Each turn allows you to make two moves only
. So if a player rolls a double, they take an extra turn, making at most two moves
in each of the turns.

8. **Bearing Off:xx If you don't have any checkers outside of your home board or at the
bar, you can "bear off” chekers (moving them off the board) that are at your home
board.

* **Bearing Off Rolls:x* To bear off a checker, you must roll the exact number that
the checker is on to move it off the board from its current point. For example,
if a checker is on your 4-point, you need to roll a 4 to bear it off.

* xxHigher Rolls:*x If you roll a number higher than the highest point occupied by
your pieces, you can still bear off a piece. However, you must bear off a piece
from the highest occupied point. For example, if your highest occupied point is
the 4-point, and you roll a 6, you can bear off a piece only from the 4-point,
you cannot bear off a piece from lower points.

* *xLower Rolls:xx If you roll a number lower than the point your checker is on, you

can still move a checker from a higher point the distance of the roll (if legal
), or you must move a checker from a lower point the distance of the roll if
possible. You cannot bear off a checker if you have checkers on higher points in
your home board that can be moved by the dice roll.

* **Blocked Bear Off:** You cannot bear off a checker if any of your checkers are
still on the bar or outside of your home board. You must bring all your checkers

into your home board before bearing off.

* **Moving Pieces Within Home Board:** Instead of bearing off, you can also move
your checkers within your home board using the dice rolls.

9. **Action Notation:** Player moves are typically represented using a specific notation
. Each turn consists of at most two moves. Each move isrepresented by a string of
the form "Move checker at X using Y roll”, where "X" is the position of the checker

being moved, and "Y" indicates if the move is done based on the dice roll with the
higher or lower number.

The first position is always a number between 1 and 24 or "Bar”, and it is
presented in each player's perspective, where 24 is the latest point in the
opponent's inner board.

For a double roll (e.g., a 3-3, granting four moves of 3 as per rule 7 "Doubles”)

- It is assumed these four moves are made by the player in two stages: First,
providing two moves, then the player gets a second turn then providing the
subsequent two moves. For instance, a player might move two checkers,
each making two 3-point moves. Next, the player would have a second turn,
providing two more moves of 3.

10. *xBoard Notation:** The board is represented with 2 arrays of 24 numbers,
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where each number is either @ (empty) or a number between 1 and 15
(indicating the number of checkers of that color on that point).

The first array is for the first player, and the second is for the second.
The board ordering is from second player's persective. Starts from first
player's home base and ends at the second player's home base. The first
index is the latest point in the second player's inner board, meaning
position 24 for the first player and 1 for the second player.

**Winning the Game:**
The first player to bear off all 15 of their checkers wins the game.
**0ptional Rules (Commonly Used):*x*

* *xxThe Doubling Cube:**

* *x0ffering a Double:** At the start of their turn, *before* rolling the dice, a
player can offer to "double” the stakes of the game.

* *xAccepting a Double:*x The opponent can either accept or decline the double. If
they decline, they lose the game immediately and the current stake is paid. If
they accept, the stakes are doubled, and the opponent now "owns"” the doubling
cube, meaning they are the only one who can offer the next double.

* *xSubsequent Doubles:*x The owner of the cube can offer to redouble at the start
of their turn. The stakes continue to double with each accepted redouble (2, 4,
8, 16, etc.).

* xxGammon and Backgammon:x* These are ways to win with higher stakes.

* *xGammon:x* If a player bears off all their checkers before the opponent has borne
of f *any* checkers, the winner wins a "gammon,” which is typically worth double
the value of the doubling cube.

* xxBackgammon:** If a player bears off all their checkers before the opponent has
borne off *any* checkers and the opponent still has one or more checkers on the
bar or in the winner's home board, the winner wins a "backgammon,” which is
typically worth triple the value of the doubling cube.

**Key Concepts and Strategy:#**

* xxHitting Blots:** Hitting your opponent's checkers puts them on the bar and disrupts
their progress.

* **Making Points:** Occupying points with two or more of your checkers creates "blocks”

that prevent your opponent from moving past. Strategic point-making is crucial.

* xxPrime:x* Creating a "prime” (six consecutive blocked points) can severely hinder
your opponent's movement.

* *x*Running:** Moving your checkers quickly towards your home board.

* *xPositioning:** Carefully considering where to move your checkers to maximize your
options and limit your opponent's.

* *%Risk vs. Reward:*x Balancing the risk of leaving blots with the potential for making
good moves.

Backgammon is a game with layers of strategy that unfold as you play. While the dice
introduce an element of chance, skillful play, understanding probability, and
strategic decision-making significantly influence the outcome. Enjoy the game!

H.2 CONNECT FOUR
### Rules of Connect Four

*  *xSetup:*x Connect Four is played on a 6-row by 7-column vertical grid, which starts

completely empty.

* x%Players and Marks:** There are two players: Player @ uses the 'x' mark and Player
1 uses the 'o' mark.

*  x%Turns:*x Player @ ('x') always goes first, and turns alternate between players.

*  *xxMaking a Move:** On your turn, you choose a column to drop your mark into. The
mark will fall to the lowest unoccupied square within that chosen column.
Attempting to drop a mark into a column that is already full is an invalid move;
you must choose a column with at least one empty square to complete your turn.
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*  *xWinning the Game:** The winner is the first player to get four of their marks in a
row (horizontally, vertically, or diagonally). The game ends immediately as soon

as a winning line is formed.

*  *xDrawing the Game:x* If all 42 squares on the grid are filled and neither player
has won, the game ends in a draw.

* *xEnd the Game:** The game only concludes upon a win or a draw. A player must make a
move on their turn as long as there is at least one valid move available on the
board.

*  xxMove Notation:xx Use the move notation '[mark][col]', where col is the @-indexed
column you are dropping your mark into. For example, 'x3' means Player @ ('x')
drops their mark into the fourth column from the left (column index 3).

H.3 Tic-TAC-TOE
### Rules of Tic-Tac-Toe

*  *xSetup:*x Tic-Tac-Toe is played on a 3x3 grid, which starts completely empty.

* xxPlayers and Marks:xx There are two players: Player @ uses the 'x' mark and Player
1 uses the 'o' mark.

*  xxTurns:xx Player @ ('x') always goes first, and turns alternate between players.

*  **Making a Move:** On your turn, you must place your mark in a single, unoccupied
square. Attempting to place a mark in an already occupied square is an invalid move
; you must choose an empty square to complete your turn.

*  xxWinning the Game:*x The winner is the first player to get three of their marks in
a row (horizontally, vertically, or diagonally). The game ends immediately as soon
as a winning line is formed.

*  *xDrawing the Game:x* If all nine squares on the grid are filled and neither player
has won, the game ends in a draw.

* *xEnd the Game:*x The game only concludes upon a win or a draw. A player must make a

move on their turn as long as there is at least one valid move available on the
board.

