
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Code World Models for General
Game Playing

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) reasoning abilities are increasingly being
applied to classical board and card games, but the dominant approach—
involving prompting for direct move generation—has significant drawbacks.
It relies on the model’s implicit fragile pattern-matching capabilities, lead-
ing to frequent illegal moves and strategically shallow play. Here we intro-
duce an alternative approach: We use the LLM to translate natural lan-
guage rules and game trajectories into a formal, executable world model rep-
resented as Python code. This generated model—comprising functions for
state transition, legal move enumeration, and termination checks—serves
as a verifiable simulation engine for high-performance planning algorithms
like Monte Carlo tree search (MCTS). In addition, we prompt the LLM to
generate heuristic value functions (to make MCTS more efficient), and infer-
ence functions (to estimate hidden states in imperfect information games).
Our method offers three distinct advantages compared to directly using the
LLM as a policy: (1) Verifiability: The generated CWM serves as a formal
specification of the game’s rules, allowing planners to algorithmically enu-
merate valid actions and avoid illegal moves, contingent on the correctness
of the synthesized model; (2) Strategic Depth: We combine LLM seman-
tic understanding with the deep search power of classical planners; and
(3) Generalization: We direct the LLM to focus on the meta-task of data-
to-code translation, enabling it to adapt to new games more easily. We
evaluate our agent on 10 different games, of which 4 are novel and created
for this paper. 5 of the games are fully observed (perfect information), and
5 are partially observed (imperfect information). We find that our method
outperforms or matches Gemini 2.5 Pro in 9 out of the 10 considered games.

1 Introduction

Large Language Models (LLMs) have shown impressive abilities at solving various reasoning
tasks, and recently have been applied as “agents” which can play classical (often multi-
player) games, like Chess, Go, and even complex imperfect information games like Poker
and Bridge. The standard approach is to treat the LLM as a policy, by asking it to pick
a move at each step using a prompting strategy based on the trajectory of observations
and actions seen so far, plus optional text meta data about the game. This method treats
the LLM as an end-to-end “intuitive player”, leveraging its vast training data to recognize
patterns and select moves that seem promising. However, strategic mastery often requires
deep multi-step lookahead, characteristic of a “System 2” deliberation (Kahneman, 2003).
While strong play can be achieved through training specialist models (Ruoss et al., 2024;
Schultz et al., 2025), direct play from generalist LLMs often lacks deep tactical foresight,
despite recent advances in “thinking” (Liao et al., 2025), as we show empirically in this
paper. In addition, the LLM as policy approach does not work very well on novel games
that are not part of the LLM’s training set, as we will also show.
We propose to use LLMs in a different way, namely as induction engines that can leverage
their prior knowledge to map a small amount of observed trajectory (game play) data, plus
a textual game description, into plausible world models, represented as Python code, using
iterative code refinement methods as in Tang et al. (2024a). We call the result of this pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cess a “Code World Model” (CWM). In the context of game playing, a CWM consists of a
definition of the (possibly latent) state, a function that specifies which moves are legal at
each step, a state transition function, an observation function (for latent states), a reward
function, and a function that checks for termination. Furthermore, for the challenging case
of partially observable games, we introduce a novel paradigm that effectively tasks the LLM
with synthesizing a regularized autoencoder: an inference function (the encoder) maps obser-
vations to plausible latent histories, and the CWM (the decoder) reconstructs observations
from them, with the game’s rules and API serving as a strong structural regularizer.
Although there is prior work that uses LLMs to learn symbolic world models (see Sec. 3),
and then leverage them for planning, we differ in three main ways. First, we handle the
case of partially observed and stochastic worlds (such as Poker), whereas all prior work (to
the best of our knowledge) either assumes fully observed and deterministic environments,
or (in the case of Curtis et al. (2025)) assumes post-hoc observability; both cases make
model learning much easier. Second, in addition to learning a CWM, we ask the LLM
to generate heuristic value functions, which significantly improves the performance of our
search-based policies, such as MCTS and Information Set MCTS (Cowling et al., 2012).
Third, we demonstrate that our approach outperforms a state-of-the-art “thinking” LLM
across various two-player games, including novel (or “OOD”) ones which we create, to avoid
contamination issues with the training set of the LLM.

2 Background

Interactions in multiplayer games can be described using the formalism of extensive-form
games (Kuhn, 1953; Shoham & Leyton-Brown, 2009; Albrecht et al., 2024; Murphy, 2025):
there is a set N = {1, 2, · · · , n} of n players that take discrete actions a ∈ A. Sequences
of actions are called histories h ∈ H; all games start at the initial empty history, and
end at terminal histories Z ⊆ H. There is a special player called chance (also sometimes
called nature), c, which plays with a known, fixed (stochastic) policy—the chance outcome
distribution—e.g., representing dice rolls and card draws. Due to chance events being ex-
plicitly represented by the game environment, each history h can be thought of as a unique
transcription of a game (either finished or in progress) and as a “ground truth” state known
only to the environment. At every history h, there is a player to act τ(h) ∈ N ∪ {c}, and
a set of legal actions A(h) ⊆ A. Formally defining states in partially-observable (imperfect
information) games can be tricky, and we defer this to Appendix B to couple it with the
description of the search method (policy generation). Agents encode policies to take actions
π(h) ∈ ∆(A), where ∆(·) represents a discrete probability distribution. For each agent i, the
goal is to find a policy that maximize its own cumulative reward

∑T
t=1 r

i(ht). However, in
the multiagent setting each individual objective jointly depends on choices of other agents.
Our game environments are based on OpenSpiel (Lanctot et al., 2019): each implementation
provides logic to determine legal actions, transitions from one ground truth state to the next,
rewards, and player observations in a general way. However, the agent does not know the true
environment model. Instead, it must learn the code world model by using an LLM applied
to a text description of the game, together with example game play data, as described in
detail in Sec. 4. Given the learned CWM, we pick the best move by using existing game
solvers: for perfect information games, we use MCTS, and for imperfect information games,
we use Information Set MCTS (see Appendix B). In both cases, we optionally augment the
search algorithm with a learned value function, and in the case of ISMCTS, we augment the
search algorithm with a hidden state estimator. We also tried learning a policy using PPO
applied to the (partially observed) CWM: see Appendix D for details.

3 Related Work

There is a growing interest in evaluating the abilities of LLMs to play games, as exemplified
by the recent release of Kaggle Game Arena1, as well as other recent work (Costarelli
et al., 2024; Duan et al., 2024; Verma et al., 2025; Hu et al., 2025a; Sun et al., 2025;

1See https://www.kaggle.com/game-arena.

2

https://www.kaggle.com/game-arena

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Cipolina-Kun et al., 2025; Hu et al., 2025b; Guertler et al., 2025). Similar to these papers,
our aim is to design LLM-based agents that play text-based games. Furthermore, like
ggbench (Verma et al., 2025), we assess the generality of our agents using novel games, that
are (by construction) out-of-distribution (OOD) for the LLM. However, rather than using
the LLM directly as a policy, we focus on using the LLM to generate a CWM, to which we
then apply standard solvers, such as (IS)MCTS or PPO.
There are a few other papers that also use a model-based approach, similar to ours. “World-
Coder” generates a set of CWM hypotheses from trajectory data using LLM-powered code
synthesis, stores each hypothesis (candidate model) in a tree, and uses Thompson sampling
to decide which hypothesis to ask the LLM to improve, see (Tang et al., 2024a). Given
the learned CWM, WorldCoder uses ReAct-style methods (Yao et al., 2022) for decision-
making. GIF-MCTS (Dainese et al., 2024) developed a similar method, but uses MCTS for
agent decision-making. Our work extends this past work by considering strategic multiagent
environments, synthesizing value functions (to speed up (IS)MCTS), and synthesizing and
refining inference functions (to handle imperfect information games).
Imperfect information games can be considered a special kind of (multi-agent) partially
observable Markov decision process (POMDP). Learning such models from observational
data is notoriously difficult. In very recent work, Curtis et al. (2025) introduce “POMDP
Coder”, which learns a partially observed CWM. However, unlike us, they assume the hidden
states are observed in hindsight (at the end of the trajectory). By contrast, we also consider
a “closed deck” scenario, in which the hidden states are never observed. In addition, Curtis
et al. (2025) use a determinized belief space planner (related to the POMCP method of
Silver & Veness (2010)), whereas we use ISMCTS (see Appendix B) or PPO (Appendix D).
There are other many other ways to use LLMs for reasoning in games and multiagent
systems. A recent line of work focuses on using LLMs to construct game-theoretic models
of arbitrary scenarios in order to derive and deploy intelligent, strategic policies. Gemp et al.
(2024) treats an LLM as an environment transition operator, controllable via instruction
sets. An extensive-form game tree is explicitly constructed in OpenSpiel and an equilibrium
over instruction sets is computed. Daskalakis et al. (2024) demonstrates how to design a
game tree for Romeo and Juliet with the assistance of an LLM, subsequently modifying the
tree so that the classic story lies in the support of its Nash equilibrium. Xu et al. (2025)
embeds several observed Werewolf dialogues in a latent space, clusters the messages to form a
finite action space and resulting game tree, and then runs counterfactual regret minimization
on this discrete latent representation to derive a policy. Mensfelt et al. (2024a) proposed an
approach to automatically translate natural language descriptions of small bimatrix games to
logic representations (similarly in Mensfelt et al. (2024b)). Most closely related to this work,
Deng et al. (2025) automated the construction of explicit (imperfect-information) extensive-
form game trees from natural language descriptions of games, including a debugging module
to ensure the resulting Gambit (Savani & Turocy, 2024) representation was valid. In contrast
to this work, they only conditioned on game descriptions (rules) not observed trajectories
and applied their pipelines to games with game trees containing at most 25 decision nodes
(Kuhn Poker); code-world models offer the potential to scale to much larger game instances
in some cases due to their more efficient encoding of repeat transitions.

4 Methods

At a high level, when confronted with a new game, our general game playing agent follows
these steps: First, it plays a few games to completion using a random policy. The data
collected during each game forms a trajectory, which consists of observations, rewards, legal
actions, and states at each timestep. Second, it uses a textual description of the rules of the
game, plus the generated trajectories, to learn a CWM2. Finally, the agent plays the game
in an arena against other opponents, using an MCTS policy built on top of the synthetic
CWM. For imperfect information games (IIGs) we use ISMCTS instead of MCTS. If all the

2Note: We could potentially update the CWM after each step of game play, as we acquire new
data, but in this paper, we learn the model up-front, given the initial offline trajectories and game
description, for reasons of efficiency.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

synthesized elements are correct, as the amount of play-time compute increases, the playing
behavior of our agent gets closer to optimal. Thus, in contrast with LLM-as-a-policy agents,
we shift the burden on the LLM from producing a good policy to producing a good world
model, which in turn enables planning methods to turn compute into playing performance.

4.1 Synthesizing the Code World Model

A CWM is a playable, approximate copy of a target game. It contains functions providing
logic to update the game state when an action is taken (transition function, which includes a
termination), the legal actions given a state, the observation given a state (observations and
state differ in the case of IIGs), the distribution for chance nodes, and the reward function
for a state. All these functions are deterministic, with randomness entering the game only
through the actions of the chance player. To synthesize a new CWM, we provide the LLM
with the game’s rules and offline trajectories, and demand that it creates a CWM following
the OpenSpiel API (Lanctot et al., 2019) format. See Appendix G for prompt details.
A single-shot generation of the CWM will often be insufficient to produce a correct imple-
mentation of the game unless we add some kind of corrective feedback. Thus we subject the
initial CWM to iterative refinement (Dainese et al., 2024; Tang et al., 2024b) to improve its
quality. For refinement, a series of unit tests are automatically generated from the offline
trajectories. For each transition in an offline trajectory, unit tests are generated in order
to check the correctness of the CWM predictions as compared with the original trajectory
(states, observations, rewards, legality of actions), and the absence of execution errors.
In the case of IIGs, this process requires that the offline trajectories contain not only the
observations of the game and the actions of the players, but also the hidden states and
the actions of all other players (including chance). The post-hoc availability of hidden
states, an assumption also used in concurrent work (Curtis et al., 2025), can sometimes be
unrealistic. Sec 4.4 introduces a novel approach to handle CWM learning from partially
observed trajectories.
Unit tests are binary, so we can measure the transition accuracy as the rate of correctness
of such tests. We refine the CWM until perfect transition accuracy (1.0) is achieved or our
refinement budget runs out. We feed back the stack traces from failed unit tests to the LLM
to help the refinement. We consider two separate approaches to refinement:
Conversation (sequential refinement). This is a serial “chat mode” approach, in which
the stack trace of a newly failed unit test is appended to our previous interactions with
the LLM to create the new prompt, and a new CWM addressing the unit test failure is
requested. Failed unit tests derived from the offline trajectories are submitted to the LLM
until all pass.
Tree search. Just like in the REx approach (Tang et al., 2024b;a), we maintain multiple
CWMs in a refinement tree structure, and use Thompson sampling to choose which CWM
to refine next, favoring those that either have high transition accuracy or have been refined
few times. Each LLM call consists of a fresh prompt that contains the CWM chosen to be
refined, the refinement instructions, and the stack trace of a failed unit test for that CWM.
The prompts and hyperparameters used during synthesis are presented in Appendix G.

4.2 Synthesizing inference functions for IIGs

One of the novelties of our work is the synthesis of inference functions to enable the use
of ISMCTS planning with the learned CWM at play time in imperfect information games
(IIGs). To see why this is necessary, note that ISMCTS requires that at each game step t
the agent can estimate the hidden state of the game st, as explained in Appendix B. More
precisely, at play time, agent i must be able to sample from its belief state pM (st|oi1:t, ai1:t),
where M is the estimated CWM3. Since exact inference incurs an exponential cost in the
worst case, we ask the LLM to synthesize code to approximately sample from the posterior,

3For players other than i, we assume a uniform prior on the legal actions defined by the CWM.
Only the support of this prior affects our approach, as we will focus on posterior support, see below.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

utilizing only agent i’s actions ai1:t and observations oi1:t so far from the offline trajectory.
We consider two alternative approaches to achieve this goal: hidden history inference and
hidden state inference. We describe these below.
Hidden history inference. Since all the functions in the CWM are deterministic, the
posterior over the hidden state st can be obtained from the posterior over the action history
ht, which includes the actions of the chance player. In this approach, the agent controlling
player i asks the LLM to create a function that samples h̃t ∼ pM (ht|oi1:t, ai1:t). The CWM
can then be used to execute h̃t and recreate a history of hidden states s̃1:t and observations
õi1:t. A unit test is created for each time step t in which player i acts, verifying that the
sampled values match the run time evidence (i.e., õit = oit and ãit = ait). This allows
refinement (on the offline trajectories) to be applied to the inference function.
Once the refined inference function passes all unit tests4 (i.e., inference accuracy is 1.0), we
can claim that the sampled h̃t belongs to the support of pM (ht|oi1:t, ai1:t), and therefore, the
s̃t generated by this process belongs to the support of pM (st|oi1:t, ai1:t). Although this does
not guarantee that s̃t is correctly distributed, the correct support is already very informative,
given the extremely sparse support of state posteriors in games. Furthermore, this approach
guarantees that the sampled posterior state s̃t is a valid CWM state. Note that at play time
the (test) inference accuracy can drop below 1.0 (depending on how well the synthesized
inference code generalizes to novel observations), meaning that the approximate posterior
samples might not always belong to the support of the actual posterior. However, s̃t is still
guaranteed by construction to be a valid hidden state in the CWM.
Hidden state inference. Rather than obtaining a state posterior sample indirectly
through the action history, it is also possible to ask the LLM to create code that directly
samples s̃t ∼ pM (st|oi1:t, ai). Then, the CWM can be used to obtain õt from s̃t. Correctness
of the inference function can be partially validated by a unit test at each time step that ver-
ifies that the sampled values match the actual observations, õt = ot. CWM refinement can
then be used to improve the synthesized inference function. State inference is potentially
much simpler than full history inference, but it cannot guarantee that the produced sample
s̃t belongs to the support of the posterior, nor that it constitutes a valid CWM hidden state,
because it ignores the dependency between consecutive states.

4.3 Synthesizing value functions

Another novelty of our work is the synthesis of value functions to speed up and improve
value estimation in MCTS and ISMCTS. This can be faster (and potentially more accurate)
than estimating the value of a new leaf node through random rollouts. To synthesize a
deterministic value function V (s) to estimate the value of the (potentially hidden) state at
leaf nodes, we can prompt the LLM to generate code, just as we did for learning the CWM.
However, value functions are not refined, since there is no ground truth to compare to.
Instead, multiple functions are generated and the best one is selected through a tournament.

4.4 Open deck vs closed deck during training

So far we assumed that the offline trajectories (used to train the CWM) contained hidden
state information even for IIGs. Concurrent work Curtis et al. (2025) also assumes the
ability to peek at hidden states. We refer to this setup as open deck synthesis5. This setup
is justified in several practical scenarios, such as in a cooperative training environment where
players share information to learn the mechanics of the game, during the design phase of a
new game where developers have full access to the state, or when a human expert provides
fully annotated “open-book” demonstrations to bootstrap an agent’s understanding.

4Unlike the CWM functions, inference functions are stochastic (samplers). Thus, their unit tests
are potentially stochastic, but for correct inference functions they will deterministically pass.

5We want to emphasize that in our open deck setting, hidden state information is only available
in the offline trajectories to aid CWM synthesis, and not during actual game play. Thus the players
only ever see observations, but the CWM learner may see hidden states (in the open deck setting).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

However, there are scenarios in which the agent can only ever access its own observations
and actions, so that the open deck assumption is violated. This would be the case, e.g., if
the agent plays a novel game online. We refer to this scenario as closed deck synthesis; to
the best of our knowledge, this scenario has not been addressed in prior CWM work.
To handle this scenario, we propose to combine the pieces introduced in the previous sections
to build a regularized CWM “autoencoder”. The idea is as follows: we ask the LLM to
generate a CWM and a hidden history inference function, just like above, but we drop all
the unit tests that are not verifiable without access to the hidden information (i.e., those
checking the transition accuracy between consecutive hidden states), and we just keep the
ones that we can verify (i.e., checking the result of mapping observations to hidden states
and back to observations). We additionally add unit tests to a few iterations of random
play ensuring that there are no execution errors. In other words, we refine based on the
inference accuracy and lack of execution errors. This generates a kind of autoencoder, where
the inference function acts as an encoder, producing a hidden sequence of actions h̃t from
oi1:t, a

i
1:t and the CWM acts as a decoder, recreating the observations and actions from

the latent h̃t. Instead of a bottleneck, or a regularization term, the game rules and the
required OpenSpiel API (used in the unit tests) introduced in the context of the LLM act as
regularizers to prevent trivial latent spaces from being discovered. Valid posterior histories
h̃t (i.e., those that pass all unit tests) can be used to obtain a lower bound on the likelihood
of the CWM, as follows: pM (oi1:t) =

∑
ht

pM (oi1:t|ht)pM (ht) ≤ pM (oi1:t|h̃t)pM (h̃t) = pM (h̃t).
(The last equality follows because pM (oi1:T |h̃t) = 1 when all unit test pass.) This lower
bound is tightest when h̃t is the maximum a posteriori, but is valid for any sample.

5 Experiments

Following the approach described in Sec. 4, we build an agent, which we call CWM-(IS)MCTS,
which performs CWM synthesis (using either open or closed deck trajectories), and then
plays using MCTS or ISMCTS. (We also tried learning a policy using PPO; see Appendix D
for details.) We measure the playing abilities of our agent on multiple games against three
other agents: A random legal action executor called Random; an (IS)MCTS agent that has
access to the game’s ground truth (GT) code, including inference functions but not value
functions, which we call GT-(IS)MCTS; and an LLM as a policy, which we call Gemini 2.5Pro
(we use “dynamic thinking”, rather than specifying a thinking budget). All methods have
access to the same data: the rules of the game as text and 5 offline trajectories. (IS)MCTS
approaches always run 1,000 simulations before taking an action, using either the value
function or 10 rollouts (in which all players act randomly) to determine the initial value of
a new leaf node. A sketch of the information flow for each agent is given in Appendix F.
To validate the generality of our approach we use both perfect and imperfect information
games, as well as well-known and OOD games. The perfect information games are: Tic-
tac-toe, Connect four, Backgammon, Generalized tic-tac-toe (OOD), and Generalized
chess (OOD). The imperfect information games are: Leduc poker, Bargaining, Gin rummy,
Quadranto (OOD), and Hand of war (OOD). The out-of-distribution (OOD) games are not
part of the LLMs training set, and have been created by us for these experiments. See
Appendix H for the rules of each game.

5.1 Synthesis accuracy

The CWM agent operates by synthesizing a CWM of the game (and potentially other
auxiliary functions) prior to playing the game, see Sec. 4 for details. We use Gemini 2.5
Pro for synthesis. For the concrete prompts used during synthesis, see Appendix G. For
examples of synthesized code, see Appendix I.
Refinement attempts to increase the fraction of units tests that pass, iterating until all pass
or the budget for LLM calls is exhausted. The fraction of unit tests that the CWM passes is
the training transition accuracy, and the fraction of tests that the inference function passes
is the training inference accuracy. To check for overfitting to the offline trajectories, after

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

synthesis, we measure the accuracy on a separate test set of 10,000 transitions, randomly
sampled from 100 games where each player is randomly assigned a random policy or MCTS
on the ground truth game code. This yields the test transition accuracy and test inference
accuracy. The test set is never used to train on; instead it is used to estimate the accuracy
of the learned CWMs. Finally, at play time against the LLM as a policy, online transitions
are observed, and again used to assess the accuracy of the CWM and inference functions.

5.1.1 Perfect information games

For perfect information games, we find that we can learn a correct CWM for all the games,
and that the resulting learned models have high test (generalization) accuracy. Both conver-
sation and tree search work very well in this setting. Appendix C contains precise numbers
(Tables 4 and 5, respectively), and shows the quick convergence of the CWM with the num-
ber of LLM calls (Fig. 6). We will stick with tree search for the remainder of this paper,
since its ability to backtrack confers it additional resilience in harder settings.

