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ABSTRACT

Source-Free Domain Adaptive Object Detection (SFOD) adapts detectors to new
domains without source data, which is vital when privacy or storage constraints
apply. SFOD is hindered by two key challenges: unreliable pseudo-labels, and
foreground-background confusion, which occurs when domain shift induces spu-
rious background activations that degrade localization and, in turn, classification.
We introduce FOCUS-SFOD, a lightweight, architecture-agnostic framework with
two complementary losses: CLEAN (Consistency Loss for Eliminating Activation
Noise) mitigates foreground-background confusion by aligning channel-mean maps
with simple foreground priors, improving localization; PAERL (Peak-Adjusted
Entropy-Regularized Loss) reduces sensitivity to noisy pseudo class-labels by
down-weighting trivial teacher-student agreements, encouraging learning on harder
or underrepresented categories. To the best of our knowledge, we are the first to
formalize foreground-background confusion in SFOD and provide a risk-bound
analysis linking CLEAN and PAERL to tighter localization and classification errors.
Across strong baselines and diverse shifts, FOCUS-SFOD delivers consistent gains
of up to +3.9 mAP, with zero inference overhead.

1 INTRODUCTION

Object detection drives critical computer vision applications in robotics, autonomous driving, and
aerial imagery. Deep detectors (Ren et al., 2016; Liu et al., 2016; Redmon et al., 2016; Carion
et al., 2020; Zhu et al., 2020) and large-scale datasets (Lin et al., 2014; Shao et al., 2019; Xia et al.,
2018) have driven rapid progress in object detection. Yet, the performance of existing detectors
degrades under domain shifts (Oza et al., 2023; Liu et al., 2024a), including large Vision Langauge
Models (VLMs) (Chhipa et al., 2024) that are not suitable for deployment in real-time, latency-
sensitive applications. To address such shifts, Source-Free Domain Adaptive Object Detection
(SFOD) (Vibashan et al., 2023; Liu et al., 2023a; Hao et al., 2024) adapts a pre-trained source detector
to an unlabeled target domain without any access to the source dataset. This makes it crucial for
scenarios where privacy, or storage constraints preclude access to source data.

SFOD remains hindered by two critical challenges. The first and widely recognized issue is the
unreliability of pseudo-labels: due to the lack of supervision, detectors rely on self-generated pseudo-
labels that are often noisy. Misassigned pseudo-labels propagate errors during training, corrupting
both classification and localization. Considerable effort has thus been devoted to pseudo-label
refinement (Li et al., 2021a;b; 2022; Vibashan et al., 2023; Liu et al., 2023a; Hao et al., 2024).

However, beyond pseudo-label noise, a more fundamental yet overlooked bottleneck exists: domain
shift causes the feature space to become entangled between foreground and background regions. This
manifests as erroneous spatial activations on irrelevant background clutter (See Fig. 1), leading to:
(i) localization degradation (bounding boxes misaligned or spread across irrelevant regions), (ii)
false positives triggered by background textures, and (iii) missed detections when true objects are
masked or suppressed by clutter (Appendix A.1 provides more examples). Mislocalized features are
then fed into the classifier, exacerbating misclassification. While prior SFOD works overwhelmingly
attribute this failure to pseudo-label noise (Vibashan et al., 2023; Zhang et al., 2023; Hao et al., 2024),
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Figure 1: Foreground-background confusion in SFOD and our remedy. Two examples from the
Foggy Cityscapes (Sakaridis et al., 2018) target set. In each example, the two columns show the
student’s channel-mean feature map from the last backbone layer (brighter = higher activation) and
the model predictions, respectively. The state-of-the-art baselines IRG (Vibashan et al., 2023) and
Simple-SFOD (Hao et al., 2024) exhibit strong background activations, leading to missed detections
or localization errors (red arrows) and false positives (yellow arrows). Our method yields compact,
object-shaped activations with tighter boxes and correct labels. Zoom in for best view.

we emphasize that foreground-background confusion under domain shift is the more fundamental
obstacle that must be addressed to enable reliable SFOD.

To address these issues, we propose FOCUS-SFOD (FOreground-foCus and Unreliable-label
Suppression), which integrates two complementary components designed to tackle the foreground-
background confusion and the noisy pseudo class-labels. CLEAN (Consistency Loss for Eliminating
Activation Noise) mitigates foreground-background confusion by aligning the model’s channel-mean
activation maps with simple foreground priors. This directly cleans feature-space activations and
improves localization. PAERL (Peak-Adjusted Entropy-Regularized Loss) improves robustness to
noisy pseudo class-labels by mitigating confirmation bias (down-weighting trivial teacher-student
agreements), encouraging learning on harder or underrepresented categories, and employing a mild
entropy regularizer to avoid head-class dominance. We also provide a theoretical risk-bound analysis,
formally linking PAERL and CLEAN to tighter classification and localization error bounds. Together,
these form a lightweight, theoretically bounded, architecture-agnostic framework that improves
detection quality under domain shift. Our key contributions are:

1. To the best of our knowledge, we are the first to identify and formalize foreground-
background confusion in SFOD, showing its central role in degraded localization and
overall detection.

2. To address the above issue, we propose the use of CLEAN, a mask-agnostic regularizer that
reduces spurious background activations, producing clean activations and better localization.
We also propose PAERL, a new loss that mitigates pseudo class-label noise by reducing
confirmation bias and encouraging learning on difficult/rare categories.

3. We provide the first theoretical risk-bound analysis for SFOD (to the best of our knowledge),
formally linking PAERL and CLEAN to tighter classification and localization error bounds.

4. We comprehensively validate our framework through extensive experiments across strong
baselines and diverse domain shifts, achieving between +1.6 to +3.9 mAP across datasets,
with minimal computational overhead.

2 RELATED WORK

Unsupervised Domain-Adaptive Object Detection (UDAOD). UDAOD adapts a source-trained
detector to an unlabeled target domain when source data is available during adaptation (Khodabandeh
et al., 2019; Vs et al., 2021; Munir et al., 2021; Kennerley et al., 2024; Li et al., 2025). Recent works
like DINO Teacher (Lavoie et al., 2025) leverage foundation models by training a source-domain
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labeller with a frozen DINOv2 backbone and then aligning the student’s patch features to a frozen
DINO encoder. While this approach enriches supervision, it remains computationally demanding
and does not address the issue of foreground-background confusion. Our CLEAN directly targets
this problem through a simpler mechanism: we precompute binary foreground masks for the target
dataset once and align the student’s channel-mean activations to them. This one-time preprocessing
makes CLEAN computationally efficient, budget-flexible (using either internal activation maps or
external priors), and directly focused on improving localization under domain shift.

Source-Free Domain-Adaptive Object Detection (SFOD). SFOD eliminates the need to ac-
cess source data during adaptation (Vibashan et al., 2023; Liu et al., 2023a; Hao et al., 2024).
IRG (Vibashan et al., 2023) refines pseudo-labels via instance-relation graphs, PETS (Liu et al.,
2023a) stabilizes teacher-student training with periodic exchanges, and Simple-SFOD (Hao et al.,
2024) shows that careful self-training design can outperform complex architectures. While these
works focus on improving the pseudo-label quality, they overlook the fundamental issue of foreground-
background confusion in SFOD. Our proposed model, FOCUS-SFOD, addresses both the problems
in a lightweight (simple-by-design, zero inference overhead), effective manner.