*  xxMove Notation:xx Use the move notation 'mark(row,col)', where row and col are 0-
indexed. For example, 'x(0,0)' means Player @ ('x') places their mark in the top-
left square.

H.4 GEN. TIC-TAC-TOE
Generalized Tic-Tac-Toe (6x6, Win Length 4, 2 Players)

1. Overview: This is a two-player strategy game played on a 6x6 grid. The goal
is to be the first player to form a continuous line of four of your own marks.
This game is a specific configuration of a generalized Tic-Tac-Toe framework.

2. Game Setup:

Board: A 6x6 grid of cells (36 cells in total), with rows and columns numbered
0 to 5.

Players: Two players. Conventionally, one player uses
Starting State: The board is initially empty.

[ [}

x' and the other uses 'o'.

3. Gameplay:

Players take turns placing their mark on an unoccupied cell on the board.
A designated player (e.g., Player 'x') makes the first move.

The game continues with players alternating turns.

4. Winning Condition:

A player wins if they are the first to place four of their marks in an unbroken
straight line.

This line can be:
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* Horizontal: Four marks in the same row.
* Vertical: Four marks in the same column.
* Diagonal: Four marks along any of the board's diagonal lines (both directions).

5. Draw Condition:

If all cells on the 6x6 board are filled with marks, and neither player has
achieved a line of four of their marks, the game is a draw.

6. End of Game:

The game concludes immediately when either:
One player achieves a winning line of four marks (that player is the winner).
All cells are filled, and no winning line exists (the game is a draw).

7. Key Parameters for this Specific Variant:

Number of Rows: 6
Number of Columns: 6
Winning Line Length: 4
Number of Players: 2

H.5 GEN. CHESS

The game of generalized chess is a two player game where each player controls a
collection of pieces and wins by capturing the target piece from the other
player. Each kind of game piece has a specific pattern of movements that it can
execute. A piece can execute any one of its available moves as long as that move
stays on the board and doesn't land on another of that player's pieces. If the
piece lands on an opponent piece, it captures the opponent piece and removes it
from the board. Allowed piece movements are not the same as in standard chess.

Actions are described using board coordinates. For a 5x5 board, rows are labeled
A-E from top to bottom, and columns are labeled 1-5 from left to right. A move
from a starting square to a destination square is written as 'start_to_end',

for example, 'A2_to_C2' means move the piece from square A2 to square C2.

Passing a turn is specified as 'PASS'.
This 'army5x5a' variant of generalized chess is played on a 5x5 board.

It includes the following pieces, with their corresponding set of allowed moves:
- general: [(1, @), (-1, @), (o, 1), (0, -1), (0, -2), (0, 2)]

- infantry: [(1, @), (2, @), (1, -1), (1, 1), (-1, 0)]

- cavalry: [(o, 3), (1, 2), (2, 1), (3, 9]

Game pieces are depicted with the following symbols: 'general': 'X', 'infantry': 'I', '
cavalry': 'V'. Player @ pieces are upper-case while Player 1 pieces are lower-case.

The 'general' is the target piece. Capturing this piece wins the game.

H.6 BARGAINING

The rules of "bargaining” aren't fixed and formal like a board game with a rulebook.
Instead, it's a dynamic social process of negotiation where two or more parties
attempt to reach a mutually agreeable outcome on a price or terms for a product,
service, or agreement. Here's a breakdown of the core principles and common "rules'

of bargaining, understood more as strategies and expectations:

'

*xCore Principles of Bargaining:x*x
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* x*Mutual Desire for an Agreement:** Both parties generally want to reach a deal, even
if their initial positions are far apart.

* xxInformation Asymmetry:** One party often has more information than the other, which
can influence the negotiation.

* xxIterative Process:** Bargaining usually involves a series of offers and counter-
offers.

* xxFocus on Value:** Bargaining is about perceived value what each party believes the
item or service is worth.

* xxPotential for Compromise:*x Both parties are usually expected to give a little to
reach an agreement.

*xImplicit "Rules” or Common Strategies:x*

These are not hard-and-fast rules, but rather common practices and expectations that
guide the negotiation:

1. xxKnow Your Limits (Walk-Away Point):** Before starting, each party should have a
clear idea of the maximum (for a buyer) or minimum (for a seller) price they are
willing to accept. This is your "reservation point."”

2. *xStart with an Anchor (Opening Offer):** The first offer sets an "anchor” for the
negotiation. This is usually a price lower than what the seller expects (for a
buyer) or higher than what the buyer expects (for a seller).

* *xSeller's Perspective:*x Start higher than your desired price.
* xxBuyer's Perspective:*x Start lower than what you're willing to pay.

3. *xJustify Your Offers:x* Simply stating a price is less effective than explaining *
whyx you're offering that price. Reference market value, condition of the item,
your budget, etc.

4. *x*Make Concessions Incrementally:*x Don't jump straight to your walk-away point. Make
small concessions with each counter-offer. This signals a willingness to negotiate
while still trying to get the best possible deal.

5. x*Signal Willingness to Walk Away (But Don't Bluff Too Much):** Letting the other
party know you're willing to walk away if you don't get a satisfactory price can be
a powerful tactic. However, repeated or unbelievable threats can undermine your
credibility.

6. *xxListen Actively and Ask Questions:** Pay attention to the other party's offers,
reasoning, and potential underlying needs. Asking questions can reveal information
and build rapport.

7. **Be Patient:xx Bargaining takes time. Don't rush the process.

8. **Maintain a Respectful Tone:** Even if the negotiation becomes difficult, try to
maintain a polite and respectful demeanor. Aggression can shut down the
conversation.

9. *xConsider Non-Price Factors:xx While price is central, bargaining can also involve
other terms like delivery time, payment method, warranties, or additional items
included.

10. **Know When to Stop:** If it's clear you won't reach an agreement that meets your
needs, it's okay to respectfully end the negotiation.

11. *xBe Prepared to Walk Away:** If you can't reach an agreement within your limits,
you must be prepared to walk away. This is crucial for maintaining your boundaries.

12. **The Final Offer:*x Often, one party will indicate their "final offer."” This
suggests they are unwilling to make further concessions. However, this isn't always
truly final and can be tested with a counter-offer.

13. **The Art of the Counter-Offer:x* Respond to offers with a counter-offer that is a

concession from your previous position, but still moves you closer to your goal.
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*xSituational Differences:#*x
The "rules” of bargaining can vary depending on the context:

* *xxCultural Norms:x* Bargaining is much more common and expected in some cultures (e.g
., bazaars in many parts of the world) than others (e.g., retail stores in most
Western countries).

* *xType of Item/Service:*x Bargaining for a car is different than bargaining for a
small trinket at a market.

* xxPower Dynamics:** Who has more leverage in the negotiation can significantly impact
the process.