5.1.2 Imperfect information games, open deck

In the case of imperfect information games (open deck learning), we find that the transition
accuracy of the learned CWMs is very high, except for Gin rummy, where the training
accuracy is just 84% and the test accuracy is 79%. See Table 1 for details. We hypothesize
this is due to its high degree of logical and procedural complexity. Unlike games with more
uniform rules, Gin rummy involves a multi-stage scoring phase (knocking, laying off melds,
calculating deadwood, and checking for undercuts) that is difficult for the LLM to capture
perfectly in code from a small number of trajectories. This highlights a key frontier for
CWM synthesis: mastering games with intricate, multi-step procedural subroutines.
We also measure the inference accuracy obtained by the synthetic inference functions. We
tried both hidden history and hidden state inference (see Sec.4.2). Results with hidden
history inference (shown in Table 1 and Fig.1) are slightly better, so this will be the method
of choice for the CWM-ISMCTS agent. (The results with hidden state inference are provided in
Appendix C, Table 6 and Fig. 7.) Results for 3 of the 5 games are good, but once again we
see that results for Gin rummy are quite poor (inference accuracy is only about 52%), and to
a lesser extent Hand of war (inference accuracy is about 94%), even though CWM accuracy
for Hand of war is good (about 98%). This suggests that hidden history inference is harder
than learning the transition dynamics from a fully observed sequence of trajectories.

Table 1: Imperfect info. games, CWM refinement via tree search, hidden history inference.

Game OOD transition accuracy inference accuracy # LLM calls
train test online train test online

Bargaining 7 1.0000 0.9827 1.0000 1.0000 1.0000 1.0000 23.0
Leduc poker 7 1.0000 0.9977 0.9942 1.0000 1.0000 1.0000 4.4
Gin rummy 7 0.8360 0.7881 0.9044 0.6550 0.5189 0.9678 701.2
Quadranto 4 1.0000 1.0000 1.0000 1.0000 0.9864 0.9916 6.0
Hand of war 4 1.0000 0.9814 0.9868 1.0000 0.9357 1.0000 144.0

5.1.3 Imperfect information games, closed deck

Finally, we consider CWM synthesis with refinement in the novel closed deck setup in
which no hidden information is available, not even post-hoc. The results in Table 2 show
degradation on the synthesis quality with respect to the open deck setting of Table 1. Despite
this, game play performance does not degrade significantly, as we show in the next section.

5.2 Arena: Game play performance

In this section, we test how the previous synthesis results translate into playing performance
against other opponents in our game arena. Since the CWM synthesis process is stochastic,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

transition acc. (train)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

transition acc. (test)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

inference acc. (train)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

inference acc. (test)

Dataset
Bargaining
Gin rummy
Hand of war
Leduc poker
Quadranto

Figure 1: Evolution of the transition and inference accuracy with the number of LLM calls
for imperfect games with refinement via tree search and hidden history inference.

Table 2: Imperfect information games, hidden history inference, closed deck.

Game OOD inference accuracy # LLM calls
train test online

Bargaining 7 1.00000 0.67359 0.76000 88.2
Leduc poker 7 1.00000 0.97080 0.96585 9.0
Gin rummy 7 0.06215 0.10397 0.53953 467.2
Quadranto 4 1.00000 0.95183 0.96085 99.0
Hand of war 4 0.98125 0.92846 0.94835 475.4

we repeat it 5 times, automatically rejecting bad samples (see Appendix E), and pick a
random CWM for each match. Results correspond to the average of 100 matches.

5.2.1 Perfect information games

All of our perfect information games are ternary-outcome games, so we are limited to win,
lose, or draw (W/L/D). Fig. 2 shows the performance of our CWM-MCTS agent, when acting
as Player 0 or Player 1, against three different competitors. A player forfeits when it fails
to provide a valid action in the allotted time. The middle pair of bars of each panel show
CWM-MCTS playing against GT-MCTS, an upper bound for performance that uses the ground
truth (GT) code of the game for planning. Both agents are similarly good, without either of
them clearly winning in any of the games. This highlights the quality of our code synthesis.
CWM-MCTS is able to beat Gemini 2.5Pro (which is used as a policy) in all the considered
games. For detailed numerical results, see Table 7 in Appendix C. We used a synthetic value
function for Gen. tic-tac-toe, see Fig. 9 for the ablation without value function.

vs
Gemini 2.5Pro

vs
GT-MCTS

vs
Random

Backgammon
vs

Gemini 2.5Pro
vs

GT-MCTS
vs

Random

Connect four
vs

Gemini 2.5Pro
vs

GT-MCTS
vs

Random

Tic-tac-toe
vs

Gemini 2.5Pro
vs

GT-MCTS
vs

Random

Gen. tic-tac-toe
vs

Gemini 2.5Pro
vs

GT-MCTS
vs

Random

Gen. chess

Win Win by Forfeit Draw Loss Loss by Forfeit CWM-MCTS as Player 0 CWM-MCTS as Player 1

Figure 2: W/L/D rates for game play between CWM-MCTS and three opponents. CWMs are
refined via tree search and hidden history inference.

5.2.2 Imperfect information games, open deck

Our imperfect information games contain a mixture of ternary-outcome games, zero-sum
games and general-sum games (see Table 3 for a summary of all the games’ characteristics).
Win/loss/draw rates and payoff distributions are shown in Fig. 3. Except for Hand of war,
CWM-ISMCTS beats or matches Gemini 2.5Pro in all imperfect information games. In the case
of Gin rummy, this should be interpreted as Gemini 2.5Pro being a very weak player, you

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

can check its forfeit rate in Table 14. For Leduc poker, although our average performance is
superior, we also observe high variance. For Bargaining we used a synthetic value function,
which results in a significant improvement when CWM-ISMCTS acts as player 1 (see Fig. 9
in Appendix C for the corresponding ablation). We did not observe an improvement or
degradation in performance when value functions were applied to the other games.

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Bargaining

10

5

0

5

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Leduc poker

150

100

50

0

50

100

150
vs

Gemini 2.5Pro
vs

GT_ISMCTS
vs

Random

Gin rummy

Player Return Opponent Return CWM-ISMCTS as Player 0 CWM-ISMCTS as Player 1

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Quadranto
vs

Gemini 2.5Pro
vs

GT_ISMCTS
vs

Random

Hand of war

Win Win by Forfeit Draw Loss Loss by Forfeit

Figure 3: W/L/D rates and payoff distributions for game play between CWM-ISMCTS and
three opponents. CWMs are refined via tree search and hidden history inference, open deck.

5.2.3 Imperfect information games, closed deck

Finally, we consider the closed deck setting, in which games are strictly partially observable,
and no hidden state information or actions from other players are available in the offline
trajectories. Results degrade w.r.t. the open deck setting, but CWM-ISMCTS-Closed continues
to beat or match Gemini 2.5Pro (with high variance in the case of Leduc poker). We
hypothesize that the non-intuitive improvement of CWM-ISMCTS-Closed at Hand of war
w.r.t. the open deck setting could be due to the freedom to synthesize simpler state spaces
when playing closed deck. Refer to Tables 12 and 13 in Appendix C for detailed results.

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Bargaining

10

5

0

5

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Leduc poker

150

100

50

0

50

100

150
vs

Gemini 2.5Pro
vs

GT_ISMCTS
vs

Random

Gin rummy

Player Return Opponent Return CWM-ISMCTS as Player 0 CWM-ISMCTS as Player 1

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Quadranto
vs

Gemini 2.5Pro
vs

GT_ISMCTS
vs

Random

Hand of war

Win Win by Forfeit Draw Loss Loss by Forfeit

Figure 4: W/L/D rates and payoff distributions for game play between CWM-ISMCTS and
three opponents. CWMs refined via tree search and hidden history inference, closed deck.

6 Discussion

In this work we extend the existing CWM framework by considering two-player games,
performing value function code synthesis to improve player performance, introducing the
concept of “inference as code” to enable state estimation in imperfect information games,
and providing a learning algorithm (based on code-based autoencoders) to enable learning in
the novel closed deck (strict partial observability) setting. Our results show the superiority of
this approach with respect to LLMs as policies on multiple perfect and imperfect information
games, including newly created ones.
However, we also notice that our method struggles to learn the rules of Gin rummy, an
imperfect information game with intricate logic, especially in the very challenging closed
deck setting. In future work, we hope to extend our method to enable active and online
learning of the world model, so the agent can more effectively discover the true hidden
causal mechanisms underlying each game (c.f., (Geng et al., 2025)). In addition, we would
like to extend the technique to handle open-world games with free-form text and/or visual
interfaces, so as to evaluate it on larger sets of novel games, see (Ying et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement

Learning: Foundations and Modern Approaches. MIT Press, 2024. URL https://www.
marl-book.com.

Lucia Cipolina-Kun, Marianna Nezhurina, and Jenia Jitsev. Game reasoning arena: A
framework and benchmark for assessing reasoning capabilities of large language models
via game play, 2025. URL https://arxiv.org/abs/2508.03368.

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson
Cheng, Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic
reasoning abilities of llm agents, 2024. URL https://arxiv.org/abs/2406.06613.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers (eds.),
Computers and Games, pp. 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-75538-8.

Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. Information set Monte Carlo
tree search. IEEE Transactions on Computational Intelligence and AI in Games, 4:
120–143, 2012.

Aidan Curtis, Hao Tang, Thiago Veloso, Kevin Ellis, Joshua Tenenbaum, Tomás Lozano-
Pérez, and Leslie Pack Kaelbling. LLM-guided probabilistic program induction for
POMDP model estimation. arXiv preprint arXiv:2505.02216, 2025.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code
world models with large language models guided by monte carlo tree search. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 60429–60474. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/6f479ea488e0908ac8b1b37b27fd134c-Paper-Conference.pdf.

Constantinos Daskalakis, Ian Gemp, Yanchen Jiang, Renato Paes Leme, Christos Papadim-
itriou, and Georgios Piliouras. Charting the shapes of stories with game theory. In
NeurIPS Creative AI Track, 2024.

Shilong Deng, Yongzhao Wang, and Rahul Savani. From natural language to extensive-form
game representations. In Proceedings of the 24th International Conference on Autonomous
Agents and Multiagent Systems, pp. 593–601, 2025.

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias
Stengel-Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the
strategic reasoning capabilities of llms via game-theoretic evaluations. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 28219–28253. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/3191170938b6102e5c203b036b7c16dd-Paper-Conference.pdf.

Ian Gemp, Roma Patel, Yoram Bachrach, Marc Lanctot, Vibhavari Dasagi, Luke Mar-
ris, Georgios Piliouras, Siqi Liu, and Karl Tuyls. Steering language models with game-
theoretic solvers. In Agentic Markets Workshop at ICML 2024, 2024.

Jiayi Geng, Howard Chen, Dilip Arumugam, and Thomas L Griffiths. Are large language
models reliable AI scientists? assessing reverse-engineering of black-box systems. arXiv
[cs.LG], May 2025. URL http://arxiv.org/abs/2505.17968.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan.
Textarena, 2025. URL https://arxiv.org/abs/2504.11442.

Lanxiang Hu, Mingjia Huo, Yuxuan Zhang, Haoyang Yu, Eric P. Xing, Ion Stoica, Tajana
Rosing, Haojian Jin, and Hao Zhang. lmgame-bench: How good are llms at playing
games?, 2025a. URL https://arxiv.org/abs/2505.15146.

10

https://www.marl-book.com
https://www.marl-book.com
https://arxiv.org/abs/2508.03368
https://arxiv.org/abs/2406.06613
https://proceedings.neurips.cc/paper_files/paper/2024/file/6f479ea488e0908ac8b1b37b27fd134c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6f479ea488e0908ac8b1b37b27fd134c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3191170938b6102e5c203b036b7c16dd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3191170938b6102e5c203b036b7c16dd-Paper-Conference.pdf
http://arxiv.org/abs/2505.17968
https://arxiv.org/abs/2504.11442
https://arxiv.org/abs/2505.15146

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan
Tekin, Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based
game agents, 2025b. URL https://arxiv.org/abs/2404.02039.

Daniel Kahneman. A perspective on judgement and choice. American Psychologist, 58:
697–720, 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings
of the 17th European Conference on Machine Learning, ECML’06, pp. 282293, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 354045375X. doi: 10.1007/11871842_29. URL
https://doi.org/10.1007/11871842_29.

H. W. Kuhn. Extensive games and the problem of information. Annals of Mathematics
Studies, 28:193–216, 1953.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upad-
hyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omid-
shafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner,
János Kramár, Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebas-
tian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward Hughes,
Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A framework for reinforcement learn-
ing in games. CoRR, abs/1908.09453, 2019. URL http://arxiv.org/abs/1908.09453.

Yi Liao, Yu Gu, Yuan Sui, Zining Zhu, Yifan Lu, Guohua Tang, Zhongqian Sun, and Wei
Yang. Think in games: Learning to reason in games via reinforcement learning with large
language models, 2025. URL https://arxiv.org/abs/2508.21365.

Agnieszka Mensfelt, Kostas Stathis, and Vince Trencsenyi. Autoformalization of game de-
scriptions using large language models. arXiv preprint arXiv:2409.12300, 2024a.

Agnieszka Mensfelt, Kostas Stathis, and Vince Trencsenyi. Autoformalizing and simulating
game-theoretic scenarios using llm-augmented agents. arXiv preprint arXiv:2412.08805,
2024b.

Kevin Murphy. Reinforcement learning: An overview, 2025. URL https://arxiv.org/abs/
2412.05265.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang,
Elliot Catt, John Reid, Cannada A. Lewis, Joel Veness, and Tim Genewein. Amor-
tized planning with large-scale transformers: A case study on chess. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 65765–65790. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf.

Rahul Savani and Theodore L. Turocy. Gambit: The package for computation in game
theory, version 16.2.0 edition, 2024. https://www.gambit-project.org.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin,
Daniel Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, Tom Zahavy, Petar Velikovi,
Laurel Prince, Satinder Singh, Eric Malmi, and Nenad Tomaev. Mastering board games
by external and internal planning with language models. In Proceedings of the Forty-
Second International Conference on Machine Learning (ICML), 2025. URL https://
arxiv.org/abs/2412.12119.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, 2009.

11

https://arxiv.org/abs/2404.02039
https://doi.org/10.1007/11871842_29
http://arxiv.org/abs/1908.09453
https://arxiv.org/abs/2508.21365
https://arxiv.org/abs/2412.05265
https://arxiv.org/abs/2412.05265
https://proceedings.neurips.cc/paper_files/paper/2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/78f0db30c39c850de728c769f42fc903-Paper-Conference.pdf
 https://www.gambit-project.org
https://arxiv.org/abs/2412.12119
https://arxiv.org/abs/2412.12119

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Silver and Joel Veness. Monte-carlo planning in large pomdps. Advances in neural
information processing systems, 23, 2010.

Haoran Sun, Yusen Wu, Peng Wang, Wei Chen, Yukun Cheng, Xiaotie Deng, and Xu Chu.
Game theory meets large language models: A systematic survey with taxonomy and new
frontiers, 2025. URL https://arxiv.org/abs/2502.09053.

Hao Tang, Keya Hu, Jin Peng Zhou, Si Cheng Zhong, Wei-Long Zheng, Xujie Si, and Kevin
Ellis. Code repair with LLMs gives an exploration-exploitation tradeoff. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, November 2024a.
URL https://openreview.net/pdf?id=o863gX6DxA.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building
world models by writing code and interacting with the environment, 2024b. URL https:
//arxiv.org/abs/2402.12275.

Vivek Verma, David Huang, William Chen, Dan Klein, and Nicholas Tomlin. Measuring
general intelligence with generated games, 2025. URL https://arxiv.org/abs/2505.
07215.

Zelai Xu, Wanjun Gu, Chao Yu, Yi Wu, and Yu Wang. Learning strategic language agents
in the werewolf game with iterative latent space policy optimization. In Forty-second
International Conference on Machine Learning, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models., 2022. URL
https://arxiv.org/abs/2210.03629.

Lance Ying, Katherine M Collins, Prafull Sharma, Cedric Colas, Kaiya Ivy Zhao, Adrian
Weller, Zenna Tavares, Phillip Isola, Samuel J Gershman, Jacob D Andreas, Thomas L
Griffiths, Francois Chollet, Kelsey R Allen, and Joshua B Tenenbaum. Assessing adaptive
world models in machines with novel games. arXiv [cs.AI], July 2025. URL http://arxiv.
org/abs/2507.12821.

12

https://arxiv.org/abs/2502.09053
https://openreview.net/pdf?id=o863gX6DxA
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2505.07215
https://arxiv.org/abs/2505.07215
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2507.12821
http://arxiv.org/abs/2507.12821

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Information on the games

A summary of the games that we use in our experiments is given in Table 3.

Table 3: Details of the games that we use. The columns have the following meaning: OOD:
whether the game is novel (no source code on the internet); Observability: Full means
perfect information game, partial means imperfect information game; Payoff: W/L/D means
Win/Lose/Draw, General means general sum; # Actions: number of possible actions; Obs.
dim.: dimensionality of the observation tensor IS dim.: dimensionality of the information
set (i.e., game’s hidden state).

Name OOD Observability Payoff # Actions Obs. dim. IS dim.
Backgammon 7 Full W/L/D 1352 200
Connect four 7 Full W/L/D 7 126
Tic-tac-toe 7 Full W/L/D 9 27
Gen. tic-tac-toe 4 Full W/L/D 36 108
Gen. chess 4 Full W/L/D 5555 250
Bargaining 7 Partial General 121 93 309
Leduc poker 7 Partial Zero-sum 3 16 30
Gin rummy 7 Partial Zero-sum 241 644 655
Quadranto 4 Partial W/L/D 5 9 7
Hand of war 4 Partial W/L/D 16 27 73

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B Information Set Monte Carlo Tree Search

Recall that a history encodes the sequence of actions taken by all players, including chance.
But in an imperfect information game, not all aspects of the history are observable. For
instance, in a game of poker, h contains information about the cards held by all players (as
chosen by the dealers actions), but some of this information is private and hence not known
by some players. After an action is executed and added to the history (ht−1, at) ≡ ht, each
player i ∈ N perceives individual observations oit(ht). The state (from the perspective of an
agent i) is then a function of oi1:t, e.g., just the last observation.

Figure 5: ISMCTS. A
search tree is built over pos-
sible ground truth histories
(e.g. h1, h2, . . .). Because
the player cannot distin-
guish between certain his-
tories, statistics are aggre-
gated at the level of infor-
mation sets (dotted boxes),
which group all histories
that appear identical to the
player.

To choose actions in an IIG, we can use the Information Set
MCTS method of (Cowling et al., 2012), which we now de-
scribe. First, recall that in classical MCTS, there is a root
node corresponding to the current state of the game which
all simulations start from, and non-root nodes which corre-
spond to states that occur after the root state. At each node,
statistics such as average values state-action values, Q̂(s, a),
and simulation counts are maintained. The main differences
in ISMCTS are: (i) the simulations start at a distribution of
possible ground truth states and (ii) statistics are maintained
and aggregated across information states with respect to the
current player.
Figure 5 contains an example with a simplified poker game
with a deck of three cards (Jack, Queen, King). In this ex-
ample, the current player has received the King as a private
card and no actions have yet been taken, so there are only two
ground truth states: the opponent could have either the Queen
or the Jack. An iteration first samples the Queen and contin-
ues with this ground truth state h0, sampling actions, and
generating histories h1, h2, h3, and so on until the first node
not in the tree is encountered. It is then added to the tree,
and a random rollout policy takes over until a terminal state.
The dotted boxes are the analogs of nodes stored in a tree (or
lookup table) and correspond to information states. Return
estimates (i.e., Q-value statistics) and visit counts are main-
tained in these nodes as in classical MCTS (Coulom, 2007)
(aggregated over different samplings of ground truth states),
and UCB is used to select actions in the standard way (Kocsis
& Szepesvári, 2006).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C Additional experimental results

In the interest of space, some additional experimental results are included in this section.

C.1 Synthesis

C.1.1 Accuracy of learned transition and inference functions

Comparing Table 4 and 5, it is apparent that even though both options work reasonably
well, tree search has the edge, both in terms of accuracy (higher) and number of LLM calls
(lower).

Table 4: Perfect information games, refinement via tree search.

Game OOD transition accuracy # LLM calls
train test online

Backgammon 7 1.00000 0.99932 1.00000 16.8
Connect four 7 1.00000 1.00000 1.00000 2.0
Tic-tac-toe 7 1.00000 1.00000 1.00000 2.0
Gen. tic-tac-toe 4 1.00000 1.00000 1.00000 2.4
Gen. chess 4 1.00000 1.00000 1.00000 5.2

Table 5: Perfect information games, refinement via conversation.

Game OOD transition accuracy # LLM calls
train test online

Backgammon 7 1.00000 0.99944 1.00000 13.2
Connect four 7 1.00000 1.00000 1.00000 3.2
Tic-tac-toe 7 1.00000 1.00000 1.00000 2.0
Gen. tic-tac-toe 4 1.00000 1.00000 1.00000 2.4
Gen. chess 4 1.00000 1.00000 1.00000 4.2

Table 6: Imperfect info. games, refinement via tree search, hidden state inference.

Game OOD transition accuracy inference accuracy # LLM calls
train test online train test online

Bargaining 7 1.0000 0.9482 0.8712 1.0000 1.0000 1.0000 32.8
Leduc poker 7 1.0000 0.9854 0.9942 1.0000 1.0000 1.0000 4.2
Gin rummy 7 0.8999 0.8293 0.8909 1.0000 0.9513 0.9738 813.4
Quadranto 4 1.0000 1.0000 0.9991 1.0000 0.9911 0.9876 7.4
Hand of war 4 1.0000 0.9782 0.9806 1.0000 1.0000 1.0000 28.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.1.2 Accuracy of learned transition and inference functions
vs number of LLM calls

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

transition acc. (train)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

transition acc. (test)

Dataset
Backgammon
Connect four
Gen. chess
Gen. tic-tac-toe
Tic-tac-toe

Figure 6: Evolution of the transition accuracy of the best generated CWM with the number
of LLM calls for perfect games (with CWM refinement via tree search).

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

transition acc. (train)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

transition acc. (test)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

inference acc. (train)

0 2 4 6 8 10 12 14 16 18 20
Number of LLM calls

inference acc. (test)

Dataset
Bargaining
Gin rummy
Hand of war
Leduc poker
Quadranto

Figure 7: Evolution of the transition and inference accuracy with the number of LLM calls
for imperfect games with refinement via tree search and hidden state inference.

0 20 40 60 80 100 120 140 160 180 200
Number of LLM calls

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

inference acc. (train)

0 20 40 60 80 100 120 140 160 180 200
Number of LLM calls

inference acc. (test)

Dataset
Bargaining
Gin rummy
Hand of war
Leduc poker
Quadranto

Figure 8: Evolution of the inference accuracy with the number of LLM calls for imperfect
games with refinement via tree search with closed deck.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.1.3 Tree search Settings

We use the following settings for treesearch throughout our experiments.

• heuristic_weight=5.0: Weight on the heuristic value (higher means more ex-
ploitation). The heuristic weight C adjusts the parameters α and β of the Beta
prior on each arm Tang et al. (2024b). In particular, we set α = 1 + C × h and
β = 1+ (1−C)× h, where the heuristic value h is the average pass rate of the unit
tests.