Noise-Robust Learning with Noisy Labels. Noisy-label learning introduces objectives that sup-
press the impact of corrupted labels (Wang et al., 2024). However, a direct adaptation of (Wang
et al., 2024) fails in SFOD (See Appendix A.7) due to proposal imbalance, heavy class skew, and
confirmation bias in teacher-student agreements. We extend it with foreground/background weighting,
and entropy regularization, which together make PAERL effective for detection (See Table. 9). In
combination, PAERL reduces pseudo class-label noise and CLEAN mitigates foreground-background
confusion, yielding a lightweight, complementary framework for robust source-free adaptation.

3 METHODOLOGY

3.1 PRELIMINARIES

Problem Statement. We denote the labeled source-domain dataset as DS = {(xs
i , Ys

i )}
NS
i=1, where

xs
i denotes the ith source image and Ys

i is the corresponding ground-truth annotation containing
bounding-box locations and class labels. Ys

i = {(bij , cij)}Oi
j=1, where bij ∈ R4 denotes bounding-

box coordinates, cij ∈ {0, . . . ,K} denotes the class label for the jth object, and Oi denotes the
number of objects in image xs

i . The unlabeled target-domain dataset is denoted by DT = {xt
i}

NT
i=1.

The cardinalities of source and target domain images are denoted by NS and NT respectively. An
object detector can be expressed as h(x) = f

(
g(x)

)
, where g is the feature extractor and f = (fc, fr)

contains the: (i) Classification head: fc
(
g(x)

)
∈ ∆K (a softmax over K + 1 classes, with the

extra class for background); and (ii) Regression head: fr
(
g(x)

)
∈ R4, predicting the bounding-box

coordinates. The detector is usually trained by minimizing the combination of classification and
regression loss terms: L = Lcls + Lreg. Most existing efforts employ cross-entropy (or a variant) for
the classification term and an L1-style loss for the regression term. The goal of SFOD is to adapt
a detector hpre trained on labeled source data DS to unlabeled target data DT , without any further
access to DS .
‘Mean Teacher’-based Self-Training Framework. Most existing SFOD algorithms, including the
state-of-the-art, adopt a two-stream teacher–student strategy that follows the ‘Mean-Teacher (MT)’
paradigm. A student detector hst with parameters Θst is updated via gradient descent, and a teacher
detector hte with parameters Θte tracks the student through an exponential moving average (EMA).
For every unlabeled target image xt

i, a weak augmentation x̃t
i is first applied and then passed through

the teacher to obtain a set of region proposals. After standard post-processing operations such as score
filtering, non-maximum suppression (NMS), and a confidence threshold, the remaining proposals
constitute the pseudo-annotation Ŷt

i = {(b̂ij , ĉij)}Ôi
j=1, where b̂ij , ĉij are pseudo bounding-boxes

and corresponding pseudo class-labels respectively. Ôi is the number of pseudo-annotations on the
ith image. The student is then trained on a strongly augmented view x̄t

i by minimizing the sum of
RPN and RoI losses w.r.t. these pseudo labels:

LMT = Lrpn

(
x̄t
i, Ŷt

i

)
+ Lroi

(
x̄t
i, Ŷt

i

)
. (1)

The network parameters are updated by:
Θst ← Θst − η∇ΘstLMT, Θte ← λΘte + (1− λ)Θst. (2)

where η is the learning rate and λ∈(0, 1) is the EMA decay factor.
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Theory-guided objective (forward reference to Sec. 4). The detection-risk decomposition in
Sec. 4 will show that training on noisy pseudo-labels inflates (i) the classification risk by a factor
1/λ (Lemma 1, Theorem 1) and (ii) the localization risk through two additive terms, the deviation
ηreg and the miss-rate ζ (Lemma 2, Theorem 1). We therefore design two complementary modules:
a peak-adjusted classification loss (PAERL) that replaces the multiplicative inflation with a tighter
additive term (Theorem 2), and a spatial-focus regularizer (CLEAN) that directly shrinks ηreg and ζ
by mitigating foreground-background confusion.

3.2 FOCUS-SFOD

Motivation and Overview. As observed in (Vibashan et al., 2023; Liu et al., 2023a; Hao et al., 2024),
a prevalent problem in mean-teacher self-training is that pseudo class-labels tend to be noisy due to
domain shifts. Beyond this well-known issue, we are the first to identify and formalize that domain
shift induces a foreground–background confusion in SFOD: spatial activations for true objects
are diluted by background clutter, which degrades localization and cascades into misclassification
(see Fig. 1). To jointly address unreliable pseudo-labels and foreground-background confusion, we
propose FOCUS-SFOD (FOreground-foCus and Unreliable pseudo-label Supression), coupling two
dedicated objectives within the standard Mean-Teacher framework: PAERL for pseudo class-label
robustness and CLEAN for spatial focus regularization. FOCUS-SFOD integrates these losses with
the conventional localization objective to enhance robustness during source-free adaptation.

Peak-Adjusted Entropy-Regularised Loss (PAERL). Most SFOD methods minimize cross-entropy
loss (Vibashan et al., 2023; Liu et al., 2023a; Hao et al., 2024), which has an unbounded gradient that
allows a single corrupted pseudo class-label to dominate training. We therefore introduce PAERL,
which mitigates this negative impact of noisy pseudo class-labels by adaptively recalibrating the
per-box classification loss. For student probabilities fst

c ∈RK+1, let p = fst
c and t = argmaxk pk.

The following transform rescales the peak while making sure that elements of p′ sum up to 1.

p′k =


pk +m

1 +m
, k = t,

pk
1 +m

, k ̸= t,
(3)

where m is a large real value.

For each image xt
i, we minimize

LPAERL =
[ ∑
(b̂,ĉ)∈Ŷt

i

wĉ(α (−log p′ĉ) + β (1− pĉ))
]
+ γ DKL

(
p̄
∥∥UK). (4)

where

K := {0, . . . ,K−1}; Z :=
∑

(b̂,ĉ)∈Ŷt
i

∑
k∈K

pk;

p̄k :=
1

Z

∑
(b̂,ĉ)∈Ŷt

i

pk, ∀k ∈ K; DKL

(
p̄ ∥UK

)
= log |K|+

∑
k∈K

p̄k log p̄k.

Why PAERL is intrinsically robust to noisy pseudo-labels? The peak–adjust operation in
Eq. 3 moderates the student’s logits by adding a large margin m to its highest probability and then
renormalising. This creates two mutually exclusive regimes: 1) Teacher and student agree (ĉ = t).
The margin sits on the same logit that the loss differentiates, so the cross-entropy gradient for that
box is uniformly scaled by the factor pĉ/(pĉ +m)≪ 1. Easy, likely-clean boxes therefore contribute
vanishing updates, acting as a built-in soft early-stopping mechanism that prevents over-fitting to
already-correct labels. 2) Teacher and student disagree (ĉ ̸= t). The margin affects a different logit;
the derivative with respect to the true class is unchanged, and the gradient reduces to the standard
cross-entropy form. Hard or potentially mislabeled boxes thus retain a full corrective signal, allowing
the student to challenge erroneous teacher guidance.