*xIn summary, the "rules” of bargaining are less about strict regulations and more about
strategic communication, understanding the other party's perspective, and being
prepared to make concessions to reach a mutually acceptable agreement. It's a
negotiation dance where both parties are trying to get the best possible outcome
within their own limits.xx*

H.7 LEDUC POKER

Leduc Poker is a simplified two-player poker game, ideal for AI research, that uses a
small deck to focus on core poker concepts like betting strategy and imperfect
information.

Here is a detailed breakdown of the rules to clarify legal moves. Note that in this
implementation, the "Check” action is not available; players must use "Call”
instead. A call may be zero-cost if there is no outstanding bet to match.

*x1. Setup & Preliminariesx*

*  x%Players:*x 2.

* *xDeck:** 6 cards (two Jacks, two Queens, two Kings).

* xxBlinds:** Before cards are dealt, mandatory bets are posted:
* Player 1 (P1) posts a **Small Blind** of 1 unit.
* Player 2 (P2) posts a **Big Blind** of 2 units.

*  *xThe Deal:*x Each player receives one private card, face down.

*x2. Core Betting Rulesx

* x*Raise Sizing:*x The amount to raise is fixed.
* **xRound 1:** The raise amount is **2 units**.
* *%Round 2:** The raise amount is #**4 units**.

* *xTotal Betting Cap:** The total betting cap for each round is a maximum of **two
raises*x.

*  *xActing First:*x Player 1 (the small blind) acts first in both betting rounds (pre-
flop and post-flop).

*%3. Round 1: Pre-Flop Bettingxx
This round occurs before the public card is revealed.

* *xP1's First Action:xx P1 must act on P2's 2-unit Big Blind.
*  *xFold:*x Forfeit the 1-unit blind. P2 wins the pot.
*  *xCall:*x Match the 2 units by putting in 1 more unit.
* *xRaise:**x Make a 2-unit raise, for a total of 4 units (P1 puts in 3 units). The
total betting cap has been reached.
*  *%P2's Action:x*
* If P1 xxcalledx*, P2 can *xCallxx (a zero-cost action, as bets are equal) to end
the round, or **Raisex* (by putting in 2 more units to make it 4 total).
* If P1 xxraisedx*, P2 can only **Call*x (by putting in 2 more units) or *xFoldxx.
The betting cap has been reached.
* *xP1's Second Action (if necessary):*x If P1 called and P2 then raised, the action
returns to P1. P1 can only **Callx* (by putting in 2 more units) or #xFoldx*.

*x4. The Flop: Public Cardx*
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After Round 1 betting concludes, one public card is dealt face-up. This card is shared
by both players.

*%5. Round 2: Post-Flop Betting*x
This round occurs after the flop. There are no blinds.

* *xxP1's First Action:xx
*  *%xCall:x* Make a zero-cost call to pass the turn (as there is no outstanding bet)

* *%Raise:*x Make a 4-unit raise.
*  *%P2's Action:x*

* If P1 xxcalledx* (at zero-cost), P2 can also **Call*x (at zero-cost, ending the
round) or **Raise*x* 4 units.

* If P1 xxraisedx*, P2 can **Call*x (matching the 4 units), **Raisex* (by putting
in another 4 units, for a total bet of 8), or *xFold**. The total betting cap
has been reached.

*  xxSubsequent Actions:**

* If P2 xxraisedx* (after P1's initial zero-cost call), the action returns to P1,
who can **Call*x (the 4 unit bet), **Raise*x (to 8 total), or *xFold**. The
total betting cap has been reached.

* If a player **raisesxx, the other player can only **Callxx or *xFoldx*, as the
betting cap has been reached.

*%6. Showdown & Hand Rankingx
If neither player folds, a showdown occurs after Round 2 betting.

* xxHand:*x A player's hand is their private card combined with the public card.
*  *xHand Ranks (best to worst):xx*
1. **Pair:x* Two cards of the same rank (e.g., J-J). Higher pairs beat lower pairs.
2. *xHigh Card:*x If no one has a pair, the player with the highest card wins (K > Q
> J).
*  *xTies:x* If both players have the same hand rank (e.g., both have a King-high), the
pot is split.

*%7. Winning*x
A player wins the pot either by being the only one left after the other folds, or by
having the best hand at showdown.

H.8 GIN RUMMY
# The Game of Gin Rummy

Gin Rummy is a two-player card game played with a standard 52-card deck. The
primary objective is to form "melds” in your hand, which are either sets of
three or four cards of the same rank (e.g., 7h 7c 7d) or runs of three or more
cards of the same suit in sequence (e.g., 4h 5h 6h). Cards not part of any meld
are referred to as "deadwood.” The value of deadwood cards corresponds to their
rank (Aces are 1 point, face cards are 10, and number cards are their face
value). The ultimate goal is to minimize the point value of your deadwood.

A round of Gin Rummy concludes when a player "knocks." A player can choose to
knock on their turn if the total point value of their deadwood is less than or
equal to a predetermined "knock card” value. Announcing "gin"” is a special type
of knock where a player has no deadwood at all.

# Player Hand Information: This section provides details about your own hand.
Deadwood: This calculates the current point total of the cards in
your hand that are not part of a valid meld (a set or a run). Minimizing this

value is the primary goal.

The Card Grid: This is a visual representation of the cards you currently hold.
It is organized logically for easy parsing:
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Rows: Each of the four rows corresponds to a suit, in the order of Spades (top
row), Clubs, Diamonds, and Hearts (bottom row).

Columns: The columns represent the rank of the cards, ordered from Ace on the
far left to King on the far right.

Here are also some example moves:

Player: @ Action: Pass
Player: 1 Action: Draw upcard
Player: 1 Action: Jc

Player: @ Action: 3d

Player: 1 Action: Draw stock

# Action Legality is Dictated by Game Phase: Before selecting a move, you must
first check the phase.
If the phase is Draw, the only valid actions are Draw upcard or Draw stock.

If the phase is Discard, the only valid actions are to discard a specific card
from your hand (e.g., Action: 4c) or to Knock.

A player cannot discard a card until after they have successfully drawn one.

# Special Case: The First Turn of the Round

The very first turn of a round has a unique rule. The non-dealer has the first
option on the initial upcard.

The non-dealer can either take the upcard (Draw upcard) or Pass.

If the non-dealer passes, the dealer then has the same choice: take the upcard
or pass.

If both players pass on the initial upcard, the non-dealer must then start their
turn by drawing from the stock pile. After this initial sequence, play continues
with the standard draw/discard phases.

# Knocking:

When a player knocks in Gin Rummy, the round immediately ends and a specific
sequence of scoring, known as the "layoff,” begins. Here is a detailed
breakdown of what happens.

1. The Knock and Laying Down Hands

First, the player who is knocking (the "knocker") lays their hand face up on the
table, organising their cards into melds (sets and runs) and separating their
unmelded cards, known as "deadwood."”