• num_retries=500: Number of retries for tree search.
• num_tests_on_init=5: Number of tests of each type to include on the first synthesis.
• num_tests_on_error=1: Number of failed tests of each type to include during code

refinement.
• min_heuristic_value_on_init=0.01: Minimum heuristic value to consider a node

for expansion on initialization.
• min_heuristic_value_gain=0.01: Minimum heuristic value gain to consider a node

for expansion.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 Detailed per-game arena results

For games in which the outcomes are win, lose or draw, we show the frequency of these 3
outcomes in 3 different columns, for each agent. For games with arbitrary payoff (Bargaining,
LeDuc-Poker, Gin Rummy), we show the payoff to each player in 2 different columns. We
consider the case when our agent acts as Player 0 or Player 1, and show these in different
rows, to account for first-mover advantage.
For imperfect information games, we show results for hidden history inference (open deck
learning), hidden state inference (open deck learning), and hidden history inference (closed
deck learning).
For games in which the outcomes are win, lose or draw, we also report (in small font) the
number of games with outcome that were forfeited vs the total number of games with that
outcome. (A forfeit means the agent has either thrown an exception or tried to execute an
illegal action, since our game arena API does not allow the agent to see which actions are
legal at a given point in the game.)

C.2.1 Perfect information games

Table 7: Win rates using CWM refinement via tree search against multiple opponents. For
each game, results in the first (second) row correspond to our agent going first (second).

Game P Gemini 2.5 Pro GT-MCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Backgammon 1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.08 0.92 0.00 0.98 0.02 0.00
1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.07 0.93 0.00 0.98 0.02 0.00

Connect four 1.00 (2/100) 0.00 (0/0) 0.00 (0) 0.69 0.31 0.00 1.00 0.00 0.00
1.00 (1/100) 0.00 (0/0) 0.00 (0) 0.28 0.72 0.00 1.00 0.00 0.00

Tic-tac-toe 0.05 (0/5) 0.00 (0/0) 0.95 (95) 0.00 0.00 1.00 0.97 0.00 0.03
0.00 (0/0) 0.00 (0/0) 1.00 (100) 0.00 0.00 1.00 0.75 0.00 0.25

Gen. tic-tac-toe 0.89 (0/89) 0.10 (0/10) 0.01 (1) 0.88 0.12 0.00 1.00 0.00 0.00
0.93 (0/93) 0.07 (0/7) 0.00 (0) 0.37 0.63 0.00 1.00 0.00 0.00

Gen. chess p 1.00 (92/100) 0.00 (0/0) 0.00 (0) 0.18 0.43 0.39 1.00 0.00 0.00
p 1.00 (97/100) 0.00 (0/0) 0.00 (0) 0.49 0.17 0.34 1.00 0.00 0.00

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2.2 Hidden history inference

Table 8: Payoffs using CWM refinement via tree search and hidden history inference against
multiple opponents. For each game, results in the first (second) row correspond to our agent
going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 8.90 3.31 8.01 5.26 8.21 2.41
8.80 4.73 7.51 5.44 8.12 2.81

Leduc poker -0.03 0.03 -0.65 0.65 0.86 -0.86
1.55 -1.55 0.24 -0.24 1.09 -1.09

Gin rummy 120.54 -120.54 -115.62 115.62 -4.92 4.92
123.00 -123.00 -115.62 115.62 -15.99 15.99

Table 9: Win rates using CWM refinement via tree search and hidden history inference
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.91 (16/91) 0.08 (0/8) 0.01 (1) 0.06 0.02 0.92 0.27 0.03 0.70
0.75 (0/75) 0.18 (0/18) 0.07 (7) 0.11 0.08 0.81 0.31 0.06 0.63

Hand of war 0.35 (16/35) 0.56 (11/56) 0.09 (9) 0.20 0.72 0.08 0.33 0.57 0.10
0.33 (0/33) 0.62 (39/62) 0.05 (5) 0.31 0.61 0.08 0.33 0.62 0.05

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2.3 Hidden state inference

Table 10: Payoffs using CWM refinement via tree search and hidden state inference against
multiple opponents. For each game, results in the first (second) row correspond to our agent
going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 8.48 4.32 7.46 4.17 7.70 2.72
7.98 6.42 7.25 6.04 7.78 3.47

Leduc poker 1.75 -1.75 0.16 -0.16 1.19 -1.19
0.37 -0.37 0.41 -0.41 1.12 -1.12

Gin rummy 66.42 -66.42 -114.39 114.39 -28.29 28.29
121.77 -121.77 -121.77 121.77 -4.92 4.92

Table 11: Win rates using CWM refinement via tree search and hidden state inference
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.58 (16/58) 0.40 (0/40) 0.02 (2) 0.13 0.02 0.85 0.19 0.04 0.77
0.37 (0/37) 0.54 (0/54) 0.09 (9) 0.14 0.01 0.85 0.26 0.07 0.67

Hand of war 0.41 (16/41) 0.49 (0/49) 0.10 (10) 0.25 0.61 0.14 0.59 0.28 0.13
0.44 (0/44) 0.40 (0/40) 0.16 (16) 0.42 0.41 0.17 0.63 0.24 0.13

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2.4 Hidden history inference with closed deck learning

Table 12: Payoffs using CWM refinement via tree search with closed deck against multiple
opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 7.03 5.91 7.01 5.98 7.37 3.76
7.07 7.02 6.83 6.01 7.39 3.68

Leduc poker 0.57 -0.57 -0.56 0.56 0.86 -0.86
0.49 -0.49 -0.21 0.21 1.71 -1.71

Gin rummy 29.52 -29.52 -114.39 114.39 -119.31 119.31
-63.96 63.96 -119.31 119.31 -121.77 121.77

Table 13: Win rates using CWM refinement via tree search with closed deck against multiple
opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.69 (0/69) 0.26 (0/26) 0.05 (5) 0.08 0.05 0.87 0.23 0.05 0.72
0.71 (2/71) 0.22 (0/22) 0.07 (7) 0.13 0.09 0.78 0.27 0.05 0.68

Hand of war 0.41 (16/41) 0.42 (0/42) 0.17 (17) 0.31 0.57 0.12 0.61 0.24 0.15
0.54 (0/54) 0.25 (0/25) 0.21 (21) 0.47 0.40 0.13 0.62 0.26 0.12

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.3 Forfeit rates for non-ternary-outcome games

Table 14: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search and hidden history inference against multiple opponents. This is the rate at which
each agent forfeits the game by failing to execute a legal action. For each game, results in
the first (second) row correspond to our agent going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00 0.00 0.00

Leduc poker 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Gin rummy 0.01 0.99 0.94 0.00 0.04 0.00
0.00 1.00 0.94 0.00 0.13 0.00

Table 15: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search and hidden state inference against multiple opponents. This is the rate at which
each agent forfeits the game by failing to execute a legal action. For each game, results in
the first (second) row correspond to our agent going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Leduc poker 0.00 0.16 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Gin rummy 0.23 0.77 0.93 0.00 0.23 0.00
0.00 0.99 0.99 0.00 0.04 0.00

Table 16: Forfeit rates for non-ternary-outcome games using CWM refinement via tree
search with closed deck against multiple opponents. This is the rate at which each agent
forfeits the game by failing to execute a legal action. For each game, results in the first
(second) row correspond to our agent going first (second).

Game P Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them

Bargaining 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Leduc poker 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Gin rummy 0.38 0.62 0.93 0.00 0.97 0.00
0.76 0.24 0.97 0.00 0.99 0.00

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 Value function ablations

As explained in the main text, the purpose of value functions is to speed up (IS)MCTS
by providing a better value initialization for new leaf nodes. This can also result in higher
quality selections for a fixed budget. Synthetic value functions are generated by the LLM in
one-shot, and its usefulness assessed via a tournament ran on top of the synthesized CWM.
Agents using different value functions (or potentially no value function) compete against
each other the synthesized CWM to evaluate performance.
The use of value function only delivered improvements in the case of Gen. tic-tac-toe and
Bargaining, so our agent only used value functions when playing those games. Note that
the choice to use value functions or not can be assessed before actual online game play, by
having the agent play locally (with and without using a value function) on its own synthetic
CWM as a proxy, and assessing which option is most beneficial.
Fig. 9 shows the ablation corresponding to not using a value function in Gen. tic-tac-toe
and Bargaining.

vs
Gemini 2.5Pro

vs
GT-MCTS

vs
Random

Gen. tic-tac-toe
vs

Gemini 2.5Pro
vs

GT-MCTS
vs

Random
with Value Function

Win Win by Forfeit Draw Loss CWM-MCTS as Player 0 CWM-MCTS as Player 1

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Bargaining history inf.

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

with Value Function

Player Return Opponent Return CWM-ISMCTS as Player 0 CWM-ISMCTS as Player 1

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

Bargaining closed deck

0

2

4

6

8

10

vs
Gemini 2.5Pro

vs
GT_ISMCTS

vs
Random

with Value Function

Player Return Opponent Return CWM-ISMCTS as Player 0 CWM-ISMCTS as Player 1

Figure 9: Ablation for Gen. tic-tac-toe and Bargaining. Effect of using synthesized value
functions (right column) vs not (left column) to improve planning in CWMs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D Planning with PPO instead of (IS)MCTS

D.1 Training a PPO agent on top of a CWM

The CWM agent discussed in the main paper relies on (IS)MCTS to take actions within its
learned CWM. While effective, this online planning process can be slow. We investigate an
alternative approach: amortizing the planning computation into a reactive policy, trained
with the PPO algorithm (Schulman et al., 2017).
We entirely learn this PPO policy within the learned CWM environment. For each game,
we train a PPO-CWM agent (acting either as Player 0 or Player 1) to maximize its rewards
against an opponent that uniformly picks a legal action.

Mapping JSON observations to 1D tensors: The CWM represents observations in
the JSON format provided by OpenSpiel, whereas the actor-critic networks we use (which
are based on MLPs and RNNs) requires fixed-size 1D arrays as input.6 Consequently, we
need a procedure to map each JSON into a flat tensor representation. We generate this
mapping programmatically by prompting a LLM as shown below, providing the CWM
training sequences as examples.

You are an expert reinforcement learning researcher and Python programmer.

Your task is to implement the following two functions which form a bijective pair:

def observation_to_tensor(obs) -> np.ndarray: # 1D
...

def tensor_to_observation(tensor) -> np.ndarray: # 1D
...

An example input dataset is as follows:
{example}

First reason about the problem and possible corner cases. Finally output only
the resulting two functions without any placeholders.

Architecture. Our PPO agent uses an actor-critic architecture. For perfect information
games, the actor and critic networks share a common feature extractor consisting of two
256-unit fully-connected layers with tanh activations. The actor head is a final linear layer
that outputs logits for each action, which are then masked to ensure only legal moves are
considered. The critic head is a separate linear layer that outputs a single scalar value.
For imperfect information games, we augment this architecture with a recurrent neural
network to process historical information. An input observation xt is first passed through a
256-unit linear layer (with tanh activation). The result is fed into an RNN along with the
previous hidden state ht−1 to produce an output vector. This output is concatenated with
the original input xt and passed through a final 256-unit hidden layer (with tanh activation)
before being fed to the actor and critic heads as described above.

PPO training. The PPO-CWM agent is trained for a total of 10M agent steps inside the
CWM, using the hyperparameters in Table 17. From the two-player trajectories collected,
we extract the single-agent sequence of observations, actions, and rewards corresponding to
the PPO-CWM agent. This filtered data is used to compute the advantages and the final
PPO loss objective.
For each game, and each player, we train 5 PPO-CWM agents with different seeds, and
select the one with the highest win rate against the random opponent for final evaluation.
This agent is then benchmarked in the Arena, as described in Sec. 5.2. We include matches
against our CWM MCTS agent to compare both approaches for leveraging the CWM.

6We could use transformers, which can handle JSON strings, for the actor and critic, but such
models would be much slower to train.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 17: PPO hyperpameters.

Module Hyperparameter Value

Environment Number of environments 50
Rollout horizon in environment 100

Advantage γ 0.99
λ 0.95

Loss ε clipping 0.2
Value loss coefficient 0.5
Entropy loss coefficient start 0.1
Entropy loss coefficient end 0.01
Entropy loss coefficient schedule Linear

Learning Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0003
Max. gradient norm 0.5
Learning rate annealing False
Number of minibatches (MFRL) 10
Number of epochs (MFRL) 4

D.2 Results

Arena results are presented in Tables 18 to 22. Note that PPO-CWM was not trained on
Gin Rummy due to the poor performance of the CWM on that game. All the CWMs in
this section have been trained on 100 offline trajectories.
PPO-CWM vs. Random. PPO-CWM outperforms the random agent for all the games.
PPO-CWM vs. Gemini 2.5 Pro. Our PPO-CWM agent outperforms or matches
Gemini in all the games. For perfect information games, PPO-CWM wins in Backgammon,
Generalized Chess and Tic-Tac-Toe; and exhibits mixed results (winning as one player and
losing as the other) in Connect Four and Generalized Tic-Tac-Toe. For imperfect information
games, for both open deck and closed deck, PPO-CWM wins in Bargaining and Quadranto,
and ties in Hand of War and Leduc Poker.
PPO-CWM vs. CWM MCTS. For perfect information games, where the learned CWM
is a near-perfect replica of the environment, PPO-CWM is outperformed by our CWM-
MCTS agent. The only exception is Generalized Tic-Tac-Toe when PPO-CWM acts as
Player 0. For imperfect information games, PPO-CWM wins in two games (Hand of War
and Bargaining) and loses in the other two games (Leduc poker and Quadranto).

D.2.1 Games with perfect information

Table 18: PPO-CWM win rates using CWM refinement via tree search against multiple
opponents. For each game, results in the first (second) row correspond to our agent going
first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-MCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Backgammon 0.01 (0/1) 0.99 (0/99) 0.00 (0) 1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.02 0.98 0.00 0.92 0.08 0.00
0.03 (0/3) 0.97 (0/97) 0.00 (0) 1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.01 0.99 0.00 0.94 0.06 0.00

Connect four 0.00 (0/0) 1.00 (0/100) 0.00 (0) 0.92 (0/92) 0.08 (0/8) 0.00 (0) 0.00 1.00 0.00 1.00 0.00 0.00
0.00 (0/0) 1.00 (0/100) 0.00 (0) 0.02 (0/2) 0.98 (0/98) 0.00 (0) 0.00 1.00 0.00 0.99 0.01 0.00

Tic-tac-toe 0.00 (0/0) 0.00 (0/0) 1.00 (100) 0.00 (0/0) 0.00 (0/0) 1.00 (100) 0.00 0.00 1.00 1.00 0.00 0.00
0.00 (0/0) 1.00 (0/100) 0.00 (0) 0.87 (0/87) 0.12 (0/12) 0.01 (1) 0.00 1.00 0.00 0.91 0.01 0.08

Gen. tic-tac-toe 0.45 (0/45) 0.55 (0/55) 0.00 (0) 0.91 (0/91) 0.09 (0/9) 0.00 (0) 0.54 0.46 0.00 1.00 0.00 0.00
0.04 (0/4) 0.96 (0/96) 0.00 (0) 0.38 (0/38) 0.62 (0/62) 0.00 (0) 0.05 0.95 0.00 0.99 0.01 0.00

Gen. chess p 0.00 (0/0) 1.00 (0/100) 0.00 (0) 0.94 (90/94) 0.06 (0/6) 0.00 (0) 0.00 1.00 0.00 1.00 0.00 0.00
p 0.08 (0/8) 0.92 (0/92) 0.00 (0) 0.95 (5/95) 0.05 (0/5) 0.00 (0) 0.08 0.92 0.00 1.00 0.00 0.00

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.2.2 Hidden history inference

Table 19: PPO-CWM win rates using CWM refinement via tree search and hidden history
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.04 (0/4) 0.68 (0/68) 0.28 (28) 0.75 (0/75) 0.25 (0/25) 0.00 (0) 0.00 0.64 0.36 0.55 0.16 0.29
0.08 (0/8) 0.34 (1/34) 0.58 (58) 0.75 (0/75) 0.15 (0/15) 0.10 (10) 0.04 0.58 0.38 0.56 0.11 0.33

Hand of war 0.63 (36/63) 0.26 (0/26) 0.11 (11) 0.34 (0/34) 0.45 (0/45) 0.21 (21) 0.30 0.60 0.10 0.63 0.23 0.14
0.69 (36/69) 0.27 (0/27) 0.04 (4) 0.54 (0/54) 0.31 (0/31) 0.15 (15) 0.52 0.39 0.09 0.69 0.24 0.07

Table 20: PPO-CWM payoffs using CWM refinement via tree search and hidden history
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them Us Them

Bargaining 7.94 4.29 8.41 3.82 8.16 4.76 7.67 2.91
7.72 4.16 8.56 5.11 8.18 4.25 7.36 2.81

Leduc poker -1.89 1.89 0.16 -0.16 -1.39 1.39 0.85 -0.85
-1.53 1.53 -0.60 0.60 -2.57 2.57 2.16 -2.16

D.2.3 Hidden state inference

Table 21: PPO-CWM win rates using CWM refinement via tree search and hidden state
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.00 (0/0) 0.63 (0/63) 0.37 (37) 0.76 (0/76) 0.17 (0/17) 0.07 (7) 0.00 0.60 0.40 0.56 0.10 0.34
0.00 (0/0) 0.88 (0/88) 0.12 (12) 0.62 (0/62) 0.34 (0/34) 0.04 (4) 0.00 0.88 0.12 0.66 0.19 0.15

Hand of war 0.63 (0/63) 0.26 (0/26) 0.11 (11) 0.34 (2/34) 0.45 (0/45) 0.21 (21) 0.19 0.69 0.12 0.67 0.22 0.11
0.54 (0/54) 0.38 (0/38) 0.08 (8) 0.50 (0/50) 0.31 (0/31) 0.19 (19) 0.49 0.45 0.06 0.58 0.25 0.17

Table 22: PPO-CWM payoffs using CWM refinement via tree search and hidden state
inference against multiple opponents. For each game, results in the first (second) row
correspond to our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them Us Them

Bargaining 8.17 4.61 8.51 3.83 8.10 4.48 7.87 3.31
7.62 4.51 8.46 4.78 7.76 4.45 8.05 2.51

Leduc poker -1.31 1.31 -0.02 0.02 -2.17 2.17 0.58 -0.58
-2.01 2.01 1.67 -1.67 -2.02 2.02 2.11 -2.11

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.2.4 Hidden history inference with closed deck learning

Table 23: PPO-CWM win rates using CWM refinement via tree search with closed deck
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Win (forfeit/n) Loss (forfeit/n) Draw (n) Win (forfeit/n) Loss (forfeit/n) Draw (n) Win Loss Draw Win Loss Draw

Quadranto 0.04 (0/4) 0.72 (0/72) 0.24 (24) 0.87 (0/87) 0.11 (0/11) 0.02 (2) 0.00 0.58 0.42 0.41 0.19 0.40
0.05 (0/5) 0.37 (0/37) 0.58 (58) 0.66 (0/66) 0.11 (0/11) 0.23 (23) 0.05 0.46 0.49 0.41 0.17 0.42

Hand of war 1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.31 (1/31) 0.57 (0/57) 0.12 (12) 0.38 0.50 0.12 0.63 0.19 0.18
1.00 (100/100) 0.00 (0/0) 0.00 (0) 0.54 (0/54) 0.31 (0/31) 0.15 (15) 0.43 0.47 0.10 0.65 0.16 0.19

Table 24: PPO-CWM payoffs using CWM refinement via tree search with closed deck
against multiple opponents. For each game, results in the first (second) row correspond to
our agent going first (second).

Game P CWM MCTS Gemini 2.5 Pro GT-ISMCTS Random
Us Them Us Them Us Them Us Them

Bargaining 5.88 6.04 7.20 4.91 5.94 6.04 7.23 3.81
6.77 5.61 7.76 5.66 6.97 5.25 7.82 3.48

Leduc poker -1.17 1.17 -0.47 0.47 -1.35 1.35 0.70 -0.70
-0.25 0.25 -0.48 0.48 -1.54 1.54 2.17 -2.17

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E Automatic rejection of bad CWM samples

The CWM refinement process can occasionally produce a low-quality CWM. This is rarely
the case for perfect information games, where more information is available for refinement
and unit tests are more strict, but we have observed this happening in the case of imperfect
information games. To reduce this effect, in the case of imperfect information games, we
sample 5 CWMs, create a CWM-ISMCTS agent from each one, and make those agents
compete against each other. Agents are then ranked according to the average payoff obtained
in those competitions. Agents that are worse than the best scoring agent by more than 10%
of the observed utility range are rejected.
Since we do not have access to the ground truth game for these competitions, the agents
use the CWM of one of them as a stand-in for the actual game. We call the CWM used
to play the game the host. This means that we have 2 possible hosts × 5 agents acting as
Player 0 × 5 agents acting as Player 1. This results in a total of 50 possible matches. Since
the outcome of a match is stochastic, we repeat each match 50 times. Execution failures or
the execution of illegal actions during these games result in both players losing the game.

F Sketch of information flow of each agent

Here we provide a sketch of the information flow for each the agents. Of course, many
details are omitted, and the prompts are highly simplified, see Appendix G for the actual
prompts.

def llm_agent_generator(LLM, rules, traj):
prompt = (f"You are playing a game with these rules: {rules}.\n"

f"Example trajectories: {traj}.\n")

def policy(action_obs_history):
return LLM(prompt + f"Action-observation history: {action_obs_history}. "

"Pick the next best action.")
return policy

def cwm_agent_perfect_info_generator(LLM, rules, traj, GT=False):
M = induce_cwm(LLM, rules, traj) if not GT else ground_trutn_M
V = induce_value_fn(LLM, rules, traj, M)

def policy(action_obs_history):
return MCTS(action_obs_history[-1], M, V)

return policy

def cwm_agent_imperfect_info_generator(LLM, rules, traj, GT=False):
(M, I) = induce_cwm_pomdp(LLM, rules, traj) if not GT else ground_trutn_MI
V = induce_value_fn(LLM, rules, traj, M)
def policy(action_obs_history): return ISMCTS(action_obs_history, M, V, I)
return policy

def induce_cwm_zero_shot(LLM, rules, traj):
prompt = (f"You are playing a game with these rules: {rules}.\n"

f"Generate python code that matches this API: {fn_signature}\n"
f"The code should pass these unit tests: {make_tests(traj)}\n")

return LLM(prompt)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G System and agent prompts

G.1 Tree search

Our tree search prompt is:
You are an expert python programmer who is building the game of {game_name}.
Here is a description of the game:
{game_desc}

The goal is to implement a python function with the following signature.
START FUNCTION SIGNATURE
{function_signature}
END FUNCTION SIGNATURE

The original implementation is as follow. Please try to refine the original code.
START CODE BLOCK
{orig_code}
END CODE BLOCK

Your code should satisfy the following unit tests.
Your code should fix the TODO errors in the comments of the unit tests, if any.
START UNIT TESTS
{test_code}
END UNIT TESTS

Do not repeat the unit tests, only return the functions.
Do not leave placeholders.