Consistency Loss for Eliminating Activation Noise (CLEAN). Domain shift entangles foreground
and background in the spatial activations of the detector, producing foreground–background confusion
that worsens localization and, by propagation, classification. To formalize and address this issue,
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we introduce CLEAN. Consider the detector h(x) = f(g(x)) introduced in Sec. 3.1. The feature
extractor outputs an activation tensor a = g(x) ∈ RH×W×C , where H , W , and C are its height,
width, and channel count. Taking the channel-wise mean yields A ∈ RH×W , which highlights spatial
locations with high average activations and thus usually traces foreground objects. Under a domain
shift, however, this map becomes contaminated by background clutter: true objects may fade while
background areas are spuriously accentuated (as illustrated in Fig. 1). We address this by aligning the
student’s mean map AS with a binary foreground prior AG.

For each target image xt
i the prior yields a binary mask AG(x

t
i) ∈ [0, 1]H

′×W ′
, and the student

provides its channel-mean map AS(x
t
i) ∈ [0, 1]H×W . The student map is rescaled to match the

dimensions of AG and their agreement is enforced with a mean ℓ1 term and a Dice loss:

LCLEAN(x
t
i) =

λ1

H ′ W ′

∑
j,k

∣∣AS[j, k]−AG[j, k]
∣∣

+ λ2

(
1−

2
∑

j,k AS[j, k]AG[j, k]∑
j,k AS[j, k] +

∑
j,k AG[j, k] + ε

)
. (5)

where (j, k) index spatial positions, and ε is a small constant for numerical stability.

CLEAN is simple-by-design and budget-flexible. CLEAN is intentionally minimal, operating
only on the channel-mean activation map and a binary foreground prior, so it is architecture-agnostic
and adds no inference-time cost. In practice:

• Mask-agnostic prior. AG can come from any class-agnostic foreground prior (Ren et al., 2024;
Yuan et al., 2024; Lee et al., 2025) computed once per image before target adaptation. AG can
also be obtained internally from the detector itself: thresholded channel-mean activations of the
source-trained model.

• One-time preprocessing. Priors are precomputed and cached off-line, which adds a minimal
compute overhead. See Appendix A.8 for more details on compute and memory costs.

• Drop-in. CLEAN plugs into any mean-teacher SFOD recipe and requires no additional heads,
proposals, or architectural changes.

Overall Objective. The student network is trained to minimize
L = LPAERL + LCLEAN + Lreg,

where Lreg denotes the detector’s standard localization loss. LPAERL addresses pseudo class-label
noise by adjusting the student’s confidence, blending cross-entropy with MAE, and applying a
foreground/background weighting, whereas LCLEAN tackles foreground-background confusion by
aligning the channel-mean activation map with a foreground prior. Acting on complementary axes,
label confidence and spatial focus, these losses follow the factors in the detection bound (Sec. 4):
PAERL tightens the classification term (Theorem 2), while CLEAN shrinks the localization addends
ηreg and 2ζ (Lemma 2, Theorem 1). See Appendix A.3 for FOCUS-SFOD pseudo-code.

4 THEORETICAL INSIGHTS

This section formalizes how the modules introduced in Sec. 3 target specific terms in the detection
risk. We first decompose risk under teacher-generated pseudo-labels, then show that a peak-adjusted
classification objective yields a tighter classification term and explain how spatial confusion appears
additively in the localization term, precisely what CLEAN is designed to reduce.

For a given dataset D = {(xi, yi)}Ni=1, we define an object set for image i as Yi = {(bij , cij)}Oi
j=1,

the pseudo annotations as Ŷi = {(b̂ij , ĉij)}Ôi
j=1 and the detection risk is shown in Eq. 6. We

implicitly index over objects inside each image. We write f(g(x)) simply as f(x) for brevity,
fc : x 7→ (p0(x), . . . , pK(x)), and DX,C and DX,B as the marginal of D over the image-class (x, c)
pairs and image-box pairs (x, b), respectively.

Rdet
D (f) = Rcls

D,clean(fc) +Rreg
D,clean(fr) = E(x,c)∼DX,C

[− log pc(x)] + E(x,b)∼DX,B

∥∥fr(x)− b
∥∥
1

(6)
where Rcls

D,clean is the standard cross entropy loss and Rreg
D,clean is the standard L1 regression loss

used in most of the object detectors. We now state in Lemma 1 the classification risk under noisy
pseudo class-labels.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 1. Let DT be the target distribution over (x, c), and let the pseudo-label ĉ be drawn from
an arbitrary class-conditional transition matrix T ∈ [0, 1](K+1)×(K+1) with

∑K
i=0 Tji = 1 for

every j and λ = minj Tjj > 0. For any classifier fst
c : x 7→ p(x) =

(
p0(x), . . . , pK(x)

)
and

Rcls
DT , clean(f

st
c ) = E(x,c)∼DT

[
− log pc(x)

]
, Rcls

DT , noisy(f
st
c ) = E(x,ĉ)

[
− log pĉ(x)

]
, we have

the following relationship

Rcls
DT , clean(f

st
c ) ≤ 1

λ
Rcls

DT , noisy(f
st
c ). (7)

All the proofs for the theoretical analysis are provided in the Appendix A.2. Lemma 1 employs
the class-conditional transition matrix T ∈ [0, 1](K+1)×(K+1), where Tji = Pr[ĉ = i | c = j]
represents the label noise induced by the mean-teacher: an exponential-moving-average (EMA) copy
of the student whose deterministic predictions form a stochastic channel over the data distribution
(Tarvainen & Valpola, 2017). The diagonal element Tjj is the teacher’s per-class hit-rate, and we
define λ = minj Tjj > 0 to rule out classes the teacher never recognizes, a minimal condition for
identifiability of the clean risk under arbitrary label noise (Liu et al., 2023b). Lemma 1 therefore
shows that mean-teacher asymmetry costs only a multiplicative factor 1/λ; when the teacher is
perfect (λ = 1) the bound reduces to the standard clean-risk expression. Next, we show in Lemma 2
the regression risk under noisy pseudo bounding box labels.
Lemma 2. Let DT be the target-domain distribution over image–box pairs (x, b) and let f te

r be
the teacher regressor that outputs a pseudo-box b̂ = f te

r (x). For every ground-truth box define the
indicator M(x, b) = 1

[
IoU

(
b̂, b
)
≥ τ

]
∈ {0, 1}, i.e. M = 1 when the teacher matches the

ground truth box under the usual IoU threshold τ , and M = 0 otherwise. Assume all boxes are
normalized to the unit square, so that ∥u− v∥1 ≤ 2 for any two boxes u, v. Define

Rreg
DT , noisy

(fst
r ) = E(x,b)

[
M ∥fst

r (x)− b̂∥1
]
, ηreg = E(x,b)

[
M ∥b̂− b∥1

]
, ζ = E(x,b)[ 1−M ].