What the Player Needs to Do After Knocking

After sending Action: Knock, the player must follow a strict, multi-step process
to lay down their hand for scoring.

Step 1: Declare Your Melds

The player must now explicitly declare their melds to the game, one by one.

For exampple, if the agent's hand contains two valid runs:

A run of clubs: 7c8c9cTc

A run of diamonds: 9dTdJdQd

Correct First Move in the Knock Phase:
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Player: 1 Action: 7c8c9cTc
or
Player: 1 Action: 9dTdJdQd

Step 2: Declare Subsequent Melds

After the agent declares its first meld, it will receive a new observation. The
game will still be in Phase: Knock. The Valid actions will now include any
remaining melds that can be made from the cards left in the hand.

Note: The value of the knocker's deadwood must be 10 points or less (or the value of
the designated knock card for that round). Face cards are worth 10 points, aces
are 1 point, and all other cards are their numerical value.

2. The Opponent's Turn: Laying Off

Next, the defending opponent lays down their own hand, also separating their
melds from their deadwood. Crucially, the opponent then gets the opportunity to
"lay off" any of their own deadwood cards by adding them to the knocker's melds.

For example:

If the knocker has a meld of three Kings (Ks Ks Ks), and the opponent has the
fourth King (Ks) as deadwood, they can add it to the knocker's set, thus
eliminating those 10 points from their deadwood count.

If the knocker has a run of 5h 6h 7h, the opponent can lay off a 4h or an 8h
to extend the run.

The knocker is not allowed to lay off any of their deadwood on the opponent's melds.

3. Scoring the Hand

After the opponent has finished laying off their cards, both players calculate
the final value of their remaining deadwood. The scoring for the hand is then
determined in one of three ways:

a) A Successful Knock
If the knocker's deadwood count is lower than the opponent's deadwood count,
the knocker scores the difference between the two counts.

Example: The knocker has 7 points of deadwood. The opponent initially has 35
points, but after laying off a 10-point card, their deadwood is reduced to 25.
The knocker scores 18 points (25 - 7).

b) An Undercut

If the opponent, after laying off their cards, has a deadwood count that is
equal to or less than the knocker's count, they have "undercut” the knocker. In
this scenario, the opponent scores the difference in points (if any) plus a
bonus, which is typically 25 points.

Example: The knocker has 8 points. The opponent has 6 points after layoffs. The
opponent scores 2 points (8 - 6) plus a 25-point bonus, for a total of 27
points.

c) Going Gin

If the knocker has a deadwood count of zero, this is called "going gin."” The
knocker receives a bonus (typically 25 points) in addition to the full value of
the opponent's entire deadwood count. When a player goes gin, the opponent is
not allowed to lay off any of their cards.

Example: A player goes gin. Their opponent has 42 points of deadwood. The
ginning player scores 42 points plus a 25-point gin bonus, for a total of 67
points.

What if the Stock Pile Runs Out?
If the stock pile is reduced to its last two cards and the player who drew the
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third to last card discards without knocking, the hand is declared a draw. No
points are awarded to either player, and the deal passes to the next player for
a new round.

# If you see Phase: Wall in an observation, it means:

The Stock Pile is Exhausted: The round has concluded because there are no more
cards to be drawn from the stock.

No Player Has Knocked: Neither you nor your opponent were able to knock by the
time the last card was drawn.

The Hand is a Draw: No points are awarded to either player for this round. The
hand is over.

No Action is Required: The game is in a terminal state for the current round.
The only thing to do is to acknowledge the result and wait for the next hand to
be dealt. The deal will typically pass to the player who didn't deal the drawn
hand. Thus “Player: X Action: Pass™ must be provided as action.

H.9 QUADRANTO

Quadranto is a partially observable game in which two players try to catch each
other in a 4 by 4 matrix.

The 4 by 4 matrix is divided in 4 quadrants. At the beginning, player @ is
randomly placed in the top left quadrant and player 1 is randomly placed in the
bottom right quadrant.

During their turn, each player can choose to move in each of the four cardinal
directions, "Left"”, "Right”, "Up"”, "Down"”. Or they can choose to "Stay”, which
means they remain where they are. When a player moves, if it lands on the same
location where the other player is, it wins and the game ends.

The observation tells the player where it is located and in which *quadrantx the
opponent player is located. Therefore, neither player knows exactly where the
other player is located until the very moment in which one player catches the
other.

If the players perform a total of 20 moves without catching each other, the game

ends in a draw, both players get @ points. If one catches the other, the winning
player gets +1 points and the losing player gets -1 points.

H.10 HAND OF WAR

**Hand of Warxx is a strategic card game where choosing your cards

wisely is key to victory. You'll manage a hand of cards, adding a layer of

tactical decision-making to every round as you aim to capture all of your opponent's
cards.

**0bjective:**

* The goal of Hand of War is to capture as many of your opponent's cards.

**Setup:**

*  *xShuffle and Deal:** Thoroughly shuffle the deck. Deal the entire deck

evenly between two players, face down.

*  *xForm Hands:*x Each player draws the top three cards from their draw pile.

**xGameplay (The "Battle"”):**
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*  *xChoose a Card:** Simultaneously, both players select one card from their
hand and place it face down.

* xxReveal and Compare:** Both players flip their chosen cards.

*  x%Higher Card Wins:** The player with the higher-ranking card wins the
battle and takes both cards, placing them at the bottom of their win pile.

*  *xCard Ranking:*x Ace (High), K, Q, 7J.

* xxDraw New Cards:** After the battle, players draw from their draw pile to
replenish their hand to three cards.

*x"Showdown” (When Cards Tie):*x

*  xxDeclaration:*x If cards are of the same rank, a "Showdown"” occurs.

*  xxFace-Down Cards:** Each player places 1 card from their draw pile face
down.

*  xxChoose Battle Card:** Players choose one card from their hand and place it
face up.

*  xxDetermine Showdown Winner:xx Higher battle card wins all cards in the
Showdown .

*  xxAnother Tie:** Repeat Showdown process (burn 1, choose card).

*  x%Draw After Showdown:** Players replenish their hand to three cards.

**Game End Conditions:=*x
The game can end in one of two ways:

1. *xWinning by Capturing All Cards:x* The game ends immediately if one player
possesses all 16 cards. That player is the winner.

2. **Winning by Win Pile Count (Draw Pile Depleted):*x If a player's draw pile
becomes empty and they are required to perform an action they cannot complete
(such as drawing a card to replenish their hand after a battle, or burning a
card during a Showdown), the game ends immediately. In this scenario:

*  The number of cards in each player's win pile is counted.

* The player with more cards in their win pile wins the game.

* If both players have an equal number of cards in their win piles, the

game results in a draw.

* Note: The win pile is never reshuffled into the draw pile during play.

**Notation**
Player @ always moves first, followed by player 1. Thus if the previous move was

a player @ move, then the next move is a player 1 move.