Do not repeat the function signature.
Do not copy the unit tests.

Only produce code that is compact.
Do write comments explaining what the code does.
Do use helper functions to reduce code duplication.

Start by reasoning about the game and the unit tests.
Also reason about the errors and possible fixes.

Finally, try to write {num_targets} versions of the code.
Make sure each code is in a different code blocks starting with ```python.

function_signature contains the function definition for the LLM to fill out, while test_code
defines the properties (expressed as unit tests) that the resulting code needs to satisfy.
function_signature and test_code both depend on if the game is a perfect or imperfect
information game, whether it is being learnt in an open or closed deck fashion, and if the
inference is perform via hidden history or hidden state inference. These variations are
defined in the following sections.
Finally, orig_code is the code being refined at each iteration. On the first iteration, this
paragraph is not present.

G.2 Perfect information games

function_signature is defined as follows:
Action: str
State: dict[str, Any]
PlayerObservation: dict[str, Any]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken."""

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal."""

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""

def get_rewards(state: State) -> list[float]:
"""Returns the rewards per player from their last action."""

def get_legal_actions(state: State) -> list[Action]:
"""Returns legal actions that can be taken in current state."""

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for player."""

test_code tests the transition between two states, testing each of the API calls defined in
function_signature. Here is an example transition unit test for tic tac toe, where the board
is provided as a flat 1D array:
class TestTransition2(unittest.TestCase):
def test_transition_2(self):
state = {'board': [None, None, None, None, 'x', None, 'o', None, None], '

current_player_mark': 'x'}

self.assertEqual(0, get_current_player(state))
self.assertEqual('0', get_player_name(0))
self.assertEqual([0.0, 0.0], get_rewards(state))
self.assertEqual([{'board': [None, None, None, None, 'x', None, 'o', None, None], '

current_player_mark': 'x'}, {'board': [None, None, None, None, 'x', None, 'o',
None, None], 'current_player_mark': 'x'}], get_observations(state))

self.assertSetEqual(set(['x(0,0)', 'x(0,1)', 'x(0,2)', 'x(1,0)', 'x(1,2)', 'x(2,1)',
'x(2,2)']), set(get_legal_actions(state)))

self.assertEqual({'board': [None, None, None, 'x', 'x', None, 'o', None, None], '
current_player_mark': 'o'}, apply_action(state, 'x(1,0)'))

If this test has failed, the LLM is provided with the python error message in the form of
a comment before the test. The use of self.assertEqual style functions ensures that the
LLM is provided with a rich description of how the expected and actual data structures
vary.

G.3 Hidden history inference function synthesis, open deck

function_signature starts with the version from Section G.1, then adds the inference def-
inition:
def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | None]],

player_id: int) -> list[Action]:
"""Stochastically sample one of many potential history of actions for all players(

including 'chance' and 'terminal')

This is given only a single player's observations and actions, and needs to recreate
the player_id's observations

unit_text again starts with the definition from Section G.1 then adds the following test for
added inference function:
state = INITIAL_STATE
obs_action_history = {obs_action_history}
obs_and_action_iter = iter(obs_action_history)
current_player_obs, current_player_action = next(obs_and_action_iter)
player_id = {player_id}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

for action in resample_history(obs_action_history, player_id):
print(f"In state {{state}}")
if get_current_player(state) == player_id:
self.assertEqual(current_player_obs, get_observations(state)[player_id])
print(f"Recreated observation {{current_player_obs}}")
self.assertEqual(current_player_action, action)
current_player_obs, current_player_action = next(obs_and_action_iter)

print(f"Taking action {{action}}")
state = apply_action(state, action)

try:
next(obs_and_action_iter)
raise ValueError('Failed to iterate through all observations.')

except StopIteration:
pass

self.assertEqual(player_id, get_current_player(state))

where INITIAL_STATE is provided at the beginning of the unit tests and is the static first
state of the game. obs_action_history is the history of observations and actions for player
player_id for which we want to resample the history of actions that lead to the current
observations.
Note the presence of print statements inside the unit test. The last ten lines of standard
output are provided to the LLM in addition to the error message.

G.4 Hidden state inference function synthesis

function_signature again starts with the version from Section G.1, then adds the inference
function definition:
def resample_state(obs_action_history: list[tuple[PlayerObservation, Action | None]],

player_id: int) -> list[int]:
"""Stochastically sample one of the reachable statess for player given the observation

and action history that recreates the player's observation."""

unit_test again starts with the definition from Section G.1 then adds the following test for
added inference function above:
obs_action_history = {obs_action_history}
player_id = {player_id}
resampled_state = resample_state(obs_action_history, player_id)

self.assertEqual(obs_action_history[-1][0], get_observations(resampled_state)[player_id
])

G.5 Hidden history inference function synthesis, closed deck

function_signature is similar to that in Section G.2:
def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | None]],

player_id: int, last_is_terminal: bool) -> list[Action]:
"""Stochastically sample one of many potential histories of actions for all players(

including 'chance' and 'terminal')
given only a single player's observations and actions.

It needs to recreate the player_id's observations.
last_is_terminal indicates if the last player observation is from end of game when

player_id is -4."""

Note the extra argument last_is_terminal. This indicates that the final observation in
obs_action_history is of the terminal state. This allows adding tests that resample the
entire game from the beginning to the terminal state, testing the ability of the LLM to

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

predict the final reward of the player. In open deck, the transition tests cover this. For
simplicity, we assumed that the rewards are terminal but this is easy to relax.
The corresponding unit_tests for the inference function is:

state = INITIAL_STATE
obs_action_history = {obs_action_history}
player_id = {player_id}
last_is_terminal = {ends_in_terminal}
obs_and_action_iter = iter(obs_action_history)
current_player_obs, current_player_action = next(obs_and_action_iter)
for action in resample_history(obs_action_history, player_id, last_is_terminal):
print(f"In state {{state}}")
if get_current_player(state) == player_id:
self.assertEqual(current_player_obs, get_observations(state)[player_id])
print(f"Recreated observation {{current_player_obs}}")
self.assertEqual(current_player_action, action)
current_player_obs, current_player_action = next(obs_and_action_iter)

print(f"Taking action {{action}}")
state = apply_action(state, action)

try:
next(obs_and_action_iter)
raise ValueError('Failed to iterate through all observations.')

except StopIteration:
pass

Again, this is very similar to unit_test in Section G.2, but also covers the terminal state
of the game and it’s associated reward.
Note that no transition unit tests are added as we do not have access to the state. However,
just testing the inference function is not enough to ensure that the resulting closed deck
game is playable. Instead, a random play test is added to unit_test:

state = {initial_state}
rg = np.random.RandomState({seed})
for it in range(1000): # upper bound on game length
current_player = get_current_player(state)
rewards = get_rewards(state)
assert len(rewards) == 2
print (f"State is {{state}}, current player is {{current_player}}, rewards are {{

rewards}}")

if current_player == -4: # Game over
break

if current_player in [0,1]: # Real players
print(f"Observation for current player is {{get_observations(state)[current_player

]}}")
else:
assert current_player == -1

legal_actions = get_legal_actions(state)
chosen_action = rg.choice(legal_actions)
print(f"Taking action {{repr(chosen_action)}} from {{len(legal_actions)}} options,

first 10 are {{[*legal_actions][:10]}}")
state = apply_action(state, chosen_action)

else:
raise ValueError(f"Game did not end after 1000 steps.")

This tests that if every player randomly picks a valid move, the game will correctly play
and terminate. Note that we assume access to the static and deterministic initial state of
the game, before any chance nodes have taken place. This could also be synthesized by the
LLM instead.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.6 Resampling the state at game playing time for imperfect information
games

When playing the game, we allow the system to up to 10 tries to get a valid state that
produces the current observations:

for retry in range(10):
json_state = {start_state}
try:
actions = resample_history(obs_action_history, player_id)
for action in actions:
json_state = apply_action(json_state, action)
state_log.append(json_state)

except Exception as e: # Running generated code, could raise anything.
continue

recreated_obs = get_observations(json_state)[player_id]
if recreated_obs == obs_action_history[-1][0]:
return json_state

Additionally, if the ISMCTS process fails due to, e.g., poor understanding of the game
termination criteria in the CWM, we fall back to resampling the state and then return a
uniformly sampled legal action from that state.

G.7 Value function synthesis

Our value function synthesis function prompt is
'''
You are an expert python programmer. You are playing the game {game}, and need
to synthesize a value function for monte carlo tree search.

{game_description}

For reference, the game is implemented as follow

{code}

The function you need to write is:
{value_function}

It should return the reward at terminal states, and otherwise an estimate of the
value for each non-terminal states.

It should always be a float:
{player_tests}

Terminal states should match rewards:
{terminal_tests}

To write a good value function first reason about the game and produce a heuristic value
that is informative, and do not just output zeros everywhere other than terminal
states.

Finally ONLY output the new value_function, do not output any other text, code,
explanations or placeholders.
The response code must be a single CODE BLOCK that uses this format:
The opening fence: ```python
The closing fence: ```
'''

Where value_function is
'''
def value_function(state: dict[str, Any], player_id: int) -> float:
"""Returns the value estimate for player_id in state.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For terminal states the function returns the true return. For ongoing play
the function should return a value estimate that reflect the winning potential
of the player with given player_id.
"""

'''

player_tests and terminal_tests is the list of example
'''
{current_player}
self.assertIsInstance(value_function(state, {current_player}), float)
if {current_player} == pyspiel.PlayerId.TERMINAL:

rewards = get_rewards(state)
for player in range(len(rewards)):

self.assertEqual(rewards[player], value_function(state, player))
'''

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H Game rules

H.1 Backgammon

Backgammon is a two-player board game that combines strategy and luck. The object is to
move all of your checkers off the board before your opponent does. Here's a
breakdown of the rules:

The Board and Setup:

* **The Board:** The board consists of 24 narrow triangles called **points**. These
points are grouped into four quadrants of six points each:
* **Inner/Home Board:** The quadrant closest to each player's starting position.
* **Outer Board:** The quadrant further from each player's starting position.

* **The Bar:** The area in the middle of the board, separating the two sides.
* **The Bear-Off Area:** The area off the board where checkers are moved once they reach

the player's home board.
* **Checkers:** Each player has 15 checkers of one color (typically black and white).
* **Dice:** Two dice are used to determine movement.
* **Doubling Cube (Optional but common):** A cube with the numbers 2, 4, 8, 16, 32, and

64, used to increase the stakes of the game.

Initial Setup:

Each player's 15 checkers are set up in a specific configuration on the points:

* 2 checkers on the opponent's 24-point.
* 5 checkers on the opponent's 13-point.
* 3 checkers on their own 8-point.
* 5 checkers on their own 6-point.

Gameplay:

1. **Starting the Game:** Each player rolls one die. The player with the higher roll
goes first. If the rolls are the same, they roll again until one player rolls
higher. The player who goes first uses the numbers rolled on *both* dice to make
their first move.

2. **Rolling the Dice:** On subsequent turns, each player rolls two dice.

3. **Moving Checkers:** After rolling the dice, the player must move their checkers
according to the numbers rolled.
* **Separated Moves:** Each die represents a separate move. You can move one checker

the distance of one die's roll and another checker the distance of the other
die's roll.

* **Combined Move:** You can move one checker the combined distance of both dice
rolls, but *only if* the point you would land on for the first die's roll is not
blocked (see "Blocked Points" below).

* **Mandatory Moves:** You must move your checkers if possible. If you can only make
one of the two moves indicated by the dice, you must make that move. If you can
make both, you must make both.

* **No Legal Moves:** If you cannot make any legal moves based on the dice roll,
your turn ends.

4. **Point Direction:** You always move your checkers from your opponent's inner board
towards your own home board. The points are numbered 1 to 24, where 24 is the
latest point in your opponent's inner board. Each move makes the checker move to
smaller numbered points.

5. **Landing on a Point:**
* **Empty Point:** You can land on an empty point.
* **Point Occupied by Your Own Checkers:** You can land on a point occupied by any

number of your own checkers.
* **Point Occupied by Opponent's Checkers:**

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

* **Blots:** If a point is occupied by *only one* of your opponent's checkers, it
's called a "blot." If you land on a blot, you "hit" the opponent's checker.
The hit checker is placed on the **bar**.

* **Blocked Points:** If a point is occupied by *two or more* of your opponent's
checkers, it is "blocked." You *cannot* land on a blocked point.

6. **Entering from the Bar:** If a player has checkers on the bar, they must re-enter
them onto the board before making any other moves.
* **Re-entry Points:** You can re-enter a checker from the bar onto a point in your

opponent's home board that corresponds to the number rolled on a die. For
example, if you roll a 3, you can re-enter a checker onto your opponent's 3-
point.

* **Blocked Re-entry:** If the corresponding point in your opponent's home board is
blocked by two or more of your opponent's checkers, you cannot re-enter using
that die roll.

* **Priority:** You must use any available die rolls to re-enter checkers from the
bar. If you can re-enter one checker but not the other based on your dice roll,
you must still re-enter the one you can. If you cannot re-enter any checkers,
your turn ends.

7. **Doubles:** If you roll doubles (e.g., two 4s), you can use each number *four times
*. So, two 4s means you have four moves of 4. You can use these moves in any
combination, as long as they are legal. Each turn allows you to make two moves only
. So if a player rolls a double, they take an extra turn, making at most two moves
in each of the turns.

8. **Bearing Off:** If you don't have any checkers outside of your home board or at the
bar, you can "bear off" chekers (moving them off the board) that are at your home
board.
* **Bearing Off Rolls:** To bear off a checker, you must roll the exact number that

the checker is on to move it off the board from its current point. For example,
if a checker is on your 4-point, you need to roll a 4 to bear it off.

* **Higher Rolls:** If you roll a number higher than the highest point occupied by
your pieces, you can still bear off a piece. However, you must bear off a piece
from the highest occupied point. For example, if your highest occupied point is
the 4-point, and you roll a 6, you can bear off a piece only from the 4-point,
you cannot bear off a piece from lower points.

* **Lower Rolls:** If you roll a number lower than the point your checker is on, you
can still move a checker from a higher point the distance of the roll (if legal
), or you must move a checker from a lower point the distance of the roll if
possible. You cannot bear off a checker if you have checkers on higher points in
your home board that can be moved by the dice roll.

* **Blocked Bear Off:** You cannot bear off a checker if any of your checkers are
still on the bar or outside of your home board. You must bring all your checkers
into your home board before bearing off.

* **Moving Pieces Within Home Board:** Instead of bearing off, you can also move
your checkers within your home board using the dice rolls.

9. **Action Notation:** Player moves are typically represented using a specific notation
. Each turn consists of at most two moves. Each move isrepresented by a string of
the form "Move checker at X using Y roll", where "X" is the position of the checker
being moved, and "Y" indicates if the move is done based on the dice roll with the
higher or lower number.
The first position is always a number between 1 and 24 or "Bar", and it is

presented in each player's perspective, where 24 is the latest point in the
opponent's inner board.

For a double roll (e.g., a 3-3, granting four moves of 3 as per rule 7 "Doubles")
:

- It is assumed these four moves are made by the player in two stages: First,
providing two moves, then the player gets a second turn then providing the
subsequent two moves. For instance, a player might move two checkers,
each making two 3-point moves. Next, the player would have a second turn,
providing two more moves of 3.

10. **Board Notation:** The board is represented with 2 arrays of 24 numbers,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where each number is either 0 (empty) or a number between 1 and 15
(indicating the number of checkers of that color on that point).
The first array is for the first player, and the second is for the second.
The board ordering is from second player's persective. Starts from first
player's home base and ends at the second player's home base. The first
index is the latest point in the second player's inner board, meaning
position 24 for the first player and 1 for the second player.

Winning the Game:

The first player to bear off all 15 of their checkers wins the game.

Optional Rules (Commonly Used):

* **The Doubling Cube:**
* **Offering a Double:** At the start of their turn, *before* rolling the dice, a

player can offer to "double" the stakes of the game.
* **Accepting a Double:** The opponent can either accept or decline the double. If

they decline, they lose the game immediately and the current stake is paid. If
they accept, the stakes are doubled, and the opponent now "owns" the doubling
cube, meaning they are the only one who can offer the next double.

* **Subsequent Doubles:** The owner of the cube can offer to redouble at the start
of their turn. The stakes continue to double with each accepted redouble (2, 4,
8, 16, etc.).

* **Gammon and Backgammon:** These are ways to win with higher stakes.
* **Gammon:** If a player bears off all their checkers before the opponent has borne

off *any* checkers, the winner wins a "gammon," which is typically worth double
the value of the doubling cube.

* **Backgammon:** If a player bears off all their checkers before the opponent has
borne off *any* checkers and the opponent still has one or more checkers on the
bar or in the winner's home board, the winner wins a "backgammon," which is
typically worth triple the value of the doubling cube.

Key Concepts and Strategy:

* **Hitting Blots:** Hitting your opponent's checkers puts them on the bar and disrupts
their progress.

* **Making Points:** Occupying points with two or more of your checkers creates "blocks"
that prevent your opponent from moving past. Strategic point-making is crucial.

* **Prime:** Creating a "prime" (six consecutive blocked points) can severely hinder
your opponent's movement.

* **Running:** Moving your checkers quickly towards your home board.
* **Positioning:** Carefully considering where to move your checkers to maximize your

options and limit your opponent's.
* **Risk vs. Reward:** Balancing the risk of leaving blots with the potential for making

good moves.

Backgammon is a game with layers of strategy that unfold as you play. While the dice
introduce an element of chance, skillful play, understanding probability, and
strategic decision-making significantly influence the outcome. Enjoy the game!

H.2 Connect four

Rules of Connect Four

* **Setup:** Connect Four is played on a 6-row by 7-column vertical grid, which starts
completely empty.

* **Players and Marks:** There are two players: Player 0 uses the 'x' mark and Player
1 uses the 'o' mark.

* **Turns:** Player 0 ('x') always goes first, and turns alternate between players.
* **Making a Move:** On your turn, you choose a column to drop your mark into. The

mark will fall to the lowest unoccupied square within that chosen column.
Attempting to drop a mark into a column that is already full is an invalid move;
you must choose a column with at least one empty square to complete your turn.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

* **Winning the Game:** The winner is the first player to get four of their marks in a
row (horizontally, vertically, or diagonally). The game ends immediately as soon
as a winning line is formed.

* **Drawing the Game:** If all 42 squares on the grid are filled and neither player
has won, the game ends in a draw.

* **End the Game:** The game only concludes upon a win or a draw. A player must make a
move on their turn as long as there is at least one valid move available on the
board.

* **Move Notation:** Use the move notation '[mark][col]', where col is the 0-indexed
column you are dropping your mark into. For example, 'x3' means Player 0 ('x')
drops their mark into the fourth column from the left (column index 3).

H.3 Tic-tac-toe

Rules of Tic-Tac-Toe

* **Setup:** Tic-Tac-Toe is played on a 3x3 grid, which starts completely empty.
* **Players and Marks:** There are two players: Player 0 uses the 'x' mark and Player

1 uses the 'o' mark.
* **Turns:** Player 0 ('x') always goes first, and turns alternate between players.
* **Making a Move:** On your turn, you must place your mark in a single, unoccupied

square. Attempting to place a mark in an already occupied square is an invalid move
; you must choose an empty square to complete your turn.

* **Winning the Game:** The winner is the first player to get three of their marks in
a row (horizontally, vertically, or diagonally). The game ends immediately as soon
as a winning line is formed.

* **Drawing the Game:** If all nine squares on the grid are filled and neither player
has won, the game ends in a draw.

* **End the Game:** The game only concludes upon a win or a draw. A player must make a
move on their turn as long as there is at least one valid move available on the
board.

* **Move Notation:** Use the move notation 'mark(row,col)', where row and col are 0-
indexed. For example, 'x(0,0)' means Player 0 ('x') places their mark in the top-
left square.

H.4 Gen. tic-tac-toe

Generalized Tic-Tac-Toe (6x6, Win Length 4, 2 Players)

1. Overview: This is a two-player strategy game played on a 6x6 grid. The goal
is to be the first player to form a continuous line of four of your own marks.
This game is a specific configuration of a generalized Tic-Tac-Toe framework.

2. Game Setup:

Board: A 6x6 grid of cells (36 cells in total), with rows and columns numbered
0 to 5.
Players: Two players. Conventionally, one player uses 'x' and the other uses 'o'.
Starting State: The board is initially empty.

3. Gameplay:

Players take turns placing their mark on an unoccupied cell on the board.
A designated player (e.g., Player 'x') makes the first move.
The game continues with players alternating turns.

4. Winning Condition:

A player wins if they are the first to place four of their marks in an unbroken
straight line.

This line can be:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

* Horizontal: Four marks in the same row.
* Vertical: Four marks in the same column.
* Diagonal: Four marks along any of the board's diagonal lines (both directions).

5. Draw Condition:

If all cells on the 6x6 board are filled with marks, and neither player has
achieved a line of four of their marks, the game is a draw.

6. End of Game:

The game concludes immediately when either:
One player achieves a winning line of four marks (that player is the winner).
All cells are filled, and no winning line exists (the game is a draw).

7. Key Parameters for this Specific Variant:

Number of Rows: 6
Number of Columns: 6
Winning Line Length: 4
Number of Players: 2

H.5 Gen. chess

The game of generalized chess is a two player game where each player controls a
collection of pieces and wins by capturing the target piece from the other
player. Each kind of game piece has a specific pattern of movements that it can
execute. A piece can execute any one of its available moves as long as that move
stays on the board and doesn't land on another of that player's pieces. If the
piece lands on an opponent piece, it captures the opponent piece and removes it
from the board. Allowed piece movements are not the same as in standard chess.

Actions are described using board coordinates. For a 5x5 board, rows are labeled
A-E from top to bottom, and columns are labeled 1-5 from left to right. A move
from a starting square to a destination square is written as 'start_to_end',
for example, 'A2_to_C2' means move the piece from square A2 to square C2.

Passing a turn is specified as 'PASS'.

This 'army5x5a' variant of generalized chess is played on a 5x5 board.

It includes the following pieces, with their corresponding set of allowed moves:
- general: [(1, 0), (-1, 0), (0, 1), (0, -1), (0, -2), (0, 2)]
- infantry: [(1, 0), (2, 0), (1, -1), (1, 1), (-1, 0)]
- cavalry: [(0, 3), (1, 2), (2, 1), (3, 0)]

Game pieces are depicted with the following symbols: 'general': 'X', 'infantry': 'I', '
cavalry': 'V'. Player 0 pieces are upper-case while Player 1 pieces are lower-case.