Then for any student regressor fst
r

Rreg
DT , clean

(fst
r ) ≤ Rreg

DT , noisy
(fst

r ) + ηreg + 2 ζ. (8)

Lemma 2 expresses the clean localization risk as the sum of the noisy risk and the single constant
ηreg, defined as the teacher’s expected L1 deviation from ground truth and entirely determined by the
geometry of boxes; no distributional assumptions are introduced. Because the argument is purely
metric, the bound holds regardless of how pseudo-boxes are generated or how label noise correlates
across objects and classes. Importantly for SFOD, domain-shift–induced foreground–background
confusion increases both the teacher’s miss-rate ζ and the deviation term ηreg by spreading activations
into cluttered background, thereby degrading localization (precisely what CLEAN is designed to
mitigate in Eq. 5). We now leverage Lemma 1 and Lemma 2 to state the upper bound on detection
risk as seen in Theorem 1.
Theorem 1. Given pseudo class-labels generated by a teacher with transition matrix T satisfying
λ = minj Tjj > 0 and bounding-box pseudo-labels satisfying the noise rate ηreg and let ζ =
E(x,b)[ 1−M(x, b) ] be the teacher’s miss-rate for ground-truth boxes. Then, for any student heads
(fst

c , fst
r ), we have

Rdet
DT

(
fst
c , fst

r

)
≤ 1

λ
Rcls

DT , noisy

(
fst
c

)
+ Rreg

DT , noisy

(
fst
r

)
+ ηreg + 2 ζ. (9)

Theorem 1 adds the two sources of error. The classification part is inflated by 1/λ, while the
regression part is simply shifted by ηreg plus the miss-rate penalty 2ζ. Foreground–background
confusion acts precisely through these localization terms, motivating an explicit spatial regularizer
that reduces ηreg and ζ by cleaning activations (CLEAN, Eq. 5).
Theorem 2. Let f∗

η = argminfst
c
Rη

L(f
st
c ) be the population minimizer of the peak-adjusted

classification loss Rη
L under the teacher-noise model T . We define Rη

L(f
st
c ) = E(x,c)

[
(1 −

ηx)L
(
fst
c (x), c

)
+

∑
k ̸=c ηx,k L

(
fst
c (x), k

)]
. where L is any classification loss that satisfies∣∣∣∑K

k=1

(
L(u1, k) − L(u2, k)

)∣∣∣ ≤ δ whenever ∥u1 − u2∥2 ≤ ϵ, and δ → 0 as ϵ → 0,
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ηx,k := PrT (ĉ = k | x), ηc :=
∑

k ̸=c ηx,k. w = Ex(1 − ηc), a = minx,k
(
1 − ηc − ηx,k

)
,,

and let ζ = E(x,b)[ 1−M(x, b) ] be the teacher’s miss-rate for ground-truth boxes, as introduced in
Lemma 2. Then, for any student regression head fst

r ,

Rdet
DT

(
f∗
η , f

st
r

)
≤
(
2δ + 2w δ

a

)
+ Rreg

DT ,noisy

(
fst
r

)
+ ηreg + 2 ζ. (10)

Theorem 2 replaces the multiplicative factor 1/λ in Theorem 1 with the additive term 2δ + 2wδ
a ,

thus making it tighter. Because δ→0 as ε→0, this additive bound becomes arbitrarily tight even
for moderate λ; moreover, since 1/λ ≥ 1, it is strictly tighter than the original multiplicative bound
whenever the teacher is imperfect (λ < 1).

5 EXPERIMENTS

Datasets, Metrics and Baselines. We integrate our method into three recent state-of-the-art SFOD
methods: IRG (Vibashan et al., 2023), PETS (Liu et al., 2023a), and Simple-SFOD (Hao et al., 2024).
Following existing works, we report mean average precision (mAP) with an IoU threshold of 0.5. We
use five publicly available data sets - Cityscapes (Cordts et al., 2016), Foggy Cityscapes (Sakaridis
et al., 2018), KITTI (Geiger et al., 2013), Sim10k (Johnson-Roberson et al., 2016), BDD100k (Yu
et al., 2018) which cover four challenging real-world domain change scenarios. See Appendix A.5
for detailed description on datasets.
Implementation Details. For a fair comparison, we first reproduce each baseline following its
published code and hyper-parameters and apply our components on top of these reproduced baselines,
without altering any training configuration. Faster R-CNN is adopted as the base detector in all cases;
IRG uses a ResNet-50 backbone, whereas PETS and Simple-SFOD uses VGG-16. The original
batch sizes, epochs, learning rates, optimization schedules and data pre-processing pipelines are
kept unchanged. Experiments for IRG are run on a single NVIDIA V100 GPU, while PETS and
Simple-SFOD are trained and evaluated on a single NVIDIA RTX A6000 GPU. Tables 1 - 5 use
Yuan et al. (2024) for getting the class-agnostic binary foreground masks in CLEAN. We provide
results with different mask sources in Table 12 (in Appendix A.9).

Table 1: Performance comparison on Cityscapes→ Foggy Cityscapes (C→F), Sim10k→ Cityscapes
(S→C), and Kitti→ Cityscapes (K→C). “rep” = reproduced results; “+ Ours” = our method.

C→F S→C K→C

Category Method prsn rider car truck bus train mcycle bicycle mAP AP Car AP Car

ZeroShot Grounding-DINO (Liu et al., 2024b) (ECCV’24) 37.3 15.3 56.5 28.2 43.1 1.6 28.3 46.2 32.1 40.4 40.4

S Source Only 29.3 34.1 35.8 15.4 26.0 9.09 22.4 29.7 25.2 32.0 33.9

UDAOD

SSAL (Munir et al., 2021) (NeurIPS’21) 45.1 47.4 59.4 24.5 50 25.7 26 38.7 39.6 51.8 45.6
PT (Chen et al., 2022) (ICML’22) 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7 55.1 60.2
MTM (Weng & Yuan, 2024) (AAAI’24) 51 53.4 67.2 37.2 54.4 41.6 38.4 47.7 48.9 58.1 -
SEEN-DA (Li et al., 2025) (CVPR’25) 58.5 64.5 71.7 42 61.2 54.8 47.1 59.9 57.5 66.8 67.1

SFOD

SFOD (Li et al., 2021a) (AAAI’21) 21.7 44.0 40.4 32.2 11.8 25.3 34.5 34.3 30.6 42.3 43.6
SFOD-Mosaic (Li et al., 2021b) (AAAI’21) 25.5 44.5 40.7 33.2 22.2 28.4 34.1 39.0 33.5 42.9 44.6
LODS (Li et al., 2022) (CVPR’22) 34.0 45.7 48.8 27.3 39.7 19.6 33.2 37.8 35.8 - 43.9

IRG (rep) (Vibashan et al., 2023) (CVPR’23) 36.9 45.7 51.5 26.4 41.3 25.7 29.1 39.1 37.0 45.9 47.2
+ (Ours) 37 45.9 51.7 30.2 44.7 30 32.9 40.6 39.0 49.1 49.8
PETS (rep) (Liu et al., 2023a) (ICCV’23) 46.1 52.6 63.5 21.8 46.8 5.5 37.1 48.7 40.3 57.5 46.7
+ (Ours) 46.2 52.9 63.2 24 49.1 10.4 40.5 48.6 41.9 59.1 48.9
Simple-SFOD (rep) (Hao et al., 2024) (ECCV’24) 40.9 48 58.9 29.6 51.9 50.2 36.2 44.1 45.0 55.4 46.2
+ (Ours) 41 48.3 58.7 33.6 54.8 54.3 38.6 46.2 46.9 58.8 50.1

Adaptation to Adverse Weather. To evaluate the adverse weather domain shifts, we perform
adaptation from Cityscapes to Foggy Cityscapes. Table 1 demonstrates that our approach consistently
enhances performance (by ∼2 mAP) over the recent state-of-the-art SFOD approaches.