For convenience, a list of played cards is provided in PubliclyRevealedCards,
but not playable anymore.
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I SAMPLE SYNTHESIZED CWMS AND INFERENCE FUNCTIONS

We show the resulting CWM after tree search refinement on perfect and imperfect informa-
tion games, and for the latter we include both open and closed deck inference. This includes
inference and value functions when they exist.

I.1 TIC-TAC-TOE (PERFECT INFORMATION)

import collections
from typing import Any, cast

# Type aliases for clarity as defined in the problem.
Action = str

State = dict[str, Any]

PlayerObservation = dict[str, Any]

# Game constants for mapping players, marks, and defining winning conditions.
_MARK_TO_PLAYER = {'x': 0, 'o': 1}
_WINNING_LINES = [
# Rows
@, 1, 2), 3, 4, 5), (6, 7, 8),
# Columns
©, 3, 6), (1, 4, 7), (2, 5, 8),
# Diagonals
©, 4, 8), (2, 4, 6)
]

# --- Helper Functions ---

def _check_winner(board: list[str | Nonel) -> str | None:
"""Checks if there is a winner on the board, returning the winner's mark."""
for line in _WINNING_LINES:
p1, p2, p3 = line
# Check if all three cells in a line are the same and not empty.
if board[p1] and board[p1] == board[p2] == board[p3]:
return board[p1]
return None

def _is_game_over(board: list[str | None]) -> bool:
"""Checks if the game has ended either by a win or a draw.
return _check_winner(board) is not None or all(cell is not None for cell in board)

# --- Core Game Functions ---

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken.
mark = action[0]
row = int(action[2])
col = int(action[4])

# Create a copy of the board to modify.
new_board = state['board'][:]

index = row * 3 + col

new_board[index] = mark

# A game is over if there is a winner or the board is full.
if _is_game_over(new_board):
next_player_mark = None

else:
# Alternate turns between 'x' and 'o'.
next_player_mark = 'o' if mark == 'x' else 'x'

return {'board': new_board, 'current_player_mark': next_player_mark}

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal.”""
mark = state['current_player_mark']
if mark is None:
return -4 # Terminal state
return _MARK_TO_PLAYER[mark]

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""

if player_id == -4:
return 'terminal’
if player_id == -1:

return 'chance’
return str(player_id)

def get_rewards(state: State) -> list[float]:
"""Returns the rewards per player from their last action.
# Rewards are only non-zero in a terminal state.
if get_current_player(state) != -4:
return [0.0, 0.0]

winner_mark = _check_winner(state[ 'board'])

if winner_mark == 'x':
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2538 .
return [1.0, -1.0] # Player @ wins

2539 if winner_mark == 'o':

return [-1.0, 1.0] # Player 1 wins

2540
2541 return [0.0, 0.0] # Draw
2542 def get_legal_actions(state: State) -> list[Action]:
"""Returns legal actions that can be taken in current state.”"”
2543 # No legal actions if the game is over.
if get_current_player(state) == -4:
2544 return []
2545

actions = []
2546 mark = state['current_player_mark']
# An action is legal for any empty (None) square.
2547 for i, cell in enumerate(state['board']):
if cell is None:
2548 row, col = divmod(i, 3)
2549 actions.append(f"{mark}({row},{col})")
return actions
2550

2551 def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for player.”"""

2552 # Fully observable game, so both players see the complete state.
return [state, state]

2553

2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
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2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636

2637 import copy
2638 import itertools
import random
2639 from typing import Any, Dict, List, Optional, Tuple

[.2 BARGAINING (IMPERFECT INFORMATION, OPEN DECK)

2640 # Type Aliases for clarity
State = Dict[str, Any]
2641 Action = str
2642 PlayerObservation = Dict[str, Any]

2643 # --- Game Constants ---
ITEMS = sorted(['X', "Y', 'Z'1)
2644 NUM_PLAYERS = 2
MAX_TURNS = 10
2645 MAX_ITEM_VALUE = 10
# This is a fixed set of chance outcomes, likely for deterministic testing or analysis.
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# --- Helper Functions ---

def _parse_quantities(q_str: str) -> Dict[str, int]:
"""Parses a quantity string like '1,2,0' into a dictionary.
return {item: int(q) for item, q in zip(ITEMS, q_str.split(','))}

def _format_quantities(quantities: Dict[str, int]) -> str:
"""Formats a quantity dictionary into a string like '1,2,0'.
return ”,"” . join(str(quantities.get(item, 0)) for item in ITEMS)

def _create_agreement(state: State, offering_player: int, offered_quantities: Dict[str, int]) -> List[Dict[str, int]]:
"""Creates the final agreement structure based on an accepted offer.”"”
shares = [{}, {}]
shares[offering_player] = offered_quantities
other_player = 1 - offering_player
# The other player gets the remainder of the item pool.
shares[other_player] = {
item: state['pool'][item] - offered_quantities.get(item, @) for item in ITEMS

return shares

# --- Core API Functions ---

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken.

new_state = copy.deepcopy(state)
player_id = get_current_player(new_state)

if player_id == -1: # Chance player sets up the game.
pool_str, v@_str, vi_str = action.split(';"')
new_state[ 'pool'] = _parse_quantities(pool_str)

new_state[ 'player_0_values']
new_state[ 'player_1_values']
new_state[ 'current_player'] =
return new_state

_parse_quantities(vo_str)
_parse_quantities(vi_str)
o'

if "agrees” in action:
# A player agrees to the last offer, ending the game.
last_offer = new_state['offer_history'1[-1]
new_state[ 'agreement'] = _create_agreement(new_state, last_offer['player'], last_offer['quantities'])
new_state[ 'current_player'] = None # Mark as a terminal state.

elif "offers” in action:
# A player makes a new offer.
new_state[ 'num_turns'] += 1
quantities = _parse_quantities(action.split(' offers ')[1])
new_offer = {
‘num_turn': new_state['num_turns'],
'player': player_id,
'quantities': quantities

new_state[ 'offer_history'].append(new_offer)

# If turn limit is reached, this offer becomes a forced, zero-reward agreement.
if new_state['num_turns'] >= MAX_TURNS:

new_state[ 'current_player'] = None

new_state[ 'agreement'] = _create_agreement(new_state, player_id, quantities)
else:

new_state[ 'current_player'] = str(1 - player_id) # Switch to other player.

return new_state
def get_current_player(state: State) -> int:

"""Returns current player, with -1 for chance and -4 for terminal.”""
player = state.get('current_player')

if player == 'chance':
return -1

if player is None:
return -4

return int(player)

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""

if player_id == -1:
return 'chance’
if player_id == -4:

return 'terminal'
return str(player_id)

de

Y

get_rewards(state: State) -> list[float]:

"""Returns the rewards per player from their last action.