The 'general' is the target piece. Capturing this piece wins the game.

H.6 Bargaining

The rules of "bargaining" aren't fixed and formal like a board game with a rulebook.
Instead, it's a dynamic social process of negotiation where two or more parties
attempt to reach a mutually agreeable outcome on a price or terms for a product,
service, or agreement. Here's a breakdown of the core principles and common "rules"
of bargaining, understood more as strategies and expectations:

Core Principles of Bargaining:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

* **Mutual Desire for an Agreement:** Both parties generally want to reach a deal, even
if their initial positions are far apart.

* **Information Asymmetry:** One party often has more information than the other, which
can influence the negotiation.

* **Iterative Process:** Bargaining usually involves a series of offers and counter-
offers.

* **Focus on Value:** Bargaining is about perceived value what each party believes the
item or service is worth.

* **Potential for Compromise:** Both parties are usually expected to give a little to
reach an agreement.

Implicit "Rules" or Common Strategies:

These are not hard-and-fast rules, but rather common practices and expectations that
guide the negotiation:

1. **Know Your Limits (Walk-Away Point):** Before starting, each party should have a
clear idea of the maximum (for a buyer) or minimum (for a seller) price they are
willing to accept. This is your "reservation point."

2. **Start with an Anchor (Opening Offer):** The first offer sets an "anchor" for the
negotiation. This is usually a price lower than what the seller expects (for a
buyer) or higher than what the buyer expects (for a seller).
* **Seller's Perspective:** Start higher than your desired price.
* **Buyer's Perspective:** Start lower than what you're willing to pay.

3. **Justify Your Offers:** Simply stating a price is less effective than explaining *
why* you're offering that price. Reference market value, condition of the item,
your budget, etc.

4. **Make Concessions Incrementally:** Don't jump straight to your walk-away point. Make
small concessions with each counter-offer. This signals a willingness to negotiate
while still trying to get the best possible deal.

5. **Signal Willingness to Walk Away (But Don't Bluff Too Much):** Letting the other
party know you're willing to walk away if you don't get a satisfactory price can be
a powerful tactic. However, repeated or unbelievable threats can undermine your
credibility.

6. **Listen Actively and Ask Questions:** Pay attention to the other party's offers,
reasoning, and potential underlying needs. Asking questions can reveal information
and build rapport.

7. **Be Patient:** Bargaining takes time. Don't rush the process.

8. **Maintain a Respectful Tone:** Even if the negotiation becomes difficult, try to
maintain a polite and respectful demeanor. Aggression can shut down the
conversation.

9. **Consider Non-Price Factors:** While price is central, bargaining can also involve
other terms like delivery time, payment method, warranties, or additional items
included.

10. **Know When to Stop:** If it's clear you won't reach an agreement that meets your
needs, it's okay to respectfully end the negotiation.

11. **Be Prepared to Walk Away:** If you can't reach an agreement within your limits,
you must be prepared to walk away. This is crucial for maintaining your boundaries.

12. **The Final Offer:** Often, one party will indicate their "final offer." This
suggests they are unwilling to make further concessions. However, this isn't always
truly final and can be tested with a counter-offer.

13. **The Art of the Counter-Offer:** Respond to offers with a counter-offer that is a
concession from your previous position, but still moves you closer to your goal.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Situational Differences:

The "rules" of bargaining can vary depending on the context:

* **Cultural Norms:** Bargaining is much more common and expected in some cultures (e.g
., bazaars in many parts of the world) than others (e.g., retail stores in most
Western countries).

* **Type of Item/Service:** Bargaining for a car is different than bargaining for a
small trinket at a market.

* **Power Dynamics:** Who has more leverage in the negotiation can significantly impact
the process.

**In summary, the "rules" of bargaining are less about strict regulations and more about
strategic communication, understanding the other party's perspective, and being
prepared to make concessions to reach a mutually acceptable agreement. It's a
negotiation dance where both parties are trying to get the best possible outcome
within their own limits.**

H.7 Leduc poker

Leduc Poker is a simplified two-player poker game, ideal for AI research, that uses a
small deck to focus on core poker concepts like betting strategy and imperfect
information.

Here is a detailed breakdown of the rules to clarify legal moves. Note that in this
implementation, the "Check" action is not available; players must use "Call"
instead. A call may be zero-cost if there is no outstanding bet to match.

1. Setup & Preliminaries
* **Players:** 2.
* **Deck:** 6 cards (two Jacks, two Queens, two Kings).
* **Blinds:** Before cards are dealt, mandatory bets are posted:

* Player 1 (P1) posts a **Small Blind** of 1 unit.
* Player 2 (P2) posts a **Big Blind** of 2 units.

* **The Deal:** Each player receives one private card, face down.

2. Core Betting Rules
* **Raise Sizing:** The amount to raise is fixed.

* **Round 1:** The raise amount is **2 units**.
* **Round 2:** The raise amount is **4 units**.

* **Total Betting Cap:** The total betting cap for each round is a maximum of **two
raises**.

* **Acting First:** Player 1 (the small blind) acts first in both betting rounds (pre-
flop and post-flop).

3. Round 1: Pre-Flop Betting
This round occurs before the public card is revealed.

* **P1's First Action:** P1 must act on P2's 2-unit Big Blind.
* **Fold:** Forfeit the 1-unit blind. P2 wins the pot.
* **Call:** Match the 2 units by putting in 1 more unit.
* **Raise:** Make a 2-unit raise, for a total of 4 units (P1 puts in 3 units). The

total betting cap has been reached.
* **P2's Action:**

* If P1 **called**, P2 can **Call** (a zero-cost action, as bets are equal) to end
the round, or **Raise** (by putting in 2 more units to make it 4 total).

* If P1 **raised**, P2 can only **Call** (by putting in 2 more units) or **Fold**.
The betting cap has been reached.

* **P1's Second Action (if necessary):** If P1 called and P2 then raised, the action
returns to P1. P1 can only **Call** (by putting in 2 more units) or **Fold**.

4. The Flop: Public Card

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

After Round 1 betting concludes, one public card is dealt face-up. This card is shared
by both players.

5. Round 2: Post-Flop Betting
This round occurs after the flop. There are no blinds.

* **P1's First Action:**
* **Call:** Make a zero-cost call to pass the turn (as there is no outstanding bet)

.
* **Raise:** Make a 4-unit raise.

* **P2's Action:**
* If P1 **called** (at zero-cost), P2 can also **Call** (at zero-cost, ending the

round) or **Raise** 4 units.
* If P1 **raised**, P2 can **Call** (matching the 4 units), **Raise** (by putting

in another 4 units, for a total bet of 8), or **Fold**. The total betting cap
has been reached.

* **Subsequent Actions:**
* If P2 **raised** (after P1's initial zero-cost call), the action returns to P1,

who can **Call** (the 4 unit bet), **Raise** (to 8 total), or **Fold**. The
total betting cap has been reached.

* If a player **raises**, the other player can only **Call** or **Fold**, as the
betting cap has been reached.

6. Showdown & Hand Ranking
If neither player folds, a showdown occurs after Round 2 betting.

* **Hand:** A player's hand is their private card combined with the public card.
* **Hand Ranks (best to worst):**

1. **Pair:** Two cards of the same rank (e.g., J-J). Higher pairs beat lower pairs.
2. **High Card:** If no one has a pair, the player with the highest card wins (K > Q

> J).
* **Ties:** If both players have the same hand rank (e.g., both have a King-high), the

pot is split.

7. Winning
A player wins the pot either by being the only one left after the other folds, or by

having the best hand at showdown.

H.8 Gin rummy

The Game of Gin Rummy

Gin Rummy is a two-player card game played with a standard 52-card deck. The
primary objective is to form "melds" in your hand, which are either sets of
three or four cards of the same rank (e.g., 7h 7c 7d) or runs of three or more
cards of the same suit in sequence (e.g., 4h 5h 6h). Cards not part of any meld
are referred to as "deadwood." The value of deadwood cards corresponds to their
rank (Aces are 1 point, face cards are 10, and number cards are their face
value). The ultimate goal is to minimize the point value of your deadwood.

A round of Gin Rummy concludes when a player "knocks." A player can choose to
knock on their turn if the total point value of their deadwood is less than or
equal to a predetermined "knock card" value. Announcing "gin" is a special type
of knock where a player has no deadwood at all.

Player Hand Information: This section provides details about your own hand.

Deadwood: This calculates the current point total of the cards in
your hand that are not part of a valid meld (a set or a run). Minimizing this
value is the primary goal.

The Card Grid: This is a visual representation of the cards you currently hold.
It is organized logically for easy parsing:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Rows: Each of the four rows corresponds to a suit, in the order of Spades (top
row), Clubs, Diamonds, and Hearts (bottom row).

Columns: The columns represent the rank of the cards, ordered from Ace on the
far left to King on the far right.

Here are also some example moves:

Player: 0 Action: Pass
Player: 1 Action: Draw upcard
Player: 1 Action: Jc
Player: 0 Action: 3d
Player: 1 Action: Draw stock

Action Legality is Dictated by Game Phase: Before selecting a move, you must
first check the phase.

If the phase is Draw, the only valid actions are Draw upcard or Draw stock.

If the phase is Discard, the only valid actions are to discard a specific card
from your hand (e.g., Action: 4c) or to Knock.

A player cannot discard a card until after they have successfully drawn one.

Special Case: The First Turn of the Round

The very first turn of a round has a unique rule. The non-dealer has the first
option on the initial upcard.

The non-dealer can either take the upcard (Draw upcard) or Pass.

If the non-dealer passes, the dealer then has the same choice: take the upcard
or pass.

If both players pass on the initial upcard, the non-dealer must then start their
turn by drawing from the stock pile. After this initial sequence, play continues
with the standard draw/discard phases.

Knocking:
When a player knocks in Gin Rummy, the round immediately ends and a specific
sequence of scoring, known as the "layoff," begins. Here is a detailed
breakdown of what happens.

1. The Knock and Laying Down Hands
First, the player who is knocking (the "knocker") lays their hand face up on the
table, organising their cards into melds (sets and runs) and separating their
unmelded cards, known as "deadwood."

What the Player Needs to Do After Knocking
After sending Action: Knock, the player must follow a strict, multi-step process
to lay down their hand for scoring.

Step 1: Declare Your Melds
The player must now explicitly declare their melds to the game, one by one.
For exampple, if the agent's hand contains two valid runs:

A run of clubs: 7c8c9cTc

A run of diamonds: 9dTdJdQd

Correct First Move in the Knock Phase:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Player: 1 Action: 7c8c9cTc
or
Player: 1 Action: 9dTdJdQd

Step 2: Declare Subsequent Melds
After the agent declares its first meld, it will receive a new observation. The
game will still be in Phase: Knock. The Valid actions will now include any
remaining melds that can be made from the cards left in the hand.

Note: The value of the knocker's deadwood must be 10 points or less (or the value of
the designated knock card for that round). Face cards are worth 10 points, aces
are 1 point, and all other cards are their numerical value.

2. The Opponent's Turn: Laying Off
Next, the defending opponent lays down their own hand, also separating their
melds from their deadwood. Crucially, the opponent then gets the opportunity to
"lay off" any of their own deadwood cards by adding them to the knocker's melds.

For example:

If the knocker has a meld of three Kings (Ks Ks Ks), and the opponent has the
fourth King (Ks) as deadwood, they can add it to the knocker's set, thus
eliminating those 10 points from their deadwood count.

If the knocker has a run of 5h 6h 7h, the opponent can lay off a 4h or an 8h
to extend the run.

The knocker is not allowed to lay off any of their deadwood on the opponent's melds.

3. Scoring the Hand
After the opponent has finished laying off their cards, both players calculate
the final value of their remaining deadwood. The scoring for the hand is then
determined in one of three ways:

a) A Successful Knock
If the knocker's deadwood count is lower than the opponent's deadwood count,
the knocker scores the difference between the two counts.

Example: The knocker has 7 points of deadwood. The opponent initially has 35
points, but after laying off a 10-point card, their deadwood is reduced to 25.
The knocker scores 18 points (25 - 7).

b) An Undercut
If the opponent, after laying off their cards, has a deadwood count that is
equal to or less than the knocker's count, they have "undercut" the knocker. In
this scenario, the opponent scores the difference in points (if any) plus a
bonus, which is typically 25 points.

Example: The knocker has 8 points. The opponent has 6 points after layoffs. The
opponent scores 2 points (8 - 6) plus a 25-point bonus, for a total of 27
points.

c) Going Gin
If the knocker has a deadwood count of zero, this is called "going gin." The
knocker receives a bonus (typically 25 points) in addition to the full value of
the opponent's entire deadwood count. When a player goes gin, the opponent is
not allowed to lay off any of their cards.

Example: A player goes gin. Their opponent has 42 points of deadwood. The
ginning player scores 42 points plus a 25-point gin bonus, for a total of 67
points.

What if the Stock Pile Runs Out?
If the stock pile is reduced to its last two cards and the player who drew the

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

third to last card discards without knocking, the hand is declared a draw. No
points are awarded to either player, and the deal passes to the next player for
a new round.

If you see Phase: Wall in an observation, it means:

The Stock Pile is Exhausted: The round has concluded because there are no more
cards to be drawn from the stock.

No Player Has Knocked: Neither you nor your opponent were able to knock by the
time the last card was drawn.

The Hand is a Draw: No points are awarded to either player for this round. The
hand is over.

No Action is Required: The game is in a terminal state for the current round.
The only thing to do is to acknowledge the result and wait for the next hand to
be dealt. The deal will typically pass to the player who didn't deal the drawn
hand. Thus `Player: X Action: Pass` must be provided as action.

H.9 Quadranto

Quadranto is a partially observable game in which two players try to catch each
other in a 4 by 4 matrix.

The 4 by 4 matrix is divided in 4 quadrants. At the beginning, player 0 is
randomly placed in the top left quadrant and player 1 is randomly placed in the
bottom right quadrant.

During their turn, each player can choose to move in each of the four cardinal
directions, "Left", "Right", "Up", "Down". Or they can choose to "Stay", which
means they remain where they are. When a player moves, if it lands on the same
location where the other player is, it wins and the game ends.

The observation tells the player where it is located and in which *quadrant* the
opponent player is located. Therefore, neither player knows exactly where the
other player is located until the very moment in which one player catches the
other.

If the players perform a total of 20 moves without catching each other, the game
ends in a draw, both players get 0 points. If one catches the other, the winning
player gets +1 points and the losing player gets -1 points.

H.10 Hand of war

Hand of War is a strategic card game where choosing your cards
wisely is key to victory. You'll manage a hand of cards, adding a layer of
tactical decision-making to every round as you aim to capture all of your opponent's

cards.

Objective:

* The goal of Hand of War is to capture as many of your opponent's cards.

Setup:

* **Shuffle and Deal:** Thoroughly shuffle the deck. Deal the entire deck
evenly between two players, face down.
* **Form Hands:** Each player draws the top three cards from their draw pile.

Gameplay (The "Battle"):

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

* **Choose a Card:** Simultaneously, both players select one card from their
hand and place it face down.
* **Reveal and Compare:** Both players flip their chosen cards.
* **Higher Card Wins:** The player with the higher-ranking card wins the
battle and takes both cards, placing them at the bottom of their win pile.
* **Card Ranking:** Ace (High), K, Q, J.
* **Draw New Cards:** After the battle, players draw from their draw pile to
replenish their hand to three cards.

"Showdown" (When Cards Tie):

* **Declaration:** If cards are of the same rank, a "Showdown" occurs.
* **Face-Down Cards:** Each player places 1 card from their draw pile face
down.
* **Choose Battle Card:** Players choose one card from their hand and place it
face up.
* **Determine Showdown Winner:** Higher battle card wins all cards in the
Showdown.
* **Another Tie:** Repeat Showdown process (burn 1, choose card).
* **Draw After Showdown:** Players replenish their hand to three cards.

Game End Conditions:

The game can end in one of two ways:

1. **Winning by Capturing All Cards:** The game ends immediately if one player
possesses all 16 cards. That player is the winner.

2. **Winning by Win Pile Count (Draw Pile Depleted):** If a player's draw pile
becomes empty and they are required to perform an action they cannot complete
(such as drawing a card to replenish their hand after a battle, or burning a
card during a Showdown), the game ends immediately. In this scenario:

* The number of cards in each player's win pile is counted.
* The player with more cards in their win pile wins the game.
* If both players have an equal number of cards in their win piles, the
game results in a draw.
* Note: The win pile is never reshuffled into the draw pile during play.

Notation
Player 0 always moves first, followed by player 1. Thus if the previous move was
a player 0 move, then the next move is a player 1 move.

For convenience, a list of played cards is provided in PubliclyRevealedCards,
but not playable anymore.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

I Sample synthesized CWMs and inference functions

We show the resulting CWM after tree search refinement on perfect and imperfect informa-
tion games, and for the latter we include both open and closed deck inference. This includes
inference and value functions when they exist.

I.1 Tic-tac-toe (perfect information)

import collections
from typing import Any, cast

Type aliases for clarity as defined in the problem.
Action = str
State = dict[str, Any]
PlayerObservation = dict[str, Any]

Game constants for mapping players, marks, and defining winning conditions.
_MARK_TO_PLAYER = {'x': 0, 'o': 1}
_WINNING_LINES = [

Rows
(0, 1, 2), (3, 4, 5), (6, 7, 8),
Columns
(0, 3, 6), (1, 4, 7), (2, 5, 8),
Diagonals
(0, 4, 8), (2, 4, 6)

]

--- Helper Functions ---

def _check_winner(board: list[str | None]) -> str | None:
"""Checks if there is a winner on the board, returning the winner's mark."""
for line in _WINNING_LINES:
p1, p2, p3 = line
Check if all three cells in a line are the same and not empty.
if board[p1] and board[p1] == board[p2] == board[p3]:
return board[p1]

return None

def _is_game_over(board: list[str | None]) -> bool:
"""Checks if the game has ended either by a win or a draw."""
return _check_winner(board) is not None or all(cell is not None for cell in board)

--- Core Game Functions ---

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken."""
mark = action[0]
row = int(action[2])
col = int(action[4])

Create a copy of the board to modify.
new_board = state['board'][:]
index = row * 3 + col
new_board[index] = mark

A game is over if there is a winner or the board is full.
if _is_game_over(new_board):
next_player_mark = None

else:
Alternate turns between 'x' and 'o'.
next_player_mark = 'o' if mark == 'x' else 'x'

return {'board': new_board, 'current_player_mark': next_player_mark}

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal."""
mark = state['current_player_mark']
if mark is None:
return -4 # Terminal state

return _MARK_TO_PLAYER[mark]

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""
if player_id == -4:
return 'terminal'

if player_id == -1:
return 'chance'

return str(player_id)

def get_rewards(state: State) -> list[float]:
"""Returns the rewards per player from their last action."""
Rewards are only non-zero in a terminal state.
if get_current_player(state) != -4:
return [0.0, 0.0]

winner_mark = _check_winner(state['board'])
if winner_mark == 'x':

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

return [1.0, -1.0] # Player 0 wins
if winner_mark == 'o':
return [-1.0, 1.0] # Player 1 wins

return [0.0, 0.0] # Draw

def get_legal_actions(state: State) -> list[Action]:
"""Returns legal actions that can be taken in current state."""
No legal actions if the game is over.
if get_current_player(state) == -4:
return []

actions = []
mark = state['current_player_mark']
An action is legal for any empty (None) square.
for i, cell in enumerate(state['board']):
if cell is None:
row, col = divmod(i, 3)
actions.append(f"{mark}({row},{col})")

return actions

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for player."""
Fully observable game, so both players see the complete state.
return [state, state]

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

I.2 Bargaining (imperfect information, open deck)

import copy
import itertools
import random
from typing import Any, Dict, List, Optional, Tuple

Type Aliases for clarity
State = Dict[str, Any]
Action = str
PlayerObservation = Dict[str, Any]

--- Game Constants ---
ITEMS = sorted(['X', 'Y', 'Z'])
NUM_PLAYERS = 2
MAX_TURNS = 10
MAX_ITEM_VALUE = 10
This is a fixed set of chance outcomes, likely for deterministic testing or analysis.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