Synthetic to Real-world. We use the Sim10k dataset as the source domain and the ”car” category
from Cityscapes as the target domain (Table 1 S→C). Integrated with Simple-SFOD and IRG, our
proposed approach achieves notable improvements of 3.4 and 3.2 mAP, respectively. When combined
with PETS, which already surpasses existing SFOD methods by a significant margin (>10 mAP), our
method further boosts performance by 1.6 mAP.

Cross-camera Adaptation. Table 1 shows that in cross-camera adaptation scenarios (K→C), our
proposed approach consistently enhances detection performance, achieving a substantial improvement
of 3.9 mAP on Simple-SFOD and a mean mAP of 2.9 across the three recent SFOD methods.
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Table 2: Cityscapes→ BDD100k. “rep” = reproduced results; “+ Ours” = our method.
Category Method truck car rider person motor bicycle bus mAP

ZeroShot Grounding-DINO (Liu et al., 2024b) (ECCV’24) 32.3 66.1 31.4 38.1 17.9 28.7 25.4 34.3

S Source Only 9.9 51.5 17.8 28.7 7.5 10.8 7.6 19.1

UDAOD
SWDA (Saito et al., 2019) (CVPR’19) 15.2 45.7 29.5 30.2 17.1 21.2 18.4 25.3
CR-DA-Det (Wang et al., 2021) (TIP’21) 19.5 46.3 31.3 31.4 17.3 23.8 18.9 26.9
MTM (Weng & Yuan, 2024) (AAAI’24) 53.7 35.1 68.8 23.0 28.8 23.8 28.0 37.3

SFOD

SFOD (Li et al., 2021a) (AAAI’21) 20.4 48.8 32.4 31.0 15.0 24.3 21.3 27.6
SFOD-Mosaic (Li et al., 2021b) (AAAI’21) 20.6 50.4 32.6 32.4 18.9 25.0 23.4 29.0
A2SFOD (Chu et al., 2023) (AAAI’23) 26.6 50.2 36.3 33.2 22.5 28.2 24.4 31.6

IRG (rep) (Vibashan et al., 2023) (CVPR’23) 31.4 59.7 32.8 39.9 16.7 26.9 21.5 32.7
+ (Ours) 31.7 59.5 33.2 39.9 20.9 31.6 28.3 35
PETS (rep) (Liu et al., 2023a) (ICCV’23) 19.3 62.4 34.5 42.6 17.0 26.3 16.9 31.3
+ (Ours) 19.9 61.9 34.7 42.7 21.3 30.5 20.9 33.1
Simple-SFOD (rep) (Hao et al., 2024) (ECCV’24) 32 60 33.4 40.2 19.7 29.9 24.9 34.3
+ (Ours) 32.6 59.8 34.0 40.0 25.7 35.7 30.5 36.9

Small-scale to Large-scale. We select Cityscapes as the source domain and BDD100k as the target
domain to study this shift. Following Liu et al. (2023a), we focus on the seven categories shared with
Cityscapes. From Table 2, we can see that our method achieves an average boost of 2.2 mAP when
integrated into recent SFOD methods.

Results on Extreme Shifts. To stress-test our method under severe domain shifts, we evaluate on three
challenging transfers (using IRG as the baseline): i) Realistic to artistic data (PascalVOC (Everingham
et al., 2010)→ Clipart (Inoue et al., 2018), ii) RGB to Thermal (FLIR (Teledyne FLIR LLC, 2019)
visible→ infrared), and iii) Thermal to RGB (FLIR Infrared to COCO (Lin et al., 2014)). Tables 3,
4, and 5 show that our method consistently improves detection accuracy (by ∼2 mAP) even under
extreme domain shifts, underscoring its robustness.

Table 3: Pascal VOC→ Clipart results.

Method
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IRG (rep) 23.0 58.2 28.6 21.4 29.5 58.6 40.0 9.1 37.4 15.3 27.4 11.3 38.6 56.6 53.0 41.7 15.1 21.5 34.0 36.1 32.8
IRG + Ours 24.5 53.6 27.1 24.9 34.0 64.9 40.2 9.1 40.0 28.1 22.4 8.2 37.3 77.4 48.9 48.2 9.1 20.6 44.7 38.8 35.1

Table 4: FLIR Visible→ Infrared results.

Method person bicycle car mAP

IRG 59.8 42.3 68.1 56.7
IRG + Ours 61.9 43.7 69.9 58.5

Table 5: FLIR Infrared→ COCO results.

Method person bicycle car mAP

IRG (re-run) 25.2 12.7 20.3 19.4
IRG + Ours 27.1 13.8 21.9 20.9

Effect of PAERL and CLEAN Losses - Class vs. Localization Gains. Figure 2 depicts three
metrics: standard mAP-50, Class-only AP-50 (predictions snapped to nearest GT boxes; isolates clas-
sification accuracy), and Box-only AP-50 (class-agnostic evaluation; isolates localization accuracy).
As shown, PAERL substantially improves Class-only AP, confirming its effectiveness in reducing
noisy pseudo-class labels, while CLEAN notably boosts Box-only AP, validating improved spatial
alignment. The combined approach achieves the highest standard mAP-50, indicating complementary
benefits from addressing both the issues. See Appendix A.6 for more details.