# Rewards are only given for a voluntary agreement. A forced agreement

# at the turn limit (MAX_TURNS) results in zero reward for both.

if not state.get('agreement') or state['num_turns'] >= MAX_TURNS:
return [0.0] * NUM_PLAYERS

rewards = []
for i in range(NUM_PLAYERS):
player_values = state[f'player_{i}_values']
player_share = state['agreement'][i]
# Reward is the total value of items received by the player.
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reward = sum(player_share.get(item, 0) * player_values.get(item, 0) for item in ITEMS)
rewards.append(float(reward))
return rewards

def get_legal_actions(state: State) -> list[Action]:
"""Returns all legal actions for the current player.
player_id = get_current_player(state)
if player_id == -1: # Chance player
return _CHANCE_ACTIONS
if player_id < @: # Terminal state
return []

actions = []
pool = state['pool']

# Generate all possible 'offer' actions by iterating through all item combinations.
ranges = [range(pool.get(item, @) + 1) for item in ITEMS]
for combo in itertools.product(*ranges):
quantities = {item: count for item, count in zip(ITEMS, combo)}
actions.append(f”player {player_id} offers {_format_quantities(quantities)}")

# 'agree' is a legal move if at least one offer has been made by the opponent.
if state['offer_history']:
actions.append(f”player {player_id} agrees”)

return actions

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for each player, containing public and private information.
base_obs = {
'‘current_player': state['current_player'],
'pool’: state['pool'],
'num_turns': state['num_turns'],
'agreement': state['agreement'],

}

is_terminal = get_current_player(state) == -4
observations = []

# Determine the correct previous_offer based on game state
terminal_previous_offer = None
if is_terminal:

# In a terminal state, the "previous offer” is the one that was on the table

# before the final, accepted offer was made. This corresponds to the

# second-to-last offer in the history.

if len(state['offer_history']) > 1:

terminal_previous_offer = state['offer_history'][-2]

for i in range(NUM_PLAYERS):
obs = base_obs.copy()
obs['values'] = state[f'player_{i}_values']
obs['my_player_id'] = i

if is_terminal:
obs['previous_offer'] = terminal_previous_offer
else:
# In an active game, the previous offer is the last one made by the opponent.
opponent_id = 1 - i
obs['previous_offer'] = next((
offer for offer in reversed(state['offer_history']) if offer['player'] == opponent_id
), None)
observations.append(obs)

return observations

def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | Nonell, player_id: int) -> list[Action]:
"""Stochastically samples one of many potential histories given a single player's perspective.”"”
first_obs = obs_action_history[0][0]

# Opponent's values are private and must be sampled randomly to create a possible history.
opponent_id = 1 - player_id
opponent_values = {item: random.randint(®, MAX_ITEM_VALUE) for item in ITEMS}

values = [{}, {}]
values[player_id]

= first_obs['values']
values[opponent_id] =

opponent_values

# Reconstruct the 'chance' action that started the game.

chance_action = (
f"{_format_quantities(first_obs['pool'1)};"
f"{_format_quantities(values[0])};"
f"{_format_quantities(values[1])}"

)

# Collect all known offers (own and opponent's) from the observation history.
known_offers = []
seen_turns = set()
for obs, action in obs_action_history:
# Opponent's offers are seen in the 'previous_offer' field.
prev_offer = obs.get('previous_offer')
if prev_offer and prev_offer['num_turn'] not in seen_turns:
known_offers.append(prev_offer)

52



Under review as a conference paper at ICLR 2026

seen_turns.add(prev_offer['num_turn'])

# Own offers are reconstructed from the actions taken.
if action and 'offers' in action:
# An offer action increments the turn number for the xnextx state's observation.
# The offer itself is recorded with this new turn number.
turn = obs['num_turns'] + 1
if turn not in seen_turns:
quantities = _parse_quantities(action.split(' offers ')[1])
known_offers.append({ 'num_turn': turn, 'player': player_id, 'quantities': quantities})
seen_turns.add(turn)

# Reconstruct the sequence of actions in chronological order.
known_offers.sort(key=lambda x: x['num_turn'])
resampled_actions = [chance_action]
resampled_actions.extend(
f"player {ol['player']} offers {_format_quantities(o['quantities'])}"
for o in known_offers

)

# Add the final action if it was not an offer (e.g., 'agrees').

final_action = obs_action_history[-1][1]

if final_action and 'offers' not in final_action:
resampled_actions.append(final_action)

return resampled_actions

def value_function(state: dict[str, Any], player_id: int) -> float:
"""Returns the value estimate for player_id in state.

For terminal states the function returns the true return. For ongoing play
the function should return a value estimate that reflect the winning potential
of the player with given player_id.
# 1. Handle Terminal States
if get_current_player(state) == -4:
if player_id < 0@ or player_id >= NUM_PLAYERS:
# For non-players like 'terminal' (-4), return 0.0
return 0.0
# For active players, return the actual reward achieved.
return get_rewards(state)[player_id]

# --- Heuristic for Non-Terminal States ---

# 2. Basic Information
my_values = state.get(f'player_{player_id}_values')
# This can happen in the initial 'chance' state before values are assigned.
if not my_values:
return 0.0

opponent_id = 1 - player_id

pool = state['pool']

offer_history = state['offer_history']
current_turn_player = get_current_player(state)

# 3. Calculate Total Potential Value
# The maximum value this player could get if they received all items.
total_my_value = sum(pool.get(item, 0) * my_values.get(item, 0) for item in ITEMS)
if total_my_value == 0:

return 0.9 # If nothing in the pool is valuable, expected outcome is 0.

# 4. Define Baseline "Fair" Expectation
# A simple assumption that the player aims for about half the total value.
fair_value_estimate = total_my_value / 2.0

# 5. Core Heuristic Logic based on current negotiation status
heuristic_value = fair_value_estimate # Default to fair split expectation

if not offer_history:
# First turn, no offers yet. The best estimate is a fair split.
heuristic_value = fair_value_estimate
else:
last_offer = offer_history[-1]
if current_turn_player == player_id:
# It's my turn to act.
if last_offer['player'] == opponent_id:
# Opponent made the last offer. I can agree or counter.
# Calculate the value of their offer to me.
their_proposed_share = last_offer['quantities']
my_share_if_agree = {
item: pool.get(item, 0) - their_proposed_share.get(item, 0)
for item in ITEMS

value_on_table = sum(
my_share_if_agree.get(item, 0) * my_values.get(item, 0)
for item in ITEMS
)
# My position's value is the better of what I can get now
# versus my general expectation from continued negotiation.
heuristic_value = max(value_on_table, fair_value_estimate)
else: # last_offer['player'] == player_id
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2862

# The last offer was mine, but the opponent didn't agree.
2863 # My turn again means my previous offer was implicitly rejected.