_CHANCE_ACTIONS = sorted(['1,2,3;8,1,0;4,0,2', '1,4,1;4,1,2;2,2,0', '2,2,1;1,1,6;0,4,2', '1,4,1;9,0,1;2,2,0', '1,4,1;5,1,1;0,1,6',
'4,1,1;2,1,1;1,0,6', '3,1,1;1,4,3;0,2,8', '1,1,3;0,1,3;1,3,2', '1,3,1;2,2,2;10,0,0', '1,2,2;2,3,1;4,0,3', '1,4,1;6,1,0;8,0,2',
'1,1,3;7,3,0;0,4,2', '1,5,1;4,0,6;3,1,2', '3,3,1;3,0,1;0,2,4', '1,2,3;8,1,0;7,0,1', '4,1,2;0,6,2;2,2,0', '2,1,2;3,2,1;4,2,0',
'1,3,1;4,2,0;8,0,2', '2,1,3;3,1,1;0,10,0', '1,3,1;6,1,1;4,1,3', '2,2,1;3,0,4;2,1,4', '3,3,1;1,1,4;3,0,1', '1,2,3;0,5,0;3,2,1',
'1,3,1;1,2,3;3,1,4', '4,1,1;0,0,10;1,3,3', '2,4,1;2,1,2;2,1,2', '4,1,2;1,6,0;1,2,2', '1,1,4;4,2,1;4,6,0', '1,5,1;2,0,8;5,1,0',
'1,3,1;0,1,7;6,0,4', '1,1,4;4,6,0;0,2,2', '1,1,5;3,2,1;2,8,0', '1,3,2;7,1,0;4,0,3', '2,1,3;1,2,2;2,3,1', '1,3,1;0,1,7;7,0,3',
'1,3,1;2,2,2;1,2,3', '1,5,1;9,0,1;0,1,5', '4,1,1;0,4,6;1,5,1', '2,2,1;0,2,6;4,1,0', '3,1,1;2,1,3;0,6,4', '1,1,3;10,0,0;1,3,2',
'3,2,1;2,1,2;1,3,1', '1,3,1;5,1,2;3,0,7', '1,4,1;1,2,1;3,0,7', '4,2,1;1,3,0;0,3,4', '2,2,1;1,3,2;5,0,0', '1,3,1;4,2,0;1,1,6',
'1,1,3;6,1,1;0,1,3', '2,1,2;3,4,0;3,2,1', '1,4,1;2,1,4;9,0,1', '2,2,2;0,3,2;1,3,1', '3,3,1;0,2,4;1,0,7', '3,1,1;1,0,7;0,8,2',
'4,1,1;1,4,2;2,1,1', '1,3,1;0,0,10;1,1,6', '2,2,1;3,0,4;2,3,0', '2,2,2;2,3,0;0,4,1', '2,1,2;3,4,0;1,2,3', '3,1,1;2,2,2;0,2,8',
'1,2,2;4,0,3;2,1,3', '2,2,2;2,1,2;2,2,1', '2,2,2;1,1,3;0,5,0', '3,1,1;1,2,5;1,0,7', '1,1,5;3,2,1;8,2,0', '3,3,1;2,1,1;2,1,1',
'2,1,4;1,8,0;3,0,1', '1,2,2;6,1,1;8,1,0', '1,1,3;1,3,2;0,10,0', '1,3,1;1,2,3;3,0,7', '2,1,2;2,2,2;1,8,0', '1,4,2;10,0,0;2,1,2',
'1,4,1;5,1,1;2,0,8', '3,1,1;2,4,0;3,0,1', '2,2,2;2,2,1;3,1,1', '1,1,3;2,5,1;6,4,0', '2,1,2;1,8,0;1,6,1', '1,3,1;3,1,4;10,0,0',
'1,3,1;1,3,0;7,0,3', '3,1,1;0,8,2;1,6,1', '5,1,1;0,9,1;1,1,4', '3,1,1;2,1,3;0,7,3', '3,1,1;0,5,5;3,0,1', '3,1,1;1,0,7;2,4,0',
'2,2,1;2,1,4;2,3,0', '1,2,2;4,2,1;0,3,2', '1,2,3;2,1,2;0,2,2', '2,3,1;1,2,2;2,1,3', '3,1,1;0,3,7;1,1,6', '2,1,4;0,2,2;2,2,1',
'1,3,1;2,0,8;0,3,1', '4,2,1;1,0,6;0,2,6', '2,3,1;0,3,1;2,2,0', '1,1,4;0,6,1;1,5,1', '1,1,5;10,0,0;3,2,1', '3,1,1;1,5,2;1,5,2',
'4,1,1;0,0,10;1,2,4', '1,1,3;1,9,0;7,0,1', '2,1,2;1,4,2;3,2,1', '2,1,4;3,0,1;2,6,0', '1,1,5;1,4,1;4,1,1', '2,2,1;1,3,2;3,2,0',
'2,2,1;3,0,4;0,2,6', '3,1,1;2,2,2;0,8,2', '2,1,2;3,2,1;3,4,0', '1,1,3;3,4,1;1,9,0', '2,4,1;2,1,2;2,0,6', '2,2,2;4,1,0;1,2,2',
'3,1,1;0,1,9;2,4,0', '1,1,4;1,1,2;5,5,0', '3,1,1;3,1,0;2,0,4', '1,4,2;4,1,1;4,1,1', '1,2,2;6,1,1;0,1,4', '2,3,1;0,2,4;4,0,2',
'3,1,1;3,1,0;0,3,7', '2,1,4;5,0,0;1,4,1', '4,1,1;1,5,1;0,4,6', '2,2,1;1,1,6;3,1,2', '1,3,1;4,2,0;3,1,4', '3,1,1;0,2,8;1,1,6',
'3,1,1;1,3,4;2,4,0', '4,1,1;1,3,3;0,6,4', '5,1,1;1,1,4;1,1,4', '1,1,3;3,1,2;2,2,2', '1,3,2;8,0,1;1,3,0', '1,1,5;0,5,1;8,2,0',
'1,5,1;8,0,2;2,1,3', '1,3,1;4,2,0;5,0,5', '1,3,1;0,2,4;2,1,5', '1,3,1;4,1,3;3,2,1', '2,3,1;1,1,5;1,2,2', '2,2,1;2,0,6;0,1,8',
'3,3,1;0,1,7;2,0,4', '1,3,3;4,0,2;1,1,2', '1,4,1;1,2,1;2,2,0', '4,1,1;1,6,0;1,4,2', '2,2,2;1,2,2;2,1,2', '5,1,1;1,5,0;1,1,4',
'3,3,1;2,1,1;0,1,7', '2,1,3;0,1,3;3,1,1', '2,1,3;2,0,2;3,1,1', '2,3,2;1,2,1;1,2,1', '4,1,2;0,8,1;1,2,2', '1,1,3;0,10,0;3,4,1',
'4,2,1;0,2,6;2,1,0', '1,4,2;6,1,0;0,2,1', '1,2,3;0,2,2;2,1,2', '2,2,1;3,1,2;3,2,0', '1,1,3;2,2,2;3,1,2', '3,1,1;0,4,6;2,0,4',
'1,3,1;4,0,6;0,3,1', '2,1,2;1,8,0;2,4,1', '1,5,1;3,1,2;4,1,1', '1,2,2;0,4,1;4,1,2', '3,1,1;1,1,6;1,0,7', '1,3,1;1,1,6;4,1,3',
'3,1,1;2,0,4;1,7,0', '2,1,2;5,0,0;1,2,3', '3,1,2;1,1,3;2,2,1', '2,2,2;0,2,3;1,4,0', '1,1,4;5,1,1;2,4,1', '1,1,3;5,5,0;1,0,3',
'3,3,1;2,0,4;0,3,1', '1,1,3;6,1,1;0,4,2', '2,2,2;0,2,3;3,0,2', '2,1,2;5,0,0;2,4,1', '1,1,3;9,1,0;6,1,1', '1,3,1;0,0,10;4,1,3',
'1,1,3;1,3,2;4,6,0', '2,2,2;5,0,0;1,1,3', '1,1,3;7,0,1;1,6,1', '3,2,1;1,2,3;2,2,0', '3,1,1;0,4,6;2,1,3', '1,3,1;3,0,7;2,1,5',
'2,1,2;0,2,4;4,2,0', '1,1,5;5,0,1;5,5,0', '3,1,1;0,5,5;1,2,5', '1,2,3;10,0,0;5,1,1', '1,4,1;0,1,6;9,0,1', '1,1,5;2,3,1;7,3,0',
'1,5,1;2,1,3;0,1,5', '1,3,1;2,1,5;0,3,1', '2,2,2;2,0,3;0,3,2', '2,4,1;3,0,4;3,1,0', '5,1,1;0,2,8;1,3,2', '3,2,1;3,0,1;0,1,8',
'1,1,4;5,1,1;7,3,0', '1,3,1;1,3,0;3,1,4', '3,3,1;2,1,1;3,0,1', '1,1,3;6,1,1;1,3,2', '2,1,3;4,2,0;2,0,2', '3,1,1;1,2,5;0,4,6',
'2,1,2;0,4,3;2,0,3', '2,1,2;0,8,1;4,2,0', '2,4,1;4,0,2;1,1,4', '1,3,1;6,1,1;3,1,4', '1,2,3;5,1,1;1,0,3', '1,2,4;4,1,1;6,0,1',
'4,2,1;0,1,8;1,2,2', '2,2,1;1,4,0;2,0,6', '1,2,3;6,2,0;5,1,1', '3,1,1;1,7,0;0,2,8', '1,3,1;4,1,3;2,0,8', '1,1,3;1,0,3;2,5,1',
'1,1,3;3,4,1;1,3,2', '3,1,3;1,4,1;1,1,2', '5,1,1;0,6,4;1,1,4', '2,2,1;0,3,4;1,2,4', '5,1,1;0,3,7;1,2,3', '1,2,3;1,3,1;10,0,0',
'2,2,2;1,0,4;3,1,1', '1,2,2;4,0,3;2,3,1', '1,2,3;7,0,1;3,2,1', '1,4,1;3,0,7;0,1,6', '2,1,2;2,4,1;3,0,2', '2,1,3;2,6,0;0,1,3',
'3,1,1;0,5,5;1,6,1', '1,5,1;5,1,0;2,0,8', '4,2,1;0,1,8;2,0,2', '2,2,1;0,3,4;4,0,2', '2,2,2;0,4,1;2,0,3', '2,2,2;0,1,4;2,3,0',
'3,1,1;1,0,7;1,5,2', '2,1,2;4,2,0;1,0,4', '4,1,2;1,2,2;1,6,0', '2,3,2;4,0,1;1,2,1', '1,2,2;6,1,1;0,4,1', '1,5,1;5,0,5;3,1,2',
'2,1,2;0,8,1;3,0,2', '4,1,1;1,2,4;1,0,6', '5,1,1;0,7,3;1,2,3', '2,1,2;4,2,0;0,2,4', '1,2,2;0,1,4;8,0,1', '2,1,4;3,4,0;2,2,1',
'4,1,2;1,6,0;2,0,1', '2,1,3;3,4,0;1,5,1', '4,1,2;0,6,2;1,6,0', '1,2,2;2,2,2;2,2,2', '3,1,3;2,4,0;0,1,3', '3,2,1;1,2,3;2,1,2',
'1,4,1;9,0,1;0,2,2', '2,2,1;0,3,4;1,0,8', '4,1,1;1,0,6;0,1,9', '2,2,1;3,1,2;1,1,6', '2,2,1;2,2,2;2,1,4', '2,2,2;1,4,0;1,0,4',
'4,1,1;2,2,0;1,0,6', '1,3,1;4,2,0;5,1,2', '1,2,4;0,5,0;4,1,1', '2,1,2;1,0,4;1,6,1', '1,1,4;1,5,1;4,6,0', '1,1,4;1,5,1;0,6,1',
'3,1,1;1,3,4;1,5,2', '1,5,1;2,1,3;5,0,5', '1,4,1;1,1,5;5,1,1', '1,3,1;0,1,7;5,1,2', '1,2,2;8,0,1;4,1,2', '1,5,1;0,2,0;4,1,1',
'3,3,1;0,2,4;1,2,1', '1,4,1;6,1,0;2,1,4', '1,2,4;4,1,1;0,1,2', '3,2,1;1,0,7;2,2,0', '2,1,3;1,5,1;0,10,0', '1,2,2;0,1,4;6,1,1',
'1,4,1;8,0,2;2,2,0', '3,1,1;0,3,7;1,3,4', '3,1,2;0,10,0;1,3,2', '1,2,4;0,1,2;2,0,2', '2,1,4;3,4,0;1,4,1', '2,2,2;1,3,1;0,2,3',
'1,1,4;0,10,0;5,1,1', '3,1,3;1,7,0;1,4,1', '2,4,1;1,0,8;0,2,2', '1,1,4;4,2,1;1,1,2', '2,1,2;3,2,1;5,0,0', '1,1,3;3,4,1;1,0,3',
'1,3,1;9,0,1;0,1,7', '2,3,2;2,2,0;0,2,2', '4,1,1;2,0,2;1,4,2', '1,4,1;7,0,3;4,1,2', '3,1,1;1,7,0;0,4,6', '3,2,2;2,1,1;2,0,2',
'2,2,1;1,3,2;3,0,4', '1,1,3;0,10,0;2,2,2', '3,1,1;3,1,0;0,1,9', '1,1,3;3,7,0;3,4,1', '2,2,2;1,0,4;1,1,3', '1,3,1;7,1,0;9,0,1',
'1,4,2;2,1,2;2,2,0', '3,1,2;2,0,2;2,2,1', '1,3,1;3,2,1;0,1,7', '1,1,3;2,8,0;4,0,2', '2,3,1;0,1,7;2,0,6', '1,2,2;4,1,2;8,0,1',
'1,4,1;0,1,6;6,0,4', '1,1,4;0,2,2;2,8,0', '1,2,4;2,0,2;2,4,0', '3,1,1;1,0,7;1,4,3', '1,4,1;1,2,1;1,1,5', '1,1,3;9,1,0;3,4,1',
'2,2,1;1,4,0;2,2,2', '3,1,1;0,1,9;1,5,2', '3,1,1;0,1,9;2,2,2', '1,3,3;4,2,0;1,1,2', '1,1,3;1,0,3;5,5,0', '4,2,1;1,2,2;0,1,8',
'1,4,1;4,1,2;0,1,6', '1,3,1;1,1,6;2,2,2', '2,2,2;2,2,1;0,2,3', '2,2,2;1,2,2;2,3,0', '1,1,4;4,2,1;9,1,0', '4,2,1;1,3,0;1,2,2',
'4,1,2;1,2,2;1,2,2', '1,4,2;2,1,2;2,0,4', '4,1,1;1,3,3;0,7,3', '3,1,3;2,1,1;0,1,3', '2,1,2;0,4,3;3,4,0', '1,4,1;1,0,9;4,1,2',
'5,1,1;0,1,9;1,2,3', '1,1,4;5,1,1;4,6,0', '1,4,2;0,0,5;4,1,1', '1,3,1;0,3,1;2,2,2', '3,1,2;1,1,3;0,2,4', '2,2,3;0,2,2;2,3,0',
'2,4,1;0,2,2;1,1,4', '3,1,2;3,1,0;0,8,1', '5,1,1;1,2,3;0,1,9', '4,2,1;1,1,4;0,4,2', '1,5,1;0,0,10;3,1,2', '1,2,2;2,0,4;6,1,1',
'1,1,4;3,3,1;8,2,0', '1,2,2;6,0,2;8,1,0', '4,2,1;0,4,2;1,3,0', '2,1,2;0,4,3;2,4,1', '1,4,1;1,1,5;1,1,5', '1,4,1;0,1,6;8,0,2',
'2,2,2;4,1,0;2,0,3', '2,4,1;1,2,0;3,0,4', '3,1,1;1,3,4;0,8,2', '3,1,2;2,0,2;1,7,0', '1,4,1;1,2,1;3,1,3', '1,1,3;4,3,1;2,8,0',
'4,1,2;0,8,1;2,2,0', '4,2,1;0,3,4;2,0,2', '3,1,1;1,6,1;1,5,2', '2,1,4;3,0,1;1,8,0', '1,1,3;4,0,2;6,4,0', '2,2,1;0,3,4;1,3,2',
'4,1,1;1,4,2;0,3,7', '4,2,1;1,2,2;1,0,6', '3,1,2;0,10,0;2,2,1', '3,2,1;2,2,0;1,2,3', '1,3,1;1,2,3;4,2,0', '2,4,1;1,2,0;0,2,2',
'3,1,1;2,4,0;2,3,1', '2,1,2;2,4,1;0,0,5', '1,1,3;0,7,1;3,1,2', '2,1,2;2,4,1;2,6,0', '1,1,3;2,5,1;7,0,1', '1,3,1;0,0,10;2,2,2',
'2,2,1;2,1,4;5,0,0', '2,3,1;3,1,1;1,0,8', '1,1,3;3,4,1;3,7,0', '1,4,1;5,1,1;1,2,1', '1,4,1;6,1,0;1,2,1', '1,3,2;3,1,2;6,0,2',
'1,5,1;3,0,7;2,1,3', '4,1,2;1,2,2;0,0,5', '1,1,4;6,0,1;2,8,0', '2,2,1;1,3,2;2,2,2', '1,1,3;3,1,2;9,1,0', '2,1,4;2,2,1;3,0,1',
'2,4,1;2,0,6;3,1,0', '2,2,2;0,2,3;1,0,4', '1,1,3;1,9,0;4,3,1', '4,1,1;1,2,4;0,2,8', '1,1,3;6,1,1;0,10,0', '2,2,1;1,2,4;2,3,0',
'4,1,2;1,6,0;1,4,1', '1,2,3;5,1,1;1,3,1', '3,1,1;1,1,6;0,6,4', '1,3,1;1,3,0;1,0,9', '2,2,2;2,2,1;3,0,2', '3,1,2;0,0,5;1,5,1',
'1,3,3;4,0,2;4,2,0', '1,2,2;4,2,1;6,1,1', '2,1,2;3,4,0;0,4,3', '3,2,2;0,5,0;2,1,1', '1,5,1;5,1,0;0,1,5', '1,2,2;8,0,1;6,1,1',
'2,1,2;1,2,3;2,6,0', '2,1,4;1,4,1;2,2,1', '1,1,3;6,1,1;5,2,1', '1,1,4;2,8,0;0,6,1', '2,1,2;2,2,2;4,0,1', '3,1,3;0,10,0;1,4,1',
'1,2,4;2,2,1;10,0,0', '1,3,1;4,2,0;0,1,7', '1,3,2;10,0,0;5,1,1', '2,1,2;3,4,0;0,8,1', '1,4,2;4,1,1;4,0,3', '3,1,2;1,3,2;2,4,0',
'2,2,2;1,4,0;0,4,1', '1,1,3;1,0,3;1,9,0', '1,4,1;3,0,7;3,1,3', '2,2,2;3,1,1;2,1,2', '2,1,2;3,2,1;1,6,1', '1,3,3;1,1,2;4,1,1',
'1,5,1;6,0,4;3,1,2', '1,3,1;0,1,7;7,1,0', '2,2,1;1,1,6;0,3,4', '1,1,3;1,0,3;1,3,2', '1,2,2;6,1,1;2,0,4', '1,3,2;3,1,2;2,2,1',
'2,2,1;1,2,4;2,0,6', '1,4,1;2,2,0;5,1,1', '2,1,3;2,0,2;3,4,0', '2,1,4;1,0,2;0,2,2', '3,1,1;0,9,1;3,1,0', '1,5,1;3,0,7;1,1,4',
'1,4,1;1,2,1;9,0,1', '1,4,2;6,1,0;6,0,2', '1,3,2;4,2,0;2,0,4', '3,1,1;0,10,0;1,2,5', '1,3,2;3,1,2;7,1,0', '1,1,4;0,2,2;3,7,0',
'2,2,2;4,0,1;2,3,0', '1,1,5;0,5,1;2,3,1', '3,1,1;1,2,5;0,1,9', '1,1,3;3,1,2;10,0,0', '1,1,3;6,4,0;0,4,2', '2,2,1;1,0,8;1,3,2',
'4,1,1;1,0,6;1,1,5', '1,1,3;0,1,3;2,5,1', '1,4,1;8,0,2;2,1,4', '1,1,4;7,3,0;1,1,2', '1,3,1;2,2,2;7,1,0', '3,1,1;1,0,7;3,1,0',
'2,2,1;3,2,0;1,0,8', '1,3,1;1,1,6;6,1,1', '1,3,3;1,2,1;4,0,2', '3,1,1;0,10,0;1,3,4', '3,1,1;1,7,0;2,2,2', '1,5,1;8,0,2;0,1,5',
'2,1,4;2,2,1;1,0,2', '1,4,1;0,2,2;1,0,9', '5,1,1;0,4,6;1,5,0', '1,1,5;8,2,0;1,4,1', '1,2,4;4,1,1;8,1,0', '1,4,1;1,1,5;3,0,7',
'5,1,1;0,6,4;1,0,5', '3,1,1;0,0,10;1,1,6', '1,3,1;4,1,3;7,0,3', '1,2,4;2,0,2;8,1,0', '1,1,3;2,2,2;6,1,1', '1,1,3;6,1,1;2,2,2',
'1,2,2;6,0,2;2,3,1', '3,3,1;0,0,10;1,2,1', '3,2,1;2,1,2;1,2,3', '1,3,1;8,0,2;7,1,0', '1,2,3;1,0,3;4,3,0', '1,2,2;0,3,2;8,1,0',
'2,2,2;1,4,0;1,2,2', '1,4,2;0,2,1;4,0,3', '1,4,1;1,2,1;6,1,0', '1,2,4;4,1,1;6,2,0', '3,2,1;0,0,10;1,3,1', '3,1,1;1,4,3;0,0,10',
'2,1,2;3,2,1;3,0,2', '2,2,2;2,3,0;1,3,1', '1,2,2;8,1,0;0,3,2', '1,3,1;2,1,5;3,2,1', '1,1,4;5,5,0;3,3,1', '2,1,2;3,0,2;3,4,0',
'1,3,1;7,1,0;6,0,4', '3,3,1;0,3,1;1,1,4', '2,4,1;2,0,6;0,2,2', '1,1,3;2,8,0;3,1,2', '1,1,3;7,0,1;0,7,1', '2,3,1;2,1,3;3,1,1',
'1,4,1;0,2,2;4,1,2', '1,1,5;9,1,0;1,4,1', '1,1,4;1,9,0;4,2,1', '3,2,1;0,1,8;1,1,5', '4,1,1;0,4,6;1,3,3', '1,4,1;4,1,2;6,0,4',
'3,1,3;0,7,1;1,7,0', '3,1,2;1,5,1;3,1,0', '2,2,1;2,0,6;0,2,6', '2,2,2;0,4,1;1,2,2', '1,4,1;6,0,4;0,2,2', '1,2,2;4,2,1;6,2,0',
'3,1,3;1,4,1;2,4,0', '1,2,3;1,3,1;4,3,0', '1,1,5;2,3,1;6,4,0', '2,1,2;1,4,2;3,4,0', '1,1,4;4,2,1;2,8,0', '1,3,1;6,1,1;4,2,0',
'1,2,2;4,0,3;0,3,2', '1,3,1;3,0,7;7,1,0', '4,1,1;1,1,5;0,10,0', '1,1,4;1,5,1;1,1,2', '1,1,5;7,3,0;1,4,1', '4,2,1;2,1,0;0,1,8',
'1,2,3;2,1,2;2,4,0', '1,2,2;6,1,1;2,2,2', '2,2,2;0,4,1;2,3,0', '1,4,1;3,1,3;5,0,5', '3,2,1;0,4,2;3,0,1', '2,4,1;2,1,2;3,0,4',
'2,3,1;2,1,3;3,0,4', '2,3,1;4,0,2;1,2,2', '1,1,5;0,10,0;1,4,1', '1,1,3;3,7,0;6,1,1', '2,3,1;1,2,2;0,3,1', '3,1,1;0,7,3;1,0,7',
'1,2,2;0,3,2;4,0,3', '1,4,1;0,1,6;5,0,5', '2,2,2;3,1,1;2,2,1', '2,4,1;1,1,4;3,0,4', '2,1,3;4,2,0;1,5,1', '1,2,2;6,1,1;10,0,0',
'4,1,1;0,7,3;1,0,6', '2,1,3;1,8,0;1,2,2', '2,2,2;1,1,3;0,4,1', '1,3,2;2,2,1;8,0,1', '1,4,2;2,2,0;4,1,1', '2,1,2;1,6,1;2,6,0',
'1,1,5;1,4,1;10,0,0', '2,2,2;0,1,4;3,1,1', '1,1,4;8,2,0;4,2,1', '3,2,1;1,0,7;0,1,8', '2,2,1;2,3,0;0,3,4', '2,2,1;3,1,2;2,2,2',
'3,1,1;1,4,3;1,5,2', '1,1,3;3,1,2;1,3,2', '2,1,3;2,0,2;1,8,0', '1,4,1;3,1,3;1,1,5', '2,1,4;2,2,1;3,4,0', '1,3,1;5,1,2;0,3,1',
'2,1,3;3,1,1;1,2,2', '4,2,1;0,2,6;1,0,6', '1,1,3;6,1,1;5,5,0', '2,1,2;1,0,4;4,2,0', '1,4,1;5,0,5;0,1,6', '1,5,1;2,1,3;10,0,0',
'1,3,1;7,1,0;4,1,3', '4,2,1;1,2,2;1,1,4', '1,5,1;0,1,5;3,0,7', '2,2,1;0,2,6;1,4,0', '5,1,1;1,5,0;1,2,3', '2,1,2;2,4,1;2,4,1',
'2,3,1;0,2,4;2,1,3', '1,2,4;6,2,0;0,1,2', '2,1,3;3,4,0;2,3,1', '3,1,2;0,2,4;1,5,1', '2,1,2;2,0,3;4,2,0', '2,1,2;1,6,1;2,4,1',
'2,1,3;1,5,1;2,3,1', '1,3,3;1,1,2;1,0,3', '1,1,3;3,1,2;6,1,1', '2,1,2;5,0,0;3,2,1', '1,1,3;1,9,0;4,0,2', '1,1,3;3,1,2;1,6,1',
'4,1,1;1,4,2;0,5,5', '1,3,1;0,0,10;5,1,2', '2,2,1;0,1,8;2,1,4', '1,4,1;1,2,1;0,1,6', '1,2,2;8,1,0;4,0,3', '1,3,1;4,2,0;1,0,9',
'1,1,3;1,6,1;0,10,0', '2,2,2;4,1,0;2,1,2', '2,3,1;1,0,8;1,1,5', '3,3,1;1,1,4;1,2,1', '3,1,2;1,7,0;1,1,3', '1,3,1;6,1,1;6,0,4',
'1,1,4;4,2,1;1,9,0', '1,4,1;4,0,6;0,1,6', '1,1,4;3,7,0;4,2,1', '3,1,1;1,3,4;1,6,1', '3,1,1;0,1,9;1,0,7', '2,2,2;3,0,2;1,1,3',
'2,4,1;0,1,6;1,2,0', '1,1,4;5,1,1;6,0,1', '5,1,1;0,5,5;1,0,5', '2,2,2;0,2,3;2,0,3', '2,1,2;4,2,0;1,2,3', '1,4,1;4,1,2;5,1,1',
'1,3,1;5,0,5;1,1,6', '3,1,1;0,4,6;1,1,6', '2,2,2;1,3,1;2,0,3', '3,1,2;2,4,0;0,2,4', '2,2,1;2,2,2;4,1,0', '1,1,4;1,9,0;6,0,1',
'1,4,1;6,1,0;4,1,2', '3,2,2;2,1,1;0,1,4', '4,2,1;1,1,4;0,2,6', '4,1,2;2,2,0;0,8,1', '3,1,1;0,2,8;2,1,3', '4,1,1;1,2,4;0,5,5',
'5,1,1;1,4,1;1,1,4', '1,3,1;7,0,3;1,2,3', '1,1,3;4,0,2;5,5,0', '2,1,4;4,2,0;2,2,1', '2,2,2;3,2,0;0,2,3', '1,1,3;0,1,3;7,0,1',
'2,1,3;1,5,1;1,8,0', '5,1,1;1,5,0;1,0,5', '3,1,1;2,0,4;0,6,4', '4,1,2;1,0,3;1,4,1', '2,1,2;2,4,1;2,2,2', '1,1,3;1,3,2;0,4,2',
'1,3,1;1,1,6;3,2,1', '1,4,1;3,0,7;1,1,5', '1,3,1;4,0,6;5,1,2', '3,1,1;2,0,4;0,7,3', '1,4,1;0,1,6;2,0,8', '4,1,1;1,1,5;1,4,2',
'3,1,1;0,0,10;1,4,3', '1,2,4;0,3,1;2,4,0', '4,2,1;0,3,4;1,1,4', '3,1,1;0,2,8;2,3,1', '4,2,1;1,2,2;1,2,2', '1,1,4;2,4,1;0,10,0',
'1,1,5;5,0,1;1,9,0', '1,2,2;0,4,1;4,3,0', '2,1,3;0,7,1;1,2,2', '3,1,1;0,10,0;2,3,1', '1,3,2;1,3,0;1,1,3', '1,1,5;4,1,1;5,5,0',
'1,2,4;6,2,0;6,0,1', '4,1,1;1,6,0;1,1,5', '3,3,1;0,2,4;2,1,1', '1,1,3;3,4,1;0,4,2', '3,1,1;0,6,4;2,3,1', '5,1,1;1,1,4;1,5,0',
'4,2,1;0,2,6;1,2,2', '2,1,2;3,2,1;0,6,2', '1,1,3;1,6,1;4,3,1', '1,3,1;0,3,1;2,0,8', '3,1,2;1,3,2;1,3,2', '1,4,1;6,0,4;5,1,1',
'1,2,2;2,0,4;0,4,1', '3,2,2;0,1,4;2,0,2', '3,2,1;1,0,7;0,4,2', '2,2,2;2,0,3;3,2,0', '4,1,2;2,2,0;0,4,3', '2,1,2;0,6,2;1,6,1',
'2,3,2;0,0,5;1,2,1', '2,1,4;3,4,0;0,2,2', '1,3,1;6,1,1;8,0,2', '2,1,2;1,8,0;4,0,1', '1,1,3;5,5,0;2,5,1', '1,4,2;8,0,1;4,1,1',
'1,4,2;0,2,1;6,1,0', '3,1,1;1,6,1;2,2,2', '5,1,1;1,4,1;0,0,10', '3,1,3;2,1,1;0,4,2', '1,2,3;4,0,2;2,1,2', '4,1,1;1,1,5;0,1,9',
'1,3,2;5,1,1;2,2,1', '2,2,1;1,1,6;1,3,2', '1,1,3;3,4,1;6,4,0', '1,1,4;2,8,0;1,5,1', '3,1,1;0,5,5;1,1,6', '2,1,2;1,6,1;5,0,0',
'1,3,2;1,3,0;2,2,1', '2,2,1;0,2,6;3,1,2', '1,1,4;1,5,1;2,4,1', '3,2,1;0,3,4;1,1,5', '1,2,2;4,0,3;6,2,0', '5,1,1;0,9,1;1,4,1',
'1,2,2;4,1,2;0,4,1', '5,1,1;0,1,9;1,1,4', '1,4,1;3,0,7;6,1,0', '1,3,1;8,0,2;2,1,5', '3,1,3;1,1,2;2,1,1', '1,5,1;1,0,9;1,1,4',
'1,1,5;2,3,1;8,2,0', '1,1,3;7,3,0;7,0,1', '1,1,3;2,8,0;1,0,3', '4,1,2;1,2,2;0,8,1', '1,5,1;3,1,2;0,0,10', '2,2,1;2,3,0;4,0,2',
'1,2,2;0,3,2;2,3,1', '1,1,3;6,1,1;4,6,0', '1,1,5;3,2,1;10,0,0', '1,3,1;0,2,4;4,1,3', '1,4,1;8,0,2;0,2,2', '2,2,1;2,0,6;2,2,2',
'1,1,4;8,2,0;6,0,1', '2,2,1;1,4,0;3,1,2', '1,3,1;3,1,4;7,1,0', '1,3,1;4,1,3;3,1,4', '4,1,2;2,0,1;0,8,1', '1,4,2;6,1,0;0,1,3',
'1,3,3;4,1,1;4,1,1', '1,1,3;7,3,0;1,0,3', '2,2,2;3,1,1;1,2,2', '1,1,3;5,2,1;3,7,0', '1,1,3;0,4,2;4,0,2', '1,2,4;6,0,1;4,1,1',
'2,3,1;3,0,4;1,1,5', '1,3,2;7,1,0;0,2,2', '1,3,3;1,1,2;4,0,2', '1,5,1;4,1,1;3,0,7', '3,1,1;3,0,1;1,2,5', '1,1,5;2,3,1;5,5,0',
'3,1,1;0,10,0;1,6,1', '1,4,1;2,1,4;1,0,9', '3,1,1;3,0,1;1,5,2', '1,3,1;3,0,7;1,1,6', '3,1,1;1,5,2;0,8,2', '1,4,1;10,0,0;1,1,5',
'3,1,1;1,2,5;3,1,0', '2,2,1;1,0,8;0,3,4', '1,1,3;3,7,0;4,3,1', '1,3,1;7,0,3;0,2,4', '1,1,3;0,7,1;6,4,0', '3,1,1;3,0,1;0,5,5',
'3,1,1;0,8,2;1,2,5', '1,2,2;4,3,0;4,2,1', '1,1,3;0,1,3;9,1,0', '2,1,3;0,4,2;3,4,0', '1,1,4;3,3,1;10,0,0', '2,1,2;3,0,2;4,2,0',
'1,2,4;0,1,2;8,1,0', '1,2,3;1,0,3;1,3,1', '1,1,4;8,2,0;0,2,2', '2,1,2;0,10,0;1,6,1', '1,3,1;6,1,1;1,1,6', '1,1,3;2,5,1;10,0,0',
'2,1,4;2,6,0;2,2,1', '3,1,1;3,1,0;1,3,4', '2,2,2;0,2,3;2,1,2', '1,1,3;0,10,0;5,2,1', '2,2,2;0,1,4;1,4,0', '3,1,3;0,1,3;2,4,0',
'1,1,4;8,2,0;0,6,1', '2,2,1;2,1,4;1,4,0', '1,3,1;0,2,4;4,0,6', '1,3,1;6,0,4;4,1,3', '1,3,1;6,1,1;0,3,1', '4,1,1;1,5,1;2,0,2',
'3,1,1;1,6,1;0,7,3', '1,3,1;4,1,3;2,2,2', '3,1,2;2,4,0;1,1,3', '2,1,2;2,0,3;1,4,2', '2,2,2;1,1,3;2,3,0', '1,3,2;4,0,3;0,2,2',
'1,3,1;0,3,1;4,1,3', '2,1,2;2,2,2;0,6,2', '1,4,1;2,2,0;1,1,5', '4,1,1;1,5,1;1,1,5', '2,2,2;2,1,2;5,0,0', '4,2,1;0,4,2;1,1,4',
'2,2,2;4,0,1;1,3,1', '3,1,2;1,1,3;1,7,0', '2,3,2;2,2,0;1,2,1', '2,1,3;3,4,0;1,2,2', '2,3,1;3,0,4;2,1,3', '1,5,1;0,1,5;1,1,4',
'3,1,1;0,4,6;1,2,5', '1,2,2;4,1,2;6,2,0', '1,1,3;7,0,1;9,1,0', '1,1,5;2,3,1;1,4,1', '4,1,1;1,6,0;0,9,1', '1,2,2;4,2,1;2,4,0',
'1,1,4;4,6,0;0,6,1', '2,4,1;3,0,4;1,2,0', '1,1,4;5,5,0;2,4,1', '1,1,3;0,4,2;9,1,0', '1,1,4;1,1,2;1,5,1', '1,5,1;1,0,9;4,1,1',
'2,2,1;1,3,2;4,0,2', '2,1,2;1,6,1;0,0,5', '1,2,4;2,4,0;2,0,2', '2,2,2;1,0,4;0,3,2', '1,3,2;3,1,2;1,1,3', '1,4,1;1,2,1;2,0,8',
'4,1,1;1,1,5;1,5,1', '2,2,2;1,2,2;1,2,2', '3,1,1;1,4,3;1,3,4', '4,1,1;1,0,6;2,2,0', '1,1,4;4,2,1;6,0,1', '1,2,2;8,1,0;6,1,1',
'1,2,3;3,2,1;4,3,0', '1,3,2;4,0,3;1,1,3', '2,1,2;1,2,3;0,6,2', '1,3,1;2,2,2;1,0,9', '1,2,2;6,1,1;6,1,1', '2,1,3;0,10,0;3,1,1',
'1,2,4;4,3,0;0,1,2', '1,1,4;1,1,2;8,2,0', '3,3,1;1,1,4;1,0,7', '2,2,1;0,2,6;4,0,2', '3,1,1;1,3,4;0,3,7', '1,2,2;6,2,0;4,1,2',
'4,1,1;1,3,3;1,3,3', '1,3,2;1,3,0;2,0,4', '1,1,4;2,0,2;0,2,2', '4,1,1;1,2,4;0,10,0', '3,1,1;1,4,3;1,4,3', '3,2,1;2,1,2;2,0,4',
'1,5,1;0,1,5;2,1,3', '2,1,3;1,8,0;0,1,3', '3,1,3;2,4,0;1,1,2', '3,2,2;2,0,2;0,2,3', '4,1,1;2,2,0;0,2,8', '4,2,1;1,2,2;0,3,4',
'3,2,1;2,0,4;1,3,1', '2,2,2;1,2,2;1,4,0', '2,1,4;4,2,0;0,6,1', '1,1,3;3,7,0;1,6,1', '1,1,4;1,9,0;1,1,2', '4,1,1;2,0,2;0,1,9',
'1,4,2;0,1,3;2,2,0', '3,1,1;0,2,8;2,2,2', '2,1,2;2,4,1;0,2,4', '1,2,3;7,0,1;5,1,1', '1,4,2;8,0,1;6,1,0', '3,1,1;0,8,2;1,3,4',
'1,3,3;1,0,3;1,3,0', '2,2,2;3,1,1;0,0,5', '1,1,4;2,8,0;1,1,2', '2,1,3;1,8,0;3,1,1', '1,3,1;10,0,0;1,1,6', '1,2,3;1,0,3;2,1,2',
'1,2,2;4,0,3;4,2,1', '5,1,1;1,2,3;1,4,1', '1,5,1;4,1,1;10,0,0', '2,2,1;2,1,4;2,1,4', '3,1,1;0,10,0;1,1,6', '1,4,1;4,0,6;3,1,3',
'3,2,2;2,1,1;0,2,3', '1,5,1;2,1,3;4,1,1', '4,1,1;0,2,8;1,6,0', '1,3,1;0,3,1;2,1,5', '2,2,2;2,0,3;0,1,4', '3,2,1;0,2,6;2,0,4',
'1,3,1;0,1,7;6,1,1', '4,1,1;0,1,9;1,0,6', '1,1,5;0,5,1;9,1,0', '2,2,1;4,1,0;3,0,4', '3,1,1;3,1,0;0,6,4', '1,3,1;3,2,1;6,1,1',
'3,1,1;1,6,1;1,0,7', '1,3,1;1,3,0;5,1,2', '3,1,1;2,3,1;3,1,0', '1,1,4;9,1,0;1,5,1', '1,2,2;2,1,3;0,3,2', '4,1,2;0,8,1;1,4,1',
'2,1,2;3,2,1;1,4,2', '1,3,1;0,2,4;4,2,0', '4,2,1;0,5,0;1,1,4', '1,1,3;1,0,3;6,1,1', '1,2,4;2,2,1;4,1,1', '1,1,3;2,8,0;2,5,1',
'1,1,5;5,5,0;2,3,1', '1,3,1;1,0,9;7,1,0', '1,2,3;5,1,1;7,0,1', '1,1,5;0,5,1;5,0,1', '1,2,2;8,0,1;2,3,1', '5,1,1;0,9,1;1,5,0',
'3,1,2;1,3,2;0,10,0', '3,1,2;1,5,1;0,4,3', '1,1,3;6,1,1;6,1,1', '1,1,3;1,6,1;3,7,0', '2,2,1;2,2,2;3,0,4', '1,3,1;1,0,9;0,1,7',
'4,1,1;1,0,6;0,6,4', '1,4,1;1,1,5;4,1,2', '1,2,2;2,2,2;0,0,5', '4,1,1;2,1,1;0,10,0', '4,2,1;2,0,2;1,1,4', '2,3,1;2,1,3;0,0,10',
'1,1,4;2,8,0;2,0,2', '3,1,1;1,1,6;1,4,3', '2,2,1;0,3,4;3,0,4', '3,1,1;3,0,1;1,7,0', '1,2,3;6,2,0;1,3,1', '3,2,1;0,4,2;1,1,5',
'1,2,4;4,3,0;2,2,1', '1,3,1;0,2,4;6,1,1', '1,3,1;1,2,3;3,2,1', '3,3,1;1,2,1;0,3,1', '1,2,4;6,0,1;2,4,0', '1,2,2;6,0,2;4,3,0',
'2,1,3;2,3,1;3,4,0', '2,1,2;1,0,4;2,6,0', '2,3,1;5,0,0;1,1,5', '1,1,3;1,6,1;10,0,0', '4,2,1;2,0,2;0,4,2', '3,1,1;1,2,5;1,4,3',
'3,3,1;0,0,10;1,1,4', '1,3,1;5,1,2;5,1,2', '1,4,1;2,1,4;6,1,0', '1,1,4;7,3,0;2,4,1', '1,1,3;4,0,2;9,1,0', '2,4,1;1,0,8;1,1,4',
'1,4,1;3,1,3;6,1,0', '1,1,5;2,3,1;10,0,0', '1,2,3;8,1,0;1,3,1', '1,3,2;6,0,2;5,1,1', '2,2,2;0,3,2;2,1,2', '2,1,3;2,0,2;4,2,0',
'1,3,3;1,2,1;10,0,0', '3,1,2;3,1,0;0,2,4', '1,5,1;4,1,1;5,0,5', '2,2,1;2,0,6;3,1,2', '4,1,2;0,0,5;1,2,2', '2,3,1;2,1,3;0,1,7',
'2,2,1;0,3,4;2,3,0', '2,1,2;2,2,2;1,2,3', '1,3,1;10,0,0;1,2,3', '1,3,1;1,0,9;5,1,2', '1,2,2;6,0,2;2,2,2', '1,1,5;1,4,1;3,2,1',
'2,1,2;1,8,0;0,2,4', '2,3,1;0,0,10;3,1,1', '1,3,2;2,2,1;4,0,3', '1,3,1;9,0,1;2,2,2', '1,2,4;10,0,0;2,2,1', '1,2,2;10,0,0;6,1,1',
'2,1,3;1,2,2;4,2,0', '1,4,1;1,1,5;3,1,3', '3,1,1;2,2,2;1,6,1', '5,1,1;1,5,0;0,3,7', '3,2,2;0,2,3;2,1,1', '1,3,1;5,1,2;0,2,4',
'2,2,2;4,0,1;3,2,0', '2,1,2;5,0,0;2,2,2', '1,2,2;8,1,0;2,0,4', '3,1,2;0,8,1;1,7,0', '1,1,3;1,0,3;3,4,1', '1,2,4;2,2,1;2,4,0',
'2,1,4;0,2,2;2,6,0', '1,1,3;0,4,2;1,9,0', '2,2,1;2,1,4;3,2,0', '1,2,4;2,2,1;0,3,1', '1,3,1;3,2,1;7,0,3', '4,1,1;0,3,7;2,0,2',
'3,1,3;1,1,2;0,7,1', '2,3,1;1,2,2;5,0,0', '1,2,2;2,4,0;2,3,1', '1,3,3;1,3,0;1,0,3', '1,1,3;5,2,1;8,2,0', '1,2,3;4,3,0;3,2,1',
'1,2,4;8,1,0;2,2,1', '1,1,3;0,10,0;6,1,1', '2,2,1;1,4,0;1,2,4', '1,3,1;1,0,9;2,1,5', '2,1,2;0,10,0;1,4,2', '1,1,3;0,7,1;2,5,1',
'1,4,1;2,0,8;4,1,2', '3,2,1;0,5,0;2,1,2', '2,1,3;3,1,1;0,4,2', '1,1,5;5,0,1;9,1,0', '1,3,1;5,0,5;1,2,3', '2,4,1;1,2,0;2,1,2',
'2,1,2;4,0,1;2,2,2', '3,1,2;0,8,1;1,5,1', '1,2,3;0,2,2;1,0,3', '1,5,1;1,1,4;5,0,5', '2,3,1;3,1,1;0,3,1', '2,2,1;4,0,2;1,1,6',
'2,1,2;1,8,0;3,2,1', '1,2,3;2,1,2;1,3,1', '1,1,5;4,1,1;4,6,0', '2,4,1;2,1,2;4,0,2', '1,4,1;9,0,1;6,1,0', '4,1,2;0,6,2;1,2,2',
'2,1,2;0,6,2;1,4,2', '4,2,1;0,4,2;2,0,2', '1,1,3;10,0,0;1,6,1', '1,3,1;0,0,10;6,1,1', '3,2,1;1,3,1;2,1,2', '1,1,3;1,0,3;2,2,2',
'1,2,2;4,3,0;2,0,4', '3,1,1;1,3,4;0,0,10', '1,3,1;7,1,0;1,1,6', '1,3,1;3,2,1;7,1,0', '1,2,3;1,3,1;0,2,2', '3,1,3;3,1,0;0,4,2',
'3,2,1;1,1,5;0,4,2', '1,2,3;0,5,0;5,1,1', '4,1,1;0,6,4;1,4,2', '3,1,1;3,1,0;2,2,2', '1,1,3;5,2,1;3,1,2', '4,1,1;2,0,2;0,3,7',
'2,2,1;3,2,0;1,2,4', '2,3,1;4,0,2;2,1,3', '1,1,3;0,4,2;5,2,1', '4,1,2;2,0,1;0,6,2', '1,1,3;6,4,0;4,0,2', '2,2,1;2,3,0;2,0,6',
'2,2,1;0,4,2;3,2,0', '3,1,1;1,2,5;0,9,1', '4,2,1;0,3,4;2,1,0', '1,2,2;2,4,0;6,1,1', '1,5,1;3,1,2;4,0,6'])