Ablation Studies. Table 6 demonstrates the impact of integrating CLEAN and PAERL into IRG
across two domain shift scenarios - Cityscapes to Foggy Cityscapes and Sim10k to Cityscapes. We
observe that individually adding CLEAN or PAERL consistently improves the baseline performance,
achieving a +0.8 and +1.0 increase in mAP for Cityscapes to Foggy Cityscapes, and +1.6 and +1.5 AP
for car detection from Sim10k to Cityscapes, respectively. Furthermore, combining these components
yields the best results, enhancing mAP by +2.0 and AP by +3.2 in the respective domain shifts. These
results confirm the complementary nature of CLEAN and PAERL when integrated into the baseline.
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Figure 2: Teacher-model AP50 curves on the Foggy Cityscapes (Sakaridis et al., 2018) test set over
training epochs - showing class-only, box-only, and full mAP. Zoom in for best view

Table 6: Ablation: Study of different components of our model.
Method Components C→ F S→ C

CLEAN PAERL prsn rider car truck bus train mcycle bicycle mAP AP Car

IRG + Ours

✗ ✗ 36.9 45.7 51.5 26.4 41.3 25.7 29.1 39.1 37.0 45.9
✓ ✗ 37.1 46.3 51.7 26.7 41.9 27.5 30.8 40.6 37.8 47.5
✗ ✓ 37 46.2 51.7 27.8 42.7 28.3 30.8 40.7 38 47.4
✓ ✓ 37.2 46.8 51.6 26.2 42.8 30.5 29.7 42.3 39 49.1

How PAERL counters the long-tail class imbalance problem. We observe that the baseline teacher
produces cleaner pseudo-labels for head classes (e.g., car, person) than for tail classes (See Table 7).
Quantitatively, the Pearson correlation between log10(class frequency) and AP50 is r = +0.73 for
IRG. To decouple PAERL’s effect from inherent class difficulty, we correlate log-frequency with the
AP gain (∆), obtaining r∆ = −0.92, indicating PAERL’s bias in favor of tail classes. Indeed, the
largest gains occur for rare categories such as truck (+3.8), bus (+3.4), and train (+4.3), while head
classes (car, person) change by only 0.1–0.2 AP. Similar trend follows for PETS and Simple-SFOD.

Table 7: Per-category AP50 results on the target domain. We report baseline performance, performance
with our method, and the improvement (∆).

Category Target instances IRG +Ours ∆ IRG PETS +Ours ∆ PETS Simple-SFOD +Ours ∆ Simple-SFOD

person 3 419 36.9 37.0 +0.1 46.1 46.2 +0.1 40.9 41.0 +0.1
rider 556 45.7 45.9 +0.2 52.6 52.9 +0.3 48.0 48.3 +0.3
car 4 667 51.5 51.7 +0.2 63.5 63.2 –0.3 58.9 58.7 –0.2
truck 93 26.4 30.2 +3.8 21.8 24.0 +2.2 29.6 33.6 +4.0
bus 98 41.3 44.7 +3.4 46.8 49.1 +2.3 51.9 54.8 +2.9
train 23 25.7 30.0 +4.3 5.5 10.4 +4.9 50.2 54.3 +4.1
motorcycle 149 29.1 32.9 +3.8 37.1 40.5 +3.4 36.2 38.6 +2.4
bicycle 1 175 39.1 40.6 +1.5 48.7 48.6 –0.1 44.1 46.2 +2.1

mAP — 37.0 39.0 +2.0 40.3 41.9 +1.6 45.0 46.9 +1.9

Budget Flexibility of CLEAN. Table 12 (from Appendix A.9) demonstrates that CLEAN offers
budget flexibility by accommodating both internal and external sources of foreground masks. Using
simple mean-channel maps derived from the source-trained detector already yield tangible gains
in mAP. Substituting stronger segmentation priors (Ren et al., 2024; Yuan et al., 2024; Lee et al.,
2025) further amplifies performance. Importantly, obtaining such external priors only add a small
train-time cost and zero inference overhead, as the masks are pre-computed once per target dataset
before adaptation. The additional train-time cost is limited to a short, one-time preprocessing stage
that is negligible compared to the target adaptation itself (see Appendix A.8 for cost details).

6 CONCLUSION

We identify foreground–background confusion as a key but previously overlooked bottleneck in
Source-Free Domain Adaptive Object Detection (SFOD). To address it, we propose CLEAN, a
lightweight regularizer that aligns activations with simple foreground priors, producing denoised,
foreground-focused feature maps. CLEAN is budget-flexible and adds no inference overhead beyond
a negligible one-time preprocessing step. Complementing this, our PAERL loss mitigates pseudo-
label unreliability and dataset imbalance by emphasizing hard categories, down-weighting trivial
agreements, and applying mild entropy regularization. Together, CLEAN and PAERL form a
theoretically grounded, plug-and-play framework that consistently improves diverse SFOD baselines
under domain shifts, charting a principled and practical path toward robust source-free detection.
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A APPENDIX

In this appendix, we include the following details, which we could not include in the main paper
owing to space constraints:

• Additional qualitative results [Sec. A.1]
• Proofs for the theoretical lemmas and theorems [Sec. A.2]
• Pseudo-code/Algorithm for the proposed method [Sec. A.3]
• Hyperparameter analysis [Sec. A.4]
• Datasets description [Sec. A.5]
• Disentangling Classification and Localization [Sec. A.6]
• Additional ablation studies [Sec. A.7]
• Compute and Memory analysis [Sec. A.8]
• Budget Flexibility of Clean [Sec. A.9]
• Reproducibility statement [Sec. A.10]
• Limitations and Future work [Sec. A.11]
• Declaration of LLM Usage [Sec. A.12]

Figure 3: Additional qualitative results. Four examples from the Foggy Cityscapes (Sakaridis et al.,
2018) target set. Mean-feature map is obtained from taking the channel-mean from the last layer
of the student’s backbone. Left: Baseline model - IRG (Vibashan et al., 2023) produces spurious
background activations, leading to missed detections or localization errors (red arrows) and false
positives (yellow arrows). Our method effectively suppresses both feature-space confusion and
class-label noise, resulting in clear activations and more accurate classification and object localization.
Zoom in for best view.

A.1 ADDITIONAL QUALITATIVE RESULTS

Figure 3 presents additional qualitative examples comparing the baseline method (Vibashan et al.,
2023) and our proposed method on the Foggy Cityscapes dataset. Each row corresponds to one
scene, with the first two columns illustrating the baseline’s mean-channel feature maps and predicted
detections, and the last two columns showing the same representations from our method. The
mean-channel map is obtained by taking the mean along the channel dimension of the last layer
of the backbone, which is then upsampled to the image dimension for visualization. The baseline
consistently exhibits dispersed activations, causing inaccuracies such as false positives (bicycle in
the first image) and missed detections (car in the first image, incomplete train localization in the
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second, and missed buses in the third and fourth images). In contrast, our method significantly
reduces the irrelevant background activations, producing cleaner, focused activations that accurately
highlight relevant objects and recover detections missed by the baseline. Overall, these qualitative
results illustrate that our method addresses both the pseudo-label noise and foreground-background
confusion that occurs due to the domain shift, resulting in improved detection accuracy and reliability.

A.2 PROOFS FOR THE THEORETICAL LEMMAS AND THEOREMS

Proof for Lemma 1

Proof. For any x and any true class j ∈ {0, . . . ,K} define the non-negative loss vector ℓ(x) =(
ℓ0(x), . . . , ℓK(x)

)⊤
with ℓi(x) = − log pi(x) ≥ 0. Since Tjj ≥ λ we have

ℓj(x) =
Tjj

Tjj
ℓj(x) ≤

1

λ
Tjj ℓj(x) ≤

1

λ

K∑
i=0

Tji ℓi(x).

Taking expectation under the joint (x, c) and using Pr[ĉ = i | c = j, x] = Tji yields

Rcls
DT , clean(f

st
c ) = E(x,c)

[
ℓc(x)

]
≤ 1

λ
E(x,c)

[∑
i

Tci ℓi(x)
]

=
1

λ
Rcls

DT , noisy(f
st
c ),

which completed the proof of Lemma 1.