# Fall back to the baseline expectation.
2864 heuristic_value = fair_value_estimate
2865 elif current_turn_player == opponent_id:

# It's the opponent's turn. They are considering my last offer.

2866 if last_offer['player'] == player_id:

my_proposed_share = last_offer['quantities']
2867 # The value of the state is the value of the offer I'm hoping they accept.
2868 value_of_my_offer = sum(

my_proposed_share.get(item, 0) * my_values.get(item, 0)

2869 for item in ITEMS

)
2870 heuristic_value = value_of_my_offer

2871 # 6. Apply Time Pressure Discount

2872 # As turns run out, the risk of getting @ from a forced agreement increases.
# This discounts the potential future value accordingly.

2873 if state['num_turns'] >= MAX_TURNS:

2874 return 0.0 # Game is over or will be forced to @ reward on next action.

2875 turns_left = MAX_TURNS - state['num_turns']
# A sqgrt factor makes the discount less severe in early turns.
2876 pressure_factor = (turns_left / MAX_TURNS) ** 0.5

2877 return float(heuristic_value * pressure_factor)
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
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2896
2897
2898
2899
2900
2901
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2903
2904
2905
2906
2907
2908
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2910
2911
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2914
2915
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[.3 BARGAINING (IMPERFECT INFORMATION, CLOSED DECK)

import copy

import itertools

import random

from typing import Any, Dict, List, Tuple, Optional

# Type definitions

Action = str

State = Dict[str, Any]
PlayerObservation = Dict[str, Any]

# Game constants

NUM_PLAYERS = 2

ITEMS = sorted(['X', "Y', 'Z'])
MAX_TURNS = 10

POOL_VALUES = range(1, 6)
ITEM_VALUES = range(0, 7)

# Create a fixed, reproducible set of possible game scenarios for the chance node.
_CHANCE_OUTCOMES = []
_chance_rng = random.Random(@)
for _ in range(20):
pool = {item: _chance_rng.choice(POOL_VALUES) for item in ITEMS}
po_values = {item: _chance_rng.choice(ITEM_VALUES) for item in ITEMS}
pl_values = {item: _chance_rng.choice(ITEM_VALUES) for item in ITEMS}

pool_str = "," . join(f"{k}={v}" for k, v in sorted(pool.items()))
po_str = ",". join(f"{k}={v}" for k, v in sorted(p@_values.items()))
pl_str = "," . join(f"{k}={v}" for k, v in sorted(pl_values.items()))

_CHANCE_OUTCOMES . append(f"”pool:{pool_str};p0d_values:{p@_str};pl_values:{pl_str}")

def _parse_offer_action(action: Action) -> Tuple[int, Dict[str, int]]:
"""Parses an offer action string into player ID and quantities.""”
parts = action.split()
player_id = int(parts[1])
quantities = {item: int(q) for item, g in zip(ITEMS, parts[3].split(','))}
return player_id, quantities

def _calculate_reward(bundle: Dict[str, int], values: Dict[str, int]) -> float:
"""Calculates the total value of a bundle of items for a player."""
return sum(bundle.get(item, ©) * values.get(item, 0) for item in ITEMS)

def _reconstruct_offer_action(offer: Dict[str, Any]) -> Action:
"""Reconstructs an offer action string from an offer dictionary.
quantities_str = ",".join(str(offer['quantities'].get(item, 0)) for item in ITEMS)
return f"player {offer['player']} offers {quantities_str}"

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken.
new_state = copy.deepcopy(state)

if state.get('current_player') == 'chance':
# Initialize the game state from the chance node action.
parts = action.split(';")
new_state[ 'pool'] = {p.split('=')[0]: int(p.split('="')[1]) for p in parts[0].split(':')[1].split(', ')}
new_state[ 'player_0_values'] = {p.split('=')[0]: int(p.split('=')[1]) for p in parts[1].split(':')[1].split(', ')}
new_state[ 'player_1_values'] = {p.split('=')[0]: int(p.split('=')[1]) for p in parts[2].split(':')[1].split(', ')}
new_state[ 'current_player'] = @
return new_state

if 'agrees' in action:
# An agreement is reached. The game becomes terminal.
last_offer = new_state['offer_history'][-1]
offerer_id = last_offer['player']
offerer_bundle = last_offer['quantities']
accepter_bundle = {item: new_state['pool'][item] - offerer_bundle.get(item, @) for item in ITEMS}

agreement = [{}, {}]
agreement[offerer_id] = offerer_bundle
agreement[1 - offerer_id] = accepter_bundle

new_state['agreement'] = agreement
new_state[ 'current_player'] = None
elif 'offers' in action:
# An offer is made. Increment turn count and switch player.
player_id, quantities = _parse_offer_action(action)
new_state['num_turns'] += 1
offer = {'num_turn': new_state['num_turns'], 'player': player_id, 'quantities': quantities}
new_state[ 'offer_history'].append(offer)

if new_state['num_turns'] >= MAX_TURNS:

new_state['current_player'] = None # End game if turn limit reached.
else:

new_state[ 'current_player'] = 1 - player_id

return new_state
def get_current_player(state: State) -> int:

"""Returns current player, with -1 for chance and -4 for terminal.”""
if state.get('current_player') == 'chance':
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return -1
if state.get('current_player') is None or state['agreement'] or state['num_turns'] >= MAX_TURNS:
return -4

return state['current_player']

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""
return {-1: 'chance', -4: 'terminal'}.get(player_id, str(player_id))

def get_rewards(state: State) -> list[float]:
"""Returns rewards. Rewards are @ if the game ends due to the turn limit."""
if state['num_turns'] >= MAX_TURNS or not state['agreement']:
return [0.0] * NUM_PLAYERS

po_reward = _calculate_reward(state['agreement'][0], state['player_0_values'])
pl_reward = _calculate_reward(state['agreement'][1], state['player_1_values'])

return [float(p@_reward), float(pl_reward)]
def get_legal_actions(state: State) -> list[Action]:

"""Returns legal actions that can be taken in current state.
player = get_current_player(state)

if player == -4:
return []
if player == -1:

return _CHANCE_OUTCOMES

actions = []
if state['num_turns'] > 0:
actions.append(f”player {player} agrees")

# Generate all possible offer combinations based on the item pool.
pool = state['pool']
quantity_ranges = [range(pool.get(item, @) + 1) for item in ITEMS]
for quantities in itertools.product(*quantity_ranges):
q_str = ",".join(map(str, quantities))
actions.append(f"”player {player} offers {q_str}")

return actions

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for each player.""”
observations = []
player_at_turn = get_current_player(state)
is_terminal = (player_at_turn == -4)

for i in range(NUM_PLAYERS):
previous_offer = None
# In a terminal state with an agreement, the "previous offer” is the one before the accepted one.
if is_terminal and state['agreement'] and len(state['offer_history']) > 1:
previous_offer = state['offer_history'][-2]
elif state['offer_history']:
previous_offer = state['offer_history']1[-1]

obs = {
'my_player_id': i,
'pool’: state['pool'l,
'values': state[f'player_{i}_values'],
'num_turns': state['num_turns'],
'agreement': state['agreement'],
'previous_offer': previous_offer,
'‘current_player': str(player_at_turn) if player_at_turn >= 0 else None,