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

--- Helper Functions ---

def _parse_quantities(q_str: str) -> Dict[str, int]:
"""Parses a quantity string like '1,2,0' into a dictionary."""
return {item: int(q) for item, q in zip(ITEMS, q_str.split(','))}

def _format_quantities(quantities: Dict[str, int]) -> str:
"""Formats a quantity dictionary into a string like '1,2,0'."""
return ",".join(str(quantities.get(item, 0)) for item in ITEMS)

def _create_agreement(state: State, offering_player: int, offered_quantities: Dict[str, int]) -> List[Dict[str, int]]:
"""Creates the final agreement structure based on an accepted offer."""
shares = [{}, {}]
shares[offering_player] = offered_quantities
other_player = 1 - offering_player
The other player gets the remainder of the item pool.
shares[other_player] = {

item: state['pool'][item] - offered_quantities.get(item, 0) for item in ITEMS
}
return shares

--- Core API Functions ---

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken."""
new_state = copy.deepcopy(state)
player_id = get_current_player(new_state)

if player_id == -1: # Chance player sets up the game.
pool_str, v0_str, v1_str = action.split(';')
new_state['pool'] = _parse_quantities(pool_str)
new_state['player_0_values'] = _parse_quantities(v0_str)
new_state['player_1_values'] = _parse_quantities(v1_str)
new_state['current_player'] = '0'
return new_state

if "agrees" in action:
A player agrees to the last offer, ending the game.
last_offer = new_state['offer_history'][-1]
new_state['agreement'] = _create_agreement(new_state, last_offer['player'], last_offer['quantities'])
new_state['current_player'] = None # Mark as a terminal state.