Proof for Lemma 2

Proof. We write the clean risk as the expectation over the two disjoint events M = 1 and M = 0:
∥fst

r (x)− b∥1 = M ∥fst
r (x)− b∥1 + (1−M) ∥fst

r (x)− b∥1.

Case M = 1 (teacher matched the box) When M = 1 there exists the pseudo-box b̂ and by the
triangle inequality

∥fst
r (x)− b∥1 ≤ ∥fst

r (x)− b̂∥1 + ∥b̂− b∥1.

Case M = 0 (teacher missed the box) With normalised coordinates ∥fst
r (x)− b∥1 ≤ 2 for all x, b,

hence
(1−M) ∥fst

r (x)− b∥1 ≤ 2 (1−M).

Taking expectations over DT and summing the two cases gives

Rreg
DT , clean

(fst
r ) ≤ E

[
M ∥fst

r (x)− b̂∥1
]︸ ︷︷ ︸

=Rreg

DT , noisy

+ E
[
M ∥b̂− b∥1

]︸ ︷︷ ︸
= ηreg

+ 2 E[1−M ]︸ ︷︷ ︸
=ζ

,

which is exactly equation 8.

Proof for Theorem 1

Proof. Starting from the decomposition Rdet
DT = Rcls

DT ,clean + Rreg
DT ,clean

(cf. Eq. 6), we apply
Lemma 1 to the classification term and Lemma 2 to the regression term:

Rcls
DT ,clean(f

st
c ) ≤ 1

λ Rcls
DT ,noisy(f

st
c ), Rreg

DT ,clean
(fst

r ) ≤ Rreg
DT ,noisy

(fst
r ) + ηreg + 2 ζ.

Adding the two inequalities gives equation 9.

Proof for Theorem 2

Proof. Inspired from (Wang et al., 2024), we can write,

Rcls
DT ,clean

(
f∗
η

)
≤ 2δ +

2w δ

a
.

Combining this with the regression bound that accommodates missed boxes (Lemma 2),
Rreg

DT ,clean(f
st
r ) ≤ Rreg

DT ,noisy(f
st
r ) + ηreg + 2ζ,

and using the decomposition Rdet = Rcls
clean +Rreg

clean yields inequality equation 10.
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A.3 PSUEDO-CODE/ALGORITHM OF FOCUS-SFOD

Algorithm 1 Training Loop of the proposed method
Require: Teacher hte, student hst; target images Xt

Require: (wfg, wbg,m, α, β, γ, λ, λ1, λ2), optimiser Opt(·)
1: for each mini-batch B ⊂ X t do
2: Augment: obtain weak/strong views (x̃t

i, x̄
t
i) for every xt

i ∈ B
3: Teacher forward: Ỹt

i ← hte(x̃t
i)

4: Pseudo-labels: Ŷt
i = {(b̂ij , ĉij)} ← Filter(Ỹt

i )
5: Student forward: (pi,bi)← hst(x̄t

i)
6: Apply Eq. 3 to pi to obtain p′

i

7: wĉ ←
{
wfg, ĉ is foreground,
wbg, otherwise

8: Compute LPAERL via Eq. 4
9: Compute masks: obtain AG (from source-trained model or external segmentation model)

compute student mean maps AS(x
t
i) = mean-channel

(
gst(xt

i)
)

10: Compute LCLEAN via Eq. 5
11: Compute standard detection loss Lreg

12: Aggregate and update: θS ← Opt
(
θst,∇θst(LPAERL + LCLEAR + Lreg)

)
13: Update teacher: θte ← λθte + (1− λ)θst

14: return Adapted teacher hte

A.4 HYPERPARAMETER ANALYSIS

The eight hyperparameters shape how our method balances robustness against the pseudo class-label
noise and the foreground-background confusion. wfg and wbg are class weights that scale every
foreground and background box in PAERL, preventing the large number of background pseudo-boxes
from overwhelming the learning process. The parameter m controls the peak-squeezing transform
in Eq. 4: a larger m makes the predictions closely approximate a one-hot encoding so that one
mislabeled box cannot dominate the gradient. The triplet (α, β, γ) balances PAERL’s three sub-terms:
α sets the strength of the peak-adjusted cross-entropy (driving class discrimination), β weights
the MAE term that encourages calibration and complements CE’s unbounded gradient offering
robustness against the noisy pseudo-class labels, and γ governs the global KL regularizer that keeps
the per-batch class distribution close to uniform, reducing confirmation bias. Finally, λ1 and λ2

weight CLEAN’s mean-ℓ1 alignment and Dice consistency, respectively; λ1 tightens pixel-wise
correspondence between student activations and the binary masks, while λ2 focuses on region-level
overlap, making CLEAN robust when the external mask slightly over or under segments. Together,
these parameters let PAERL curb pseudo class-label noise, let CLEAN correct spatial drift, and still
leave room for the localization loss to fine-tune boxes. Table 8 demonstrates the hyperparameter
analysis results. As we can see, our method is not overly sensitive to the choice of hyperparameters
indicating its robustness. We use Ren et al. (2024) in CLEAN for the hyperparameter analysis.

A.5 DATASET DESCRIPTIONS

We use five publicly available datasets covering four domain-shift scenarios. Cityscapes (Cordts
et al., 2016) is an urban street scene dataset comprising 5,000 finely annotated images collected
from diverse cities and seasons, from which we use 2,925 images for training and 500 for validation.
It includes eight categories: person, rider, car, truck, bus, train, motorcycle, and bicycle. Foggy
Cityscapes (Sakaridis et al., 2018) extends Cityscapes by overlaying synthetic fog at three intensity
levels (0.005, 0.01, and 0.02) to simulate poor visibility conditions. KITTI (Geiger et al., 2013)
is a well-known autonomous driving dataset consisting of 7,481 real-world street scene training
images. Sim10k (Johnson-Roberson et al., 2016) provides 10,000 synthetic urban scene images of
cars, rendered from the video game Grand Theft Auto. BDD100k (Yu et al., 2018) is a large-scale
dataset comprising 100,000 driving scene images captured across various weather conditions and
times of day. To demonstrate the efficacy of our method on extreme domain shifts, we use following
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Table 8: Hyperparameter analysis for Cityscapes→ Foggy Cityscapes on IRG. marks the
hyperparameter being varied.

wfg wbg m α β γ λ1 λ2 mAP

1

1 1e4 0.5 0.1 0.01 2 4

37.8
2 38.4
3 38.2
4 38.2

2

1

1e4 0.5 0.1 0.01 2 4

38.4
2 37.7
3 37.3
4 36.8

2 1

200

0.5 0.1 0.01 2 4

37.1
500 37.3
1e3 38.3
1e4 38.4

2 1 1e4

0.1

0.1 0.01 2 4

37.4
0.5 38.4
1 37.5
2 37.8

2 1 1e4 0.5

0.1

0.01 2 4

38.4
0.5 38
1 37.6
2 37

2 1 1e4 0.5 0.1

0.01

2 4

38.4
0.05 38.1
0.1 37.6
0.5 37.5

2 1 1e4 0.5 0.1 0.01

1

4

37.7
2 38.4
3 38.1
4 37.8

2 1 1e4 0.5 0.1 0.01 2

1 37.5
2 37.7
3 37.9
4 38.4
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datasets: PascalVOC (Everingham et al., 2010), COCO (Lin et al., 2014), FLIR (Teledyne FLIR LLC,
2019), and Clipart (Inoue et al., 2018).