3}

observations.append(obs)

return observations

def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | Nonell, player_id: int, last_is_terminal: bool) ->
< list[Action]:
"""Stochastically sample one of many potential histories of actions for all players.
# 1. Reconstruct and yield the chance action.
first_obs = obs_action_history[0][0]
opponent_values = {'X': 3, 'Y': 3, 'Z': 4} # Assume fixed opponent values for reproducibility.

p_vals = [{}, {}]
p_vals[player_id] = first_obs['values']

p_vals[1 - player_id] = opponent_values

pool_str = "," . join(f"{k}={v}" for k, v in sorted(first_obs['pool'].items()))
po_str = ",". join(f"{k}={v}" for k, v in sorted(p_vals[0].items()))

pl_str = ",". join(f"{k}={v}" for k, v in sorted(p_vals[1].items()))

yield f"pool:{pool_str};p0_values:{p@_str};pl_values:{pl_str}”

# 2. Reconstruct the interleaved game actions from the player's perspective.
last_opponent_turn_yielded = @
my_last_action = None
for obs, action in obs_action_history:
if action:
my_last_action = action

if obs.get('previous_offer'):

offer = obs['previous_offer']
# Only yield opponent offers that haven't been yielded yet to avoid duplication.
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if offer['player'] != player_id and offer['num_turn'] > last_opponent_turn_yielded:
yield _reconstruct_offer_action(offer)
last_opponent_turn_yielded = offer['num_turn']

if action:
yield action
if 'agrees' in action:
return

# 3. Deduce the final hidden actions if the game ended with an agreement not initiated by the player.
if last_is_terminal:
last_obs, last_action = obs_action_history[-1]
if last_action is None and last_obs['agreement']:
agreement = last_obs['agreement']
_, my_last_quantities = _parse_offer_action(my_last_action)

# Case A: Opponent agreed to my last offer. My bundle in the agreement matches my last offer.
if my_last_quantities == agreement[player_id]:
yield f"player {1 - player_id} agrees”
# Case B: Opponent made a counter-offer, which I would have implicitly agreed to.
else:
opponent_id = 1 - player_id
opponent_bundle = agreement[opponent_id]
quantities_str = " ".join(str(opponent_bundle.get(item, 0)) for item in ITEMS)
yield f"”player {opponent_id} offers {quantities_str}"
yield f"player {player_id} agrees”

from typing import Any, Dict, List

def value_function(state: dict[str, Anyl, player_id: int) -> float:
"""Returns the value estimate for player_id in state.

For terminal states the function returns the true return. For ongoing play

the function should return a value estimate that reflect the winning potential

of the player with given player_id.

# Game constants and helper functions defined in local scope for self-containment.
ITEMS = sorted(['X', "Y', 'Z'])

MAX_TURNS = 10

NUM_PLAYERS = 2

def _calculate_reward(bundle: Dict[str, int], values: Dict[str, int]) -> float:
"""Calculates the total value of a bundle of items for a player."""
return sum(bundle.get(item, ©) * values.get(item, 0) for item in ITEMS)

def _get_current_player_internal(state_dict: Dict[str, Any]) -> int:
"""Determines the current player or if the state is terminal.”"”
current_player = state_dict.get('current_player')
agreement = state_dict.get('agreement')
num_turns = state_dict.get('num_turns', 0)

is_terminal = (
current_player is None or
(agreement and isinstance(agreement, list) and len(agreement) > 0) or
num_turns >= MAX_TURNS

)

if is_terminal:
return -4 # Terminal node code
if current_player == 'chance':
return -1 # Chance node code
return int(current_player)

def _get_rewards_internal(state_dict: Dict[str, Any]) -> List[float]:
"""Calculates rewards for all players in a terminal state.”""
agreement = state_dict.get('agreement')
num_turns = state_dict.get('num_turns', 0)
# No reward if the game ends due to turn limit or no agreement is made.
if num_turns >= MAX_TURNS or not agreement or (isinstance(agreement, list) and len(agreement) == 0):
return [0.0] * NUM_PLAYERS

po_reward = _calculate_reward(agreement[0], state_dict['player_0_values'])
pl_reward = _calculate_reward(agreement[1], state_dict['player_1_values'])

return [float(p@_reward), float(pl_reward)]
# --- Main value function logic begins ---
current_player_code = _get_current_player_internal(state)

# 1. Handle Terminal States: Return the exact final reward.

if current_player_code == -4:
if player_id < @: # MCTS may query the value for the terminal node itself.
return 0.0

return _get_rewards_internal(state)[player_id]
# 2. Handle Non-Terminal States: Return a heuristic-based value estimate.

my_values = state[f'player_{player_id}_values']
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pool = state['pool']
offer_history = state.get('offer_history', [1)

# Heuristic for the start of the game (no offers yet).
# A neutral assumption is that the player can achieve half of their maximum possible value.
if not offer_history:

my_total_pool_value = _calculate_reward(pool, my_values)

return my_total_pool_value / 2.0

last_offer = offer_history[-1]

# Case A: It's the opponent's turn. This means I made the last offer.
# The value of my last offer is a good estimate of my current potential, as it reflects my aspiration.
if current_player_code != player_id:

my_bundle_in_my_last_offer = last_offer['quantities']

my_value_of_my_offer = _calculate_reward(my_bundle_in_my_last_offer, my_values)

return float(my_value_of_my_offer)

# Case B: It's my turn. The opponent made the last offer.
# My potential lies between what they offered and what I last asked for.
else:
# Calculate the value of their offer to me. This is a concrete value I can achieve by accepting.
offered_bundle_to_opponent = last_offer['quantities']
implied_bundle_to_me = {
item: pool.get(item, 0) - offered_bundle_to_opponent.get(item, 0)
for item in ITEMS

value_of_their_offer_to_me = _calculate_reward(implied_bundle_to_me, my_values)

# Find my last offer to gauge my own aspiration level.
my_aspiration = -1.0
for offer in reversed(offer_history):
if offer['player'] == player_id:
my_bundle_in_my_last_offer = offer['quantities']
my_aspiration = _calculate_reward(my_bundle_in_my_last_offer, my_values)
break

# If I haven't made an offer yet, my aspiration defaults to the initial 50/5@ baseline.
if my_aspiration < 0:

my_total_pool_value = _calculate_reward(pool, my_values)

my_aspiration = my_total_pool_value / 2.0

# The heuristic is the midpoint between their offer and my aspiration, representing a likely compromise point.

heuristic_value = (value_of_their_offer_to_me + my_aspiration) / 2.0
return float(heuristic_value)
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