elif "offers" in action:
A player makes a new offer.
new_state['num_turns'] += 1
quantities = _parse_quantities(action.split(' offers ')[1])
new_offer = {

'num_turn': new_state['num_turns'],
'player': player_id,
'quantities': quantities

}
new_state['offer_history'].append(new_offer)

If turn limit is reached, this offer becomes a forced, zero-reward agreement.
if new_state['num_turns'] >= MAX_TURNS:

new_state['current_player'] = None
new_state['agreement'] = _create_agreement(new_state, player_id, quantities)

else:
new_state['current_player'] = str(1 - player_id) # Switch to other player.

return new_state

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal."""
player = state.get('current_player')
if player == 'chance':

return -1
if player is None:

return -4
return int(player)

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""
if player_id == -1:

return 'chance'
if player_id == -4:

return 'terminal'
return str(player_id)

def get_rewards(state: State) -> list[float]:
"""Returns the rewards per player from their last action."""
Rewards are only given for a voluntary agreement. A forced agreement
at the turn limit (MAX_TURNS) results in zero reward for both.
if not state.get('agreement') or state['num_turns'] >= MAX_TURNS:

return [0.0] * NUM_PLAYERS

rewards = []
for i in range(NUM_PLAYERS):

player_values = state[f'player_{i}_values']
player_share = state['agreement'][i]
Reward is the total value of items received by the player.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

reward = sum(player_share.get(item, 0) * player_values.get(item, 0) for item in ITEMS)
rewards.append(float(reward))

return rewards

def get_legal_actions(state: State) -> list[Action]:
"""Returns all legal actions for the current player."""
player_id = get_current_player(state)
if player_id == -1: # Chance player

return _CHANCE_ACTIONS
if player_id < 0: # Terminal state

return []

actions = []
pool = state['pool']

Generate all possible 'offer' actions by iterating through all item combinations.
ranges = [range(pool.get(item, 0) + 1) for item in ITEMS]
for combo in itertools.product(*ranges):

quantities = {item: count for item, count in zip(ITEMS, combo)}
actions.append(f"player {player_id} offers {_format_quantities(quantities)}")

'agree' is a legal move if at least one offer has been made by the opponent.
if state['offer_history']:

actions.append(f"player {player_id} agrees")

return actions

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for each player, containing public and private information."""
base_obs = {

'current_player': state['current_player'],
'pool': state['pool'],
'num_turns': state['num_turns'],
'agreement': state['agreement'],

}

is_terminal = get_current_player(state) == -4
observations = []

Determine the correct previous_offer based on game state
terminal_previous_offer = None
if is_terminal:

In a terminal state, the "previous offer" is the one that was on the table
before the final, accepted offer was made. This corresponds to the
second-to-last offer in the history.
if len(state['offer_history']) > 1:

terminal_previous_offer = state['offer_history'][-2]

for i in range(NUM_PLAYERS):
obs = base_obs.copy()
obs['values'] = state[f'player_{i}_values']
obs['my_player_id'] = i

if is_terminal:
obs['previous_offer'] = terminal_previous_offer

else:
In an active game, the previous offer is the last one made by the opponent.
opponent_id = 1 - i
obs['previous_offer'] = next((

offer for offer in reversed(state['offer_history']) if offer['player'] == opponent_id
), None)

observations.append(obs)

return observations

def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | None]], player_id: int) -> list[Action]:
"""Stochastically samples one of many potential histories given a single player's perspective."""
first_obs = obs_action_history[0][0]

Opponent's values are private and must be sampled randomly to create a possible history.
opponent_id = 1 - player_id
opponent_values = {item: random.randint(0, MAX_ITEM_VALUE) for item in ITEMS}

values = [{}, {}]
values[player_id] = first_obs['values']
values[opponent_id] = opponent_values

Reconstruct the 'chance' action that started the game.
chance_action = (

f"{_format_quantities(first_obs['pool'])};"
f"{_format_quantities(values[0])};"
f"{_format_quantities(values[1])}"

)

Collect all known offers (own and opponent's) from the observation history.
known_offers = []
seen_turns = set()
for obs, action in obs_action_history:

Opponent's offers are seen in the 'previous_offer' field.
prev_offer = obs.get('previous_offer')
if prev_offer and prev_offer['num_turn'] not in seen_turns:

known_offers.append(prev_offer)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

seen_turns.add(prev_offer['num_turn'])

Own offers are reconstructed from the actions taken.
if action and 'offers' in action:

An offer action increments the turn number for the *next* state's observation.
The offer itself is recorded with this new turn number.
turn = obs['num_turns'] + 1
if turn not in seen_turns:

quantities = _parse_quantities(action.split(' offers ')[1])
known_offers.append({'num_turn': turn, 'player': player_id, 'quantities': quantities})
seen_turns.add(turn)

Reconstruct the sequence of actions in chronological order.
known_offers.sort(key=lambda x: x['num_turn'])
resampled_actions = [chance_action]
resampled_actions.extend(

f"player {o['player']} offers {_format_quantities(o['quantities'])}"
for o in known_offers

)

Add the final action if it was not an offer (e.g., 'agrees').
final_action = obs_action_history[-1][1]
if final_action and 'offers' not in final_action:

resampled_actions.append(final_action)

return resampled_actions

def value_function(state: dict[str, Any], player_id: int) -> float:
"""Returns the value estimate for player_id in state.

For terminal states the function returns the true return. For ongoing play
the function should return a value estimate that reflect the winning potential
of the player with given player_id.
"""
1. Handle Terminal States
if get_current_player(state) == -4:
if player_id < 0 or player_id >= NUM_PLAYERS:
For non-players like 'terminal' (-4), return 0.0
return 0.0

For active players, return the actual reward achieved.
return get_rewards(state)[player_id]

--- Heuristic for Non-Terminal States ---

2. Basic Information
my_values = state.get(f'player_{player_id}_values')
This can happen in the initial 'chance' state before values are assigned.
if not my_values:
return 0.0

opponent_id = 1 - player_id
pool = state['pool']
offer_history = state['offer_history']
current_turn_player = get_current_player(state)

3. Calculate Total Potential Value
The maximum value this player could get if they received all items.
total_my_value = sum(pool.get(item, 0) * my_values.get(item, 0) for item in ITEMS)
if total_my_value == 0:
return 0.0 # If nothing in the pool is valuable, expected outcome is 0.

4. Define Baseline "Fair" Expectation
A simple assumption that the player aims for about half the total value.
fair_value_estimate = total_my_value / 2.0

5. Core Heuristic Logic based on current negotiation status
heuristic_value = fair_value_estimate # Default to fair split expectation

if not offer_history:
First turn, no offers yet. The best estimate is a fair split.
heuristic_value = fair_value_estimate

else:
last_offer = offer_history[-1]
if current_turn_player == player_id:
It's my turn to act.
if last_offer['player'] == opponent_id:
Opponent made the last offer. I can agree or counter.
Calculate the value of their offer to me.
their_proposed_share = last_offer['quantities']
my_share_if_agree = {

item: pool.get(item, 0) - their_proposed_share.get(item, 0)
for item in ITEMS

}
value_on_table = sum(

my_share_if_agree.get(item, 0) * my_values.get(item, 0)
for item in ITEMS

)
My position's value is the better of what I can get now
versus my general expectation from continued negotiation.
heuristic_value = max(value_on_table, fair_value_estimate)

else: # last_offer['player'] == player_id

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

The last offer was mine, but the opponent didn't agree.
My turn again means my previous offer was implicitly rejected.
Fall back to the baseline expectation.
heuristic_value = fair_value_estimate

elif current_turn_player == opponent_id:
It's the opponent's turn. They are considering my last offer.
if last_offer['player'] == player_id:
my_proposed_share = last_offer['quantities']
The value of the state is the value of the offer I'm hoping they accept.
value_of_my_offer = sum(

my_proposed_share.get(item, 0) * my_values.get(item, 0)
for item in ITEMS

)
heuristic_value = value_of_my_offer

6. Apply Time Pressure Discount
As turns run out, the risk of getting 0 from a forced agreement increases.
This discounts the potential future value accordingly.
if state['num_turns'] >= MAX_TURNS:
return 0.0 # Game is over or will be forced to 0 reward on next action.

turns_left = MAX_TURNS - state['num_turns']
A sqrt factor makes the discount less severe in early turns.
pressure_factor = (turns_left / MAX_TURNS) ** 0.5

return float(heuristic_value * pressure_factor)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

I.3 Bargaining (imperfect information, closed deck)

import copy
import itertools
import random
from typing import Any, Dict, List, Tuple, Optional

Type definitions
Action = str
State = Dict[str, Any]
PlayerObservation = Dict[str, Any]

Game constants
NUM_PLAYERS = 2
ITEMS = sorted(['X', 'Y', 'Z'])
MAX_TURNS = 10
POOL_VALUES = range(1, 6)
ITEM_VALUES = range(0, 7)

Create a fixed, reproducible set of possible game scenarios for the chance node.
_CHANCE_OUTCOMES = []
_chance_rng = random.Random(0)
for _ in range(20):

pool = {item: _chance_rng.choice(POOL_VALUES) for item in ITEMS}
p0_values = {item: _chance_rng.choice(ITEM_VALUES) for item in ITEMS}
p1_values = {item: _chance_rng.choice(ITEM_VALUES) for item in ITEMS}

pool_str = ",".join(f"{k}={v}" for k, v in sorted(pool.items()))
p0_str = ",".join(f"{k}={v}" for k, v in sorted(p0_values.items()))
p1_str = ",".join(f"{k}={v}" for k, v in sorted(p1_values.items()))
_CHANCE_OUTCOMES.append(f"pool:{pool_str};p0_values:{p0_str};p1_values:{p1_str}")

def _parse_offer_action(action: Action) -> Tuple[int, Dict[str, int]]:
"""Parses an offer action string into player ID and quantities."""
parts = action.split()
player_id = int(parts[1])
quantities = {item: int(q) for item, q in zip(ITEMS, parts[3].split(','))}
return player_id, quantities

def _calculate_reward(bundle: Dict[str, int], values: Dict[str, int]) -> float:
"""Calculates the total value of a bundle of items for a player."""
return sum(bundle.get(item, 0) * values.get(item, 0) for item in ITEMS)

def _reconstruct_offer_action(offer: Dict[str, Any]) -> Action:
"""Reconstructs an offer action string from an offer dictionary."""
quantities_str = ",".join(str(offer['quantities'].get(item, 0)) for item in ITEMS)
return f"player {offer['player']} offers {quantities_str}"

def apply_action(state: State, action: Action) -> State:
"""Returns the new state after an action has been taken."""
new_state = copy.deepcopy(state)

if state.get('current_player') == 'chance':
Initialize the game state from the chance node action.
parts = action.split(';')
new_state['pool'] = {p.split('=')[0]: int(p.split('=')[1]) for p in parts[0].split(':')[1].split(',')}
new_state['player_0_values'] = {p.split('=')[0]: int(p.split('=')[1]) for p in parts[1].split(':')[1].split(',')}
new_state['player_1_values'] = {p.split('=')[0]: int(p.split('=')[1]) for p in parts[2].split(':')[1].split(',')}
new_state['current_player'] = 0
return new_state

if 'agrees' in action:
An agreement is reached. The game becomes terminal.
last_offer = new_state['offer_history'][-1]
offerer_id = last_offer['player']
offerer_bundle = last_offer['quantities']
accepter_bundle = {item: new_state['pool'][item] - offerer_bundle.get(item, 0) for item in ITEMS}

agreement = [{}, {}]
agreement[offerer_id] = offerer_bundle
agreement[1 - offerer_id] = accepter_bundle

new_state['agreement'] = agreement
new_state['current_player'] = None

elif 'offers' in action:
An offer is made. Increment turn count and switch player.
player_id, quantities = _parse_offer_action(action)
new_state['num_turns'] += 1
offer = {'num_turn': new_state['num_turns'], 'player': player_id, 'quantities': quantities}
new_state['offer_history'].append(offer)

if new_state['num_turns'] >= MAX_TURNS:
new_state['current_player'] = None # End game if turn limit reached.

else:
new_state['current_player'] = 1 - player_id

return new_state

def get_current_player(state: State) -> int:
"""Returns current player, with -1 for chance and -4 for terminal."""
if state.get('current_player') == 'chance':

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

return -1
if state.get('current_player') is None or state['agreement'] or state['num_turns'] >= MAX_TURNS:

return -4
return state['current_player']

def get_player_name(player_id: int) -> str:
"""Returns the name of the player, with 'chance' for -1, and 'terminal' for -4."""
return {-1: 'chance', -4: 'terminal'}.get(player_id, str(player_id))

def get_rewards(state: State) -> list[float]:
"""Returns rewards. Rewards are 0 if the game ends due to the turn limit."""
if state['num_turns'] >= MAX_TURNS or not state['agreement']:

return [0.0] * NUM_PLAYERS

p0_reward = _calculate_reward(state['agreement'][0], state['player_0_values'])
p1_reward = _calculate_reward(state['agreement'][1], state['player_1_values'])

return [float(p0_reward), float(p1_reward)]

def get_legal_actions(state: State) -> list[Action]:
"""Returns legal actions that can be taken in current state."""
player = get_current_player(state)
if player == -4:

return []
if player == -1:

return _CHANCE_OUTCOMES

actions = []
if state['num_turns'] > 0:

actions.append(f"player {player} agrees")

Generate all possible offer combinations based on the item pool.
pool = state['pool']
quantity_ranges = [range(pool.get(item, 0) + 1) for item in ITEMS]
for quantities in itertools.product(*quantity_ranges):

q_str = ",".join(map(str, quantities))
actions.append(f"player {player} offers {q_str}")

return actions

def get_observations(state: State) -> list[PlayerObservation]:
"""Returns the observation for each player."""
observations = []
player_at_turn = get_current_player(state)
is_terminal = (player_at_turn == -4)

for i in range(NUM_PLAYERS):
previous_offer = None
In a terminal state with an agreement, the "previous offer" is the one before the accepted one.
if is_terminal and state['agreement'] and len(state['offer_history']) > 1:

previous_offer = state['offer_history'][-2]
elif state['offer_history']:

previous_offer = state['offer_history'][-1]

obs = {
'my_player_id': i,
'pool': state['pool'],
'values': state[f'player_{i}_values'],
'num_turns': state['num_turns'],
'agreement': state['agreement'],
'previous_offer': previous_offer,
'current_player': str(player_at_turn) if player_at_turn >= 0 else None,

}
observations.append(obs)

return observations

def resample_history(obs_action_history: list[tuple[PlayerObservation, Action | None]], player_id: int, last_is_terminal: bool) ->
list[Action]:↪→

"""Stochastically sample one of many potential histories of actions for all players."""
1. Reconstruct and yield the chance action.
first_obs = obs_action_history[0][0]
opponent_values = {'X': 3, 'Y': 3, 'Z': 4} # Assume fixed opponent values for reproducibility.

p_vals = [{}, {}]
p_vals[player_id] = first_obs['values']
p_vals[1 - player_id] = opponent_values

pool_str = ",".join(f"{k}={v}" for k, v in sorted(first_obs['pool'].items()))
p0_str = ",".join(f"{k}={v}" for k, v in sorted(p_vals[0].items()))
p1_str = ",".join(f"{k}={v}" for k, v in sorted(p_vals[1].items()))
yield f"pool:{pool_str};p0_values:{p0_str};p1_values:{p1_str}"

2. Reconstruct the interleaved game actions from the player's perspective.
last_opponent_turn_yielded = 0
my_last_action = None
for obs, action in obs_action_history:

if action:
my_last_action = action

if obs.get('previous_offer'):
offer = obs['previous_offer']
Only yield opponent offers that haven't been yielded yet to avoid duplication.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

if offer['player'] != player_id and offer['num_turn'] > last_opponent_turn_yielded:
yield _reconstruct_offer_action(offer)
last_opponent_turn_yielded = offer['num_turn']

if action:
yield action
if 'agrees' in action:

return

3. Deduce the final hidden actions if the game ended with an agreement not initiated by the player.
if last_is_terminal:

last_obs, last_action = obs_action_history[-1]
if last_action is None and last_obs['agreement']:

agreement = last_obs['agreement']
_, my_last_quantities = _parse_offer_action(my_last_action)

Case A: Opponent agreed to my last offer. My bundle in the agreement matches my last offer.
if my_last_quantities == agreement[player_id]:

yield f"player {1 - player_id} agrees"
Case B: Opponent made a counter-offer, which I would have implicitly agreed to.
else:

opponent_id = 1 - player_id
opponent_bundle = agreement[opponent_id]
quantities_str = ",".join(str(opponent_bundle.get(item, 0)) for item in ITEMS)
yield f"player {opponent_id} offers {quantities_str}"
yield f"player {player_id} agrees"

from typing import Any, Dict, List

def value_function(state: dict[str, Any], player_id: int) -> float:
"""Returns the value estimate for player_id in state.

For terminal states the function returns the true return. For ongoing play
the function should return a value estimate that reflect the winning potential
of the player with given player_id.
"""
Game constants and helper functions defined in local scope for self-containment.
ITEMS = sorted(['X', 'Y', 'Z'])
MAX_TURNS = 10
NUM_PLAYERS = 2

def _calculate_reward(bundle: Dict[str, int], values: Dict[str, int]) -> float:
"""Calculates the total value of a bundle of items for a player."""
return sum(bundle.get(item, 0) * values.get(item, 0) for item in ITEMS)

def _get_current_player_internal(state_dict: Dict[str, Any]) -> int:
"""Determines the current player or if the state is terminal."""
current_player = state_dict.get('current_player')
agreement = state_dict.get('agreement')
num_turns = state_dict.get('num_turns', 0)

is_terminal = (
current_player is None or
(agreement and isinstance(agreement, list) and len(agreement) > 0) or
num_turns >= MAX_TURNS

)

if is_terminal:
return -4 # Terminal node code

if current_player == 'chance':
return -1 # Chance node code

return int(current_player)

def _get_rewards_internal(state_dict: Dict[str, Any]) -> List[float]:
"""Calculates rewards for all players in a terminal state."""
agreement = state_dict.get('agreement')
num_turns = state_dict.get('num_turns', 0)

No reward if the game ends due to turn limit or no agreement is made.
if num_turns >= MAX_TURNS or not agreement or (isinstance(agreement, list) and len(agreement) == 0):
return [0.0] * NUM_PLAYERS

p0_reward = _calculate_reward(agreement[0], state_dict['player_0_values'])
p1_reward = _calculate_reward(agreement[1], state_dict['player_1_values'])

return [float(p0_reward), float(p1_reward)]

--- Main value function logic begins ---

current_player_code = _get_current_player_internal(state)

1. Handle Terminal States: Return the exact final reward.
if current_player_code == -4:
if player_id < 0: # MCTS may query the value for the terminal node itself.
return 0.0

return _get_rewards_internal(state)[player_id]

2. Handle Non-Terminal States: Return a heuristic-based value estimate.

my_values = state[f'player_{player_id}_values']

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

pool = state['pool']
offer_history = state.get('offer_history', [])

Heuristic for the start of the game (no offers yet).
A neutral assumption is that the player can achieve half of their maximum possible value.
if not offer_history:
my_total_pool_value = _calculate_reward(pool, my_values)
return my_total_pool_value / 2.0

last_offer = offer_history[-1]

Case A: It's the opponent's turn. This means I made the last offer.
The value of my last offer is a good estimate of my current potential, as it reflects my aspiration.
if current_player_code != player_id:
my_bundle_in_my_last_offer = last_offer['quantities']
my_value_of_my_offer = _calculate_reward(my_bundle_in_my_last_offer, my_values)
return float(my_value_of_my_offer)

Case B: It's my turn. The opponent made the last offer.
My potential lies between what they offered and what I last asked for.
else:
Calculate the value of their offer to me. This is a concrete value I can achieve by accepting.
offered_bundle_to_opponent = last_offer['quantities']
implied_bundle_to_me = {

item: pool.get(item, 0) - offered_bundle_to_opponent.get(item, 0)
for item in ITEMS

}
value_of_their_offer_to_me = _calculate_reward(implied_bundle_to_me, my_values)

Find my last offer to gauge my own aspiration level.
my_aspiration = -1.0
for offer in reversed(offer_history):
if offer['player'] == player_id:
my_bundle_in_my_last_offer = offer['quantities']
my_aspiration = _calculate_reward(my_bundle_in_my_last_offer, my_values)
break

If I haven't made an offer yet, my aspiration defaults to the initial 50/50 baseline.
if my_aspiration < 0:
my_total_pool_value = _calculate_reward(pool, my_values)
my_aspiration = my_total_pool_value / 2.0

The heuristic is the midpoint between their offer and my aspiration, representing a likely compromise point.
heuristic_value = (value_of_their_offer_to_me + my_aspiration) / 2.0
return float(heuristic_value)

58

	Introduction
	Background
	Related Work
	Methods
	Synthesizing the Code World Model
	Synthesizing inference functions for IIGs
	Synthesizing value functions
	Open deck vs closed deck during training

	Experiments
	Synthesis accuracy
	Perfect information games
	Imperfect information games, open deck
	Imperfect information games, closed deck

	Arena: Game play performance
	Perfect information games
	Imperfect information games, open deck
	Imperfect information games, closed deck

	Discussion
	Information on the games
	Information Set Monte Carlo Tree Search
	Additional experimental results
	Synthesis
	Accuracy of learned transition and inference functions
	Accuracy of learned transition and inference functions vs number of LLM calls
	Tree search Settings

	Detailed per-game arena results
	Perfect information games
	Hidden history inference
	Hidden state inference
	Hidden history inference with closed deck learning

	Forfeit rates for non-ternary-outcome games
	Value function ablations

	Planning with PPO instead of (IS)MCTS
	Training a PPO agent on top of a CWM
	Results
	Games with perfect information
	Hidden history inference
	Hidden state inference
	Hidden history inference with closed deck learning

	Automatic rejection of bad CWM samples
	Sketch of information flow of each agent
	System and agent prompts
	Tree search
	Perfect information games
	Hidden history inference function synthesis, open deck
	Hidden state inference function synthesis
	Hidden history inference function synthesis, closed deck
	Resampling the state at game playing time for imperfect information games
	Value function synthesis

	Game rules
	Backgammon
	Connect four
	Tic-tac-toe
	Gen. tic-tac-toe
	Gen. chess
	Bargaining
	Leduc poker
	Gin rummy
	Quadranto
	Hand of war

	Sample synthesized CWMs and inference functions
	Tic-tac-toe (perfect information)
	Bargaining (imperfect information, open deck)
	Bargaining (imperfect information, closed deck)