A.6 DISENTANGLING CLASSIFICATION AND LOCALIZATION.

To clearly distinguish between improvements in classification quality and localization quality, we
introduce two variants of the standard VOC AP50: Class-only AP50 and Box-only AP50. These
metrics use the same detection outputs as the standard evaluation; only the scoring process is altered,
adding zero inference cost.

i) For Class-only AP50, each predicted bounding box is snapped to its nearest ground-truth box if their
IoU is ≥ 0.5. After this, the predicted class labels remain unchanged. As the boxes now have perfect
localization, the metric exclusively evaluates the correctness of predicted labels. Thus, improvements
in Class-only AP directly measure reduced class-label noise, validating classification accuracy. Our
experiments show PAERL improving this metric by approximately 2-3 AP points over the baseline
(Fig. 2 left), validating its effectiveness in correcting noisy class labels. ii) In contrast, Box-only AP50
removes class information by collapsing all predicted and ground-truth labels into a single generic
object class. This metric assesses only whether predicted boxes overlap sufficiently (IoU ≥ 0.5) with
ground-truth boxes, thereby isolating spatial localization performance. CLEAN raises this metric by
approximately 3-4 AP points compared to the baseline (Fig. 2 middle), demonstrating its strength
in improving spatial alignment of the predicted boxes. By combining PAERL and CLEAN, the
detector simultaneously benefits from reduced class-label noise and improved localization, resulting
in enhanced overall detection performance (Fig. 2 right).

A.7 ADDITIONAL ABLATION ON PAERL COMPONENTS

Table 9 presents the ablation analysis of Foreground-Background weighting (FG-BG) & Entropy
components. Removing FG–BG weighting and entropy regularization (Row 3, ε-softmax) causes a
clear drop in mAP below the IRG baseline, showing their necessity. While adding CLEAR alone
(Row 4) recovers some performance, the best results are obtained when both CLEAR and PAERL’s
two terms are jointly applied (Row 2). This confirms that off-the-shelf ε-softmax alone is insufficient
for robust SFOD adaptation.

Table 9: Ablation: Study on different components of PAERL.
Method CLEAR FG-BG & Entropy mAP

IRG (rep) — — 37.0
IRG + Ours (PAERL full) ✓ ✓ 39.0

ε-softmax (Wang et al., 2024) ✗ ✗ 36.7
ε-softmax (Wang et al., 2024) + CLEAR ✓ ✗ 37.6

A.8 COMPUTATION COST AND MEMORY ANALYSIS

Tables 10 and 11 report the additional cost of integrating GSAM (Ren et al., 2024) into our pipeline.
The time overhead is marginal: the offline GSAM pass completes in 1 050 s (∼17 min), which is only
3.8% of the 28 000 s required for our model training (and only 5.2% relative to the baseline). When
added to the full pipeline, the end-to-end wall-clock increases only slightly (28 084 s→ 29 134 s),
well within the typical run-to-run variability of large-scale training. The memory overhead is also
short-lived: GSAM peaks at 18GB only during its 17-minute preprocessing, while training itself
never exceeds 9.6GB. Since these stages do not overlap, the entire procedure fits comfortably on
a single 24-48GB GPU without any modification to training. Moreover, the amortization cost is
small: GSAM masks are generated once per target split and can be cached for reuse in all subsequent
experiments. The extraction step is fully parallel across images, so on a multi-GPU node the elapsed
time approaches standard data-loading latency. For completeness, we note that ESC-Net (Lee et al.,
2025) and OV-SAM (Yuan et al., 2024) are both lighter than Grounded-SAM in parameter size, and
therefore require less compute and memory; we report GSAM values here since it represents the
most demanding case among the three. Overall, even with GSAM enabled, the complete adaptation
run finishes in under 8 hours and < 18GB peak memory on a single RTX A6000, confirming that the
footprint remains modest.
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Table 10: Computation time comparison.
Setting Offline GSAM time (1000s) Training time (1000s) Test time (s) End-to-end time (1000s)

IRG (baseline) – 20 84 20.08
IRG + Our target adaptation – 28 84 28.08
IRG + Ours + GSAM masks 1.050 28 84 29.13

Table 11: Memory usage comparison.
Setting Offline GSAM peak mem (GB) Training peak mem (GB) Stage-wise peak mem (GB)

IRG (baseline) – 6.9 6.9
IRG + Our target adaptation – 9.6 9.6
IRG + Ours + GSAM masks 18.4 9.6 18.4

A.9 BUDGET FLEXIBILITY OF CLEAN

Table 12 reports results for CLEAN using different mask sources, demonstrating that our approach
delivers consistent gains while offering budget flexibility. The external binary masks are generated
by simply thresholding foreground versus background classes. Importantly, we do not exploit any
label information from these models, thereby avoiding knowledge leakage. Instead, the masks serve
only as structural priors, guiding the student model to better distinguish between foreground and
background regions.

Table 12: Performance on ’Cityscapes→Foggy Cityscapes’ and ’Sim10k→Cityscapes’ with different
binary masks in CLEAN.

C→F S→C

Method Binary-Mask in CLEAN prsn rider car truck bus train mcycle bicycle mAP AP Car

IRG (rep) (CVPR’23) – 36.9 45.7 51.5 26.4 41.3 25.7 29.1 39.1 37.0 45.9

IRG + Ours Source model mean-channel maps 37.1 46.7 51.4 25.5 42.8 28.5 29.5 41.8 37.9 47.6
IRG + Ours GSAM (Ren et al., 2024) 37.2 46.8 51.6 26.2 42.8 30.5 29.7 42.3 38.4 48.2
IRG + Ours ESC-Net (Lee et al., 2025) (CVPR’25) 37.3 47.0 51.6 26.8 44.2 31.1 30.1 42.6 38.8 48.8
IRG + Ours OVSAM (Yuan et al., 2024) (ECCV’24) 37.0 45.9 51.7 30.2 44.7 30.0 32.9 40.6 39.0 49.1

A.10 REPRODUCIBILITY STATEMENT

We release the complete anonymized code for our method as a supplementary zip file. Implementation
details necessary for reproduction are provided in Sec. 5. As a plug-and-play approach, our method
does not alter any training configurations of the baseline models. The best hyperparameters specific
to our method are reported in Sec. A.4.

A.11 LIMITATIONS AND FUTURE WORK

While the current work focuses on SFOD methods built on Faster-RCNN, future work includes
extending our approach to transformer-based and anchor-free detectors, and exploring fully mask-free
regularization strategies to further simplify adaptation.

A.12 DECLARATION OF LARGE LANGUAGE MODELS USAGE:

We used large language models (LLMs) solely for polishing our writing and performing grammar
checks. No part of the technical content, analysis, or conclusions was generated by LLMs.
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